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It is our experience that applied (micro-)econometricians are not very keen on

“modern” statistics, including non-Bayesian methods such as the Lasso. We com-
mend the authors on demonstrating the importance of concepts such as sparsity to a
problem of great practical interest for econometricians (and others), namely taking
into account individual heterogeneity in longitudinal (a.k.a. panel) data. Building a
bridge between the simplistic standard regression model and the over-parametrized
regression model with a random intercept that differs for each individual is certainly
an appealing approach.

We’d like to make a few specific comments. In Section 2, see (3), the authors
mention the usual reformulation of a model with random intercepts as a regression
model with indicator functions, but recommend against using a g-prior under this
representation, because of the “information inbalance” between α (the vector of re-
gression coefficients) and β (the vector of random intercepts); instead, they assume
prior independence, p(α, β) = p(α)p(β). We do not entirely understand this line of
reasoning. (a) Imagine that one covariate xit is constant over time, and is one for a
few individuals, zero otherwise. Should we do the same, i.e. treating this covariate
separately, and assuming an independent prior for the corresponding coefficient?
(b) Could we use the following justification instead for treating α and β separately?
An appealing property of g-priors is invariance through linear transformation of the
design matrix. But, in the reformulated model, where random intercepts are regres-
sion coefficients in front of indicator functions (=1 if individual is i, zero otherwise),
not all linear transformations of the complete design matrix are meaningful: e.g.
creating a new covariate as a linear combination of covariates and some “individ-
ual” indicator functions seems of no practical interest. So it would make sense to
consider a restricted form of invariance, where only linear combinations of the gen-
uine covariates (excluding the indicator functions) would be allowed. (c) We wonder
whether α and β should not have a common scale, through a common hierarchy: for
instance, if one multiplies all the yit by 2, then both α and β should be multiplied
by 2 as well.
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In Section 3, the authors discuss several “shrinkage” prior, but seem to use
theterm “shrinkage” in an unconventional way, i.e. to mean that the posterior mode
of a given coefficient may be zero with positive probability. Is this such an appealing
property? (a) MAP estimation has no clear decision-theoretical justification; (b) a
joint inference of the variables to be selected and the corresponding coefficients is
already provided by the Dirac-spike-and-slab approach; and (c) the authors only
compute posterior expectations in their simulations anyway. More generally, what
would be the authors recommend as a reasonable “default choice”? possibly the
Dirac-spike-normal-gamma-slab prior?

In the conclusion, the authors suggest to use a similar framework to detect
changes in dynamic models: i.e. the random intercept becomes a function of time,
δt, not of the individual. However, if a constant probability of change is assumed
(following the logic behind the spike and slab prior), then the periods between change
would follow a geometric distribution (possibly conditional on hyper-parameters). In
our experience, such a prior is not always flexible enough, especially if long periods
between changes are expected; see e.g. Chopin (2007), Fearnhead (2006) and Koop
and Potter (2007).
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