
Useful (?) remark for HMMs and state space models

Most standard texts on Hidden Markov Models (eg. Rabiner’s 1989

tutorial, McDonald & Zucchini’s 1997 monograph) ignore a remark-

able observation about HMMS:

• The intermediate quantity of the EM (Expectation Maximization)

algorithm

• The gradient of the log-likelihood

and more generally any function that can be written as

γt =
t∑

s=1

E(ms(Xs)|Y1:t) +
t∑

s=2

E
(
rs(Xs−1, Xs)|Y1:t

)

can be computed recursively in t: 1994 book by Elliot, Aggoun &

Moore (for experts only) Zeitouni & Dembo (1989) and several refer-

ences in the control literature (keyword: “exact filter”)...

99K “Forward-Backward” smoothing is not the only solution



What’s the trick?

Consider the example of γt =
t∑

s=1

E(ms(Xs)|Y1:t) and define

Γt(j) =
t∑

s=1

N∑
l=1

ms(l)P(Xs = l, Xt = j|Y1:t) so that γt =
N∑

j=1

Γt(j)

Notations:


Xt+1|Xt = xt ∼ k(xt, ·)
Yt|Xt = xt ∼ q(xt, ·)
Xt ∈ {1, . . . N}

Then (homework...),

Γt+1(j) =

 N∑
i=1

Γt(i)k(i, j)

 q(j, Yt+1)

N∑
l=1

q(l, Yt+1) P(Xt+1 = l|Y1:t)︸ ︷︷ ︸
standard predictor

+ mt+1(j)P(Xt+1 = j|Y1:t+1)︸ ︷︷ ︸
standard filter



Comments

A similar relation holds for the general state space case as well as for

continuous-time models (with explicit formulas in the Gaussian linear

case).

Warning: Computing ΓT is O(N2×T ) but there are many such statis-

tics of interest: ms(xs) = I{i}(xs) (N − 1 of them), rs(xs−1, xs) =

I{i}(xs−1)I{j}(xs) (N × (N − 1) of these)...

This idea can be used for approximating quantities of interest with

particle filters, cf. (Cappé, 2001).

http://www.tsi.enst.fr/~cappe/papers/ma_rmlpa.ps.gz
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Overview 1

1. Continuous-time jump simulation as an alternative (?) to con-

ventional MCMC

2. Continuous-time jump MCMC for model selection

3. Reversible Jump MCMC samplers converging to continuous time-

jump sampler

4. Application to HMMs

5. Continuous-time jump simulation and importance sampling



An alternative to conventional MCMC 2
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where (Xk)k≥0 is a (discrete-time) Markov chain with kernel Q and

Dk|X1:k ∼ Exponentialλ(Xk)

The continuous-time process is

X(t) =
+∞∑
k=0

XkI[Tk,Tk+1)
with Tk =

k−1∑
j=0

Dj (and T0 = 0)



A simple example 3

Detailed balance condition

π(x)λ(x)Q(x, y) = π(y)λ(y)Q(y, x) (assuming π and Q(u, ·) � µ)

The independent jump sampler

For Q(x, y) = q(y)

99K λ(x) = q(x)/π(x)

Note: The chain is always non-explosive since

Eq[
1

λ(X)
] = π(support(q))

but geometric ergodicity indeed requires that

q(x)/π(x) ≥ δ > 0



Continuous-time MCMC for model selection 4

Stephens (Ann. Statist., 2000) – and others before – have proposed

using continuous-time simulation for variable dimension MCMC as an

alternative to Green’s (1995) Reversible Jump

The case of mixture (Stephens, 2000) We want to estimate all

parameters, including dimension k, of the mixture density

k∑
i=1

ρif(·;φi) Note: reparameterization ρi := wi/

k∑
j=1

wi

99K View (wi, φi)1≤i≤k as a sample from a spatial point process

w w
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Basic move: Propose new component ∼ b(w, φ) 5

RJMCMC (using Birth and Death moves only):

– Births and deaths are proposed with probabilities βk and δk, re-

spectively, when having k components

– Acceptance probability for birth move is min(A,1), with

A =
π(k + 1, (wk, φk) ∪ (w, φ))

π(k, (wk, φk))
×

δk+1

βkb(w, φ)

– Acceptance probability for death move is min(A−1,1)

BDMCMC:

– New components are born according to a Poisson process with

rate λk when having k components

– Each component (w, φ) dies with rate

d(w, φ) =
π(k, (wk, φk))

π(k + 1, (wk, φk) ∪ (w, φ))︸ ︷︷ ︸
posterior ratio

×
λkb(w, φ)

k + 1



?(RJMCMC == BDMCMC) 6

Both approaches can (only) be connected by a time scaling con-
struction:

– In discrete-time RJMCMC, let the time unit be 1/N , put βk =
λk/N and δk = 1− λk/N . Finally consider X(t) := X

(N)
b t
N c

– As N → ∞ all birth proposals are accepted, and births occur
according to a Poisson process with rate λk (when having k com-
ponents)

– As N →∞, a component (w, φ) of the k + 1 components config-
uration dies with rate

lim
N→∞

Nδk+1 ×
1

k + 1
×min(A−1,1)

= lim
N→∞

N
1

k + 1
× posterior ratio×

βkb(w, φ)

δk+1

= posterior ratio×
λkb(w, φ)

k + 1

Hence “RJMCMC→BDMCMC” (This can be shown more for-
mally and holds for general type of moves).



Other comparisons between the two approaches 7

Stephens (2000) argues that the continuous-time alternative is sim-

pler to implement than reversible jump – But this is only a conse-

quence of the simplicity of the birth-or-death move:

The Jacobian term also appears when using more complex moves. In

a split-or-merge implementation where one proposes (w′j, φ
′
j, w

′′
j , φ′′j ) =

T (wj, φj, εw, εφ) with (εw, εφ) ∼ b, the death rate becomes

posterior ratio×
ηk

k(k + 1)
× 2b(εw, εφ)×

∣∣∣∣∣ ∂T

∂(wj, φj, εw, εφ)

∣∣∣∣∣
−1

where ηk is the split rate for a k components configuration.

The continuous-time algorithm is costly to implement for split-or-

merge moves since computing the k(k+1)/2 merge rates is necessary

for simulating the lifetime in a given k+1 components configuration.



Application to scalar Gaussian HMM 8

Parameters

k number of components

w1, . . . , wk weights

µ1, . . . , µk means

σ1, . . . , σk variances

Moves

1. Birth/Death move (rate λk), where b is the prior

2. Split/Merge move (rate ηk) with T given by

(µ′j, µ
′′
j ) = (µj + εµ, µj + εµ)

(σ′j, σ
′′
j ) = (σjεσ, σj/εσ)

(w′j, w
′′
j ) = (wjεw, wj/εw)

where εµ ∼ N , εσ, εw ∼ log−N

3. Conventional fixed k moves (rate ξk)



Application to HMM (cont.) 9

The HMM likelihood

is computed exactly

(no data augmen-

tation) using forward

filtering

In some cases, seems

to achieve better mix-

ing than (Robert, Ry-

dén & Titterington,

2000)



Variance reduction for CT simulation 10

We typically want to estimate Eπ f(X) by t−1 ∫ t
0 f(X(t))dt

or T−1
k

∫ Tk
0 f(X(t))dt, but

E(
∫ Tk

0
f(X(t))dt|X0:k−1) =

k−1∑
j=0

f(Xj)E(Dj|Xj)︸ ︷︷ ︸
λ−1(Xj)

and computing λ(Xj) is required by the method ( c©Gareth Roberts, 2001).

99K The “smart” estimate is

k−1∑
j=0

λ−1(Xj)f(Xj)

k−1∑
j=0

λ−1(Xj)

which looks very much like Bayesian importance sampling (w = λ−1).

For the simple independent CT jump sampler this is exactly B-IS and

the gain in asymptotic variance is a factor 2.



Conclusions 11

The situation is more contrasted than suggested by Stephens (2000)

Some interesting question remains – in particular, the way one ac-

tually simulates (approximatively) a random variable ∼ π with CT

simulation is very different from Importance Sampling and Resam-

pling.

See full length version of the paper for details

http://www.tsi.enst.fr/~cappe/papers/crr01ct.ps.gz

