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1 An econometric problem: stochastic volatility

1.1 Time series of speculative assets

1.1.1 Daily exchange rates

Dollar against six currencies from 26 July 1985 to 28th July 2000.

The currencies are the Canadian, DM, FF, Swiss Franc, Y and Pound. Throughout
each rate is denominated in Dollars.

Rates increase the Dollar has strenghtened.

Advent of the Euro in 1st of January 1999 in effect froze the cross rate between the
FF and DM.

Log-exchange rate y∗(s). Let the interval be ∆, then we write the changes as

yt = y∗ (∆s)− y∗ ((s− 1)∆) , s = 1, 2, .... (1)

Not economic returns as ignore differential investment returns (e.g. interest baring
accounts).
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1.1.2 Equity data

Indexes recorded in their domestic currency from 7th December 1993 to 8th October
2000.

DAX 30, FTSE 100, S&P 500 Composite and the Nikkei 500.

Throughout we use the opening prices of the index, recorded by DATASTREAM.

No major market crash occurred.

Biggest movement in DAX which moves down by around nine percent in a single
day.

FTSE is the most unusual of these series for it displays no really large movements
up or down.

Each of the indexes looks like it moves more in the second half of the dataset.
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1.1.3 Stylised facts of time series
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Marginal distributions of changes drawn is the log-density — kernel and
then taking logs. Bandwidth is optimal in the Gaussian case.
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1.1.4 Temporal aggregation

5 minute return data on the United States Dollar/ German Deutsche Mark series cov-
ers the ten year period from 1st December 1986 until 30th November 1996. Records
the most recent quote to appear on the Reuters screen. It has been kindly supplied
to us by Olsen and Associates in Zurich.
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Mean Variance Skewness Kurtosis
5 minutes -0.0000256 0.001847 0.146 44.2
20 minutes -0.000102 0.006803 0.0628 27.6
1 hour -0.000307 0.01929 0.263 21.3
6 hours -0.00184 0.1162 0.0959 9.47
1 day -0.00738 0.4903 0.00328 5.27
1 week -0.0369 2.427 0.144 3.77
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1.2 Serial dependence in changes in prices

Changes are nearly weak white noise
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Squares of changes are autocorrelated
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Stylised facts

• Little autocorrelation in levels

• Important (with long lags) autocorrelation amoungst absolute and squares

• Marginally has fat tails

• Aggregational Gaussianity

• Some negative skews — static and dynamic
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1.3 Interests

• Derivatives. Black-Scholes formula misprices many European options— suggests
risk neutral process has fatter tails and importance dynamic skews. Although
this does not matter much in European market, for exotics this means Brownian
motion is a poor working rule.

• Asset allocation (multivariate).

• Risk assessment (tails, multivariate). Under the physical measure non-normality
may matter greatly.
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2 Models

2.1 Discrete time SV model

Simplest model is the log-normal SV model (Taylor (1982))

yt = βeht/2εt , t ≥ 1

ht+1 = µ + φ(ht − µ) + σηηt , t ≥ 2

h1 ∼ N

µ, σ2

1− φ2


 and


 εt
ηt


 ∼ NID


0,


 1 ρ
ρ 1





 (2)

Surveys include

• Taylor (1994)
• Ghysels, Harvey, and Renault (1996)
• Shephard (1996)
• β, µ, φ, ση and ρ (set β = 1).
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yt = βeht/2εt , t ≥ 1

ht+1 = µ + φ(ht − µ) + σηηt , t ≥ 2

h1 ∼ N

µ, σ2

1− φ2


 . (3)

If | γ1 |< 1 with:

µh = E(ht) =
γ0

1− γ1
, σ2

h = Var(ht) =
σ2
η

1− γ2
1

.

As εt is always stationary, yt will be stationary iff ht is stationary.

Using log-normal distribution

E(y4t )/(σ
2
y2)2 = 3 exp(σ2

h) ≥ 3.
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yt = βeht/2εt , t ≥ 1

ht+1 = µ + φ(ht − µ) + σηηt , t ≥ 2

h1 ∼ N

µ, σ2

1− φ2


 . (4)

• As εt is iid, yt is a MD and is WN if | γ1 |< 1.

• As ht is a Gaussian AR(1),

Cov(y2t , y
2
t−s) = exp{2µh + σ2

h(1 + γs
1)} − {E(y2t )}2

= exp(2µh + σ2
h){exp(σ2

hγ
s
1)− 1}

and so

•

ρy2
t
(s) = Cov(y2t y

2
t−s)/Var(y

2
t ) =

exp(σ2
hγ

s
1)− 1

3 exp(σ2
h)− 1


 exp(σ2
h)− 1

3 exp(σ2
h)− 1

γs
1. (5)

This is the autocorrelation function of an ARMA(1, 1) process. Thus the SV
model behaves in a manner similar to the GARCH(1, 1) model.
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2.1.1 Superposition model

yt = βeht/2εt , t ≥ 1

ht =
M∑
j=1

ht,j,

where ht,j are independent Gaussian autoregressions. e.g. M = 2 and

ht+1,1 = µ + φ1(ht,1 − µ1) + ση,1ηt,1 ,

ht+1,2 = φ2ht,2 + ση,2ηt,2

where φ1 > φ2.
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2.2 Discretely observed diffusions

SDEs of the form

dy(t) = a {y(t), t, θ} dt + b {y(t), t; θ} dw(t), (6)

where a{y(t), t, θ} and b{y(t), t, θ} are the non-anticipative drift and volatility func-
tions.

Bedrock of much of traditional finance. e.g. option pricing formula and interest rate
theory.

Observe these processes discretely, how to do inference?

Literature includes

• the indirect inference method of Smith (1993) & Gourieroux, Monfort, and Re-
nault (1993).

• the efficient method of moments estimator of Gallant and Tauchen (1996) and
Gallant and Long (1997).
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dy(t) = a {y(t), t, θ} dt + b {y(t), t; θ} dw(t),

• the non-parametric approaches of Ait-Sahalia (1996a), Ait-Sahalia (1996b) and
Jiang and Knight (1997).

• estimating functions, see Keller and Sørensen (1999), Sørensen (1997), Florens-
Zmirou (1989), Hansen and Scheinkman (1996)

• the likelihood based method of Pedersen (1995).
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2.3 The illustion of data

In financial economics we have trade by trade and quote by quote data. Thus we
have a continuous record of all trading on the markets — recording the times at
which trading occurs.

The above problem looks like it has gone away—we observe the process in continuous
time.

But the model is misspecified and so one should worry about using ultra high fre-
quency data. The bias could swamp efficiency gains made by using more data.
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2.4 Continuous time SV models

Then the log-price y∗(s) follows the solution to the SDE

dy∗(s) =
{
µ + βσ2(s)

}
ds + σ(s)dw(s), (7)

where σ2(s), the instantaneous or spot volatility, is going to be assumed to (almost
surely) have locally square integrable sample paths, while being stochastically inde-
pendent of the standard Brownian motion w(s). Over an interval of time of length
∆ > 0 returns are defined as

yt = y∗ (∆t)− y∗ ((t− 1)∆) , t = 1, 2, .... (8)

which implies that whatever the model for σ2, it follows that

yt|σ2
t ∼ N(µ∆+ βσ2

t , σ
2
t ).

where

σ2
t = σ2∗(t∆)− σ2∗ {(t− 1)∆} , and σ2∗(s) =

∫ s

0
σ2(u)du.
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2.5 Spot volatility model

Two classes of processes which have this property. The first is the constant elasticity
of variance (CEV) process which is the solution to the SDE

dσ2(s) = −λ
{
σ2(s)− ξ

}
ds + ωσ(s)ηdb(λs), η ∈ [1, 2],

where b(s) is standard Brownian motion uncorrelated with w(s). Of course the
special cases of η = 1 delivers the square root process, while when η = 2 we have
Nelson’s GARCH diffusion. These models have been heavily favoured by Meddahi
and Renault (2000) in this context. The second process is the non-Gaussian Ornstein-
Uhlenbeck, or OU type for short, process which is the solution to the SDE

dσ2(s) = −λσ2(s)ds + dz(λs), (9)

where z(s) is a Lévy process with non-negative increments. These models have been
developed in this context by Barndorff-Nielsen and Shephard (2001).
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3 Statistical models

Many of the above models are just special cases of non-Gaussian, non-linear state
space models.

Let us write the state αt and observations as yt. States are Markov and the obser-
vations are conditionally independent given current state.

Model specified through

f(yt|αt) and f(αt+1|αt).

Unfortunately this structure is hard to handle outside Gaussian, linear structure.

• Numerical integration rules — Kitagawa (1987) (high dimensions)

• MCMC — Carlin, Polson, and Stoffer (1992), Carter and Kohn (1994),
Fruhwirth-Schnatter (1994), Shephard (1994), Shephard and Pitt (1997) etc
(filtering)

• Particle filters — Gordon, Salmond, and Smith (1993), Pitt and Shephard
(1999), Doucet, de Freitas, and Gordon (2001) (likelihood).
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4 Classes of state space models: MCMC design

• Unstructured: Markov random field structure only. Carlin, Polson, and Stoffer
(1992)

• Conditional Gaussian: y|s is a Gaussian SSF. Carter and Kohn (1994) (s is
Markov and discrete), Shephard (1994) (s is Markov).

• Non-Gaussian measurement SSF: ie. αt+1|αt Gaussian but f(yt|αt) non-
Gaussian. Shephard and Pitt (1997).
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5 Outline of lectures

1. MCMC methodology for state space models

2. SV inference

(a) Univariate: MCMC & particle filters

(b) Multivariate: MCMC & particle filters

3. Inference for diffusion based models
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