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Introduction

Setup

Choice of models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Introduction

Example (Galaxy normal mixture)

Set of observations of radial speeds of 82 galaxies possibly
modelled as a mixture of normal distributions

Mi : xj ∼
i
∑

ℓ=1

pℓiN (µℓi, σ
2
ℓi)

1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.5

1.0
1.5

2.0

velocities

Prior selection and model choice

Bayesian Model Choice

Bayesian resolution

Bayesian resolution

B Framework

Probabilises the entire model/parameter space
This means:

allocating probabilities pi to all models Mi

defining priors πi(θi) for each parameter space Θi
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Bayesian resolution

Formal solutions

Resolution

1. Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj

2. Take largest p(Mi|x) to determine ‘‘best’’ model,

or use averaged predictive

∑

j

p(Mj |x)

∫

Θj

fj(x
′|θj)πj(θj|x)dθj
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Problems

Several types of problems

Concentrate on selection perspective:

averaging = estimation = non-parsimonious = no-decision
how to integrate loss function/decision/consequences
representation of parsimony/sparcity (Ockham’s rule)
how to fight overfitting for nested models

Which loss ?
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Problems

Several types of problems (2)

Choice of prior structures

adequate weights pi:
if M1 = M2 ∪M3, p(M1) = p(M2) + p(M3) ?
priors distributions

πi(θi) defined for every i ∈ I

πi(θi) proper (Jeffreys)
πi(θi) coherent (?) for nested models

Warning

Parameters common to several models must be treated as separate
entities!
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Problems

Several types of problems (3)

Computation of predictives and marginals

- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over many models (2k)

[MCMC resolution = another talk]
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Bayes factors

A function of posterior probabilities

Definition (Bayes factors)

Models M1 vs. M2

B12 =
Pr(M1|x)

Pr(M2|x)

/

Pr(M1)

Pr(M2)

=

∫

f1(x|θ1)π1(θ1)dθ1
∫

f2(x|θ2)π2(θ2)dθ2

[Good, 1958 & Jeffreys, 1961]

Goto Poisson example
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Bayes factors

Self-contained concept

eliminates choice of Pr(Mi)

but depends on the choice of πi(θi)

Bayesian/marginal likelihood ratio

Jeffreys’ scale of evidence
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Bayes factors

A battery of difficulties

Improper priors not allowed here

If
∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be normalised uniquely but the
normalisation matters in the Bayes factor Recall Bayes factor
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Bayes factors

Constants matter

Example (Poisson versus Negative binomial)

If M1 is a P(λ) distribution and M2 is a N B(m,p) distribution,
we can take

π1(λ) = 1/λ
π2(m,p) = 1

M I{1,··· ,M}(m) I[0,1](p)
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Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (2))

then

B12 =

∫ ∞

0

λx−1

x!
e−λdλ

1

M

M
∑

m=1

∫ ∞

0

(

m

x− 1

)

px(1− p)m−xdp

= 1

/

1

M

M
∑

m=x

(

m

x− 1

)

x!(m− x)!

m!

= 1

/

1

M

M
∑

m=x

x/(m− x+ 1)
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Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!

same thing when both priors are improper

Improper priors on common (nuisance) parameters do not matter
(so much)
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Bayes factors

Vague proper priors are not the solution

Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley’s paradox)

If testing H0 : θ = 0 when observing x ∼ N (θ, 1), under a normal
N (0, α) prior π1(θ),

B01(x)
α−→∞
−→ 0
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Bayes factors

Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m− x+ 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α+ x)

x! Γ(α)
β−x

/

1

M

∑

m

x

m− x+ 1

=
(x+ α− 1) · · ·α

x(x− 1) · · · 1
β−x

/

1

M

∑

m

x

m− x+ 1

depends on choice of α(β) or β(α) −→ 0
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Pseudo-Bayes factors

Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

πi improper but πi(·|x[i]) proper

and
∫

fi(x[n/i]|θi) πi(θi|x[i])dθi
∫

fj(x[n/i]|θj) πj(θj|x[i])dθj

independent of normalizing constant

Use remaining x[n/i] to run test as if...
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Pseudo-Bayes factors

Motivation

Working principle for improper priors

Gather enough information from data to gain properness

and use this properness to run the test on remaining data

does not use x twice as in Aitkin’s (1991)
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Pseudo-Bayes factors

Details

Since π1(θ1|x[i]) =
π1(θ1)f

1
[i](x[i]|θ1)

∫

π1(θ1)f
1
[i](x[i]|θ1)dθ1

then

B12(x[n/i]) =

∫

f1
[n/i](x[n/i]|θ1)π1(θ1|x[i])dθ1

∫

f2
[n/i](x[n/i]|θ2)π2(θ2|x[i])dθ2

=

∫

f1(x|θ1)π1(θ1)dθ1
∫

f2(x|θ2)π2(θ2)dθ2

∫

π2(θ2)f
2
[i](x[i]|θ2)dθ2

∫

π1(θ1)f
1
[i](x[i]|θ1)dθ1

= BN
12(x)B21(x[i])

c© Independent of scaling factor!
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Pseudo-Bayes factors

More problems

depends on the choice of x[i]

many ways of combining pseudo-Bayes factors

AIBF = BN
ji

1

L

∑

ℓ

Bij(x[ℓ])

MIBF = BN
ji med[Bij(x[ℓ])]

GIBF = BN
ji exp

1

L

∑

ℓ

logBij(x[ℓ])

not often exact Bayes

[Berger & Pericchi, 1996]
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Pseudo-Bayes factors

More problems (cont’d)

Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a
training sample is allocated to each component
Reason If

x1, . . . , xn ∼
k
∑

i=1

pif(x|θi)

and

π(θ) =
∏

i

πi(θi) with

∫

πi(θi)dθi = +∞ ,

the posterior is never defined, because

Pr(“no observation from f(·|θi)”) = (1− pi)
n
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Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean)

Take x ∼ N (θ, 1) with either θ = 0 (M1) or θ 6= 0 (M2) and
π2(θ) = 1.
Then

BAIBF
21 = B21

1√
2π

1
n

∑n
i=1 e

−x2
1/2 ≈ B21 for N (0, 2)

BMIBF
21 = B21

1√
2π
e−med(x2

1)/2 ≈ 0.93B21 for N (0, 1.2)

[Berger and Pericchi, 1998]

When such a prior exists, it is called an intrinsic prior
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Intrinsic priors

Intrinsic priors (cont’d)

Example (Exponential scale)

Take x1, . . . , xn
i.i.d.
∼ exp(θ − x)Ix≥θ

and H0 : θ = θ0, H1 : θ > θ0 , with π1(θ) = 1
Then

BA
10 = B10(x)

1

n

n
∑

i=1

[

exi−θ0 − 1
]−1

is the Bayes factor for

π2(θ) = eθ0−θ
{

1− log
(

1− eθ0−θ
)}

Most often, however, the pseudo-Bayes factors do not correspond
to any true Bayes factor
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2 Compatible priors

1 Bayesian Model Choice

2 Compatible priors
Principle
Exponential families
Linear regression
Variable selection
Extension

3 Symmetrised compatible priors

[Joint work with C. Celeux, G. Consonni and J.M. Marin]
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Principle

Principle

Difficulty of finding simultaneously priors on a collection of models
Mi (i ∈ I)
Easier to start from a single prior on a “big” model and to derive
the others from a coherence principle

[Dawid & Lauritzen, 2000]

Prior selection and model choice

Compatible priors

Principle

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1
⊥)) = inf

θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

d(f(· |θ1), f(· |θ1
⊥))

[Goutis & Robert, 1998]
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Principle

Operational principle for variable selection

Selection rule

Among all subsets A of covariates such that

d(Mg,MA) = Ex[d(fg(·|x, α), fA(·|xA, α
⊥))] < ǫ

select the submodel with the smallest number of variables.

[Dupuis & Robert, 2001]

Prior selection and model choice

Compatible priors

Principle

Kullback proximity

Alternative

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫

Θ1
f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫

Θ2
f2(x|θ)π2(θ)dθ,

π2 = arg min
π2

∫

log

(

m1(x;π1)

m2(x;π2)

)

m1(x;π1) dx
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Principle

Difficulties

Does not give a working principle when M2 is not a submodel
M1

Depends on the choice of π1

Prohibits the use of improper priors

Worse: useless in unconstrained settings...
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Exponential families

Case of exponential families

Models
M1 : {f1(x|θ), θ ∈ Θ}

and
M2 : {f2(x|λ), λ ∈ Λ}

sub-model of M1,

∀λ ∈ Λ,∃ θ(λ) ∈ Θ, f2(x|λ) = f1(x|θ(λ))

Both M1 and M2 are natural exponential families

f1(x|θ) = h1(x) exp(θTt1(x)−M1(θ))

f2(x|λ) = h2(x) exp(λTt2(x)−M2(λ))
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Exponential families

Conjugate priors

Parameterised (conjugate) priors

π1(θ; s1, n1) = C1(s1, n1) exp(sT1 θ − n1M1(θ))

π2(λ; s2, n2) = C2(s2, n2) exp(sT2 λ− n2M2(λ))

with closed form marginals (i = 1, 2)

mi(x; si, ni) =

∫

fi(x|u)πi(u)du =
hi(x)Ci(si, ni)

Ci(si + ti(x), ni + 1)
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Exponential families

Conjugate compatible priors

(Q.) Existence and unicity of Kullback-Leibler projection

(s∗2, n
∗
2) = arg min

(s2,n2)
KL(m1(·; s1, n1),m2(·; s2, n2))

= arg min
(s2,n2)

∫

log

(

m1(x; s1, n1)

m2(x; s2, n2)

)

m1(x; s1, n1)dx
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Exponential families

A sufficient condition

Sufficient statistic ψ = (λ,−M2(λ))

Theorem (Existence)

If, for all (s2, n2), the matrix

V
π2
s2,n2

[ψ]− E
m1
s1,n1

[

V
π2
s2,n2

(ψ|x)
]

is semi-definite negative, the conjugate compatible prior exists, is
unique and satisfies

E
π2
s∗2 ,n∗2

[λ]− E
m1
s1,n1

[Eπ2
s∗2 ,n∗2

(λ|x)] = 0

E
π2
s∗2 ,n∗2

(M2(λ))− E
m1
s1,n1

[Eπ2
s∗2 ,n∗2

(M2(λ)|x)] = 0.
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Linear regression

Application to linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1 M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ
2 ∼ N

(

s1, σ
2n1(X

T
1 X1)

−1
)

where X1 is a (n× k1) matrix of rank k1 ≤ n

2 M2 :

y|β2, σ
2 ∼ N (X2β2, σ

2), β2|σ
2 ∼ N

(

s2, σ
2n2(X

T
2 X2)

−1
)

,

where X2 is a (n× k2) matrix with span(X2) ⊆ span(X1)

For a fixed (s1, n1), we need the projection (s2, n2) = (s1, n1)
⊥
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Linear regression

Compatible g-priors

Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ

2; s1, n1) and m2(y|σ
2; s2, n2)

Theorem

Conditional on σ2, the conjugate compatible prior of M2 wrt M1 is

β2|X2, σ
2 ∼ N

(

s∗2, σ
2n∗2(X

T

2 X2)
−1
)

with

s∗2 = (XT

2 X2)
−1XT

2 X1s1

n∗2 = n1
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Variable selection

Variable selection

Regression setup where y regressed on a set {x1, . . . , xp} of p
potential explanatory regressors (plus intercept)

Corresponding 2p submodels Mγ , where γ ∈ Γ = {0, 1}p indicates
inclusion/exclusion of variables by a binary representation
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Variable selection

Notations

For model Mγ ,

qγ variables are included

t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} are the indices of those
variables and t0(γ) the indices of the variables not included

For β ∈ R
p+1,

βt1(γ) =
[

β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

βt0(γ) =
[

βt0,1(γ), . . . , βt0,p−qγ (γ)

]

Xt1(γ) =
[

1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]

.

Submodel Mγ is thus

y|β, γ, σ2 ∼ N
(

Xt1(γ)βt1(γ), σ
2In
)
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Variable selection

Global and compatible priors

Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g

Resulting compatible prior

N

(

(

XT
t1(γ)Xt1(γ)

)−1
XT

t1(γ)Xβ̃, cσ
2
(

XT
t1(γ)Xt1(γ)

)−1
)

[Surprise!]
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Variable selection

Model index

For the hierarchical parameter γ, we use

π(γ) =

p
∏

i=1

τγi
i (1− τi)

1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model.
Typically, when no prior information is available,
τ1 = . . . = τp = 1/2, ie a uniform prior

π(γ) = 2−p
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Variable selection

Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c + 1)
−(qγ +1)/2

»

y
T

y −
c

c + 1
y

T
P1y +

1

c + 1
β̃

T
X

T
P1Xβ̃ −

2

c + 1
y

T
P1Xβ̃

–

−n/2

.

Conditionally on γ, posterior distributions of β and σ2:

βt0(γ)|σ
2
, y, γ ∼ δ(0p−qγ ),

βt1(γ)|σ
2
, y, γ ∼ N

"

c

c + 1
(U1y + U1Xβ̃/c),

σ2c

c + 1

“

X
T
t1(γ)Xt1(γ)

”

−1
#

,

σ
2|y, γ ∼ IG

"

n

2
,

yTy

2
−

c

2(c + 1)
y

T
P1y +

β̃TXTP1Xβ̃

2(c + 1)
−

1

c + 1
y

T
P1Xβ̃

#

.
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Variable selection

Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:

Taking β̃ = 0p+1 and c large does not work
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Variable selection

Influence of c

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]

True model: two predictors x1 and x2, i.e. γ∗ = (1, 1, 0, . . . , 0),
and (β0, β1, β2) = (5, 1, 3), and σ2 = 4.
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Variable selection

Influence of c
2

γ c = 10 c = 100 c = 103 c = 104 c = 106

0,1,2 0.04062 0.35368 0.65858 0.85895 0.98222
0,1,2,7 0.01326 0.06142 0.08395 0.04434 0.00524
0,1,2,4 0.01299 0.05310 0.05805 0.02868 0.00336
0,2,4 0.02927 0.03962 0.00409 0.00246 0.00254
0,1,2,8 0.01240 0.03833 0.01100 0.00126 0.00126
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Variable selection

Noninformative case (cont’d)

In the noninformative setting,

π(γ|y, c) ∝ (c+ 1)−(qγ+1)/2

[

yTy −
c

c+ 1
yTP1y

]−n/2

and

π(γ|y) ∝
∞
∑

c=1

c−1(c+ 1)−(qγ+1)/2

[

yTy −
c

c+ 1
yTP1y

]−n/2

which converges for all y’s
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Variable selection

Casella & Moreno’s example

γ
105
∑

i=1

π(γ|y, c)π(c)
106
∑

i=1

π(γ|y, c)π(c)

0,1,2 0.77969 0.78071
0,1,2,7 0.06229 0.06201
0,1,2,4 0.04138 0.04119
0,1,2,8 0.01684 0.01676
0,1,2,5 0.01611 0.01604
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Variable selection

Gibbs approximation

When p large, impossible to compute the posterior probabilities of
all of the 2p models.
Use of a simulation approximation of π(γ|y)

Gibbs sampling

• At t = 0, draw γ0 from the uniform distribution on Γ;

• At t, for i = 1, . . . , p, draw
γt

i ∼ π(γi|y, γ
t
1, . . . , γ

t
i−1, . . . , γ

t−1
i+1 , . . . , γ

t−1
p )
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Variable selection

Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N

(

β0 +
20
∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
True model with n = 180, σ2 = 4 and seven predictor variables

x1, x3, x5, x6, x12, x18, x20,
(β0, β1, β3, β5, β6, β12, β18, β20) = (3, 4, 1,−3, 12,−1, 5,−6)
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Variable selection

Gibbs approximation (cont’d)

5 10 15 20

5
10

15
20

Figure: Correlations between the 20 predictors (white=1, black=0)
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Variable selection

Gibbs approximation (cont’d)

Example (Simulated data (2))

Results

γ π(γ|y) π̂(γ|y)
GIBBS

π̂(γ|y)
P MC

0,1,3,5,6,12,18,20 0.1893 0.1822 0.1891
0,1,3,5,6,18,20 0.0588 0.0598 0.0596
0,1,3,5,6,9,12,18,20 0.0223 0.0236 0.0335
0,1,3,5,6,12,14,18,20 0.0220 0.0193 0.0248
0,1,2,3,5,6,12,18,20 0.0216 0.0222 0.0212
0,1,3,5,6,7,12,18,20 0.0212 0.0233 0.0282
0,1,3,5,6,10,12,18,20 0.0199 0.0222 0.0129
0,1,3,4,5,6,12,18,20 0.0197 0.0182 0.0200
0,1,3,5,6,12,15,18,20 0.0196 0.0196 0.0168
0,1,3,5,6,8,12,18,20 0.0193 0.0197 0.0142

Gibbs (T = 100, 000 and T0 = 10, 000) and PMC (N = 10, 000,
T = 10 and D = 20) results for β̃ = 021 and c = 100
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Extension

Extension

When models M1 and M2 are not embedded, difficult choice of
M1 versus M2 in above principle.

Idea of an iterative prior determination by successive replacements
of π1 and π2 by their respective compatible priors...

Should get to the two sets of hyperparameters closest to one
another.
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3 Symmetrised compatible priors
Postulate
Properties
Examples

[Joint work with J.A. Cano and D. Salmerón]
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Postulate

Postulate

Previous principle requires embedded models (or an encompassing
model) and proper priors, while being hard to implement outside
exponential families
Now we determine prior measures on two models M1 and M2, π1

and π2, directly by a compatibility principle.
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Postulate

Generalised expected posterior priors

[Perez & Berger, 2000]

EPP Principle

Starting from reference priors πN
1 and πN

2 , substitute by prior
distributions π1 and π2 that solve the system of integral equations

π1(θ1) =

∫

X

πN
1 (θ1 |x)m2(x)dx

and

π2(θ2) =

∫

X

πN
2 (θ2 |x)m1(x)dx,

where x is an imaginary minimal training sample and m1, m2 are
the marginals associated with π1 and π2 respectively.
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Postulate

Motivation

Eliminates the “imaginary observation” device and proper-isation
through part of the data by integration under the “truth”

Assumes that both models are equally valid and equipped with
ideal unknown priors

πi, i = 1, 2,

that yield “true” marginals balancing each model wrt the other

For a given π1, π2 is an expected posterior prior
Using both equations introduces symmetry into the game
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Dual properness

Theorem (Proper distributions)

If π1 is a probability density then π2 solution to

π2(θ2) =

∫

X

πN
2 (θ2 |x)m1(x)dx

is a probability density

c© Both EPPs are either proper or improper.
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Bayesian coherence

Theorem (True Bayes factor)

If π1 and π2 are the EPPs and if their marginals are finite, then the
corresponding Bayes factor

B1,2(x)

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Obviously only interesting when both π1 and π2 are improper.
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Existence/Unicity

Theorem (Recurrence condition)

When both the observations and the parameters in both models
are continuous, if the Markov chain with transition

Q
(

θ′1 | θ1
)

=

∫

g
(

θ1, θ
′
1, θ2, x, x

′) dxdx′dθ2

where

g
(

θ1, θ
′
1, θ2, x, x

′) = πN
1

(

θ′1 |x
)

f2 (x | θ2)π
N
2

(

θ2 |x
′) f1

(

x′ | θ1
)

,

is recurrent, then there exists a solution to the integral equations,
unique up to a multiplicative constant.
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Properties

Consequences

If the M chain is positive recurrent, there exists a unique pair
of proper EPPS.

The transition density Q (θ′1 | θ1) has a dual transition density
on Θ2.

There exists a parallel M chain on Θ2 with identical
properties; if one is (Harris) recurrent, so is the other.

Duality property found both in the MCMC literature and in
decision theory

[Diebolt & Robert, 1992; Eaton, 1992]

When Harris recurrence holds but the EPPs cannot be found,
the Bayes factor can be approximated by MCMC simulation
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Point null hypothesis testing

Testing H0 : θ = θ∗ versus H1 : θ 6= θ∗, i.e.

M1 : f (x | θ∗) ,

M2 : f (x | θ) , θ ∈ Θ.

Default priors

πN
1 (θ) = δθ∗ (θ) and πN

2 (θ) = πN (θ)

For x minimal training sample, consider the proper priors

π1 (θ) = δθ∗ (θ) and π2 (θ) =

∫

πN (θ |x) f (x | θ∗) dx

Prior selection and model choice
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Point null hypothesis testing (cont’d)

Then
∫

πN
1 (θ |x)m2 (x) dx = δθ∗ (θ)

∫

m2 (x) dx = δθ∗ (θ) = π1 (θ)

and
∫

πN
2 (θ |x)m1 (x) dx =

∫

πN (θ |x) f (x | θ∗) dx = π2 (θ)

c© π1 (θ) and π2 (θ) are integral priors

Note

Uniqueness of the Bayes factor
Integral priors and intrinsic priors coincide

[Moreno, Bertolino and Racugno, 1998]
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Location models

Two location models

M1 : f1 (x | θ1) = f1 (x− θ1)

M2 : f2 (x | θ2) = f2 (x− θ2)

Default priors
πN

i (θi) = ci, i = 1, 2

with minimal training sample size one
Marginal densities

mN
i (x) = ci, i = 1, 2
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Location models (cont’d)

In that case, πN
1 (θ1) and πN

2 (θ2) are integral priors when c1 = c2:

∫

πN
1 (θ1 |x)m

N
2 (x) dx =

∫

c2f1 (x− θ1) dx = c2
∫

πN
2 (θ2 |x)m

N
1 (x) dx =

∫

c1f2 (x− θ2) dx = c1.

c© If the associated Markov chain is recurrent,

πN
1 (θ1) = πN

2 (θ2) = c

are the unique integral priors and they are intrinsic priors
[Cano, Kessler & Moreno, 2004]
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Location models (cont’d)

Example (Normal versus double exponential)

M1 : N (θ, 1), πN
1 (θ) = c1,

M2 : DE(λ, 1), πN
2 (λ) = c2.

Minimal training sample size one and posterior densities

πN
1 (θ |x) = N (x, 1) and πN

2 (λ |x) = DE (x, 1)
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Location models (cont’d)

Example (Normal versus double exponential (2))

Transition θ → θ′ of the Markov chain made of steps :

1 x′ = θ + ε1, ε1 ∼ N (0, 1)

2 λ = x′ + ε2, ε2 ∼ DE(0, 1)

3 x = λ+ ε3, ε3 ∼ DE(0, 1)

4 θ′ = x+ ε4, ε4 ∼ N (0, 1)

i.e. θ′ = θ + ε1 + ε2 + ε3 + ε4

random walk in θ with finite second moment, null recurrent
c© Resulting Lebesgue measures π1 (θ) = 1 = π2 (λ) invariant
and unique solutions to integral equations


