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Models:

General Form:

meas eqn: yt ∼ f(yt|αt)
trans eqn: αt+1 ∼ f(αt+1|αt), t = 1, ..., n

Filtering:

Require posterior f(αt|Yt), t = 1, ..., n. Require O(n) methods.
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Analytically – two stages; the prediction stage and the measurement update
stage.

1. Prediction stage:

f(αt+1|Yt) =
∫
f(αt+1|αt)f(αt|Yt)dαt

2. Measurement update stage:

f(αt+1|Yt+1) ∝ f(yt+1|αt+1)f(αt+1|Yt)
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In GSSF the above equations lead straightforwardly to the Kalman filter rela-
tions. For general densities above relations not analytically tractable.

References may be found in WestHarrison(1997, Ch 13); Harvey(1989, Ch 3).
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Particle Filters:

Approximate f(αt|Yt) by cloud of points (“particles”)
points: yt α1

t , ..., α
M
t

mass: αt+1 π1
t , ..., π

M
t

M −→ ∞ arbitrarily close to truth. Usually πit = 1/M .
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Filtering Motivation:

1. May be interested in current state | current information for an online
estimation problem, e.g. Bearings-only problem.

2. Give one-step ahead prediction density allowing:

P̂r(z < yt+1|Yt) ∼ Uni[0, 1] if model and parameters true.

3. Gives likelihood for any set of parameters θ. Since

f̂(yt+1|Yt) =
M∑
i=1

f(yt+1|αit+1)

αit+1 ∼ f(αt+1|Yt) so we can get

f(y|θ) = n∏
t=1

f(yt|Yt−1; θ).
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Simulation:

Main tool: Sampling-Importance Resampling; Rubin(1988);
SmithGelfand(1992).

Spse want to simulate from f(α|y) ∝ f(y|α)× f(α).

1. Draw R samples α1, ..., αR ∼ f(α).

2. Construct R weights

wj = f(y|αj), πj =
wj∑R
i=1wi

, j = 1, ..., R.

3. Convert to sample size M by sampling from above discrete distribution.

Sample ∼ f(α|y) as R −→ ∞.
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Properties:

• Efficient when weights as similar as possible –> flat likelihood.

• Requires can simulate from prior / evaluate lik.

• Similar objectives as A/R ; independence Metrop –>make proposal close
to target.

• Get repeated samples.
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SIR particle filter:

of GordonSalmondSmith(1993, IEE Transactions), GSS.

At time t: We have M samples αjt ∼ f(αt|Yt).

1. Prior at t+1:

emprical prediction density:

f̂ (αt+1|Yt) = 1

M

M∑
j=1

f(αt+1|αt = αjt )

2. Posterior t+1:

emprical filtering density:

f̂(αt+1|Yt+1) ∝ f(yt+1|αt+1)×
M∑
j=1

f(αt+1|αt = αjt ) (0·1)

So GSS do:
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1. Draw R samples α1
t+1, ..., α

R
t+1 ∼ f̂(αt+1|Yt).

2. Get R weights πi ∝ f(yt+1|αit+1) i = 1, ..., R

3. Sample M times from above discrete density giving approx α
(k)
t+1 ∼

f̂(αt+1|Yt+1)
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Auxiliary SIR:

PittShephard(1999, JASA).

–Require equally general O(M + R) procedure: sim from state equation /
evaluate meas dens.

emprical filtering density

f(αt+1|Yt+1) ∝ f(yt+1|αt+1)×
M∑
k=1

f(αt+1|αkt )

Consider joint density of αt+1, k :

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)×f(αt+1|αkt )
First approximation:


 f(yt+1|µkt+1)× f(αt+1|αkt )
∝ g(αt+1, k), say
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Sampling from f(αt+1, k) :

Easy by construction since

g(k) ∝ f(yt+1|µkt+1) and g(αt+1|k) = f(αt+1|αkt ).

Gives us R sets of samples (kj, αjt+1) j = 1, ..., R.
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IR weights now

wj =
f(yt+1|αjt+1)

f(yt+1|µkj

t+1)
, πj =

wj∑R
i=1wi

, j = 1, ..., R.

• Weights now more even than for standard SIR filter ⇒ can take R much
smaller.

• Improvement over standard SIR filter becomes better as mixtures become
tight = small error in trans density.

• Above prescription as general as SIR filter.

• Can adapt to make even closer to target density at price of generality.
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Extensions

1. Fixed lag filtering

αt|Yt = (y1, ..., yt)
′ represented by a distribution with discrete support at the

points α1
t , ..., α

M
t , with probability mass of 1/M at each.

Then update this distribution to provide a sample from αt+1, ..., αt+p|Yt+p. The
ASIR method extends by computing the weights

g(k|Yt+p) ∝
∫
f(yt+p|µkt+p)...f(yt+1|µkt+1)f(αt+p|αt+p−1)

...f(αt+1|αkt )dαt+1...dαt+p

= f(yt+p|µkt+p)...f(yt+1|µkt+1),

and then sampling the index k with weights proportional to g(k|Yt+p). Having
selected the index kj we then propagate the transition equation p steps to
produce a draw αjt+1, ..., α

j
t+p, j = 1, ..., R. These are then reweighted according
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to the ratio

f(yt+p|αjt+p)...f(yt+1|αjt+1)

f(yt+p|µkj

t+p)...f(yt+1|µkj

t+1)
.

• The influence of the empirical prediction density reduced as it will have
been propagated p times through the transition density. This may reduce
the influence of outliers on the ASIR method.

• More computationally expensive (in memory).

• More variable weights for SIR.

• Can use as basis for MCMC proposal.
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Example 1: Bearings-only tracking.

Following Gordon Salmond and Smith (1993, IEE Transactions). We have an
observer, located in two dimensions, who observes only the bearing (subject to
noise) of a moving object, αt = (xt, vxt, zt, vzt)

′,

αt+1 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


αt +ση




1
2 0
1 0
0 1

2
0 1



ut, ut ∼ NID(0, I). (0·2)

where xt, zt represent the object’s horizontal and vertical position at time t and
vxt, vzt represent the corresponding velocities, ση = 0.001 and σε = 0.005. We
have the observation model

f(yt|µt) = 1

2π

1− ρ2

1 + ρ2 − 2ρ cos(yt − µt)
, 0 ≤ yt < 2π, 0 ≤ ρ ≤ 1, (0·3)

µt = tan
−1(zt/xt).
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HIGHLY NON-LINEAR MODEL

T = 10. The “true” filtered mean is calculated for each replication by using
the auxiliary method with M = 100, 000 and R = 120, 000. Different random
number seed, S times and recording the average of the resulting squared differ-
ence between the particle filter’s estimated mean and the “true” filtered mean.
Hence for replication i, state component j, at time t we calculate

MSEP
i,j,t =

1

S

S∑
s=1
(αit,j,s − α̃it,j)

2,

where αit,j,s is the particle mean for replication i, state component j, at time

t, for simulation s and α̃it,j is the “true” filtered mean replication i, state com-
ponent j, at time t. The log mean squared error for component j at time t is
obtained as

LMSEP
j,t = log

1

REP

REP∑
i=1

MSEP
i,j,t. (0·4)
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Figure 1: Plot of the relative mean square error performance (on the log-

scale) of the particle filter and the auxiliary based particle filter for the

bearings only tracking problem. Numbers below zero indicate a superior

performance by the auxiliary particle filter. In these graphs M = 4, 000 or

8, 000 while R = M or R = 2M . Throughout SIR is used as the sampling

mechanism. Top left: αt1 = xt, Bottom left: αt3 = zt, while Top right:

αt2 = vxt and Bottom right: αt4 = vzt.
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2. Adaption

meas eqn: yt = εtβ exp(αt/2) εt ∼ NID(0, 1)
state eqn: αt+1 = φαt + ηt, ηt ∼ NID(0, σ2

η)

Let l(αt+1) ≡ log f(yt+1|αt+1)

f(αt+1, k|Yt+1) ∝ f(yt+1|αt+1)× f(αt+1|αkt )
≤ exp{l(µkt+1) + l′(µkt+1)(αt+1 − µkt+1)}

f (αt+1|αkt )
∝ g(k)g(αt+1|k)

So can use proposal in accept-reject where

log Pr(Accept) = l(αt+1)− {l(µkt+1) + l′(µkt+1)(αt+1 − µkt+1)} 
 0.
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or in SIR method.Throughout we take φ = 0.9702, ση = 0.178 and β = 0.5992,
the posterior means of the model for a long time series of returns up until the
end of 1996. To make the problem slightly more challenging we set ε21 = 2.5
for each series, so there is a significant outlier at that point. For this study
we set REP = 40 and S = 20. We allow M = 2, 000 or 4, 000, and for each
of these values we set R = M or 2M . For the rejection based particle filter
algorithm it only makes sense to take M = R and so when R > M we repeat
the calculations as ifM = R. Finally, the rejection based method takes around
twice the time of the SIR based particle filter when M = R.
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Figure 2: Bottom graph shows the daily returns on the Dollar against UK

Sterling from the first day of trading in 1997 for 200 trading days. We display

in the top graph the posterior filtered mean (heavy line) of β exp(αt/2)|Yt,
together with the 5, 20, 50, 80, 95 percentage points of the distribution. Notice

the median is always below the mean. M = 5, 000, R = 6, 000.
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Figure 3: Plot of the mean square error performance (on the log-scale)

of the particle filter to the auxiliary based particle filter and an adapted

particle filter. The lower the number the more efficient the method. Top

graphs have M = 2, 000, the bottom have M = 4, 000. The Left graphs

have R =M , while the right ones have R = 2M
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1. Stratified sampling:

This stratification scheme is briefly described in PittShephard(00) and uses the
suggestion of CarpenterCliffordFearnhead(99). Explicitly, at the resampling
stage, we produce stratified uniforms ũ1, ..., ũR by writing

ũk =
(k − 1) + u

R
, k = 1, ..., R where u iid∼ UID(0, 1).

That is we use a single uniform realisation to generate sorted stratified uni-
forms on [0, 1]. An efficient method, see PS, for inverting the cdf is then used
to produce the stratified sorted samples of our variables. CarpenterClifford-
Fearnhead(99) justify using stratification ideas via sampling.

0·1 Simple outlier example

We tried random and stratified sampling using fixed lag versions of SIR based
particle and auxiliary particle filters on a difficult outlier problem where the
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analytic solution is available via the Kalman filter. We assume the observations
arise from an autoregression observed with noise

yt = αt + εt, εt ∼ NID(0, 0.7072)
αt+1 = 0.9702αt + ηt, ηt ∼ NID(0, 0.1782),

(0·5)

where εt and ηt are independent processes. The model is initialised by αt’s
stationary prior while we used n = 35. We added to the simulated yn/2 a shock
6.5×0.707, which represents a very significant outlier. Throughout we setM =
R = 500 and measure the precision of the filter by the log mean square error
criteria (0·4), taking REP = 30 and S = 20. As the problem is Gaussian the
Kalman filter’s MSE divided byM provides a lower bound on the mean square
error criteria.
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Figure 4: The mean square error (MSE), using a log10 scale, and bias of

four different particle filters using no and two filtered lag filters. The x-

axis is always time, but we only graph results for t = T/4, T/4+1, ..., 3T/4

in order to focus on the crucial aspects. The four particle filters are: SIR,

ASIR, stratified SIR and stratified ASIR. The results are grouped according

to the degree of fixed lag filtering. In particular: (a) shows the MSE when

p = 0, (b) shows the MSE when p = 2. (c) shows the bias when p = 0, while

(d) indicates the bias with p = 2. Throughout we have taken M = R = 500.
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Figure 5: Repeat of Figure but with M = R = 2500.
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