#### Christian P. Robert

Université Paris Dauphine and CREST-INSEE http://www.ceremade.dauphine.fr/~xian

January 9, 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## Outline

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

**Bayesian Point Estimation** 

Bayesian Calculations

Tests and model choice

Admissibility and Complete Classes

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

| Bayesian | Statistics |
|----------|------------|
| LIntrodu | uction     |

# Vocabulary, concepts and first examples

#### Introduction

Models The Bayesian framework Prior and posterior distributions Improper prior distributions

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

**Bayesian Calculations** 

| Bayesian Statistics |  |
|---------------------|--|
| Introduction        |  |
| Models              |  |

### Parametric model

Observations  $x_1, \ldots, x_n$  generated from a probability distribution  $f_i(x_i|\theta_i, x_1, \ldots, x_{i-1}) = f_i(x_i|\theta_i, x_{1:i-1})$ 

$$x = (x_1, \ldots, x_n) \sim f(x|\theta), \qquad \theta = (\theta_1, \ldots, \theta_n)$$

| Bayesian Statistics |  |
|---------------------|--|
| L Introduction      |  |
| Models              |  |

### Parametric model

Observations  $x_1, \ldots, x_n$  generated from a probability distribution  $f_i(x_i|\theta_i, x_1, \ldots, x_{i-1}) = f_i(x_i|\theta_i, x_{1:i-1})$ 

$$x = (x_1, \ldots, x_n) \sim f(x|\theta), \qquad \theta = (\theta_1, \ldots, \theta_n)$$

Associated likelihood

$$\ell(\theta|x) = f(x|\theta)$$

[inverted density]

-The Bayesian framework

# Bayes Theorem

#### **Bayes theorem = Inversion of probabilities**

If A and E are events such that  $P(E) \neq 0$ , P(A|E) and P(E|A) are related by

$$P(A|E) = \frac{P(E|A)P(A)}{P(E|A)P(A) + P(E|A^c)P(A^c)}$$
$$= \frac{P(E|A)P(A)}{P(E)}$$

The Bayesian framework

# Bayes Theorem

#### **Bayes theorem = Inversion of probabilities**

If A and E are events such that  $P(E) \neq 0$ , P(A|E) and P(E|A) are related by

$$P(A|E) = \frac{P(E|A)P(A)}{P(E|A)P(A) + P(E|A^c)P(A^c)}$$
$$= \frac{P(E|A)P(A)}{P(E)}$$

[Thomas Bayes, 1764]

The Bayesian framework

# Bayes Theorem

#### **Bayes theorem = Inversion of probabilities**

If A and E are events such that  $P(E) \neq 0$ , P(A|E) and P(E|A) are related by

$$P(A|E) = \frac{P(E|A)P(A)}{P(E|A)P(A) + P(E|A^c)P(A^c)}$$
$$= \frac{P(E|A)P(A)}{P(E)}$$

[Thomas Bayes, 1764]

Actualisation principle

Introduction

The Bayesian framework

#### **New perspective**

• Uncertainty on the parameter s  $\theta$  of a model modeled through a probability distribution  $\pi$  on  $\Theta$ , called prior distribution

Introduction

-The Bayesian framework

#### New perspective

- Uncertainty on the parameter s θ of a model modeled through a probability distribution π on Θ, called prior distribution
- ► Inference based on the distribution of  $\theta$  conditional on x,  $\pi(\theta|x)$ , called *posterior distribution*

$$\pi( heta|x) = rac{f(x| heta)\pi( heta)}{\int f(x| heta)\pi( heta) \, d heta}$$

Introduction

The Bayesian framework

### Definition (Bayesian model)

A Bayesian statistical model is made of a parametric statistical model,

 $(\mathcal{X}, f(x|\theta)),$ 

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction

The Bayesian framework

### Definition (Bayesian model)

A Bayesian statistical model is made of a parametric statistical model,

 $(\mathcal{X}, f(x|\theta)),$ 

and a prior distribution on the parameters,

 $(\Theta, \pi(\theta))$ .

Introduction

-The Bayesian framework

### **Justifications**

Semantic drift from unknown to random

Introduction

The Bayesian framework

- Semantic drift from unknown to random
- Actualization of the information on  $\theta$  by extracting the information on  $\theta$  contained in the observation x

Introduction

The Bayesian framework

- Semantic drift from unknown to random
- Actualization of the information on  $\theta$  by extracting the information on  $\theta$  contained in the observation x
- Allows incorporation of imperfect information in the decision process

The Bayesian framework

- Semantic drift from unknown to random
- Actualization of the information on  $\theta$  by extracting the information on  $\theta$  contained in the observation x
- Allows incorporation of imperfect information in the decision process
- Unique mathematical way to condition upon the observations (conditional perspective)

-The Bayesian framework

- Semantic drift from unknown to random
- Actualization of the information on  $\theta$  by extracting the information on  $\theta$  contained in the observation x
- Allows incorporation of imperfect information in the decision process
- Unique mathematical way to condition upon the observations (conditional perspective)
- Penalization factor

Introduction

The Bayesian framework

## **Bayes' example:**

Billiard ball W rolled on a line of length one, with a uniform probability of stopping anywhere: W stops at p. Second ball O then rolled n times under the same assumptions. Xdenotes the number of times the ball O stopped on the left of W.

Introduction

The Bayesian framework

## Bayes' example:

Billiard ball W rolled on a line of length one, with a uniform probability of stopping anywhere: W stops at p. Second ball O then rolled n times under the same assumptions. X denotes the number of times the ball O stopped on the left of W.

Bayes' question

Given X, what inference can we make on p?

Introduction

The Bayesian framework

#### Modern translation:

Derive the posterior distribution of p given X, when

 $p \sim \mathscr{U}([0,1])$  and  $X \sim \mathcal{B}(n,p)$ 

LIntroduction

L The Bayesian framework

# Resolution

#### Since

$$P(X = x|p) = \binom{n}{x} p^x (1-p)^{n-x},$$
$$P(a$$

and

$$P(X = x) = \int_0^1 \binom{n}{x} p^x (1 - p)^{n - x} \, dp,$$

◆□ > ◆□ > ◆豆 > ◆豆 > ▲豆 > ◇ < ♡ < ♡

LIntroduction

L The Bayesian framework

Resolution (2)

then

$$P(a 
$$= \frac{\int_a^b p^x (1-p)^{n-x} dp}{B(x+1, n-x+1)},$$$$

Introduction

-The Bayesian framework

Resolution (2)

then

$$P(a 
$$= \frac{\int_a^b p^x (1-p)^{n-x} dp}{B(x+1, n-x+1)},$$$$

i.e.

 $p|x \sim \mathcal{B}e(x+1, n-x+1)$ 

[Beta distribution]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Introduction

Prior and posterior distributions

## Prior and posterior distributions

Given  $f(x|\theta)$  and  $\pi(\theta)$ , several distributions of interest: (a) the *joint distribution* of  $(\theta, x)$ ,

$$arphi( heta,x) = f(x| heta)\pi( heta)$$
 ;

Introduction

Prior and posterior distributions

### Prior and posterior distributions

Given  $f(x|\theta)$  and  $\pi(\theta)$ , several distributions of interest: (a) the *joint distribution* of  $(\theta, x)$ ,

$$arphi( heta,x)=f(x| heta)\pi( heta)$$
 ;

(b) the marginal distribution of x,

$$m(x) = \int \varphi(\theta, x) d\theta$$
$$= \int f(x|\theta) \pi(\theta) d\theta$$

,

Introduction

Prior and posterior distributions

#### (c) the *posterior distribution* of $\theta$ ,

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta) d\theta}$$
$$= \frac{f(x|\theta)\pi(\theta)}{m(x)};$$

Introduction

Prior and posterior distributions

#### (c) the *posterior distribution* of $\theta$ ,

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta) d\theta} \\ = \frac{f(x|\theta)\pi(\theta)}{m(x)};$$

(d) the predictive distribution of y, when  $y \sim g(y|\theta, x)$ ,

$$g(y|x) = \int g(y|\theta, x) \pi(\theta|x) d\theta$$
.

Introduction

Prior and posterior distributions

### Posterior distribution

#### central to Bayesian inference

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Operates conditional upon the observation s

Introduction

Prior and posterior distributions

### Posterior distribution

- Operates conditional upon the observation s
- Incorporates the requirement of the Likelihood Principle

Introduction

Prior and posterior distributions

## Posterior distribution

- Operates conditional upon the observation s
- Incorporates the requirement of the Likelihood Principle
- Avoids averaging over the unobserved values of x

Introduction

Prior and posterior distributions

## Posterior distribution

- Operates conditional upon the observation s
- Incorporates the requirement of the Likelihood Principle
- Avoids averaging over the unobserved values of x
- Coherent updating of the information available on θ, independent of the order in which i.i.d. observations are collected

Introduction

Prior and posterior distributions

## Posterior distribution

- Operates conditional upon the observation s
- Incorporates the requirement of the Likelihood Principle
- Avoids averaging over the unobserved values of x
- Coherent updating of the information available on θ, independent of the order in which i.i.d. observations are collected
- Provides a complete inferential scope

Introduction

Prior and posterior distributions

Example (Flat prior (1)) Consider  $x \sim \mathcal{N}(\theta, 1)$  and  $\theta \sim \mathcal{N}(0, 10)$ .  $\pi(\theta|x) \propto f(x|\theta)\pi(\theta) \propto \exp\left(-\frac{(x-\theta)^2}{2} - \frac{\theta^2}{20}\right)$  $\propto \exp\left(-\frac{11\theta^2}{20}+\theta x\right)$  $\propto \exp\left(-\frac{11}{20}\left\{\theta - (10x/11)\right\}^2\right)$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ →目 ● ○○○

Introduction

Prior and posterior distributions

Example (Flat prior (1)) Consider  $x \sim \mathcal{N}(\theta, 1)$  and  $\theta \sim \mathcal{N}(0, 10)$ .  $\pi(\theta|x) \propto f(x|\theta)\pi(\theta) \propto \exp\left(-\frac{(x-\theta)^2}{2} - \frac{\theta^2}{20}\right)$  $\propto \exp\left(-\frac{11\theta^2}{20}+\theta x\right)$  $\propto \exp\left(-\frac{11}{20}\left\{\theta - (10x/11)\right\}^2\right)$ and  $\theta | x \sim \mathcal{N}\left(\frac{10}{11}x, \frac{10}{11}\right)$ 

Introduction

Prior and posterior distributions

### Example (HPD region)

Natural confidence region

$$C = \{\theta; \pi(\theta|x) > k\} \\ = \left\{\theta; \left|\theta - \frac{10}{11}x\right| > k'\right\}$$

Introduction

Prior and posterior distributions

### Example (HPD region)

Natural confidence region

$$C = \{ heta; \pi( heta|x) > k\} \ = \left\{ heta; \left| heta - rac{10}{11}x\right| > k'
ight\}$$

Highest posterior density (HPD) region
Introduction

LImproper prior distributions

## Improper distributions

Necessary extension from a prior distribution to a prior  $\sigma\text{-finite}$  measure  $\pi$  such that

$$\int_{\Theta} \pi(\theta) \, d\theta = +\infty$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Introduction

LImproper prior distributions

## Improper distributions

Necessary extension from a prior distribution to a prior  $\sigma\text{-finite}$  measure  $\pi$  such that

$$\int_{\Theta} \pi(\theta) \, d\theta = +\infty$$

Improper prior distribution

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Introduction

Improper prior distributions

## **Justifications**

Often automatic prior determination leads to improper prior distributions

1. Only way to derive a prior in noninformative settings

Introduction

Improper prior distributions

# **Justifications**

Often automatic prior determination leads to improper prior distributions

- 1. Only way to derive a prior in noninformative settings
- 2. Performances of estimators derived from these generalized distributions usually good

Introduction

Improper prior distributions

# **Justifications**

Often automatic prior determination leads to improper prior distributions

- 1. Only way to derive a prior in noninformative settings
- 2. Performances of estimators derived from these generalized distributions usually good
- 3. Improper priors often occur as limits of proper distributions

Introduction

Improper prior distributions

# **Justifications**

Often automatic prior determination leads to improper prior distributions

- 1. Only way to derive a prior in noninformative settings
- 2. Performances of estimators derived from these generalized distributions usually good
- 3. Improper priors often occur as limits of proper distributions
- 4. More *robust* answer against possible *misspecifications* of the prior

| Bayesian Statistics |  |
|---------------------|--|
| Introduction        |  |

Improper prior distributions

5. Generally more acceptable to non-Bayesians, with frequentist justifications, such as:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の久ぐ

(i) minimaxity(ii) admissibility(iii) invariance

| Bayesian | Statistics |
|----------|------------|
| Introd   | uction     |

Improper prior distributions

- 5. Generally more acceptable to non-Bayesians, with frequentist justifications, such as:
  - (i) minimaxity(ii) admissibility(iii) invariance
- 6. Improper priors prefered to vague proper priors such as a  $\mathcal{N}(0, 100^2)$  distribution

| Bayesian Statistics |  |
|---------------------|--|
|                     |  |

Improper prior distributions

- 5. Generally more acceptable to non-Bayesians, with frequentist justifications, such as:
  - (i) minimaxity(ii) admissibility(iii) invariance
- 6. Improper priors prefered to vague proper priors such as a  $\mathcal{N}(0, 100^2)$  distribution
- 7. Penalization factor in

$$\min_{d} \int \mathsf{L}(\theta, d) \pi(\theta) f(x|\theta) \, dx \, d\theta$$

Introduction

LImproper prior distributions

## Validation

Extension of the posterior distribution  $\pi(\theta|x)$  associated with an improper prior  $\pi$  as given by Bayes's formula

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int_{\Theta} f(x|\theta)\pi(\theta) \, d\theta},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Introduction

LImproper prior distributions

## Validation

Extension of the posterior distribution  $\pi(\theta|x)$  associated with an improper prior  $\pi$  as given by Bayes's formula

$$\pi( heta|x) = rac{f(x| heta)\pi( heta)}{\int_{\Theta}f(x| heta)\pi( heta)\,d heta},$$

when

$$\int_{\Theta} f(x|\theta) \pi(\theta) \, d\theta < \infty$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Introduction

LImproper prior distributions

#### Example

If  $x \sim \mathcal{N}(\theta, 1)$  and  $\pi(\theta) = \varpi$ , constant, the pseudo marginal distribution is

$$m(x) = \varpi \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-(x-\theta)^2/2\right\} d\theta = \varpi$$

Introduction

LImproper prior distributions

#### Example

If  $x \sim \mathscr{N}(\theta, 1)$  and  $\pi(\theta) = \varpi$ , constant, the pseudo marginal distribution is

$$m(x) = \varpi \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-(x-\theta)^2/2\right\} d\theta = \varpi$$

and the posterior distribution of  $\boldsymbol{\theta}$  is

$$\pi(\theta \mid x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\theta)^2}{2}\right\},\,$$

i.e., corresponds to a  $\mathcal{N}(x, 1)$  distribution.

Introduction

Improper prior distributions

#### Example

If  $x \sim \mathscr{N}(\theta, 1)$  and  $\pi(\theta) = \varpi$ , constant, the pseudo marginal distribution is

$$m(x) = \varpi \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-(x-\theta)^2/2\right\} d\theta = \varpi$$

and the posterior distribution of  $\boldsymbol{\theta}$  is

$$\pi(\theta \mid x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-\theta)^2}{2}\right\},\,$$

i.e., corresponds to a  $\mathcal{N}(x, 1)$  distribution.

[independent of  $\omega$ ]

Introduction

Improper prior distributions

#### Warning - Warning - Warning - Warning

The mistake is to think of them [non-informative priors] as representing ignorance

[Lindley, 1990]

Introduction

Improper prior distributions

Example (Flat prior (2)) Consider a  $\theta \sim \mathcal{N}(0, \tau^2)$  prior. Then $\lim_{\tau \to \infty} P^{\pi} (\theta \in [a, b]) = 0$ for any (a, b)

Introduction

LImproper prior distributions

#### Example ([Haldane prior)

Consider a binomial observation,  $x \sim \mathscr{B}(n, p)$ , and

$$\pi^*(p) \propto [p(1-p)]^{-1}$$

[Haldane, 1931]

Introduction

Improper prior distributions

#### Example ([Haldane prior)

Consider a binomial observation,  $x \sim \mathscr{B}(n, p)$ , and

$$\pi^*(p) \propto [p(1-p)]^{-1}$$

[Haldane, 1931]

The marginal distribution,

$$m(x) = \int_0^1 [p(1-p)]^{-1} {n \choose x} p^x (1-p)^{n-x} dp$$
  
=  $B(x, n-x),$ 

is only defined for  $x\neq \mathbf{0},n$  .

# **Decision theory motivations**

Introduction

#### Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators Loss functions Minimaxity and admissibility Usual loss functions

From Prior Information to Prior Distributions

Bayesian Point Estimation

**Bayesian Calculations** 

LDecision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

## **Evaluating estimators**

#### Purpose of most inferential studies

To provide the statistician/client with a decision  $d \in \mathscr{D}$ 

Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

## **Evaluating estimators**

#### Purpose of most inferential studies

To provide the statistician/client with a *decision*  $d \in \mathscr{D}$ Requires an evaluation criterion for decisions and estimators

## $\mathsf{L}(\theta,d)$

[a.k.a. loss function]

Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

## **Bayesian Decision Theory**

Three spaces/factors:

(1) On  $\mathscr{X}$ , distribution for the observation,  $f(x|\theta)$ ;

Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

## **Bayesian Decision Theory**

Three spaces/factors:

- (1) On  $\mathscr{X}$ , distribution for the observation,  $f(x|\theta)$ ;
- (2) On  $\Theta$ , prior distribution for the parameter,  $\pi(\theta)$ ;

Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

### **Bayesian Decision Theory**

Three spaces/factors:

- (1) On  $\mathscr{X}$ , distribution for the observation,  $f(x|\theta)$ ;
- (2) On  $\Theta$ , prior distribution for the parameter,  $\pi(\theta)$ ;
- (3) On  $\Theta \times \mathscr{D}$ , loss function associated with the decisions,  $L(\theta, \delta)$ ;

LDecision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

## **Foundations**

Theorem (Existence)

There exists an axiomatic derivation of the existence of a loss function.

[DeGroot, 1970]

LDecision-Theoretic Foundations of Statistical Inference

Loss functions

### **Estimators**

Decision procedure  $\delta$  usually called estimator (while its value  $\delta(x)$  called estimate of  $\theta$ )



LDecision-Theoretic Foundations of Statistical Inference

Loss functions

## **Estimators**

Decision procedure  $\delta$  usually called estimator (while its value  $\delta(x)$  called estimate of  $\theta$ )

#### Fact

Impossible to uniformly minimize (in d) the loss function

 $L(\theta, d)$ 

when  $\theta$  is unknown

Decision-Theoretic Foundations of Statistical Inference

Loss functions

#### **Frequentist Principle**

Average loss (or frequentist risk)

$$R(\theta, \delta) = \mathbb{E}_{\theta}[\mathsf{L}(\theta, \delta(x))]$$
  
= 
$$\int_{\mathcal{X}} \mathsf{L}(\theta, \delta(x)) f(x|\theta) dx$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Decision-Theoretic Foundations of Statistical Inference

Loss functions

#### **Frequentist Principle**

Average loss (or frequentist risk)

$$R(\theta, \delta) = \mathbb{E}_{\theta}[\mathsf{L}(\theta, \delta(x))]$$
$$= \int_{\mathcal{X}} \mathsf{L}(\theta, \delta(x)) f(x|\theta) dx$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

#### Principle

Select the best estimator based on the risk function

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Difficulties with frequentist paradigm

(1) Error averaged over the different values of x proportionally to the density  $f(x|\theta)$ : not so appealing for a client, who wants optimal results for her data x!

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Difficulties with frequentist paradigm

- (1) Error averaged over the different values of x proportionally to the density  $f(x|\theta)$ : not so appealing for a client, who wants optimal results for her data x!
- (2) Assumption of repeatability of experiments not always grounded.

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Difficulties with frequentist paradigm

- (1) Error averaged over the different values of x proportionally to the density  $f(x|\theta)$ : not so appealing for a client, who wants optimal results for her data x!
- (2) Assumption of repeatability of experiments not always grounded.
- (3)  $R(\theta, \delta)$  is a function of  $\theta$ : there is no total ordering on the set of procedures.

Decision-Theoretic Foundations of Statistical Inference

Loss functions

## **Bayesian principle**

**Principle** Integrate over the space  $\Theta$  to get the posterior expected loss

$$\begin{split} \rho(\pi,d|x) &= \mathbb{E}^{\pi}[L(\theta,d)|x] \\ &= \int_{\Theta}\mathsf{L}(\theta,d)\pi(\theta|x)\,d\theta, \end{split}$$

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Bayesian principle (2)

#### **Alternative**

Integrate over the space  $\Theta$  and compute *integrated risk* 

$$r(\pi, \delta) = \mathbb{E}^{\pi}[R(\theta, \delta)]$$
  
= 
$$\int_{\Theta} \int_{\mathcal{X}} \mathsf{L}(\theta, \delta(x)) f(x|\theta) dx \ \pi(\theta) d\theta$$

which induces a total ordering on estimators.

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Bayesian principle (2)

#### **Alternative**

Integrate over the space  $\Theta$  and compute *integrated risk* 

$$r(\pi, \delta) = \mathbb{E}^{\pi}[R(\theta, \delta)]$$
  
= 
$$\int_{\Theta} \int_{\mathcal{X}} \mathsf{L}(\theta, \delta(x)) f(x|\theta) dx \ \pi(\theta) d\theta$$

which induces a total ordering on estimators.

Existence of an optimal decision

Bayesian Statistics Decision-Theoretic Foundations of Statistical Inference Loss functions

## **Bayes estimator**

Theorem (Construction of Bayes estimators) An estimator minimizing  $r(\pi, \delta)$ 

can be obtained by selecting, for every  $x \in \mathcal{X}$ , the value  $\delta(x)$  which minimizes

 $\rho(\pi, \delta | x)$ 

since

$$r(\pi, \delta) = \int_{\mathcal{X}} \rho(\pi, \delta(x)|x) m(x) \, dx.$$
Bayesian Statistics Decision-Theoretic Foundations of Statistical Inference Loss functions

# **Bayes estimator**

Theorem (Construction of Bayes estimators) An estimator minimizing  $r(\pi, \delta)$ 

can be obtained by selecting, for every  $x \in \mathcal{X}$ , the value  $\delta(x)$  which minimizes

 $\rho(\pi, \delta | x)$ 

since

$$r(\pi, \delta) = \int_{\mathcal{X}} \rho(\pi, \delta(x)|x) m(x) \, dx.$$

#### Both approaches give the same estimator

Decision-Theoretic Foundations of Statistical Inference

Loss functions

# Bayes estimator (2)

#### Definition (Bayes optimal procedure)

A *Bayes estimator* associated with a prior distribution  $\pi$  and a loss function L is

 $\arg\min_{\delta} r(\pi, \delta)$ 

The value  $r(\pi) = r(\pi, \delta^{\pi})$  is called the *Bayes risk* 

LDecision-Theoretic Foundations of Statistical Inference

Loss functions

## Infinite Bayes risk

Above result valid for both proper and improper priors when

 $r(\pi) < \infty$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Statistics
Decision-Theoretic Foundations of Statistical Inference
Loss functions

# Infinite Bayes risk

Above result valid for both proper and improper priors when

 $r(\pi) < \infty$ 

Otherwise, **generalized Bayes estimator** that must be defined pointwise:

$$\delta^{\pi}(x) = \arg\min_{d} \rho(\pi, d|x)$$

if  $\rho(\pi, d|x)$  is well-defined for every x.

Bayesian Statistics
Decision-Theoretic Foundations of Statistical Inference
Loss functions

# Infinite Bayes risk

Above result valid for both proper and improper priors when

 $r(\pi) < \infty$ 

Otherwise, **generalized Bayes estimator** that must be defined pointwise:

$$\delta^{\pi}(x) = \arg\min_{d} \rho(\pi, d|x)$$

if  $\rho(\pi, d|x)$  is well-defined for every x.

**Warning:** Generalized Bayes  $\neq$  Improper Bayes

LDecision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Minimaxity

Frequentist insurance against the worst case and (weak) total ordering on  $\mathscr{D}^\ast$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Minimaxity

Frequentist insurance against the worst case and (weak) total ordering on  $\mathscr{D}^*$ 

Definition (Frequentist optimality)

The minimax risk associated with a loss L is

$$\bar{R} = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} R(\theta, \delta) = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} \mathbb{E}_{\theta}[L(\theta, \delta(x))],$$

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Minimaxity

Frequentist insurance against the worst case and (weak) total ordering on  $\mathscr{D}^*$ 

Definition (Frequentist optimality)

The minimax risk associated with a loss L is

$$\bar{R} = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} R(\theta, \delta) = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} \mathbb{E}_{\theta}[L(\theta, \delta(x))],$$

and a minimax estimator is any estimator  $\delta_0$  such that

$$\sup_{\theta} R(\theta, \delta_0) = \bar{R}.$$

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### Criticisms

Analysis in terms of the worst case



Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

## Criticisms

- Analysis in terms of the worst case
- Does not incorporate prior information

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Criticisms

- Analysis in terms of the worst case
- Does not incorporate prior information

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Too conservative

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Criticisms

- Analysis in terms of the worst case
- Does not incorporate prior information
- Too conservative
- Difficult to exhibit/construct

LDecision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Normal mean)

Consider

$$\delta_2(x) = \begin{cases} \left(1 - \frac{2p-1}{||x||^2}\right)x & \text{if } ||x||^2 \ge 2p-1\\ 0 & \text{otherwise,} \end{cases}$$

to estimate  $\theta$  when  $x \sim \mathscr{N}_p(\theta, I_p)$  under quadratic loss,

 $\mathsf{L}(\theta, d) = ||\theta - d||^2.$ 

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Comparison of  $\delta_2$  with  $\delta_1(x) = x$ , maximum likelihood estimator, for p = 10.



Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility



#### **Existence**

If  $\mathscr{D} \subset \mathbb{R}^k$  convex and compact, and if  $L(\theta, d)$  continuous and convex as a function of d for every  $\theta \in \Theta$ , there exists a nonrandomized minimax estimator.

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### **Connection with Bayesian approach**

The Bayes risks are always smaller than the minimax risk:

$$\underline{r} = \sup_{\pi} r(\pi) = \sup_{\pi} \inf_{\delta \in \mathscr{D}} r(\pi, \delta) \leq \overline{r} = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} R(\theta, \delta).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### **Connection with Bayesian approach**

The Bayes risks are always smaller than the minimax risk:

$$\underline{r} = \sup_{\pi} r(\pi) = \sup_{\pi} \inf_{\delta \in \mathscr{D}} r(\pi, \delta) \leq \overline{r} = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} R(\theta, \delta).$$

#### Definition

The estimation problem has a value when  $\underline{r} = \overline{r}$ , i.e.

$$\sup_{\pi} \inf_{\delta \in \mathscr{D}} r(\pi, \delta) = \inf_{\delta \in \mathscr{D}^*} \sup_{\theta} R(\theta, \delta).$$

 $\underline{r}$  is the maximin risk and the corresponding  $\pi$  the favourable prior

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Maximin-ity

When the problem has a value, some minimax estimators are Bayes estimators for the least favourable distributions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへで

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Maximin-ity (2)

# Example (Binomial probability) Consider $x \sim \mathscr{B}e(\theta)$ with $\theta \in \{0.1, 0.5\}$ and $\delta_1(x) = 0.1, \qquad \delta_2(x) = 0.5,$ $\delta_3(x) = 0.1 \mathbb{I}_{x=0} + 0.5 \mathbb{I}_{x=1}, \quad \delta_4(x) = 0.5 \mathbb{I}_{x=0} + 0.1 \mathbb{I}_{x=1}.$ under $\mathsf{L}(\theta, d) = \begin{cases} 0 & \text{if } d = \theta \\ 1 & \text{if } (\theta, d) = (0.5, 0.1) \\ 2 & \text{if } (\theta, d) = (0.1, 0.5) \end{cases}$

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility



Risk set

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Binomial probability (2))

Minimax estimator at the intersection of the diagonal of  $\mathbb{R}^2$  with the lower boundary of  $\mathscr{R}$ :

 $\delta^*(x) = \begin{cases} \delta_3(x) & \text{with probability } \alpha = 0.87, \\ \delta_2(x) & \text{with probability } 1 - \alpha. \end{cases}$ 

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Binomial probability (2))

Minimax estimator at the intersection of the diagonal of  $\mathbb{R}^2$  with the lower boundary of  $\mathscr{R}$ :

 $\delta^*(x) = \begin{cases} \delta_3(x) & \text{with probability } \alpha = 0.87, \\ \delta_2(x) & \text{with probability } 1 - \alpha. \end{cases}$ 

Also randomized Bayes estimator for

 $\pi(\theta) = 0.22 \mathbb{I}_{0.1}(\theta) + 0.78 \mathbb{I}_{0.5}(\theta)$ 

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# **Checking minimaxity**

#### Theorem (Bayes & minimax)

If  $\delta_0$  is a Bayes estimator for  $\pi_0$  and if

 $R(\theta, \delta_0) \leq r(\pi_0)$ 

for every  $\theta$  in the support of  $\pi_0$ , then  $\delta_0$  is minimax and  $\pi_0$  is the least favourable distribution

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Example (Binomial probability (3)) Consider  $x \sim \mathcal{B}(n, \theta)$  for the loss  $L(\theta, \delta) = (\delta - \theta)^2.$ 

When  $\theta \sim \mathcal{B}e\left(\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$ , the posterior mean is

$$\delta^*(x) = \frac{x + \sqrt{n}/2}{n + \sqrt{n}}.$$

with constant risk

$$R(\theta, \delta^*) = 1/4(1+\sqrt{n})^2.$$

[H. Rubin]

Therefore,  $\delta^*$  is minimax

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Checking minimaxity (2)

#### Theorem (Bayes & minimax (2))

If for a sequence  $(\pi_n)$  of proper priors, the generalised Bayes estimator  $\delta_0$  satisfies

$$R(\theta, \delta_0) \leq \lim_{n \to \infty} r(\pi_n) < +\infty$$

for every  $\theta \in \Theta$ , then  $\delta_0$  is minimax.

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Normal mean)

When  $x \sim \mathcal{N}(\theta, 1)$ ,

$$\delta_0(x) = x$$

is a generalised Bayes estimator associated with

 $\pi( heta) \propto 1$ 

(日) (日) (日) (日) (日) (日) (日) (日)

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Example (Normal mean) When  $x \sim \mathcal{N}(\theta, 1)$ ,  $\delta_0(x) = x$ is a generalised Bayes estimator associated with  $\pi(\theta) \propto 1$ Since, for  $\pi_n(\theta) = \exp\{-\theta^2/2n\}$ .  $R(\delta_0, \theta) = \mathbb{E}_{\theta}\left[(x - \theta)^2\right] = 1$  $= \lim_{n \to \infty} r(\pi_n) = \lim_{n \to \infty} \frac{n}{n+1}$ 

 $\delta_0$  is minimax.

Bayesian Statistics Decision-Theoretic Foundations of Statistical Inference Minimaxity and admissibility

# Admissibility

Reduction of the set of acceptable estimators based on "local" properties

Definition (Admissible estimator)

An estimator  $\delta_0$  is *inadmissible* if there exists an estimator  $\delta_1$  such that, for every  $\theta$ ,

 $R(\theta, \delta_0) \geq R(\theta, \delta_1)$ 

and, for at least one  $\theta_0$ 

 $R(\theta_0, \delta_0) > R(\theta_0, \delta_1)$ 

Bayesian Statistics Decision-Theoretic Foundations of Statistical Inference Minimaxity and admissibility

# Admissibility

Reduction of the set of acceptable estimators based on "local" properties

Definition (Admissible estimator)

An estimator  $\delta_0$  is *inadmissible* if there exists an estimator  $\delta_1$  such that, for every  $\theta$ ,

 $R(\theta, \delta_0) \geq R(\theta, \delta_1)$ 

and, for at least one  $\theta_0$ 

 $R(\theta_0, \delta_0) > R(\theta_0, \delta_1)$ 

Otherwise,  $\delta_0$  is admissible

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### Minimaxity & admissibility

If there exists a unique minimax estimator, this estimator is admissible.

The converse is false!

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

## Minimaxity & admissibility

If there exists a unique minimax estimator, this estimator is admissible.

The converse is false!

If  $\delta_0$  is admissible with constant risk,  $\delta_0$  is the unique minimax estimator.

The converse is false!

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes estimators often constitute the class of admissible estimators

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes estimators often constitute the class of admissible estimators

• If  $\pi$  is strictly positive on  $\Theta$ , with

$$r(\pi) = \int_{\Theta} R(\theta, \delta^{\pi}) \pi(\theta) \, d\theta < \infty$$

and  $R(\theta, \delta)$ , is continuous, then the Bayes estimator  $\delta^{\pi}$  is admissible.

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes estimators often constitute the class of admissible estimators

• If  $\pi$  is strictly positive on  $\Theta$ , with

$$r(\pi) = \int_{\Theta} R(\theta, \delta^{\pi}) \pi(\theta) \, d\theta < \infty$$

and  $R(\theta, \delta)$ , is continuous, then the Bayes estimator  $\delta^{\pi}$  is admissible.

If the Bayes estimator associated with a prior π is unique, it is admissible.

Regular ( $\neq$ generalized) Bayes estimators always admissible

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Normal mean)

Consider  $x \sim \mathcal{N}(\theta, 1)$  and the test of  $H_0: \theta \leq 0$ , i.e. the estimation of

 $\mathbb{I}_{H_0}(\theta)$ 

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

#### Example (Normal mean)

Consider  $x \sim \mathscr{N}(\theta, 1)$  and the test of  $H_0: \theta \leq 0$ , i.e. the estimation of

Under the loss

$$\left(\mathbb{I}_{H_0}(\theta) - \delta(x)\right)^2,$$

 $\mathbb{I}_{H_0}(\theta)$ 

the estimator (*p*-value)

$$p(x) = P_0(X > x)$$
  $(X \sim \mathcal{N}(0, 1))$   
= 1 -  $\Phi(x)$ ,

is Bayes under Lebesgue measure.
Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

# Example (Normal mean (2))

Indeed

$$p(x) = \mathbb{E}^{\pi}[\mathbb{I}_{H_0}(\theta)|x] = P^{\pi}(\theta < 0|x)$$
$$= P^{\pi}(\theta - x < -x|x) = 1 - \Phi(x).$$

(日) (日) (日) (日) (日) (日) (日) (日)

The Bayes risk of p is finite and p(s) is **admissible**.

LDecision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### Example (Normal mean (3))

Consider  $x \sim \mathcal{N}(\theta, 1)$ . Then  $\delta_0(x) = x$  is a generalised Bayes estimator, is admissible, but

$$r(\pi, \delta_0) = \int_{-\infty}^{+\infty} R(\theta, \delta_0) d\theta$$
$$= \int_{-\infty}^{+\infty} 1 d\theta = +\infty.$$

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

### Example (Normal mean (4))

Consider  $x \sim \mathcal{N}_p(\theta, I_p)$ . If

$$\mathsf{L}(\theta, d) = (d - ||\theta||^2)^2$$

the Bayes estimator for the Lebesgue measure is

$$\delta^{\pi}(x) = ||x||^2 + p.$$

This estimator is not admissible because it is dominated by

$$\delta_0(x) = ||x||^2 - p$$

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The quadratic loss

Historically, first loss function (Legendre, Gauss)

$$\mathsf{L}(\theta, d) = (\theta - d)^2$$

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The quadratic loss

#### Historically, first loss function (Legendre, Gauss)

$$\mathsf{L}(\theta, d) = (\theta - d)^2$$

or

$$\mathsf{L}(\theta, d) = ||\theta - d||^2$$

LDecision-Theoretic Foundations of Statistical Inference

Usual loss functions

### Proper loss

#### Posterior mean

The Bayes estimator  $\delta^{\pi}$  associated with the prior  $\pi$  and with the quadratic loss is the posterior expectation

$$\delta^{\pi}(x) = \mathbb{E}^{\pi}[\theta|x] = \frac{\int_{\Theta} \theta f(x|\theta)\pi(\theta) \, d\theta}{\int_{\Theta} f(x|\theta)\pi(\theta) \, d\theta}.$$

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The absolute error loss

Alternatives to the quadratic loss:

$$\mathsf{L}(\theta, d) = |\theta - d|,$$

or

$$\mathsf{L}_{k_1,k_2}(\theta,d) = \begin{cases} k_2(\theta-d) & \text{if } \theta > d, \\ k_1(d-\theta) & \text{otherwise.} \end{cases}$$
(1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The absolute error loss

Alternatives to the quadratic loss:

$$\mathsf{L}(\theta, d) = |\theta - d|,$$

or

$$\mathsf{L}_{k_1,k_2}(\theta,d) = \begin{cases} k_2(\theta-d) & \text{if } \theta > d, \\ k_1(d-\theta) & \text{otherwise.} \end{cases}$$
(1)

#### L<sub>1</sub> estimator

The Bayes estimator associated with  $\pi$  and (1) is a  $(k_2/(k_1 + k_2))$  fractile of  $\pi(\theta|x)$ .

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The 0-1 loss

Neyman–Pearson loss for testing hypotheses Test of  $H_0: \theta \in \Theta_0$  versus  $H_1: \theta \notin \Theta_0$ . Then

 $\mathscr{D} = \{0,1\}$ 

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### The 0-1 loss

Neyman–Pearson loss for testing hypotheses Test of  $H_0: \theta \in \Theta_0$  versus  $H_1: \theta \notin \Theta_0$ . Then

 $\mathscr{D} = \{0,1\}$ 

The 0 - 1 loss  $L(\theta, d) = \begin{cases} 1 - d & \text{if } \theta \in \Theta_0 \\ d & \text{otherwise,} \end{cases}$ 

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### Type-one and type-two errors

Associated with the risk

$$\begin{aligned} R(\theta, \delta) &= \mathbb{E}_{\theta}[\mathsf{L}(\theta, \delta(x))] \\ &= \begin{cases} P_{\theta}(\delta(x) = 0) & \text{if } \theta \in \Theta_0, \\ P_{\theta}(\delta(x) = 1) & \text{otherwise,} \end{cases} \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Decision-Theoretic Foundations of Statistical Inference

Usual loss functions

### Type-one and type-two errors

Associated with the risk

$$egin{aligned} R( heta,\delta) &= & \mathbb{E}_{ heta}[\mathsf{L}( heta,\delta(x))] \ &= & egin{cases} P_{ heta}(\delta(x)=0) & ext{if } heta\in\Theta_0, \ P_{ heta}(\delta(x)=1) & ext{otherwise}, \end{aligned}$$

#### Theorem (Bayes test)

The Bayes estimator associated with  $\pi$  and with the 0-1 loss is

$$\delta^{\pi}(x) = \begin{cases} 1 & \text{if } P(\theta \in \Theta_{0}|x) > P(\theta \notin \Theta_{0}|x), \\ 0 & \text{otherwise,} \end{cases}$$

Usual loss functions

# Intrinsic losses

Noninformative settings w/o natural parameterisation : the estimators should be invariant under reparameterisation [Ultimate invariance!]

#### **Principle**

Corresponding parameterisation-free loss functions:

 $\mathsf{L}(\theta, \delta) = d(f(\cdot|\theta), f(\cdot|\delta)),$ 

LDecision-Theoretic Foundations of Statistical Inference

Usual loss functions

#### **Examples:**

1. the entropy distance (or Kullback-Leibler divergence)

$$L_{e}(\theta, \delta) = \mathbb{E}_{\theta} \left[ \log \left( \frac{f(x|\theta)}{f(x|\delta)} \right) \right],$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LDecision-Theoretic Foundations of Statistical Inference

Usual loss functions

#### **Examples:**

1. the entropy distance (or Kullback-Leibler divergence)

$$\mathsf{L}_{\mathsf{e}}(\theta, \delta) = \mathbb{E}_{\theta}\left[\log\left(\frac{f(x|\theta)}{f(x|\delta)}\right)\right],$$

2. the Hellinger distance

$$\mathsf{L}_{\mathsf{H}}(\theta,\delta) = \frac{1}{2} \mathbb{E}_{\theta} \left[ \left( \sqrt{\frac{f(x|\delta)}{f(x|\theta)}} - 1 \right)^2 \right].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LDecision-Theoretic Foundations of Statistical Inference

Usual loss functions

### Example (Normal mean)

Consider  $x \sim \mathcal{N}(\theta, 1)$ . Then

$$L_{e}(\theta, \delta) = \frac{1}{2} \mathbb{E}_{\theta} [-(x - \theta)^{2} + (x - \delta)^{2}] = \frac{1}{2} (\delta - \theta)^{2}$$
  
$$L_{H}(\theta, \delta) = 1 - \exp\{-(\delta - \theta)^{2}/8\}.$$

When  $\pi(\theta|x)$  is a  $\mathscr{N}(\mu(x),\sigma^2)$  distribution, the Bayes estimator of  $\theta$  is

$$\delta^{\pi}(x) = \mu(x)$$

in both cases.

# From prior information to prior distributions

Introduction

Decision-Theoretic Foundations of Statistical Inference

### From Prior Information to Prior Distributions

Models Subjective determination Conjugate priors Noninformative prior distributions

Bayesian Point Estimation

**Bayesian Calculations** 

From Prior Information to Prior Distributions

Models

### **Prior Distributions**

The most critical and most criticized point of Bayesian analysis ! Because...

the prior distribution is the key to Bayesian inference

From Prior Information to Prior Distributions

Models

### But...

In practice, it seldom occurs that the available prior information is precise enough to lead to an exact determination of the prior distribution

There is no such thing as *the* prior distribution!

From Prior Information to Prior Distributions

Models

### Rather...

The prior is a tool summarizing available information as well as uncertainty related with this information,

#### And...

Ungrounded prior distributions produce unjustified posterior inference

From Prior Information to Prior Distributions

Subjective determination

# Subjective priors

#### Example (Capture probabilities)

Capture-recapture experiment on migrations between zones

Prior information on capture and survival probabilities,  $p_t$  and  $q_{it}$ 

|          | Time           | 2          | 3         | 4         | 5          | 6          |
|----------|----------------|------------|-----------|-----------|------------|------------|
| $p_t$    | Mean           | 0.3        | 0.4       | 0.5       | 0.2        | 0.2        |
|          | 95% cred. int. | [0.1,0.5]  | [0.2,0.6] | [0.3,0.7] | [0.05,0.4] | [0.05,0.4] |
|          | Site           |            | А         |           | B          | 8          |
|          | Time           | t=1,3,5    | t=        | =2,4      | t=1,3,5    | t=2,4      |
| $q_{it}$ | Mean           | 0.7        | C         | .65       | 0.7        | 0.7        |
|          | 95% cred. int. | [0.4,0.95] | [0.3      | 5,0.9     | [0.4,0.95] | [0.4,0.95] |

From Prior Information to Prior Distributions

LSubjective determination

| Exam   | ple (C | Capture pr               | obabilit              | ies (2))             | )                          |                          |
|--------|--------|--------------------------|-----------------------|----------------------|----------------------------|--------------------------|
| Corres | pondi  | ng prior m               | odeling               |                      |                            |                          |
|        | Time   | 2                        | 3                     | 4                    | 5                          | 6                        |
|        | Dist.  | $\mathscr{B}e(6, 14)$    | $\mathscr{B}e(8, 12)$ | $\mathscr{B}e(12,1)$ | 2) $\mathscr{B}e(3.5, 14)$ | $\mathscr{B}e(3.5, 14)$  |
|        | Site   |                          | A                     |                      | E                          | 3                        |
|        | Time   | t=1,3,5                  | t                     | =2,4                 | t=1,3,5                    | t=2,4                    |
|        | Dist.  | $\mathscr{B}e(6.0, 2.5)$ | $\mathscr{B}e($       | 6.5, 3.5)            | $\mathscr{B}e(6.0, 2.5)$   | $\mathscr{B}e(6.0, 2.5)$ |
|        |        |                          |                       |                      |                            |                          |

From Prior Information to Prior Distributions

Subjective determination

# Strategies for prior determination

Use a partition of Θ in sets (e.g., intervals), determine the probability of each set, and approach π by an *histogram* 

From Prior Information to Prior Distributions

Subjective determination

# Strategies for prior determination

- Use a partition of Θ in sets (e.g., intervals), determine the probability of each set, and approach π by an *histogram*
- ▶ Select significant elements of  $\Theta$ , evaluate their respective likelihoods and deduce a likelihood curve proportional to  $\pi$

From Prior Information to Prior Distributions

Subjective determination

# Strategies for prior determination

- Use a partition of Θ in sets (e.g., intervals), determine the probability of each set, and approach π by an *histogram*
- Select significant elements of Θ, evaluate their respective likelihoods and deduce a likelihood curve proportional to π
- ▶ Use the *marginal distribution* of *x*,

$$m(x) = \int_{\Theta} f(x|\theta) \pi(\theta) \, d\theta$$

From Prior Information to Prior Distributions

Subjective determination

# Strategies for prior determination

- Use a partition of Θ in sets (e.g., intervals), determine the probability of each set, and approach π by an *histogram*
- Select significant elements of Θ, evaluate their respective likelihoods and deduce a likelihood curve proportional to π
- ▶ Use the *marginal distribution* of *x*,

$$m(x) = \int_{\Theta} f(x|\theta) \pi(\theta) \, d\theta$$

Empirical and hierarchical Bayes techniques

From Prior Information to Prior Distributions

Subjective determination

### Select a maximum entropy prior when prior characteristics are known:

$$\mathbb{E}^{\pi}[g_k(\theta)] = \omega_k \qquad (k = 1, \dots, K)$$

with solution, in the discrete case

$$\pi^*(\theta_i) = \frac{\exp\left\{\sum_{1}^{K} \lambda_k g_k(\theta_i)\right\}}{\sum_j \exp\left\{\sum_{1}^{K} \lambda_k g_k(\theta_j)\right\}},$$

and, in the continuous case,

$$\pi^*(\theta) = \frac{\exp\left\{\sum_{1}^{K} \lambda_k g_k(\theta)\right\} \pi_0(\theta)}{\int \exp\left\{\sum_{1}^{K} \lambda_k g_k(\eta)\right\} \pi_0(d\eta)}$$

the  $\lambda_k$ 's being Lagrange multipliers and  $\pi_0$  a reference [Caveat]

From Prior Information to Prior Distributions

Subjective determination

#### Parametric approximations

Restrict choice of  $\pi$  to a *parameterised* density

# $\pi(\theta|\lambda)$

and determine the corresponding (hyper-)parameters

### $\lambda$

(日) (日) (日) (日) (日) (日) (日) (日)

through the *moments* or *quantiles* of  $\pi$ 

From Prior Information to Prior Distributions

Subjective determination

#### Example

For the normal model  $x \sim \mathcal{N}(\theta, 1)$ , ranges of the posterior moments for fixed prior moments  $\mu_1 = 0$  and  $\mu_2$ .

|         |   | Minimum | Maximum | Maximum  |
|---------|---|---------|---------|----------|
| $\mu_2$ | x | mean    | mean    | variance |
| 3       | 0 | -1.05   | 1.05    | 3.00     |
| 3       | 1 | -0.70   | 1.69    | 3.63     |
| 3       | 2 | -0.50   | 2.85    | 5.78     |
| 1.5     | 0 | -0.59   | 0.59    | 1.50     |
| 1.5     | 1 | -0.37   | 1.05    | 1.97     |
| 1.5     | 2 | -0.27   | 2.08    | 3.80     |
|         |   |         |         | [Go      |

From Prior Information to Prior Distributions

Conjugate priors

# Conjugate priors

Specific parametric family with analytical properties

#### Definition

A family  $\mathscr{F}$  of probability distributions on  $\Theta$  is *conjugate* for a likelihood function  $f(x|\theta)$  if, for every  $\pi \in \mathscr{F}$ , the posterior distribution  $\pi(\theta|x)$  also belongs to  $\mathscr{F}$ .

### [Raiffa & Schlaifer, 1961]

Only of interest when  $\mathscr{F}$  is *parameterised* : switching from prior to posterior distribution is reduced to an <u>updating</u> of the corresponding parameters.

From Prior Information to Prior Distributions

Conjugate priors

#### **Justifications**

• Limited/finite information conveyed by x

From Prior Information to Prior Distributions

Conjugate priors

### **Justifications**

 $\blacktriangleright$  Limited/finite information conveyed by x

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

• Preservation of the structure of  $\pi(\theta)$ 

From Prior Information to Prior Distributions

Conjugate priors

- $\blacktriangleright$  Limited/finite information conveyed by x
- Preservation of the structure of  $\pi(\theta)$
- Exchangeability motivations

From Prior Information to Prior Distributions

Conjugate priors

- $\blacktriangleright$  Limited/finite information conveyed by x
- Preservation of the structure of  $\pi(\theta)$
- Exchangeability motivations
- Device of virtual past observations

From Prior Information to Prior Distributions

Conjugate priors

- $\blacktriangleright$  Limited/finite information conveyed by x
- Preservation of the structure of  $\pi(\theta)$
- Exchangeability motivations
- Device of virtual past observations
- Linearity of some estimators

From Prior Information to Prior Distributions

Conjugate priors

- $\blacktriangleright$  Limited/finite information conveyed by x
- Preservation of the structure of  $\pi(\theta)$
- Exchangeability motivations
- Device of virtual past observations
- Linearity of some estimators
- Tractability and simplicity
From Prior Information to Prior Distributions

Conjugate priors

## **Justifications**

- $\blacktriangleright$  Limited/finite information conveyed by x
- Preservation of the structure of  $\pi(\theta)$
- Exchangeability motivations
- Device of virtual past observations
- Linearity of some estimators
- Tractability and simplicity
- First approximations to adequate priors, backed up by robustness analysis

From Prior Information to Prior Distributions

Conjugate priors

### **Exponential families**

Definition The family of distributions

 $f(x|\theta) = C(\theta)h(x)\exp\{R(\theta) \cdot T(x)\}$ 

is called an *exponential family of dimension* k. When  $\Theta \subset \mathbb{R}^k$ ,  $\mathscr{X} \subset \mathbb{R}^k$  and

 $f(x|\theta) = C(\theta)h(x)\exp\{\theta \cdot x\},$ 

the family is said to be natural.

From Prior Information to Prior Distributions

Conjugate priors

### Interesting analytical properties :

- Sufficient statistics (Pitman–Koopman Lemma)
- Common enough structure (normal, binomial, Poisson, Wishart, &tc...)
- Analycity  $(\mathbb{E}_{\theta}[x] = \nabla \psi(\theta), ...)$
- Allow for conjugate priors

$$\pi(\theta|\mu,\lambda) = K(\mu,\lambda) e^{\theta \cdot \mu - \lambda \psi(\theta)}$$

From Prior Information to Prior Distributions

Conjugate priors

| f(x 	heta)                      | $\pi(	heta)$               | $\pi(	heta x)$                                                  |
|---------------------------------|----------------------------|-----------------------------------------------------------------|
| Normal                          | Normal                     |                                                                 |
| $\mathcal{N}(\theta, \sigma^2)$ | $\mathcal{N}(\mu, \tau^2)$ | $\mathcal{N}(\rho(\sigma^2\mu + \tau^2 x), \rho\sigma^2\tau^2)$ |
|                                 |                            | $\rho^{-1} = \sigma^2 + \tau^2$                                 |
| Poisson                         | Gamma                      |                                                                 |
| $\mathcal{P}(	heta)$            | $\mathcal{G}(lpha,eta)$    | $\mathcal{G}(lpha+x,eta+1)$                                     |
| Gamma                           | Gamma                      |                                                                 |
| $\mathcal{G}( u,	heta)$         | $\mathcal{G}(lpha,eta)$    | $\mathcal{G}(\alpha + \nu, \beta + x)$                          |
| Binomial                        | Beta                       |                                                                 |
| $\mathcal{B}(n,	heta)$          | $\mathcal{B}e(lpha,eta)$   | $\mathcal{B}e(\alpha+x,\beta+n-x)$                              |

(ロト (個) (E) (E) (E) (の)()

From Prior Information to Prior Distributions

Conjugate priors

| f(x 	heta)                              | $\pi(	heta)$                            | $\pi(	heta x)$                                       |
|-----------------------------------------|-----------------------------------------|------------------------------------------------------|
| Negative Binomial                       | Beta                                    |                                                      |
| $\mathcal{N}eg(m,	heta)$                | $\mathcal{B}e(lpha,eta)$                | $\mathcal{B}e(lpha+m,eta+x)$                         |
| Multinomial                             | Dirichlet                               |                                                      |
| $\mathcal{M}_k(	heta_1,\ldots,	heta_k)$ | $\mathcal{D}(\alpha_1,\ldots,\alpha_k)$ | $\mathcal{D}(\alpha_1 + x_1, \dots, \alpha_k + x_k)$ |
| Normal                                  | Gamma                                   |                                                      |
| $\mathcal{N}(\mu, 1/	heta)$             | $\mathcal{G}a(lpha,eta)$                | $\mathcal{G}(lpha+0.5,eta+(\mu-x)^2/2)$              |

(ロト (個) (E) (E) (E) (の)()

From Prior Information to Prior Distributions

Conjugate priors

## Linearity of the posterior mean

lf

$$\theta \sim \pi_{\lambda, x_0}(\theta) \propto e^{\theta \cdot x_0 - \lambda \psi(\theta)}$$

with  $x_0 \in \mathscr{X}$ , then  $\mathbb{E}^{\pi}[\nabla \psi(\theta)] = \frac{x_0}{\lambda}$ . Therefore, if  $x_1, \ldots, x_n$  are i.i.d.  $f(x|\theta)$ ,

$$\mathbb{E}^{\pi}[\nabla \psi(\theta)|x_1,\ldots,x_n] = \frac{x_0 + n\bar{x}}{\lambda + n}.$$

From Prior Information to Prior Distributions

Conjugate priors

## But...

## Example

When  $x \sim \mathscr{B}e(\alpha, \theta)$  with known  $\alpha$ ,

$$f(x| heta) \propto rac{\Gamma(lpha+ heta)(1-x)^{ heta}}{\Gamma( heta)}\,,$$

conjugate distribution not so easily manageable

$$\pi( heta|x_0,\lambda) \propto \left(rac{\Gamma(lpha+ heta)}{\Gamma( heta)}
ight)^{\lambda} (1-x_0)^{ heta}$$

From Prior Information to Prior Distributions

Conjugate priors

#### Example

Coin spun on its edge, proportion  $\theta$  of *heads* When spinning n times a given coin, number of heads

 $x \sim \mathscr{B}(n, \theta)$ 

Flat prior, or mixture prior

$$rac{1}{2}\left[\mathscr{B}e(10,20)+\mathscr{B}e(20,10)
ight]$$

or

 $0.5 \,\mathscr{B}e(10, 20) + 0.2 \,\mathscr{B}e(15, 15) + 0.3 \,\mathscr{B}e(20, 10).$ 

Mixtures of natural conjugate distributions also make conjugate families

From Prior Information to Prior Distributions

Conjugate priors



Three prior distributions for a spinning-coin experiment

From Prior Information to Prior Distributions

Conjugate priors



### Posterior distributions for 50 observations

From Prior Information to Prior Distributions

Conjugate priors

## What if all we know is that we know "nothing" ?!

In the absence of prior information, prior distributions solely derived from the sample distribution  $f(x|\theta)$ 

[Noninformative priors]

From Prior Information to Prior Distributions

Conjugate priors

#### **Re-Warning**

Noninformative priors cannot be expected to represent exactly total ignorance about the problem at hand, but should rather be taken as reference or default priors, upon which everyone could fall back when the prior information is missing.

[Kass and Wasserman, 1996]

From Prior Information to Prior Distributions

Conjugate priors

## Laplace's prior

Principle of Insufficient Reason (Laplace)

$$\Theta = \{ heta_1, \cdots, heta_p\} \qquad \pi( heta_i) = 1/p$$

Extension to continuous spaces

 $\pi( heta) \propto 1$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

From Prior Information to Prior Distributions

Conjugate priors

Lack of reparameterization invariance/coherence

$$\psi=e^ heta$$
  $\pi_1(\psi)=rac{1}{\psi}
eq\pi_2(\psi)=1$ 

Problems of properness

$$\begin{aligned} x &\sim \mathcal{N}(\theta, \sigma^2), \qquad \pi(\theta, \sigma) = 1 \\ &\pi(\theta, \sigma | x) \propto e^{-(x-\theta)^2/2\sigma^2} \sigma^{-1} \\ &\Rightarrow \pi(\sigma | x) \propto 1 \quad (!!!) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

From Prior Information to Prior Distributions

Conjugate priors

## Invariant priors

Principle: Agree with the natural symmetries of the problem

- Identify invariance structures as group action

$$egin{array}{rcl} \mathcal{G} & : & x 
ightarrow g(x) \sim f(g(x) | ar{g}( heta)) \ ar{\mathcal{G}} & : & heta 
ightarrow ar{g}( heta) \ \mathcal{G}^* & : & L(d, heta) = L(g^*(d), ar{g}( heta)) \end{array}$$

- Determine an invariant prior

$$\pi(\bar{g}(A)) = \pi(A)$$

From Prior Information to Prior Distributions

Conjugate priors

# Solution: Right Haar measure But...

- Requires invariance to be part of the decision problem
- Missing in most discrete setups (Poisson)

From Prior Information to Prior Distributions

Conjugate priors

## The Jeffreys prior

Based on Fisher information

$$I( heta) = \mathbb{E}_{ heta} \left[ rac{\partial \ell}{\partial heta^t} \; rac{\partial \ell}{\partial heta} 
ight]$$

The Jeffreys prior distribution is

 $\pi^*( heta) \propto |I( heta)|^{1/2}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

From Prior Information to Prior Distributions

Conjugate priors

### Pros & Cons

- Relates to information theory
- Agrees with most invariant priors
- Parameterization invariant
- Suffers from dimensionality curse
- Not coherent for Likelihood Principle

From Prior Information to Prior Distributions

Conjugate priors

## Example

$$x \sim \mathcal{N}_p(\theta, I_p), \quad \eta = \|\theta\|^2, \quad \pi(\eta) = \eta^{p/2-1}$$
  
 $\mathbb{E}^{\pi}[\eta|x] = \|x\|^2 + p \quad \text{Bias } 2p$ 

From Prior Information to Prior Distributions

Conjugate priors

#### Example

If  $x \sim \mathscr{B}(n, \theta)$ , Jeffreys' prior is

 $\mathscr{B}e(1/2, 1/2)$ 

and, if  $n \sim \mathscr{N}eg(x, \theta)$ , Jeffreys' prior is

$$\pi_{2}(\theta) = -\mathbb{E}_{\theta} \left[ \frac{\partial^{2}}{\partial \theta^{2}} \log f(x|\theta) \right]$$
$$= \mathbb{E}_{\theta} \left[ \frac{x}{\theta^{2}} + \frac{n-x}{(1-\theta)^{2}} \right] = \frac{x}{\theta^{2}(1-\theta)},$$
$$\propto \theta^{-1}(1-\theta)^{-1/2}$$

From Prior Information to Prior Distributions

Conjugate priors

# Reference priors

Generalizes Jeffreys priors by distinguishing between nuisance and interest parameters
Principle: maximize the information brought by the data

$$\mathbb{E}^{n}\left[\int \pi( heta|x_{n})\log(\pi( heta|x_{n})/\pi( heta))d heta
ight]$$

and consider the limit of the  $\pi_n$ Outcome: most usually, Jeffreys prior

From Prior Information to Prior Distributions

Conjugate priors

## Nuisance parameters:

For  $heta = (\lambda, \omega)$ ,

$$\pi(\lambda|\omega)=\pi_J(\lambda|\omega)$$
 with fixed  $\omega$ 

Jeffreys' prior conditional on  $\omega$ , and

$$\pi(\omega) = \pi_J(\omega)$$

for the marginal model

$$f(x|\omega) \propto \int f(x| heta) \pi_J(\lambda|\omega) d\lambda$$

- Depends on ordering
- Problems of definition

From Prior Information to Prior Distributions

Conjugate priors

## Example (Neyman–Scott problem)

Observation of  $x_{ij}$  iid  $\mathcal{N}(\mu_i, \sigma^2)$ , i = 1, ..., n, j = 1, 2. The usual Jeffreys prior for this model is

$$\pi(\mu_1,\ldots,\mu_n,\sigma)=\sigma^{-n-1}$$

which is inconsistent because

$$\mathbb{E}[\sigma^2|x_{11},\ldots,x_{n2}] = s^2/(2n-2),$$

where

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i1} - x_{i2})^{2}}{2},$$

From Prior Information to Prior Distributions

Conjugate priors

## Example (Neyman–Scott problem)

Associated reference prior with  $\theta_1 = \sigma$  and  $\theta_2 = (\mu_1, \ldots, \mu_n)$  gives

$$egin{array}{rcl} \pi( heta_2| heta_1) & \propto & 1\,, \ \pi(\sigma) & \propto & 1/\sigma \end{array}$$

Therefore,

$$\mathbb{E}[\sigma^2|x_{11},\ldots,x_{n2}] = s^2/(n-2)$$

From Prior Information to Prior Distributions

Conjugate priors

# Matching priors

## Frequency-validated priors:

Some posterior probabilities

$$\pi(g(\theta) \in C_x|x) = 1 - \alpha$$

must coincide with the corresponding frequentist coverage

$$P_{\theta}(C_x \ni g(\theta)) = \int \mathbb{I}_{C_x}(g(\theta)) f(x|\theta) dx$$

...asymptotically

From Prior Information to Prior Distributions

Conjugate priors

#### For instance, Welch and Peers' identity

$$P_{\theta}(\theta \le k_{\alpha}(x)) = 1 - \alpha + O(n^{-1/2})$$

and for Jeffreys' prior,

$$P_{\theta}(\theta \le k_{\alpha}(x)) = 1 - \alpha + O(n^{-1})$$

From Prior Information to Prior Distributions

Conjugate priors

In general, choice of a matching prior dictated by the cancelation of a first order term in an **Edgeworth expansion**, like

 $[I''(\theta)]^{-1/2}I'(\theta)\nabla \log \pi(\theta) + \nabla^t \{I'(\theta)[I''(\theta)]^{-1/2}\} = 0.$ 

From Prior Information to Prior Distributions

Conjugate priors

# Example (Linear calibration model) $y_i = \alpha + \beta x_i + \varepsilon_i, \quad y_{0j} = \alpha + \beta x_0 + \varepsilon_{0j}, \quad (i = 1, ..., n, j = 1, ..., k)$ with $\theta = (x_0, \alpha, \beta, \sigma^2)$ and $x_0$ quantity of interest

From Prior Information to Prior Distributions

Conjugate priors

Example (Linear calibration model (2)) One-sided differential equation:

$$\begin{aligned} |\beta|^{-1}s^{-1/2}\frac{\partial}{\partial x_0}\{e(x_0)\pi(\theta)\} - e^{-1/2}(x_0)\operatorname{sgn}(\beta)n^{-1}s^{1/2}\frac{\partial\pi(\theta)}{\partial x_0} \\ -e^{-1/2}(x_0)(x_0-\bar{x})s^{-1/2}\frac{\partial}{\partial\beta}\{\operatorname{sgn}(\beta)\pi(\theta)\} = 0 \end{aligned}$$

with

$$s = \Sigma (x_i - \bar{x})^2, \ e(x_0) = [(n+k)s + nk(x_0 - \bar{x})^2]/nk.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

From Prior Information to Prior Distributions

Conjugate priors

## Example (Linear calibration model (3)) Solutions

$$\pi(x_0, \alpha, \beta, \sigma^2) \propto e(x_0)^{(d-1)/2} |\beta|^d g(\sigma^2),$$

where g arbitrary.

From Prior Information to Prior Distributions

Conjugate priors

#### **Reference priors**

| Partition                        | Prior                            |
|----------------------------------|----------------------------------|
| $(x_0, \alpha, \beta, \sigma^2)$ | $ eta (\sigma^2)^{-5/2}$         |
| $x_0, \alpha, \beta, \sigma^2$   | $e(x_0)^{-1/2}(\sigma^2)^{-1}$   |
| $x_0, \alpha, (\sigma^2, \beta)$ | $e(x_0)^{-1/2}(\sigma^2)^{-3/2}$ |
| $x_0, (\alpha, \beta), \sigma^2$ | $e(x_0)^{-1/2}(\sigma^2)^{-1}$   |
| $x_0, (\alpha, \beta, \sigma^2)$ | $e(x_0)^{-1/2}(\sigma^2)^{-2}$   |

(ロト (個) (E) (E) (E) (の)()

From Prior Information to Prior Distributions

Conjugate priors



 Rissanen's transmission information theory and minimum length priors

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

- Testing priors
- stochastic complexity

# **Bayesian Point Estimation**

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

## Bayesian Point Estimation

Bayesian inference Bayesian Decision Theory The particular case of the normal model Dynamic models

**Bayesian Calculations** 

## Posterior distribution

## $\pi(\theta|x) \propto f(x|\theta) \pi(\theta)$

- $\blacktriangleright$  extensive summary of the information available on  $\theta$
- integrate simultaneously prior information and information brought by x
- unique motor of inference

Bayesian Point Estimation

Bayesian inference



# With no loss function, consider using the maximum a posteriori (MAP) estimator

 $\arg\max_{\theta} \ell(\theta|x)\pi(\theta)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Point Estimation

Bayesian inference

## Motivations

- Associated with 0-1 losses and  $L_p$  losses
- Penalized likelihood estimator
- Further appeal in restricted parameter spaces

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ◆ 臣 ● のへで
Bayesian Point Estimation

Bayesian inference

### Example

Consider  $x \sim \mathcal{B}(n, p)$ . Possible priors:

$$\pi^*(p) = \frac{1}{B(1/2, 1/2)} p^{-1/2} (1-p)^{-1/2},$$

$$\pi_1(p) = 1$$
 and  $\pi_2(p) = p^{-1}(1-p)^{-1}$ .

Corresponding MAP estimators:

$$egin{array}{rcl} \delta^{*}(x) &=& \max\left(rac{x-1/2}{n-1},0
ight), \ \delta_{1}(x) &=& rac{x}{n}, \ \delta_{2}(x) &=& \max\left(rac{x-1}{n-2},0
ight). \end{array}$$

Bayesian Point Estimation

Bayesian inference

#### Not always appropriate:

Example

Consider

$$f(x|\theta) = \frac{1}{\pi} \left[ 1 + (x - \theta)^2 \right]^{-1},$$

and  $\pi(\theta) = \frac{1}{2}e^{-|\theta|}$ . The MAP estimator of  $\theta$  is then always

$$\delta^*(x) = 0$$

LBayesian Point Estimation

Bayesian inference

## Prediction

If 
$$x \sim f(x|\theta)$$
 and  $z \sim g(z|x,\theta)$ , the *predictive* of  $z$  is

$$g^{\pi}(z|x) = \int_{\Theta} g(z|x,\theta)\pi(\theta|x) \, d\theta.$$

(ロト (個) (E) (E) (E) (の)()

Bayesian Point Estimation

Bayesian inference

#### Example

#### Consider the AR(1) model

$$x_t = \varrho x_{t-1} + \epsilon_t \qquad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

the predictive of  $\boldsymbol{x}_T$  is then

$$x_T | x_{1:(T-1)} \sim \int \frac{\sigma^{-1}}{\sqrt{2\pi}} \exp\{-(x_T - \rho x_{T-1})^2 / 2\sigma^2\} \pi(\rho, \sigma | x_{1:(T-1)}) d\rho d\sigma,$$

and  $\pi(\varrho, \sigma | x_{1:(T-1)})$  can be expressed in closed form

ロト・西ト・日・ 日・ うんの

Bayesian Point Estimation

Bayesian Decision Theory

### Bayesian Decision Theory

For a loss  $L(\theta, \delta)$  and a prior  $\pi$ , the *Bayes rule* is

$$\delta^{\pi}(x) = \arg\min_{d} \mathbb{E}^{\pi}[\mathsf{L}(\theta, d)|x].$$

Note: Practical computation not always possible analytically.

Bayesian Point Estimation

Bayesian Decision Theory

## Conjugate priors

For conjugate distributions distribution!conjugate, the posterior expectations of the natural parameters can be expressed analytically, for one or several observations.

| Distribution                                                                                  | Conjugate prior                                          | Posterior mean                                                                    |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|
| Normal                                                                                        | Normal                                                   |                                                                                   |
| $egin{array}{l} \mathcal{N}(	heta,\sigma^2) \ {\sf Poisson} \ \mathcal{P}(	heta) \end{array}$ | $\mathcal{N}(\mu, 	au^2)$ Gamma $\mathcal{G}(lpha, eta)$ | $\frac{\mu\sigma^2 + \tau^2 x}{\sigma^2 + \tau^2}$ $\frac{\alpha + x}{\beta + 1}$ |

Layesian Point Estimation

Bayesian Decision Theory

| Distribution                                   | Conjugate prior                     | Posterior mean                                            |
|------------------------------------------------|-------------------------------------|-----------------------------------------------------------|
| Gamma                                          | Gamma                               |                                                           |
| $\mathcal{G}( u,	heta)$                        | $\mathcal{G}(lpha,eta)$             | $\frac{\alpha + \nu}{\beta + x}$                          |
| Binomial                                       | Beta                                |                                                           |
| $\mathcal{B}(n,	heta)$                         | $\mathcal{B}e(lpha,eta)$            | $\frac{\alpha + x}{\alpha + \beta + n}$                   |
| Negative binomial                              | Beta                                |                                                           |
| $\mathcal{N}eg(n,	heta)$                       | $\mathcal{B}e(lpha,eta)$            | $\frac{\alpha+n}{\alpha+\beta+x+n}$                       |
| Multinomial                                    | Dirichlet                           |                                                           |
| $\mathcal{M}_k(n; \theta_1, \ldots, \theta_k)$ | $\mathcal{D}(lpha_1,\ldots,lpha_k)$ | $\frac{\alpha_i + x_i}{\left(\sum_j \alpha_j\right) + n}$ |
| Normal                                         | Gamma                               | , ,                                                       |
| $\mathcal{N}(\mu, 1/	heta)$                    | $\mathcal{G}(lpha/2,eta/2)$         | $\frac{\alpha+1}{\beta+(\mu-x)^2}$                        |

(ロ) (部) (目) (日) (日) (の) (の)

Bayesian Point Estimation

Bayesian Decision Theory

### Example

Consider

$$x_1, \ldots, x_n \sim \mathcal{U}([0, \theta])$$

and  $\theta \sim \mathcal{P}a(\theta_0, \alpha)$ . Then

$$heta|x_1,...,x_n \sim \mathcal{P}a(\max{( heta_0,x_1,...,x_n)},lpha+n)$$

and

$$\delta^{\pi}(x_1,...,x_n) = \frac{\alpha+n}{\alpha+n-1} \max{(\theta_0,x_1,...,x_n)}.$$

Bayesian Point Estimation

Bayesian Decision Theory

#### Even conjugate priors may lead to computational difficulties

#### Example

Consider  $x \sim \mathscr{N}_p(\theta, I_p)$  and

$$\mathsf{L}(\theta, d) = \frac{(d - ||\theta||^2)^2}{2||\theta||^2 + p}$$

for which  $\delta_0(x) = ||x||^2 - p$  has a constant risk, 1 For the conjugate distributions,  $\mathcal{N}_p(0, \tau^2 I_p)$ ,

$$\delta^{\pi}(x) = \frac{\mathbb{E}^{\pi}[||\theta||^2/(2||\theta||^2 + p)|x]}{\mathbb{E}^{\pi}[1/(2||\theta||^2 + p)|x]}$$

cannot be computed analytically.

Bayesian Point Estimation

The particular case of the normal model

### The normal model

Importance of the normal model in many fields

### $\mathcal{N}_p(\theta, \Sigma)$

with known  $\Sigma$ , normal conjugate distribution,  $\mathcal{N}_p(\mu, A)$ . Under quadratic loss, the Bayes estimator is

$$\delta^{\pi}(x) = x - \Sigma(\Sigma + A)^{-1}(x - \mu)$$
  
=  $(\Sigma^{-1} + A^{-1})^{-1} (\Sigma^{-1}x + A^{-1}\mu);$ 

Bayesian Point Estimation

The particular case of the normal model

### Estimation of variance

lf

$$\bar{x} = rac{1}{n} \sum_{i=1}^{n} x_i$$
 and  $s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$ 

the likelihood is

$$\ell(\theta, \sigma \,|\, \bar{x}, s^2) \propto \sigma^{-n} \exp\left[-\frac{1}{2\sigma^2} \left\{s^2 + n \left(\bar{x} - \theta\right)^2\right\}\right]$$

The Jeffreys prior for this model is

$$\pi^*( heta,\sigma) = rac{1}{\sigma^2}$$

but invariance arguments lead to prefer

$$ilde{\pi}( heta,\sigma) = rac{1}{\sigma}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Point Estimation

The particular case of the normal model

In this case, the posterior distribution of  $(\theta, \sigma)$  is

$$\begin{aligned} \theta | \sigma, \bar{x}, s^2 &\sim \mathcal{N}\left(\bar{x}, \frac{\sigma^2}{n}\right), \\ \sigma^2 | \bar{x}, s^2 &\sim \mathcal{IG}\left(\frac{n-1}{2}, \frac{s^2}{2}\right). \end{aligned}$$

- Conjugate posterior distributions have the same form
- ▶  $\theta$  and  $\sigma^2$  are not a priori independent.
- Requires a careful determination of the hyperparameters

(日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Point Estimation

The particular case of the normal model

### Linear models

Usual regression modelregression!model

$$y = X\beta + \epsilon, \qquad \epsilon \sim \mathscr{N}_k(0, \Sigma), \ \beta \in \mathbb{R}^p$$

Conjugate distributions of the type

 $\beta \sim \mathcal{N}_p(A\theta, C),$ 

where  $\theta \in \mathbb{R}^q$   $(q \leq p)$ . Strong connection with random-effect models

$$y = X_1\beta_1 + X_2\beta_2 + \epsilon,$$

Bayesian Point Estimation

The particular case of the normal model

### $\Sigma$ unknown

In this general case, the Jeffreys prior is

$$\pi^J(eta, \mathbf{\Sigma}) = rac{1}{|\mathbf{\Sigma}|^{(k+1)/2}}.$$

likelihood

$$\ell(eta, \Sigma|y) \propto |\Sigma|^{-n/2} \exp\left\{-rac{1}{2} \mathsf{tr}\left[\Sigma^{-1} \sum_{i=1}^{n} (y_i - X_i eta) (y_i - X_i eta)^t
ight]
ight\}$$

Bayesian Point Estimation

The particular case of the normal model

- suggests (inverse) Wishart distribution on Σ
- posterior marginal distribution on β only defined for sample size large enough
- no closed form expression for posterior marginal

Bayesian Point Estimation

The particular case of the normal model

Special case:  $\epsilon \sim \mathcal{N}_k(0, \sigma^2 I_k)$ The least-squares estimator  $\hat{\beta}$  has a normal distribution

 $\mathcal{N}_p(\beta, \sigma^2(X^tX)^{-1})$ 

Corresponding conjugate distribution s on  $(\beta, \sigma^2)$ 

$$\begin{split} \beta | \sigma^2 &\sim \mathcal{N}_p \left( \mu, \frac{\sigma^2}{n_0} (X^t X)^{-1} \right), \\ \sigma^2 &\sim \mathcal{IG}(\nu/2, s_0^2/2), \end{split}$$

Bayesian Point Estimation

The particular case of the normal model

since, if  $s^2 = ||y - X \hat{\beta}||^2$ ,

$$\begin{split} \beta|\hat{\beta}, s^{2}, \sigma^{2} &\sim \mathcal{N}_{p}\left(\frac{n_{0}\mu + \hat{\beta}}{n_{0} + 1}, \frac{\sigma^{2}}{n_{0} + 1}(X^{t}X)^{-1}\right), \\ \sigma^{2}|\hat{\beta}, s^{2} &\sim \mathcal{IG}\left(\frac{k - p + \nu}{2}, \frac{s^{2} + s_{0}^{2} + \frac{n_{0}}{n_{0} + 1}(\mu - \hat{\beta})^{t}X^{t}X(\mu - \hat{\beta})}{2}\right) \end{split}$$

Bayesian Statistics Bayesian Point Estimation

# The AR(p) model

Markovian dynamic model

$$x_t \sim \mathcal{N}\left(\mu - \sum_{i=1}^p \varrho_i(x_{t-i} - \mu), \sigma^2\right)$$

#### Appeal:

- Among the most commonly used model in dynamic settings
- More challenging than the static models (stationarity constraints)
- ▶ Different models depending on the processing of the starting value x<sub>0</sub>

Bayesian Point Estimation

Dynamic models

# Stationarity

Stationarity constraints in the prior as a restriction on the values of  $\theta$ . AR(p) model stationary iff the roots of the polynomial

$$\mathscr{P}(x) = 1 - \sum_{i=1}^{p} \varrho_i x^i$$

are all outside the unit circle

Bayesian Point Estimation

Dynamic models

## Closed form likelihood

Conditional on the negative time values

$$L(\mu, \varrho_1, \dots, \varrho_p, \sigma | x_{1:T}, x_{0:(-p+1)}) = \sigma^{-T} \prod_{t=1}^{T} \exp\left\{ -\left( x_t - \mu + \sum_{i=1}^{p} \varrho_i(x_{t-i} - \mu) \right)^2 / 2\sigma^2 \right\} ,$$

Natural conjugate prior for  $\theta = (\mu, \varrho_1, \dots, \varrho_p, \sigma^2)$ : a normal distributiondistribution!normal on  $(\mu, \varrho_1, \dots, \rho_p)$  and an inverse gamma distributiondistribution!inverse gamma on  $\sigma^2$ .

Bayesian Point Estimation

Dynamic models

## Stationarity & priors

Under stationarity constraint, complex parameter space The *Durbin–Levinson recursion* proposes a *reparametrization* from the parameters  $\varrho_i$  to the *partial autocorrelations* 

### $\psi_i \in [-1,1]$

which allow for a uniform prior.

Bayesian Point Estimation

Dynamic models

#### Transform:

0. Define  $\varphi^{ii} = \psi_i$  and  $\varphi^{ij} = \varphi^{(i-1)j} - \psi_i \varphi^{(i-1)(i-j)}$ , for i > 1and  $j = 1, \dots, i-1$ .

1. Take 
$$\varrho_i = \varphi^{pi}$$
 for  $i = 1, \cdots, p$ .

Different approach via the real+complex roots of the polynomial  $\mathscr{P}$ , whose inverses are also within the unit circle.

Dynamic models

## Stationarity & priors (contd.)

Jeffreys' prior associated with the stationary representationrepresentation!stationary is

$$\pi_1^J(\mu,\sigma^2,arrho) \propto rac{1}{\sigma^2}rac{1}{\sqrt{1-arrho^2}}\,.$$

Within the non-stationary region  $|\varrho| > 1$ , the Jeffreys prior is

$$\pi_2^J(\mu,\sigma^2,\varrho) \propto rac{1}{\sigma^2} rac{1}{\sqrt{|1-\varrho^2|}} \sqrt{\left|1-rac{1-\varrho^{2T}}{T(1-\varrho^2)}\right|}.$$

The dominant part of the prior is the non-stationary region!

Bayesian Point Estimation

Dynamic models

The reference prior  $\pi_1^J$  is only defined when the stationary constraint holds.

Idea Symmetrise to the region  $|\varrho| > 1$ 

$$\pi^B(\mu,\sigma^2,\varrho) \propto rac{1}{\sigma^2} egin{cases} 1/\sqrt{1-arrho^2} & ext{if } |arrho| < 1, \ 1/|arrho|\sqrt{arrho^2-1} & ext{if } |arrho| > 1, \end{cases},$$



・ロト・日本・日本・日本・日本・日本

Bayesian Point Estimation

Dynamic models

# The MA(q) model

$$x_t = \mu + \epsilon_t - \sum_{j=1}^q \vartheta_j \epsilon_{t-j}, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

Stationary but, for identifiability considerations, the polynomial

$$\mathscr{Q}(x) = 1 - \sum_{j=1}^{q} \vartheta_j x^j$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

must have all its roots outside the unit circle.

Bayesian Point Estimation

Dynamic models

#### Example

For the MA(1) model,  $x_t = \mu + \epsilon_t - \vartheta_1 \epsilon_{t-1}$ ,

$$\mathsf{var}(x_t) = (1 + \vartheta_1^2)\sigma^2$$

It can also be written

$$x_t = \mu + \tilde{\epsilon}_{t-1} - \frac{1}{\vartheta_1} \tilde{\epsilon}_t, \quad \tilde{\epsilon} \sim \mathcal{N}(0, \vartheta_1^2 \sigma^2),$$

Both couples  $(\vartheta_1, \sigma)$  and  $(1/\vartheta_1, \vartheta_1 \sigma)$  lead to alternative representations of the same model.

### Representations

 $x_{1:T}$  is a normal random variable with constant mean  $\mu$  and covariance matrix

$$\Sigma = \begin{pmatrix} \sigma^2 & \gamma_1 & \gamma_2 & \dots & \gamma_q & 0 & \dots & 0 & 0 \\ \gamma_1 & \sigma^2 & \gamma_1 & \dots & \gamma_{q-1} & \gamma_q & \dots & 0 & 0 \\ & & \ddots & & & & & \\ 0 & 0 & 0 & \dots & 0 & 0 & \dots & \gamma_1 & \sigma^2 \end{pmatrix},$$

with  $(|s| \leq q)$   $\gamma_s = \sigma^2 \sum_{i=0}^{q-|s|} artheta_i artheta_{i+|s|}$ 

Not manageable in practice

Bayesian Point Estimation

Dynamic models

## Representations (contd.)

Conditional on  $(\epsilon_0, \ldots, \epsilon_{-q+1})$ ,

$$L(\mu, \vartheta_1, \dots, \vartheta_q, \sigma | x_{1:T}, \epsilon_0, \dots, \epsilon_{-q+1}) = \sigma^{-T} \prod_{t=1}^T \exp\left\{ -\left(x_t - \mu + \sum_{j=1}^q \vartheta_j \hat{\epsilon}_{t-j}\right)^2 / 2\sigma^2 \right\} ,$$

where (t > 0)

$$\hat{\epsilon}_t = x_t - \mu + \sum_{j=1}^q \vartheta_j \hat{\epsilon}_{t-j}, \ \hat{\epsilon}_0 = \epsilon_0, \ \dots, \ \hat{\epsilon}_{1-q} = \epsilon_{1-q}$$

Recursive definition of the likelihood, still costly  $O(T \times q)$ 

Bayesian Point Estimation

Dynamic models

## Representations (contd.)

State-space representation

$$x_t = G_y \mathbf{y}_t + \varepsilon_t \,, \tag{2}$$

$$\mathbf{y}_{t+1} = F_t \mathbf{y}_t + \xi_t \,, \tag{3}$$

(2) is the observation equation and (3) is the state equation

Bayesian Point Estimation

Dynamic models

### For the MA(q) model

$$\mathbf{y}_t = (\epsilon_{t-q}, \ldots, \epsilon_{t-1}, \epsilon_t)'$$

and

$$\mathbf{y}_{t+1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ & & & \dots & \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} \mathbf{y}_t + \epsilon_{t+1} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
$$x_t = \mu - (\vartheta_q \quad \vartheta_{q-1} \quad \dots \quad \vartheta_1 \quad -1) \mathbf{y}_t.$$

(ロト (個) (E) (E) (E) (の)()

Bayesian Point Estimation

Dynamic models

#### Example

For the MA(1) model, observation equation

$$x_t = (1 \quad 0)\mathbf{y}_t$$

with

$$\mathbf{y}_t = \begin{pmatrix} y_{1t} & y_{2t} \end{pmatrix}^t$$

directed by the state equation

$$\mathbf{y}_{t+1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{y}_t + \epsilon_{t+1} \begin{pmatrix} 1 \\ \vartheta_1 \end{pmatrix} \,.$$

Bayesian Point Estimation

Dynamic models

## Identifiability

Identifiability condition on  $\mathscr{Q}(x)$ : the  $\vartheta_j$ 's vary in a complex space. New reparametrization: the  $\psi_i$ 's are the *inverse partial auto-correlations* 

## **Bayesian Calculations**

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

#### **Bayesian Calculations**

Implementation difficulties Classical approximation methods Markov chain Monte Carlo methods

Tests and model choice

Bayesian Calculations

Implementation difficulties

## B Implementation difficulties

Computing the posterior distribution

 $\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Implementation difficulties

## **B** Implementation difficulties

Computing the posterior distribution

 $\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$ 

Resolution of

arg min 
$$\int_{\Theta} \mathsf{L}(\theta, \delta) \pi(\theta) f(x|\theta) d\theta$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Implementation difficulties

## **B** Implementation difficulties

Computing the posterior distribution

 $\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$ 

Resolution of

arg min 
$$\int_{\Theta} \mathsf{L}(\theta, \delta) \pi(\theta) f(x|\theta) d\theta$$

Maximisation of the marginal posterior

$$\arg\max\,\int_{\Theta_{-1}}\pi(\theta|x)d\theta_{-1}$$
Bayesian Calculations

LImplementation difficulties

## B Implementation further difficulties

#### Computing posterior quantities

$$\delta^{\pi}(x) = \int_{\Theta} h(\theta) \ \pi(\theta|x) d\theta = \frac{\int_{\Theta} h(\theta) \ \pi(\theta) f(x|\theta) d\theta}{\int_{\Theta} \pi(\theta) f(x|\theta) d\theta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bayesian Calculations

Implementation difficulties

## B Implementation further difficulties

#### Computing posterior quantities

$$\delta^{\pi}(x) = \int_{\Theta} h(\theta) \ \pi(\theta|x) d\theta = \frac{\int_{\Theta} h(\theta) \ \pi(\theta) f(x|\theta) d\theta}{\int_{\Theta} \pi(\theta) f(x|\theta) d\theta}$$

Resolution (in k) of

$$P(\pi(\theta|x) \ge k|x) = \alpha$$

(日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Calculations

Implementation difficulties

#### Example (Cauchy posterior)

$$x_1,\ldots,x_n\sim \mathscr{C}( heta,1)$$
 and  $heta\sim \mathscr{N}(\mu,\sigma^2)$ 

with known hyperparameters  $\mu$  and  $\sigma^2$ .

Bayesian Calculations

Implementation difficulties

#### Example (Cauchy posterior)

$$x_1,\ldots,x_n\sim \mathscr{C}( heta,1)$$
 and  $heta\sim \mathscr{N}(\mu,\sigma^2)$ 

with known hyperparameters  $\mu$  and  $\sigma^2.$  The posterior distribution

$$\pi(\theta|x_1,\ldots,x_n) \propto e^{-(\theta-\mu)^2/2\sigma^2} \prod_{i=1}^n [1+(x_i-\theta)^2]^{-1}$$

cannot be integrated analytically and

$$\delta^{\pi}(x_1,\ldots,x_n) = \frac{\int_{-\infty}^{+\infty} \theta e^{-(\theta-\mu)^2/2\sigma^2} \prod_{i=1}^n [1+(x_i-\theta)^2]^{-1} d\theta}{\int_{-\infty}^{+\infty} e^{-(\theta-\mu)^2/2\sigma^2} \prod_{i=1}^n [1+(x_i-\theta)^2]^{-1} d\theta}$$

requires two numerical integrations.

Layesian Calculations

LImplementation difficulties

#### Example (Mixture of two normal distributions)

 $x_1,\ldots,x_n \sim f(x|\theta) = p\varphi(x;\mu_1,\sigma_1) + (1-p)\varphi(x;\mu_2,\sigma_2)$ 

Bayesian Calculations

Implementation difficulties

## Example (Mixture of two normal distributions)

$$x_1,\ldots,x_n \sim f(x|\theta) = p\varphi(x;\mu_1,\sigma_1) + (1-p)\varphi(x;\mu_2,\sigma_2)$$

#### Prior

$$\mu_i | \sigma_i \sim \mathcal{N}(\xi_i, \sigma_i^2/n_i), \quad \sigma_i^2 \sim \mathscr{IG}(\nu_i/2, s_i^2/2), \quad p \sim \mathscr{B}e(\alpha, \beta)$$

Bayesian Calculations

Implementation difficulties

### Example (Mixture of two normal distributions)

$$x_1,\ldots,x_n \sim f(x|\theta) = p\varphi(x;\mu_1,\sigma_1) + (1-p)\varphi(x;\mu_2,\sigma_2)$$

#### Prior

$$\mu_i | \sigma_i \sim \mathscr{N}(\xi_i, \sigma_i^2/n_i), \quad \sigma_i^2 \sim \mathscr{IG}(\nu_i/2, s_i^2/2), \quad p \sim \mathscr{B}e(\alpha, \beta)$$

#### Posterior

$$\pi(\theta|x_1, \dots, x_n) \propto \prod_{j=1}^n \left\{ p\varphi(x_j; \mu_1, \sigma_1) + (1-p)\varphi(x_j; \mu_2, \sigma_2) \right\} \pi(\theta)$$
$$= \sum_{\ell=0}^n \sum_{(k_t)\in\Sigma_\ell} \omega(k_t)\pi(\theta|(k_t))$$
$$[O(2^n)]$$

Bayesian Calculations

Implementation difficulties

Example (Mixture of two normal distributions (2)) For a given permutation  $(k_t)$ , conditional posterior distribution  $\pi(\theta|(k_t)) = \mathcal{N}\left(\xi_1(k_t), \frac{\sigma_1^2}{n_1 + \ell}\right) \times \mathscr{IG}((\nu_1 + \ell)/2, s_1(k_t)/2)$   $\times \mathcal{N}\left(\xi_2(k_t), \frac{\sigma_2^2}{n_2 + n - \ell}\right) \times \mathscr{IG}((\nu_2 + n - \ell)/2, s_2(k_t)/2)$   $\times \mathscr{B}e(\alpha + \ell, \beta + n - \ell)$ 

Bayesian Calculations

Implementation difficulties

# Example (Mixture of two normal distributions (3)) where

$$\bar{x}_1(k_t) = \frac{1}{\ell} \sum_{t=1}^{\ell} x_{k_t}, \\ \bar{x}_2(k_t) = \frac{1}{n-\ell} \sum_{t=\ell+1}^{n} x_{k_t},$$

$$\hat{s}_1(k_t) = \sum_{t=1}^{\ell} (x_{k_t} - \bar{x}_1(k_t))^2, \\ \hat{s}_2(k_t) = \sum_{t=\ell+1}^{n} (x_{k_t} - \bar{x}_2(k_t))^2$$

Bayesian Calculations

Implementation difficulties

# Example (Mixture of two normal distributions (3)) where

$$\bar{x}_1(k_t) = \frac{1}{\ell} \sum_{t=1}^{\ell} x_{k_t}, \qquad \hat{s}_1(k_t) = \sum_{t=1}^{\ell} (x_{k_t} - \bar{x}_1(k_t))^2, \\ \bar{x}_2(k_t) = \frac{1}{n-\ell} \sum_{t=\ell+1}^{n} x_{k_t}, \qquad \hat{s}_2(k_t) = \sum_{t=\ell+1}^{n} (x_{k_t} - \bar{x}_2(k_t))^2$$

and

$$\begin{aligned} \xi_1(k_t) &= \frac{n_1\xi_1 + \ell\bar{x}_1(k_t)}{n_1 + \ell}, \qquad \xi_2(k_t) = \frac{n_2\xi_2 + (n - \ell)\bar{x}_2(k_t)}{n_2 + n - \ell}, \\ s_1(k_t) &= s_1^2 + \hat{s}_1^2(k_t) + \frac{n_1\ell}{n_1 + \ell}(\xi_1 - \bar{x}_1(k_t))^2, \\ s_2(k_t) &= s_2^2 + \hat{s}_2^2(k_t) + \frac{n_2(n - \ell)}{n_2 + n - \ell}(\xi_2 - \bar{x}_2(k_t))^2, \end{aligned}$$

posterior updates of the hyperparameters

Bayesian Calculations

LImplementation difficulties

Example (Mixture of two normal distributions (4)) Bayes estimator of  $\theta$ :

$$\delta^{\pi}(x_1,\ldots,x_n) = \sum_{\ell=0}^n \sum_{(k_t)} \omega(k_t) \mathbb{E}^{\pi}[\theta | \mathbf{x},(k_t)]$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Calculations

LImplementation difficulties

Example (Mixture of two normal distributions (4)) Bayes estimator of  $\theta$ :

$$\delta^{\pi}(x_1,\ldots,x_n) = \sum_{\ell=0}^n \sum_{(k_t)} \omega(k_t) \mathbb{E}^{\pi}[\theta|\mathbf{x},(k_t)]$$

**Too costly:**  $2^n$  terms

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Calculations

Classical approximation methods

## Numerical integration

Switch to Monte Carlo

Simpson's method

Bayesian Calculations

Classical approximation methods

## Numerical integration

Switch to Monte Carlo

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

- Simpson's method
- polynomial quadrature

$$\int_{-\infty}^{+\infty} e^{-t^2/2} f(t) dt \approx \sum_{i=1}^{n} \omega_i f(t_i),$$

Bayesian Calculations

Classical approximation methods

## Numerical integration

Switch to Monte Carlo

- Simpson's method
- polynomial quadrature

$$\int_{-\infty}^{+\infty} e^{-t^2/2} f(t) dt \approx \sum_{i=1}^{n} \omega_i f(t_i),$$

where

$$\omega_i = \frac{2^{n-1}n!\sqrt{n}}{n^2[H_{n-1}(t_i)]^2}$$

and  $t_i$  is the *i*th zero of the *n*th Hermite polynomial,  $H_n(t)$ .

Bayesian Calculations

Classical approximation methods

## Numerical integration

Switch to Monte Carlo

- Simpson's method
- polynomial quadrature

$$\int_{-\infty}^{+\infty} e^{-t^2/2} f(t) dt \approx \sum_{i=1}^{n} \omega_i f(t_i),$$

where

$$\omega_i = \frac{2^{n-1}n!\sqrt{n}}{n^2[H_{n-1}(t_i)]^2}$$

and  $t_i$  is the *i*th zero of the *n*th Hermite polynomial,  $H_n(t)$ .

orthogonal bases

wavelets

[Bumps into curse of dimen'ty]

Bayesian Calculations

Classical approximation methods

## Monte Carlo methods

Approximation of the integral

$$\Im = \int_{\Theta} g(\theta) f(x|\theta) \pi(\theta) \, d\theta,$$

should take advantage of the fact that  $f(x|\theta)\pi(\theta)$  is proportional to a density.

Bayesian Calculations

Classical approximation methods

## MC Principle

If the  $\theta_i$ 's are generated from  $\pi(\theta)$ , the average

$$\frac{1}{m}\sum_{i=1}^{m}g(\theta_i)f(x|\theta_i)$$

converges (almost surely) to  $\ensuremath{\mathfrak{I}}$ 

Bayesian Calculations

Classical approximation methods

## MC Principle

If the  $\theta_i$ 's are generated from  $\pi(\theta)$ , the average

$$\frac{1}{m}\sum_{i=1}^{m}g(\theta_i)f(x|\theta_i)$$

converges (almost surely) to  $\ensuremath{\mathfrak{I}}$ 

Confidence regions can be derived from a normal approximation and the magnitude of the error remains of order

$$1/\sqrt{m}\,,$$

whatever the dimension of the problem.

[Commercial!!]

Bayesian Calculations

Classical approximation methods

## Importance function

No need to simulate from  $\pi(\cdot|x)$  or from  $\pi$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Bayesian Calculations

Classical approximation methods

## Importance function

No need to simulate from  $\pi(\cdot|x)$  or from  $\pi$  if h is a probability density,

[Importance function]

$$\int_{\Theta} g(\theta) f(x|\theta) \pi(\theta) \, d\theta = \int \frac{g(\theta) f(x|\theta) \pi(\theta)}{h(\theta)} h(\theta) \, d\theta.$$

An approximation to  $\mathbb{E}^{\pi}[g(\theta)|x]$  is given by

$$\frac{\sum_{i=1}^{m} g(\theta_i) \omega(\theta_i)}{\sum_{i=1}^{m} \omega(\theta_i)} \quad \text{with} \quad \omega(\theta_i) = \frac{f(x|\theta_i) \pi(\theta_i)}{h(\theta_i)}$$

if

 $\operatorname{supp}(h) \subset \operatorname{supp}(f(x|\cdot)\pi)$ 

Leavesian Calculations

Classical approximation methods

## Requirements

Simulation from h must be easy

Bayesian Calculations

Classical approximation methods

## Requirements

- Simulation from h must be easy
- $h(\theta)$  must be close enough to  $g(\theta)\pi(\theta|x)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Classical approximation methods

## Requirements

- Simulation from h must be easy
- $h(\theta)$  must be close enough to  $g(\theta)\pi(\theta|x)$
- the variance of the importance sampling estimator must be finite

Bayesian Calculations

Classical approximation methods

## The importance function may be $\pi$

#### Example (Cauchy Example continued)

Since  $\pi(\theta)$  is  $\mathcal{N}(\mu, \sigma^2)$ , possible to simulate a normal sample  $\theta_1, \ldots, \theta_M$  and to approximate the Bayes estimator by

$$\frac{\sum_{t=1}^{M} \theta_t \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}{\sum_{t=1}^{M} \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}$$

Bayesian Calculations

Classical approximation methods

## The importance function may be $\pi$

#### Example (Cauchy Example continued)

Since  $\pi(\theta)$  is  $\mathcal{N}(\mu, \sigma^2)$ , possible to simulate a normal sample  $\theta_1, \ldots, \theta_M$  and to approximate the Bayes estimator by

$$\frac{\sum_{t=1}^{M} \theta_t \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}{\sum_{t=1}^{M} \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}$$



Bayesian Calculations

Classical approximation methods

## The importance function may be $\pi$

#### Example (Cauchy Example continued)

Since  $\pi(\theta)$  is  $\mathcal{N}(\mu, \sigma^2)$ , possible to simulate a normal sample  $\theta_1, \ldots, \theta_M$  and to approximate the Bayes estimator by

$$\frac{\sum_{t=1}^{M} \theta_t \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}{\sum_{t=1}^{M} \prod_{i=1}^{n} [1 + (x_i - \theta_t)^2]^{-1}}$$



May be poor when the  $x_i$ 's are all far from  $\mu$ 

Bayesian Calculations

Classical approximation methods

## Defensive sampling

Use a mix of prior and posterior

$$h(\theta) = \rho \pi(\theta) + (1 - \rho)\pi(\theta|x) \qquad \rho \ll 1$$

[Newton & Raftery, 1994]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Classical approximation methods

## Defensive sampling

Use a mix of prior and posterior

$$h(\theta) = \rho \pi(\theta) + (1 - \rho)\pi(\theta|x) \qquad \rho \ll 1$$

[Newton & Raftery, 1994]

[Bummer!]

Requires proper knowledge of normalising constants

Bayesian Calculations

Classical approximation methods

## Case of the Bayes factor

Models  $\mathcal{M}_1$  vs.  $\mathcal{M}_2$  compared via

$$B_{12} = \frac{Pr(\mathcal{M}_1|x)}{Pr(\mathcal{M}_2|x)} / \frac{Pr(\mathcal{M}_1)}{Pr(\mathcal{M}_2)}$$
$$= \frac{\int f_1(x|\theta_1)\pi_1(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi_2(\theta_2)d\theta_2}$$

[Good, 1958 & Jeffreys, 1961]

Leavesian Calculations

Classical approximation methods

## **Bridge sampling**

lf

$$\pi_1( heta_1|x) \propto ilde{\pi}_1( heta_1|x) \ \pi_2( heta_2|x) \propto ilde{\pi}_2( heta_2|x)$$

on same space,

Bayesian Calculations

Classical approximation methods

## **Bridge sampling**

lf

$$egin{array}{lll} \pi_1( heta_1|x) & \propto & ilde{\pi}_1( heta_1|x) \ \pi_2( heta_2|x) & \propto & ilde{\pi}_2( heta_2|x) \end{array}$$

on same space, then

$$B_{12} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\tilde{\pi}_1(\theta_i | x)}{\tilde{\pi}_2(\theta_i | x)} \qquad \theta_i \sim \pi_2(\theta | x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

[Chen, Shao & Ibrahim, 2000]

Bayesian Calculations

Classical approximation methods

## Further bridge sampling

Also

$$B_{12} = \frac{\int \tilde{\pi}_2(\theta) \alpha(\theta) \pi_1(\theta) d\theta}{\int \tilde{\pi}_1(\theta) \alpha(\theta) \pi_2(\theta) d\theta} \qquad \forall \alpha(\cdot)$$

$$\approx \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \tilde{\pi}_2(\theta_{1i}) \alpha(\theta_{1i})}{\frac{1}{n_2} \sum_{i=1}^{n_2} \tilde{\pi}_1(\theta_{2i}) \alpha(\theta_{2i})} \qquad \theta_{ji} \sim \pi_j(\theta)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Bayesian Calculations

Classical approximation methods

## **Umbrella sampling**

Parameterized version

$$\begin{aligned} \pi_1(\theta) &= \pi(\theta|\lambda_1) & \pi_2(\theta) &= \pi_1(\theta|\lambda_2) \\ &= \tilde{\pi}_1(\theta)/c(\lambda_1) & = \tilde{\pi}_2(\theta)/c(\lambda_2) \end{aligned}$$

Then

$$\forall \pi(\lambda) \text{ on } [\lambda_1, \lambda_2], \qquad \log(c(\lambda_2)/c(\lambda_1)) = \mathbb{E}\left[rac{d}{d\lambda}\log \tilde{\pi}(d\theta) \over \pi(\lambda)
ight]$$

◆□ > ◆□ > ◆豆 > ◆豆 > ▲豆 > ◇ < ♡ < ♡

Bayesian Calculations

Classical approximation methods

## **Umbrella sampling**

Parameterized version

$$\begin{aligned} \pi_1(\theta) &= \pi(\theta|\lambda_1) & \pi_2(\theta) &= \pi_1(\theta|\lambda_2) \\ &= \tilde{\pi}_1(\theta)/c(\lambda_1) & = \tilde{\pi}_2(\theta)/c(\lambda_2) \end{aligned}$$

Then

$$\forall \pi(\lambda) \text{ on } [\lambda_1, \lambda_2], \qquad \log(c(\lambda_2)/c(\lambda_1)) = \mathbb{E}\left[\frac{\frac{d}{d\lambda}\log \tilde{\pi}(d\theta)}{\pi(\lambda)}\right]$$

and

$$\log(B_{12}) pprox rac{1}{n} \sum_{i=1}^n rac{rac{d}{d\lambda} \log \tilde{\pi}( heta_i | \lambda_i)}{\pi(\lambda_i)}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Bayesian Calculations

Markov chain Monte Carlo methods

## MCMC methods

## Idea

## Given a density distribution $\pi(\cdot|x)$ , produce a Markov chain $(\theta^{(t)})_t$ with stationary distribution $\pi(\cdot|x)$
Bayesian Calculations

Markov chain Monte Carlo methods

# Formal Warranty

#### Convergence

if the Markov chains produced by MCMC algorithms are irreducible, these chains are both positive recurrent with stationary distribution  $\pi(\theta|x)$  and ergodic.

Bayesian Calculations

Markov chain Monte Carlo methods

# Formal Warranty

#### Convergence

if the Markov chains produced by MCMC algorithms are irreducible, these chains are both positive recurrent with stationary distribution  $\pi(\theta|x)$  and ergodic.

#### Translation:

For k large enough,  $\theta^{(k)}$  is approximately distributed from  $\pi(\theta|x)$ , no matter what the starting value  $\theta^{(0)}$  is.

Bayesian Calculations

Markov chain Monte Carlo methods

# Practical use

Produce an i.i.d. sample θ<sub>1</sub>,...,θ<sub>m</sub> from π(θ|x), taking the current θ<sup>(k)</sup> as the new starting value

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

# Practical use

- Produce an i.i.d. sample θ<sub>1</sub>,..., θ<sub>m</sub> from π(θ|x), taking the current θ<sup>(k)</sup> as the new starting value
- Approximate  $\mathbb{E}^{\pi}[g(\theta)|x]$  by Ergodic Theorem as

$$\frac{1}{K}\sum_{k=1}^{K}g(\theta^{(k)})$$

Bayesian Calculations

Markov chain Monte Carlo methods

# Practical use

- ► Produce an i.i.d. sample θ<sub>1</sub>,...,θ<sub>m</sub> from π(θ|x), taking the current θ<sup>(k)</sup> as the new starting value
- Approximate  $\mathbb{E}^{\pi}[g(\theta)|x]$  by Ergodic Theorem as

$$\frac{1}{K}\sum_{k=1}^{K}g(\theta^{(k)})$$

Achieve quasi-independence by batch sampling

Bayesian Calculations

Markov chain Monte Carlo methods

# Practical use

- Produce an i.i.d. sample θ<sub>1</sub>,..., θ<sub>m</sub> from π(θ|x), taking the current θ<sup>(k)</sup> as the new starting value
- Approximate  $\mathbb{E}^{\pi}[g(\theta)|x]$  by Ergodic Theorem as

$$\frac{1}{K}\sum_{k=1}^{K}g(\theta^{(k)})$$

- Achieve quasi-independence by batch sampling
- Construct approximate posterior confidence regions

$$C_x^{\pi} \simeq [\theta^{(\alpha T/2)}, \theta^{(T-\alpha T/2)}]$$

Bayesian Calculations

Markov chain Monte Carlo methods

# Metropolis-Hastings algorithms

Based on a conditional density  $q(\theta'|\theta)$ 

## **HM Algorithm**

1. Start with an arbitrary initial value  $\theta^{(0)}$ 

Bayesian Calculations

Markov chain Monte Carlo methods

# Metropolis-Hastings algorithms

Based on a conditional density  $q(\theta'|\theta)$ 

#### **HM** Algorithm

- 1. Start with an arbitrary initial value  $\theta^{(0)}$
- 2. Update from  $\theta^{(m)}$  to  $\theta^{(m+1)}$  (m = 1, 2, ...) by
  - 2.1 Generate  $\xi \sim q(\xi | \theta^{(m)})$
  - 2.2 Define

$$\varrho = \frac{\pi(\xi) q(\theta^{(m)}|\xi)}{\pi(\theta^{(m)}) q(\xi|\theta^{(m)})} \wedge \mathbb{I}$$

Bayesian Calculations

Markov chain Monte Carlo methods

# Metropolis-Hastings algorithms

Based on a conditional density  $q(\theta'|\theta)$ 

#### **HM** Algorithm

- 1. Start with an arbitrary initial value  $\theta^{(0)}$
- 2. Update from  $\theta^{(m)}$  to  $\theta^{(m+1)}$  (m = 1, 2, ...) by
  - 2.1 Generate  $\xi \sim q(\xi|\theta^{(m)})$
  - 2.2 Define

$$arrho = rac{\pi(\xi) \, q( heta^{(m)}|\xi)}{\pi( heta^{(m)}) \, q(\xi| heta^{(m)})} \wedge 1$$

2.3 Take

$$\theta^{(m+1)} = \begin{cases} \xi & \text{with probability } \varrho, \\ \theta^{(m)} & \text{otherwise.} \end{cases}$$

Leavesian Calculations

Markov chain Monte Carlo methods

# Validation

#### **Detailed balance condition**

$$\pi(\theta)K(\theta'|\theta) = \pi(\theta')K(\theta|\theta')$$

Bayesian Calculations

Markov chain Monte Carlo methods

# Validation

## **Detailed balance condition**

$$\pi(\theta)K(\theta'|\theta) = \pi(\theta')K(\theta|\theta')$$

 $K(\theta'|\theta)$  transition kernel

$$K( heta'| heta) = arrho( heta, heta')q( heta'| heta) + \int [1 - arrho( heta, \xi)]q(\xi| heta)d\xi\,\delta_ heta( heta')\,,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

where  $\delta$  Dirac mass

Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk Metropolis-Hastings

Take

 $q(\theta'|\theta) = f(||\theta' - \theta||)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk Metropolis-Hastings

Take

$$q(\theta'|\theta) = f(||\theta' - \theta||)$$

Corresponding Metropolis-Hastings acceptance ratio

$$arrho=rac{\pi(\xi)}{\pi( heta^{(m)})}\wedge 1.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

# Example (Repulsive normal) For $\theta, x \in \mathbb{R}^2$ , $\pi(\theta|x) \propto \exp\{-||\theta - x||^2/2\}$ $\prod_{i=1}^p \exp\left\{\frac{-1}{||\theta - \mu_i||^2}\right\}$ ,

where the  $\mu_i$ 's are given repulsive points

Bayesian Calculations

Markov chain Monte Carlo methods

#### Example (Repulsive normal)

For 
$$heta, x \in \mathbb{R}^2$$
,  
 $\pi( heta|x) \propto \exp\{-|| heta - x||^2/2\}$   
 $\prod_{i=1}^p \exp\left\{\frac{-1}{|| heta - \mu_i||^2}\right\}$ ,

where the  $\mu_i$ 's are given repulsive points



Bayesian Calculations

Markov chain Monte Carlo methods

# Pros & Cons

- Widely applicable
- limited tune-up requirements (scale calibrated thru acceptance)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

never uniformely ergodic

Bayesian Calculations

Markov chain Monte Carlo methods

# Noisy $AR_1^2$



◆□> ◆□> ◆三> ◆三> ・三 のへで

Bayesian Calculations

Markov chain Monte Carlo methods

# Noisy $AR_1^2$



コン 《聞 》 《 臣 》 《 臣 》 《 臣 》 《 ①

Bayesian Calculations

Markov chain Monte Carlo methods

# Independent proposals

Take

 $q(\theta'|\theta) = h(\theta').$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

## Independent proposals

Take

 $q(\theta'|\theta) = h(\theta').$ 

More limited applicability and closer connection with iid simulation

Bayesian Calculations

Markov chain Monte Carlo methods

# Independent proposals

Take

 $q(\theta'|\theta) = h(\theta').$ 

More limited applicability and closer connection with iid simulation

#### Examples

- prior distribution
- likelihood
- saddlepoint approximation

Bayesian Calculations

Markov chain Monte Carlo methods

## The Gibbs sampler

#### Take advantage of hierarchical structures

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Bayesian Calculations

Markov chain Monte Carlo methods

# The Gibbs sampler

#### Take advantage of hierarchical structures

#### lf

$$\pi(\theta|x) = \int \pi_1(\theta|x,\lambda)\pi_2(\lambda|x) \, d\lambda \,,$$

simulate instead from the joint distribution

 $\pi_1(\theta|x,\lambda) \ \pi_2(\lambda|x)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

Example (beta-binomial) Consider  $(\theta, \lambda) \in \mathbb{N} \times [0, 1]$  and  $\pi( heta,\lambda|x)\propto inom{n}{ heta}\lambda^{ heta+lpha-1}(1-\lambda)^{n- heta+eta-1}$ 

(日) (日) (日) (日) (日) (日) (日)

Bayesian Calculations

Markov chain Monte Carlo methods

Example (beta-binomial) Consider  $(\theta, \lambda) \in \mathbb{N} \times [0, 1]$  and  $\pi(\theta, \lambda | x) \propto {n \choose \theta} \lambda^{\theta + \alpha - 1} (1 - \lambda)^{n - \theta + \beta - 1}$ 

Hierarchical structure:

$$heta|x,\lambda\sim \mathscr{B}(n,\lambda),\qquad \lambda|x\sim \mathscr{B}e(lpha,eta)$$

then

$$\pi(\theta|x) = \binom{n}{\theta} \frac{B(\alpha + \theta, \beta + n - \theta)}{B(\alpha, \beta)}$$

[beta-binomial distribution]

Bayesian Calculations

Markov chain Monte Carlo methods

### Example (beta-binomial (2))

Difficult to work with this marginal For instance, computation of  $\mathbb{E}[\theta/(\theta+1)|x]$  ?

Bayesian Calculations

Markov chain Monte Carlo methods

## Example (beta-binomial (2))

Difficult to work with this marginal For instance, computation of  $\mathbb{E}[\theta/(\theta+1)|x]$ ? More advantageous to simulate

$$\lambda^{(i)}\sim \mathscr{B}e(lpha,eta)$$
 and  $heta^{(i)}\sim \mathscr{B}(n,\lambda^{(i)})$ 

and approximate  $\mathbb{E}[ heta/( heta+1)|x]$  as

$$\frac{1}{m}\sum_{i=1}^{m}\frac{\theta^{(i)}}{\theta^{(i)}+1}$$

Bayesian Calculations

Markov chain Monte Carlo methods

# Conditionals

Usually  $\pi_2(\lambda|x)$  is not available/simulable

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

# Conditionals

Usually  $\pi_2(\lambda|x)$  is not available/simulable More often, both *conditional posterior distributions*,

 $\pi_1(\theta|x,\lambda)$  and  $\pi_2(\lambda|x,\theta)$ 

can be simulated.

Bayesian Calculations

Markov chain Monte Carlo methods

## Data augmentation

#### **DA Algorithm**

**Initialization:** Start with an arbitrary value  $\lambda^{(0)}$  **Iteration** *t*: Given  $\lambda^{(t-1)}$ , generate 1.  $\theta^{(t)}$  according to  $\pi_1(\theta|x, \lambda^{(t-1)})$ 2.  $\lambda^{(t)}$  according to  $\pi_2(\lambda|x, \theta^{(t)})$ 

Bayesian Calculations

Markov chain Monte Carlo methods

# Data augmentation

#### **DA Algorithm**

**Initialization:** Start with an arbitrary value  $\lambda^{(0)}$  **Iteration** *t*: Given  $\lambda^{(t-1)}$ , generate 1.  $\theta^{(t)}$  according to  $\pi_1(\theta|x, \lambda^{(t-1)})$ 

2.  $\lambda^{(t)}$  according to  $\pi_2(\lambda|x, \theta^{(t)})$ 

 $\pi( heta,\lambda|x)$  is a stationary distribution for this transition

Bayesian Calculations

Markov chain Monte Carlo methods

#### Example (Beta-binomial Example cont'ed)

The conditional distributions are

 $|\theta|x, \lambda \sim \mathscr{B}(n, \lambda), \qquad \lambda |x, \theta \sim \mathscr{B}e(\alpha + \theta, \beta + n - \theta)$ 



Histograms for samples of size 5000 from the beta-binomial with n= 54,  $\alpha=$  3.4, and  $\beta=$  5.2

Bayesian Calculations

Markov chain Monte Carlo methods

# Very simple example: Independent N( $\mu$ , $\sigma^2$ ) obs'ions

When  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(y|\mu, \sigma^2)$  with both  $\mu$  and  $\sigma$  unknown, the posterior in  $(\mu, \sigma^2)$  is conjugate but non-standard

Bayesian Calculations

Markov chain Monte Carlo methods

# Very simple example: Independent N( $\mu$ , $\sigma^2$ ) obs'ions

When  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(y|\mu, \sigma^2)$  with both  $\mu$  and  $\sigma$  unknown, the posterior in  $(\mu, \sigma^2)$  is conjugate but non-standard

#### But...

$$\mu | Y_{0:n}, \sigma^2 \sim \mathsf{N}\left(\mu \left| \frac{1}{n} \sum_{i=1}^n Y_i, \frac{\sigma^2}{n} \right. \right)$$
  
$$\sigma^2 | Y_{1:n}, \mu \sim \mathsf{IG}\left(\sigma^2 \left| \frac{n}{2} - 1, \frac{1}{2} \sum_{i=1}^n (Y_i - \mu)^2 \right. \right)$$

assuming constant (improper) priors on both  $\mu$  and  $\sigma^2$ 

Bayesian Calculations

Markov chain Monte Carlo methods

# Very simple example: Independent N( $\mu$ , $\sigma^2$ ) obs'ions

When  $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(y|\mu, \sigma^2)$  with both  $\mu$  and  $\sigma$  unknown, the posterior in  $(\mu, \sigma^2)$  is conjugate but non-standard

#### But...

$$\begin{split} \mu | Y_{0:n}, \sigma^2 &\sim \mathsf{N}\left(\mu \left| \frac{1}{n} \sum_{i=1}^n Y_i, \frac{\sigma^2}{n} \right. \right) \\ \sigma^2 | Y_{1:n}, \mu &\sim \mathsf{IG}\left(\sigma^2 \left| \frac{n}{2} - 1, \frac{1}{2} \sum_{i=1}^n (Y_i - \mu)^2 \right. \right) \end{split}$$

assuming constant (improper) priors on both  $\mu$  and  $\sigma^2$ 

- Hence we may use the Gibbs sampler for simulating from the posterior of  $(\mu, \sigma^2)$ 

Bayesian Calculations

Markov chain Monte Carlo methods

## R Gibbs Sampler for Gaussian posterior

```
n = length(Y);
S = sum(Y);
mu = S/n;
for (i in 1:500)
    S2 = sum((Y-mu)^2);
    sigma2 = 1/rgamma(1,n/2-1,S2/2);
    mu = S/n + sqrt(sigma2/n)*rnorm(1);
```
Bayesian Calculations

Markov chain Monte Carlo methods

### Example of results with n = 10 observations from the N(0, 1) distribution



#### Number of Iterations 1

Bayesian Calculations

Markov chain Monte Carlo methods

### Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

Bayesian Calculations

Markov chain Monte Carlo methods

### Example of results with n = 10 observations from the N(0, 1) distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで



Number of Iterations 1, 2, 3

Bayesian Calculations

Markov chain Monte Carlo methods

### Example of results with n = 10 observations from the N(0, 1) distribution

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・ の へ ()・



Number of Iterations 1, 2, 3, 4

Bayesian Calculations

Markov chain Monte Carlo methods

### Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5

Bayesian Calculations

Markov chain Monte Carlo methods

## Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5, 10

Bayesian Calculations

Markov chain Monte Carlo methods

## Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5, 10, 25

Bayesian Calculations

Markov chain Monte Carlo methods

## Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50

・ロト・(型)・(目)・(目)・(ロ)・(ロ)

Bayesian Calculations

Markov chain Monte Carlo methods

## Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100

Bayesian Calculations

Markov chain Monte Carlo methods

## Example of results with n = 10 observations from the N(0, 1) distribution



Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500

◆ロ▶ ◆母▶ ◆母▶ ◆母▶ → 母 ● の々で

Bayesian Calculations

Markov chain Monte Carlo methods

### Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual sample,

 $\lambda^{(1)},\ldots,\lambda^{(m)},$ 

should be exploited.

Bayesian Calculations

Markov chain Monte Carlo methods

### Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual sample,

$$\lambda^{(1)},\ldots,\lambda^{(m)},$$

should be exploited.  $\mathbb{E}^{\pi}[g(\theta)|x]$  can be approximated as

$$\delta_2 = \frac{1}{m} \sum_{i=1}^m \mathbb{E}^{\pi}[g(\theta)|x, \lambda^{(m)}],$$

Bayesian Calculations

Markov chain Monte Carlo methods

#### Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual sample,

$$\lambda^{(1)},\ldots,\lambda^{(m)},$$

should be exploited.  $\mathbb{E}^{\pi}[g(\theta)|x]$  can be approximated as

$$\delta_2 = \frac{1}{m} \sum_{i=1}^m \mathbb{E}^{\pi}[g(\theta)|x, \lambda^{(m)}],$$

instead of

$$\delta_1 = \frac{1}{m} \sum_{i=1}^m g(\theta^{(i)}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 亘 → つへで

Bayesian Calculations

Markov chain Monte Carlo methods

#### Rao-Black'ed density estimation

Approximation of  $\pi(\theta|x)$  by

$$rac{1}{m}\sum_{i=1}^m \pi( heta|x,\lambda_i)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

#### The general Gibbs sampler

Consider several groups of parameters,  $\theta, \lambda_1, \ldots, \lambda_p$ , such that

$$\pi(\theta|x) = \int \dots \int \pi(\theta, \lambda_1, \dots, \lambda_p|x) \, d\lambda_1 \cdots \, d\lambda_p$$

or simply divide  $\theta$  in

 $(\theta_1,\ldots,\theta_p)$ 

(日) (日) (日) (日) (日) (日) (日) (日)

Bayesian Calculations

Markov chain Monte Carlo methods

#### Example (Multinomial posterior) Multinomial model

$$y \sim \mathcal{M}_5(n; a_1\mu + b_1, a_2\mu + b_2, a_3\eta + b_3, a_4\eta + b_4, c(1 - \mu - \eta)),$$

parametrized by  $\mu$  and  $\eta,$  where

$$0 \le a_1 + a_2 = a_3 + a_4 = 1 - \sum_{i=1}^{4} b_i = c \le 1$$

and  $c, a_i, b_i \geq 0$  are known.

Bayesian Calculations

Markov chain Monte Carlo methods

Example (Multinomial posterior (2)) This model stems from sampling according to

 $x \sim \mathcal{M}_9(n; a_1\mu, b_1, a_2\mu, b_2, a_3\eta, b_3, a_4\eta, b_4, c(1-\mu-\eta)),$ 

and aggregating some coordinates:

 $y_1 = x_1 + x_2$ ,  $y_2 = x_3 + x_4$ ,  $y_3 = x_5 + x_6$ ,  $y_4 = x_7 + x_8$ ,  $y_5 = x_9$ 

Bayesian Calculations

Markov chain Monte Carlo methods

Example (Multinomial posterior (2)) This model stems from sampling according to  $x \sim \mathcal{M}_9(n; a_1\mu, b_1, a_2\mu, b_2, a_3\eta, b_3, a_4\eta, b_4, c(1-\mu-\eta)),$ and aggregating some coordinates:  $y_1 = x_1 + x_2$ ,  $y_2 = x_3 + x_4$ ,  $y_3 = x_5 + x_6$ ,  $y_4 = x_7 + x_8$ ,  $y_5 = x_9$ For the prior

$$\pi(\mu,\eta) \propto \mu^{\alpha_1-1} \eta^{\alpha_2-1} (1-\eta-\mu)^{\alpha_3-1},$$

the posterior distribution of  $(\mu, \eta)$  cannot be derived explicitly.

Bayesian Calculations

Markov chain Monte Carlo methods

Example (Multinomial posterior (3)) Introduce  $z = (x_1, x_3, x_5, x_7)$ , which is not observed and  $\pi(\eta, \mu | y, z) = \pi(\eta, \mu | x)$  $\propto \mu^{z_1} \mu^{z_2} \eta^{z_3} \eta^{z_4} (1 - \eta - \mu)^{y_5 + \alpha_3 - 1} \mu^{\alpha_1 - 1} \eta^{\alpha_2 - 1}$ ,

where we denote the coordinates of z as  $(z_1, z_2, z_3, z_4)$ .

Bayesian Calculations

Markov chain Monte Carlo methods

Example (Multinomial posterior (3)) Introduce  $z = (x_1, x_3, x_5, x_7)$ , which is not observed and  $\pi(\eta, \mu | y, z) = \pi(\eta, \mu | x)$   $\propto \mu^{z_1} \mu^{z_2} \eta^{z_3} \eta^{z_4} (1 - \eta - \mu)^{y_5 + \alpha_3 - 1} \mu^{\alpha_1 - 1} \eta^{\alpha_2 - 1}$ , where we denote the coordinates of z as  $(z_1, z_2, z_3, z_4)$ . Therefore,

$$\mu, \eta | y, z \sim \mathscr{D}(z_1 + z_2 + \alpha_1, z_3 + z_4 + \alpha_2, y_5 + \alpha_3).$$

Bayesian Calculations

Markov chain Monte Carlo methods

### The impact on Bayesian Statistics

- Radical modification of the way people work with models and prior assumptions
- Allows for much more complex structures:
  - use of graphical models
  - exploration of latent variable models
- Removes the need for analytical processing
- Boosted hierarchical modeling
- Enables (truly) Bayesian model choice

Bayesian Calculations

Markov chain Monte Carlo methods

#### An application to mixture estimation

Use of the missing data representation

$$z_{j}|\theta \sim \mathcal{M}_{p}(1; p_{1}, \dots, p_{k}),$$
  
$$x_{j}|z_{j}, \theta \sim \mathcal{N}\left(\prod_{i=1}^{k} \mu_{i}^{z_{ij}}, \prod_{i=1}^{k} \sigma_{i}^{2z_{ij}}\right)$$

•

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

#### Corresponding conditionals (Gibbs)

$$z_j | x_j, heta \sim \mathscr{M}_k(1; p_1(x_j, heta), \dots, p_k(x_j, heta)),$$
 with  $(1 \leq i \leq k)$ 

$$p_i(x_j, heta) = rac{p_i arphi(x_j; \mu_i, \sigma_i)}{\sum_{t=1}^k p_t arphi(x_j; \mu_t, \sigma_t)}$$

and

$$\mu_i | \mathbf{x}, \mathbf{z}, \sigma_i \sim \mathcal{N}(\xi_i(\mathbf{x}, \mathbf{z}), \sigma_i^2 / (n + \sigma_i^2)),$$
  
$$\sigma_i^{-2} | \mathbf{x}, \mathbf{z} \sim \mathscr{G}\left(\frac{\nu_i + n_i}{2}, \frac{1}{2} \left[s_i^2 + \hat{s}_i^2(\mathbf{x}, \mathbf{z}) + \frac{n_i m_i(\mathbf{z})}{n_i + m_i(\mathbf{z})} (\bar{x}_i(\mathbf{z}) - \xi_i)^2\right]$$
  
$$p | \mathbf{x}, \mathbf{z} \sim \mathscr{D}_k(\alpha_1 + m_1(\mathbf{z}), \dots, \alpha_k + m_k(\mathbf{z})),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

### Corresponding conditionals (Gibbs, 2)

#### where



and

$$\xi_i(\mathbf{x},\mathbf{z}) = rac{n_i\xi_i + m_i(\mathbf{z})ar{x}_i(\mathbf{z})}{n_i + m_i(\mathbf{z})}, \qquad \hat{s}_i^2(\mathbf{x},\mathbf{z}) = \sum_{j=1}^n z_{ij}(x_j - ar{x}_i(\mathbf{z}))^2.$$

Bayesian Calculations

Markov chain Monte Carlo methods

#### Properties

- Slow moves sometimes
- Large increase in dimension, order O(n)
- Good theoretical properties (Duality principle)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

Galaxy benchmark (k = 4)



 $\mathcal{O} \land \mathcal{O}$ 

Bayesian Calculations

Markov chain Monte Carlo methods

Galaxy benchmark (k = 4)



Average density

LBayesian Calculations

Markov chain Monte Carlo methods

#### A wee problem with Gibbs on mixtures



Gibbs started at random

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Bayesian Calculations

Markov chain Monte Carlo methods

#### A wee problem with Gibbs on mixtures



#### Gibbs stuck at the wrong mode



Leavesian Calculations

Markov chain Monte Carlo methods

### Random walk Metropolis-Hastings

$$egin{array}{rcl} q( heta_t^*| heta_{t-1})&=&\Psi( heta_t^*- heta_{t-1})\ 
ho&=&rac{\pi( heta_t^*|x_1,\ldots,x_n)}{\pi( heta_{t-1}|x_1,\ldots,x_n)}\wedge 1 \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

#### Properties

- Avoids completion
- Available (Normal vs. Cauchy vs... moves)
- Calibrated against acceptance rate

► Depends on parameterisation  

$$\lambda_j \longrightarrow \log \lambda_j \qquad p_j \longrightarrow \log(p_j/1 - p_k)$$
  
or  
 $\theta_i \longrightarrow \frac{\exp \theta_i}{1 + \exp \theta_i}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian Calculations

Markov chain Monte Carlo methods

Galaxy benchmark (k = 4)



 $\mathcal{O} \land \mathcal{O}$ 

Bayesian Calculations

Markov chain Monte Carlo methods

Galaxy benchmark (k = 4)



Average density

Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale 1

Iteration 1



Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale 1

Iteration 10



Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale 1

Iteration 100


Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale 1

Iteration 500



Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale 1

Iteration 1000



Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale $\sqrt{.1}$

Iteration 10



 $\mu_1$ 

・ロト ・母 ト・母 ト・母 ト・ クタの

Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale $\sqrt{.1}$

Iteration 100



Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale $\sqrt{.1}$

Iteration 500



 $\mu_1$ 

Bayesian Calculations

Markov chain Monte Carlo methods

# Random walk MCMC output for $.7\mathcal{N}(\mu_1,1) + .3\mathcal{N}(\mu_2,1)$ and scale $\sqrt{.1}$

Iteration 1000



Bayesian Calculations

Markov chain Monte Carlo methods



Iteration 10,000



Bayesian Calculations

Markov chain Monte Carlo methods



Iteration 5000



Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

**Bayesian Calculations** 

#### Tests and model choice

Bayesian tests Bayes factors Pseudo-Bayes factors



Tests and model choice

Bayesian tests

### Construction of Bayes tests

#### Definition (Test)

Given an hypothesis  $H_0: \theta \in \Theta_0$  on the parameter  $\theta \in \Theta_0$  of a statistical model, a **test** is a statistical procedure that takes its values in  $\{0, 1\}$ .

Tests and model choice

Bayesian tests

### Construction of Bayes tests

#### Definition (Test)

Given an hypothesis  $H_0: \theta \in \Theta_0$  on the parameter  $\theta \in \Theta_0$  of a statistical model, a **test** is a statistical procedure that takes its values in  $\{0, 1\}$ .

#### Example (Normal mean)

For  $x \sim \mathcal{N}(\theta, 1)$ , decide whether or not  $\theta \leq 0$ .

Bayesian tests

### Decision-theoretic perspective

Theorem (Optimal Bayes decision)

Under the 0-1 loss function

$$L(\theta, d) = \begin{cases} 0 & \text{if } d = \mathbb{I}_{\Theta_0}(\theta) \\ a_0 & \text{if } d = 1 \text{ and } \theta \notin \Theta_0 \\ a_1 & \text{if } d = 0 \text{ and } \theta \in \Theta_0 \end{cases}$$

Bayesian tests

### Decision-theoretic perspective

Theorem (Optimal Bayes decision)

Under the  $0-1\ \text{loss}$  function

$$L(\theta, d) = \begin{cases} 0 & \text{if } d = \mathbb{I}_{\Theta_0}(\theta) \\ a_0 & \text{if } d = 1 \text{ and } \theta \notin \Theta_0 \\ a_1 & \text{if } d = 0 \text{ and } \theta \in \Theta_0 \end{cases}$$

the Bayes procedure is

$$\delta^{\pi}(x) = egin{cases} 1 & ext{if } \mathsf{Pr}^{\pi}( heta \in \Theta_0 | x) \geq a_0 / (a_0 + a_1) \ 0 & ext{otherwise} \end{cases}$$

Bayesian tests

## Bound comparison

Determination of  $a_0/a_1$  depends on consequences of "wrong decision" under both circumstances

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayesian tests

# Bound comparison

Determination of  $a_0/a_1$  depends on consequences of "wrong decision" under both circumstances Often difficult to assess in practice and replacement with "golden" bounds like .05, biased towards  $H_0$ 

Bayesian tests

## Bound comparison

Determination of  $a_0/a_1$  depends on consequences of "wrong decision" under both circumstances Often difficult to assess in practice and replacement with "golden" bounds like .05, biased towards  $H_0$ 

#### Example (Binomial probability)

Consider  $x \sim \mathscr{B}(n,p)$  and  $\Theta_0 = [0,1/2]$ . Under the uniform prior  $\pi(p) = 1$ , the posterior probability of  $H_0$  is

$$P^{\pi}(p \le 1/2|x) = \frac{\int_{0}^{1/2} p^{x}(1-p)^{n-x} dp}{B(x+1,n-x+1)}$$
$$= \frac{(1/2)^{n+1}}{B(x+1,n-x+1)} \left\{ \frac{1}{x+1} + \dots + \frac{(n-x)!x!}{(n+1)!} \right\}$$

LTests and model choice

Bayesian tests

## Loss/prior duality

Decomposition

$$\begin{aligned} \mathsf{Pr}^{\pi}(\theta \in \Theta_{0}|x) &= \int_{\Theta_{0}} \pi(\theta|x) \, \mathrm{d}\theta \\ &= \frac{\int_{\Theta_{0}} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta}{\int_{\Theta} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta} \end{aligned}$$

LTests and model choice

Bayesian tests

# Loss/prior duality

Decomposition

$$\begin{aligned} \mathsf{Pr}^{\pi}(\theta \in \Theta_{0}|x) &= \int_{\Theta_{0}} \pi(\theta|x) \, \mathrm{d}\theta \\ &= \frac{\int_{\Theta_{0}} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta}{\int_{\Theta} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta} \end{aligned}$$

suggests representation

$$\pi( heta)=\pi(\Theta_0)\pi_0( heta)+(1-\pi(\Theta_0))\pi_1( heta)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LTests and model choice

Bayesian tests

## Loss/prior duality

Decomposition

$$\begin{aligned} \mathsf{Pr}^{\pi}(\theta \in \Theta_{0}|x) &= \int_{\Theta_{0}} \pi(\theta|x) \, \mathrm{d}\theta \\ &= \frac{\int_{\Theta_{0}} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta}{\int_{\Theta} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta} \end{aligned}$$

suggests representation

$$\pi( heta)=\pi(\Theta_0)\pi_0( heta)+(1-\pi(\Theta_0))\pi_1( heta)$$

and decision

$$\delta^{\pi}(x) = 1 \text{ iff } \frac{\pi(\Theta_0)}{(1 - \pi(\Theta_0))} \frac{\int_{\Theta_0} f(x|\theta_0) \pi_0(\theta) \, \mathrm{d}\theta}{\int_{\Theta_0^c} f(x|\theta_0) \pi_1(\theta) \, \mathrm{d}\theta} \ge \frac{a_0}{a_1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Tests and model choice

Bayesian tests

## Loss/prior duality

Decomposition

$$\begin{aligned} \mathsf{Pr}^{\pi}(\theta \in \Theta_{0}|x) &= \int_{\Theta_{0}} \pi(\theta|x) \, \mathrm{d}\theta \\ &= \frac{\int_{\Theta_{0}} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta}{\int_{\Theta} f(x|\theta_{0})\pi(\theta) \, \mathrm{d}\theta} \end{aligned}$$

suggests representation

$$\pi( heta)=\pi(\Theta_0)\pi_0( heta)+(1-\pi(\Theta_0))\pi_1( heta)$$

and decision

$$\delta^{\pi}(x) = 1 \text{ iff } \frac{\pi(\Theta_0)}{(1 - \pi(\Theta_0))} \frac{\int_{\Theta_0} f(x|\theta_0) \pi_0(\theta) \, \mathrm{d}\theta}{\int_{\Theta_0^c} f(x|\theta_0) \pi_1(\theta) \, \mathrm{d}\theta} \ge \frac{a_0}{a_1}$$

**©What matters is**  $(\pi(\Theta_0)/a_0, (1 - \pi(\Theta_0))/a_1)$ 

Bayes factors

## A function of posterior probabilities

Definition (Bayes factors) For hypotheses  $H_0: \theta \in \Theta_0$  vs.  $H_a: \theta \notin \Theta_0$  $B_{01} = \frac{\pi(\Theta_0|x)}{\pi(\Theta_0^c|x)} / \frac{\pi(\Theta_0)}{\pi(\Theta_0^c)} = \frac{\int_{\Theta_0} f(x|\theta)\pi_0(\theta)d\theta}{\int_{\Theta_0^c} f(x|\theta)\pi_1(\theta)d\theta}$ [Good, 1958 & Jeffreys, 1961]

Equivalent to Bayes rule: acceptance if  $B_{01} > \{(1 - \pi(\Theta_0))/a_1\}/\{\pi(\Theta_0)/a_0\}$ 

LTests and model choice

Bayes factors

#### Self-contained concept

Outside decision-theoretic environment:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

• eliminates choice of  $\pi(\Theta_0)$ 

Bayes factors

### Self-contained concept

Outside decision-theoretic environment:

- eliminates choice of  $\pi(\Theta_0)$
- but depends on the choice of  $(\pi_0, \pi_1)$

Bayes factors

### Self-contained concept

Outside decision-theoretic environment:

- eliminates choice of  $\pi(\Theta_0)$
- but depends on the choice of  $(\pi_0, \pi_1)$
- Bayesian/marginal equivalent to the likelihood ratio

Bayes factors

### Self-contained concept

Outside decision-theoretic environment:

- eliminates choice of  $\pi(\Theta_0)$
- but depends on the choice of  $(\pi_0, \pi_1)$
- Bayesian/marginal equivalent to the likelihood ratio
- Jeffreys' scale of evidence:
  - if  $\log_{10}(B_{10}^{\pi})$  between 0 and 0.5, evidence against  $H_0$  weak,
  - if  $\log_{10}(B_{10}^{\pi})$  0.5 and 1, evidence substantial,
  - if  $\log_{10}(B_{10}^{\pi})$  1 and 2, evidence *strong* and
  - if  $\log_{10}(B_{10}^{\pi})$  above 2, evidence *decisive*

Bayes factors

## Hot hand

#### Example (Binomial homogeneity)

Consider  $H_0: y_i \sim \mathscr{B}(n_i, p)$  (i = 1, ..., G) vs.  $H_1: y_i \sim \mathscr{B}(n_i, p_i)$ . Conjugate priors  $p_i \sim \mathscr{B}e(\xi/\omega, (1-\xi)/\omega)$ , with a uniform prior on  $\mathbb{E}[p_i|\xi, \omega] = \xi$  and on p ( $\omega$  is fixed)

Bayes factors

### Hot hand

Example (Binomial homogeneity)

Consider  $H_0: y_i \sim \mathscr{B}(n_i, p)$  (i = 1, ..., G) vs.  $H_1: y_i \sim \mathscr{B}(n_i, p_i)$ . Conjugate priors  $p_i \sim \mathscr{B}e(\xi/\omega, (1-\xi)/\omega)$ , with a uniform prior on  $\mathbb{E}[p_i|\xi, \omega] = \xi$  and on p ( $\omega$  is fixed)

$$B_{10} = \int_{0}^{1} \prod_{i=1}^{G} \int_{0}^{1} p_{i}^{y_{i}} (1-p_{i})^{n_{i}-y_{i}} p_{i}^{\alpha-1} (1-p_{i})^{\beta-1} dp_{i}$$
$$\frac{\times \Gamma(1/\omega) / [\Gamma(\xi/\omega) \Gamma((1-\xi)/\omega)] d\xi}{\int_{0}^{1} p^{\sum_{i} y_{i}} (1-p)^{\sum_{i} (n_{i}-y_{i})} dp}$$

where  $\alpha = \xi/\omega$  and  $\beta = (1 - \xi)/\omega$ .

Bayes factors

### Hot hand

Example (Binomial homogeneity)

Consider  $H_0: y_i \sim \mathscr{B}(n_i, p)$  (i = 1, ..., G) vs.  $H_1: y_i \sim \mathscr{B}(n_i, p_i)$ . Conjugate priors  $p_i \sim \mathscr{B}e(\xi/\omega, (1-\xi)/\omega)$ , with a uniform prior on  $\mathbb{E}[p_i|\xi, \omega] = \xi$  and on p ( $\omega$  is fixed)

$$B_{10} = \int_{0}^{1} \prod_{i=1}^{G} \int_{0}^{1} p_{i}^{y_{i}} (1-p_{i})^{n_{i}-y_{i}} p_{i}^{\alpha-1} (1-p_{i})^{\beta-1} dp_{i}$$
$$\frac{\times \Gamma(1/\omega) / [\Gamma(\xi/\omega) \Gamma((1-\xi)/\omega)] d\xi}{\int_{0}^{1} p^{\sum_{i} y_{i}} (1-p)^{\sum_{i} (n_{i}-y_{i})} dp}$$

where  $\alpha = \xi/\omega$  and  $\beta = (1 - \xi)/\omega$ . For instance,  $\log_{10}(B_{10}) = -0.79$  for  $\omega = 0.005$  and G = 138 slightly favours  $H_0$ .

Lests and model choice

Bayes factors

# A major modification

When the null hypothesis is supported by a set of measure 0,  $\pi(\Theta_0)=0$ 

[End of the story?!]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Bayes factors

# A major modification

When the null hypothesis is supported by a set of measure 0,  $\pi(\Theta_0)=0$ 

[End of the story?!]

#### Requirement

Defined prior distributions under both assumptions,

 $\pi_0( heta) \propto \pi( heta) \mathbb{I}_{\Theta_0}( heta), \quad \pi_1( heta) \propto \pi( heta) \mathbb{I}_{\Theta_1}( heta),$ 

(under the standard dominating measures on  $\Theta_0$  and  $\Theta_1$ )

Bayes factors

# A major modification

When the null hypothesis is supported by a set of measure 0,  $\pi(\Theta_0)=0$ 

```
[End of the story?!]
```

#### Requirement

Defined prior distributions under both assumptions,

$$\pi_0( heta) \propto \pi( heta) \mathbb{I}_{\Theta_0}( heta), \quad \pi_1( heta) \propto \pi( heta) \mathbb{I}_{\Theta_1}( heta),$$

(under the standard dominating measures on  $\Theta_0$  and  $\Theta_1$ )

Using the prior probabilities  $\pi(\Theta_0) = \varrho_0$  and  $\pi(\Theta_1) = \varrho_1$ ,

$$\pi(\theta) = \varrho_0 \pi_0(\theta) + \varrho_1 \pi_1(\theta).$$

**Note** If  $\Theta_0 = \{\theta_0\}$ ,  $\pi_0$  is the Dirac mass in  $\theta_0$ 

Bayes factors

#### Point null hypotheses

Particular case  $H_0$ :  $\theta = \theta_0$ Take  $\rho_0 = \Pr^{\pi}(\theta = \theta_0)$  and  $g_1$  prior density under  $H_a$ .

Bayes factors

### Point null hypotheses

Particular case  $H_0$ :  $\theta = \theta_0$ Take  $\rho_0 = \Pr^{\pi}(\theta = \theta_0)$  and  $g_1$  prior density under  $H_a$ . Posterior probability of  $H_0$ 

$$\pi(\Theta_0|x) = \frac{f(x|\theta_0)\rho_0}{\int f(x|\theta)\pi(\theta)\,d\theta} = \frac{f(x|\theta_0)\rho_0}{f(x|\theta_0)\rho_0 + (1-\rho_0)m_1(x)}$$

and marginal under  $H_{a}$ 

$$m_1(x) = \int_{\Theta_1} f(x|\theta) g_1(\theta) \, d\theta.$$

LTests and model choice

Bayes factors

## Point null hypotheses (cont'd)

#### Dual representation

$$\pi(\Theta_0|x) = \left[1 + \frac{1 - \rho_0}{\rho_0} \frac{m_1(x)}{f(x|\theta_0)}\right]^{-1}.$$

and

$$B_{01}^{\pi}(x) = \frac{f(x|\theta_0)\rho_0}{m_1(x)(1-\rho_0)} \bigg/ \frac{\rho_0}{1-\rho_0} = \frac{f(x|\theta_0)}{m_1(x)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LTests and model choice

Bayes factors

## Point null hypotheses (cont'd)

#### Dual representation

$$\pi(\Theta_0|x) = \left[1 + \frac{1 - \rho_0}{\rho_0} \frac{m_1(x)}{f(x|\theta_0)}\right]^{-1}.$$

and

$$B_{01}^{\pi}(x) = \frac{f(x|\theta_0)\rho_0}{m_1(x)(1-\rho_0)} \bigg/ \frac{\rho_0}{1-\rho_0} = \frac{f(x|\theta_0)}{m_1(x)}$$

Connection

$$\pi(\Theta_0|x) = \left[1 + \frac{1 - \rho_0}{\rho_0} \frac{1}{B_{01}^{\pi}(x)}\right]^{-1}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

•

Lests and model choice

Bayes factors

## Point null hypotheses (cont'd)

Example (Normal mean)

Test of  $H_0: \theta = 0$  when  $x \sim \mathcal{N}(\theta, 1)$ : we take  $\pi_1$  as  $\mathcal{N}(0, \tau^2)$ 

$$\frac{m_1(x)}{f(x|0)} = \frac{\sigma}{\sqrt{\sigma^2 + \tau^2}} \frac{e^{-x^2/2(\sigma^2 + \tau^2)}}{e^{-x^2/2\sigma^2}} \\ = \sqrt{\frac{\sigma^2}{\sigma^2 + \tau^2}} \exp\left\{\frac{\tau^2 x^2}{2\sigma^2(\sigma^2 + \tau^2)}\right\}$$

and

$$\pi(\theta = 0|x) = \left[1 + \frac{1 - \rho_0}{\rho_0} \sqrt{\frac{\sigma^2}{\sigma^2 + \tau^2}} \exp\left(\frac{\tau^2 x^2}{2\sigma^2(\sigma^2 + \tau^2)}\right)\right]^{-1}$$

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ◆ 臣 ● 今へで
LTests and model choice

Bayes factors

### Point null hypotheses (cont'd)

| Example (No           | rmal n   | nean) |       |       |       |  |
|-----------------------|----------|-------|-------|-------|-------|--|
| Influence of $\tau$ : | :        |       |       |       |       |  |
|                       | $\tau/x$ | 0     | 0.68  | 1.28  | 1.96  |  |
|                       | 1        | 0.586 | 0.557 | 0.484 | 0.351 |  |
|                       | 10       | 0.768 | 0.729 | 0.612 | 0.366 |  |

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Lests and model choice

Bayes factors

## A fundamental difficulty

# Improper priors are not allowed here If $\int_{\Theta_1} \pi_1(d\theta_1) = \infty \quad \text{or} \quad \int_{\Theta_2} \pi_2(d\theta_2) = \infty$ then either $\pi_1$ or $\pi_2$ cannot be coherently normalised

Tests and model choice

Bayes factors

## A fundamental difficulty

## Improper priors are not allowed here If $\int_{\Theta_1} \pi_1(d\theta_1) = \infty \quad \text{or} \quad \int_{\Theta_2} \pi_2(d\theta_2) = \infty$ then either $\pi_1$ or $\pi_2$ cannot be coherently normalised **but** the normalisation matters in the Bayes factor • Recall Bayes factor

Bayes factors

#### Constants matter

## Example (Poisson versus Negative binomial) If $\mathfrak{M}_1$ is a $\mathscr{P}(\lambda)$ distribution and $\mathfrak{M}_2$ is a $\mathscr{NB}(m,p)$ distribution, we can take

$$\pi_1(\lambda) = 1/\lambda \pi_2(m,p) = \frac{1}{M} \mathbb{I}_{\{1,\dots,M\}}(m) \mathbb{I}_{[0,1]}(p)$$

Lests and model choice

Bayes factors

#### Constants matter (cont'd)

Example (Poisson versus Negative binomial (2)) then

$$B_{12}^{\pi} = \frac{\int_{0}^{\infty} \frac{\lambda^{x-1}}{x!} e^{-\lambda} d\lambda}{\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{\infty} {m \choose x-1} p^{x} (1-p)^{m-x} dp}$$
  
=  $1 / \frac{1}{M} \sum_{m=x}^{M} {m \choose x-1} \frac{x! (m-x)!}{m!}$   
=  $1 / \frac{1}{M} \sum_{m=x}^{M} x / (m-x+1)$ 

-Tests and model choice

Bayes factors

#### Constants matter (cont'd)

Example (Poisson versus Negative binomial (3))

► does not make sense because π<sub>1</sub>(λ) = 10/λ leads to a different answer, ten times larger!

Tests and model choice

Bayes factors

#### Constants matter (cont'd)

Example (Poisson versus Negative binomial (3))

- ► does not make sense because π<sub>1</sub>(λ) = 10/λ leads to a different answer, ten times larger!
- same thing when both priors are improper

Tests and model choice

Bayes factors

## Constants matter (cont'd)

Example (Poisson versus Negative binomial (3))

- ► does not make sense because π<sub>1</sub>(λ) = 10/λ leads to a different answer, ten times larger!
- same thing when both priors are improper

Improper priors on common (nuisance) parameters do not matter (so much)

LTests and model choice

Bayes factors

#### Normal illustration

Take 
$$x \sim \mathscr{N}(\theta, 1)$$
 and  $H_0: \theta = 0$ 

| nfluence of the constant |        |        |        |         |         |  |  |  |
|--------------------------|--------|--------|--------|---------|---------|--|--|--|
| $\pi(\theta)/x$          | 0.0    | 1.0    | 1.65   | 1.96    | 2.58    |  |  |  |
| 1                        | 0.285  | 0.195  | 0.089  | 0.055   | 0.014   |  |  |  |
| 10                       | 0.0384 | 0.0236 | 0.0101 | 0.00581 | 0.00143 |  |  |  |

Bayes factors

#### Vague proper priors are not the solution

Taking a proper prior and take a "very large" variance (e.g., BUGS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の久ぐ

Bayes factors

#### Vague proper priors are not the solution

Taking a proper prior and take a "very large" variance (e.g., BUGS) will most often result in an undefined or ill-defined limit

Bayes factors

#### Vague proper priors are not the solution

Taking a proper prior and take a "very large" variance (e.g., BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley's paradox)

If testing  $H_0: \theta = 0$  when observing  $x \sim \mathcal{N}(\theta, 1)$ , under a normal  $\mathcal{N}(0, \alpha)$  prior  $\pi_1(\theta)$ ,

 $B_{01}(x) \xrightarrow{\alpha \longrightarrow \infty} 0$ 

Bayes factors

## Vague proper priors are not the solution (cont'd)

Example (Poisson versus Negative binomial (4))

$$B_{12} = \frac{\int_{0}^{1} \frac{\lambda^{\alpha+x-1}}{x!} e^{-\lambda\beta} d\lambda}{\frac{1}{M} \sum_{m} \frac{x}{m-x+1} \frac{\beta^{\alpha}}{\Gamma(\alpha)}} \quad \text{if } \lambda \sim \mathcal{G}a(\alpha,\beta)$$

$$= \frac{\Gamma(\alpha+x)}{x! \Gamma(\alpha)} \beta^{-x} / \frac{1}{M} \sum_{m} \frac{x}{m-x+1}$$

$$= \frac{(x+\alpha-1)\cdots\alpha}{x(x-1)\cdots1}\beta^{-x} / \frac{1}{M}\sum_{m}\frac{x}{m-x+1}$$

Bayes factors

## Vague proper priors are not the solution (cont'd)

Example (Poisson versus Negative binomial (4))

$$B_{12} = \frac{\int_0^1 \frac{\lambda^{\alpha+x-1}}{x!} e^{-\lambda\beta} d\lambda}{\frac{1}{M} \sum_m \frac{x}{m-x+1} \frac{\beta^{\alpha}}{\Gamma(\alpha)}} \quad \text{if } \lambda \sim \mathcal{G}a(\alpha,\beta)$$

$$= \frac{\Gamma(\alpha+x)}{x! \Gamma(\alpha)} \beta^{-x} / \frac{1}{M} \sum_{m} \frac{x}{m-x+1}$$

$$= \frac{(x+\alpha-1)\cdots\alpha}{x(x-1)\cdots1}\beta^{-x} / \frac{1}{M}\sum_{m}\frac{x}{m-x+1}$$

depends on choice of  $\alpha(\beta)$  or  $\beta(\alpha) \longrightarrow 0$ 

Bayes factors

#### Learning from the sample

Definition (Learning sample)

Given an improper prior  $\pi$ ,  $(x_1, \ldots, x_n)$  is a *learning sample* if  $\pi(\cdot|x_1, \ldots, x_n)$  is proper and a *minimal learning sample* if none of its subsamples is a learning sample

Bayes factors

#### Learning from the sample

Definition (Learning sample)

Given an improper prior  $\pi$ ,  $(x_1, \ldots, x_n)$  is a *learning sample* if  $\pi(\cdot|x_1, \ldots, x_n)$  is proper and a *minimal learning sample* if none of its subsamples is a learning sample

There is just enough information in a minimal learning sample to make inference about  $\theta$  under the prior  $\pi$ 

Lests and model choice

-Pseudo-Bayes factors

#### Pseudo-Bayes factors

#### Idea

Use one part  $x_{[i]}$  of the data x to make the prior proper:

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Lests and model choice

-Pseudo-Bayes factors

#### Pseudo-Bayes factors

#### Idea

Use one part  $x_{[i]}$  of the data x to make the prior proper:

•  $\pi_i$  improper but  $\pi_i(\cdot|x_{[i]})$  proper

#### and

$$\frac{\int f_i(x_{[n/i]}|\theta_i) \ \pi_i(\theta_i|x_{[i]}) d\theta_i}{\int f_j(x_{[n/i]}|\theta_j) \ \pi_j(\theta_j|x_{[i]}) d\theta_j}$$

independent of normalizing constant

-Tests and model choice

-Pseudo-Bayes factors

#### Pseudo-Bayes factors

#### Idea

Use one part  $x_{[i]}$  of the data x to make the prior proper:

•  $\pi_i$  improper but  $\pi_i(\cdot|x_{[i]})$  proper

#### and

$$\frac{\int f_i(x_{[n/i]}|\theta_i) \ \pi_i(\theta_i|x_{[i]}) \mathrm{d}\theta_i}{\int f_j(x_{[n/i]}|\theta_j) \ \pi_j(\theta_j|x_{[i]}) \mathrm{d}\theta_j}$$

independent of normalizing constant

► Use remaining x<sub>[n/i]</sub> to run test as if π<sub>j</sub>(θ<sub>j</sub>|x<sub>[i]</sub>) is the true prior

Lests and model choice

-Pseudo-Bayes factors



Provides a working principle for improper priors



Tests and model choice

-Pseudo-Bayes factors

#### Motivation

- Provides a working principle for improper priors
- Gather enough information from data to achieve properness
- ▶ and use this properness to run the test on remaining data

Tests and model choice

-Pseudo-Bayes factors

#### Motivation

- Provides a working principle for improper priors
- Gather enough information from data to achieve properness
- and use this properness to run the test on remaining data
- does not use x twice as in Aitkin's (1991)

LTests and model choice

Pseudo-Bayes factors

#### Details

Since 
$$\pi_1(\theta_1|x_{[i]}) = \frac{\pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)}{\int \pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)d\theta_1}$$
  
 $B_{12}(x_{[n/i]}) = \frac{\int f_{[n/i]}^1(x_{[n/i]}|\theta_1)\pi_1(\theta_1|x_{[i]})d\theta_1}{\int f_{[n/i]}^2(x_{[n/i]}|\theta_2)\pi_2(\theta_2|x_{[i]})d\theta_2}$   
 $= \frac{\int f_1(x|\theta_1)\pi_1(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi_2(\theta_2)d\theta_2} \frac{\int \pi_2(\theta_2)f_{[i]}^2(x_{[i]}|\theta_2)d\theta_2}{\int \pi_1(\theta_1)f_{[i]}^1(x_{[i]}|\theta_1)d\theta_1}$   
 $= B_{12}^N(x)B_{21}(x_{[i]})$ 

ⓒ Independent of scaling factor!

LTests and model choice

-Pseudo-Bayes factors

#### Unexpected problems!

• depends on the choice of  $x_{[i]}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Pseudo-Bayes factors

#### Unexpected problems!

- depends on the choice of x<sub>[i]</sub>
- many ways of combining pseudo-Bayes factors

► AIBF = 
$$B_{ji}^N \frac{1}{L} \sum_{\ell} B_{ij}(x_{[\ell]})$$
  
► MIBF =  $B_{ji}^N \operatorname{med}[B_{ij}(x_{[\ell]})]$   
► GIBF =  $B_{ji}^N \exp \frac{1}{L} \sum_{\ell} \log B_{ij}(x_{[\ell]})$ 

- not often an exact Bayes factor
- and thus lacking inner coherence

$$B_{12} \neq B_{10}B_{02}$$
 and  $B_{01} \neq 1/B_{10}$ .

[Berger & Pericchi, 1996]

Tests and model choice

-Pseudo-Bayes factors

#### Unexpec'd problems (cont'd)

#### Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a training sample is allocated to *each* component

-Tests and model choice

-Pseudo-Bayes factors

## Unexpec'd problems (cont'd)

#### Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a training sample is allocated to *each* component **Reason** If

$$x_1,\ldots,x_n\sim\sum_{i=1}^{\kappa}p_if(x| heta_i)$$

and

$$\pi( heta) = \prod_i \pi_i( heta_i) ext{ with } \int \pi_i( heta_i) \mathsf{d} heta_i = +\infty \,,$$

the posterior is never defined, because

Pr("no observation from  $f(\cdot|\theta_i)$ ") =  $(1 - p_i)^n$ 

ロトス団とスヨトスヨト 油 のくぐ

Intrinsic priors

#### Intrinsic priors

There may exist a true prior that provides the same Bayes factor

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

#### Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean) Take  $x \sim \mathcal{N}(\theta, 1)$  with either  $\theta = 0$  ( $\mathfrak{M}_1$ ) or  $\theta \neq 0$  ( $\mathfrak{M}_2$ ) and  $\pi_2(\theta) = 1$ . Then

$$B_{21}^{AIBF} = B_{21} \frac{1}{\sqrt{2\pi}} \frac{1}{n} \sum_{i=1}^{n} e^{-x_{1}^{2}/2} \approx B_{21} \quad \text{for } \mathcal{N}(0,2)$$
  

$$B_{21}^{MIBF} = B_{21} \frac{1}{\sqrt{2\pi}} e^{-\text{med}(x_{1}^{2})/2} \approx 0.93B_{21} \quad \text{for } \mathcal{N}(0,1.2)$$
  
[Berger and Pericchi, 1998]

#### Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean) Take  $x \sim \mathcal{N}(\theta, 1)$  with either  $\theta = 0$  ( $\mathfrak{M}_1$ ) or  $\theta \neq 0$  ( $\mathfrak{M}_2$ ) and  $\pi_2(\theta) = 1$ . Then

$$B_{21}^{AIBF} = B_{21} \frac{1}{\sqrt{2\pi}} \frac{1}{n} \sum_{i=1}^{n} e^{-x_1^2/2} \approx B_{21} \quad \text{for } \mathcal{N}(0,2)$$
  

$$B_{21}^{MIBF} = B_{21} \frac{1}{\sqrt{2\pi}} e^{-\text{med}(x_1^2)/2} \approx 0.93B_{21} \quad \text{for } \mathcal{N}(0,1.2)$$
  
[Berger and Pericchi, 1998]

When such a prior exists, it is called an intrinsic prior

LTests and model choice

LIntrinsic priors

## Intrinsic priors (cont'd)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Lests and model choice

Intrinsic priors

## Intrinsic priors (cont'd)

#### Example (Exponential scale) Take $x_1, \ldots, x_n \stackrel{\text{i.i.d.}}{\sim} \exp(\theta - x) \mathbb{I}_{x \ge \theta}$ and $H_0: \theta = \theta_0, H_1: \theta > \theta_0$ , with $\pi_1(\theta) = 1$ Then $1 \sum_{i=1}^n [-1]^{-1}$

$$B_{10}^A = B_{10}(x) \frac{1}{n} \sum_{i=1}^{n} \left[ e^{x_i - \theta_0} - 1 \right]^{-1}$$

is the Bayes factor for

$$\pi_2( heta) = e^{ heta_0 - heta} \left\{ 1 - \log\left(1 - e^{ heta_0 - heta}
ight) 
ight\}$$

-Tests and model choice

Intrinsic priors

## Intrinsic priors (cont'd)

#### Example (Exponential scale)

 $\begin{array}{ll} \mathsf{Take} & x_1,\ldots,x_n \stackrel{\mathrm{i.i.d.}}{\sim} \exp(\theta-x)\mathbb{I}_{x\geq\theta} \\ \mathsf{and} & H_0: \theta=\theta_0, \ H_1: \theta>\theta_0 & \text{, with } \pi_1(\theta)=1 \\ \mathsf{Then} & \end{array}$ 

$$B_{10}^{A} = B_{10}(x) \frac{1}{n} \sum_{i=1}^{n} \left[ e^{x_{i} - \theta_{0}} - 1 \right]^{-1}$$

is the Bayes factor for

$$\pi_2(\theta) = e^{\theta_0 - \theta} \left\{ 1 - \log\left(1 - e^{\theta_0 - \theta}\right) \right\}$$

Most often, however, the pseudo-Bayes factors do not correspond to any true Bayes factor

[Berger and Pericchi, 2001]

Lests and model choice

Intrinsic priors

#### Fractional Bayes factor

#### Idea

use directly the likelihood to separate training sample from testing sample

$$B_{12}^{F} = B_{12}(x) \frac{\int L_{2}^{b}(\theta_{2})\pi_{2}(\theta_{2})d\theta_{2}}{\int L_{1}^{b}(\theta_{1})\pi_{1}(\theta_{1})d\theta_{1}}$$

[O'Hagan, 1995]

Lests and model choice

Intrinsic priors

#### Fractional Bayes factor

#### ldea

use directly the likelihood to separate training sample from testing sample

$$B_{12}^{F} = B_{12}(x) \frac{\int L_{2}^{b}(\theta_{2})\pi_{2}(\theta_{2})d\theta_{2}}{\int L_{1}^{b}(\theta_{1})\pi_{1}(\theta_{1})d\theta_{1}}$$
[O'Hagan, 1995]

#### Proportion b of the sample used to gain proper-ness

Tests and model choice

Intrinsic priors

#### Fractional Bayes factor (cont'd)

Example (Normal mean)

$$B_{12}^F = \frac{1}{\sqrt{b}} e^{n(b-1)\bar{x}_n^2/2}$$

corresponds to exact Bayes factor for the prior  $\mathcal{N}\left(0, rac{1-b}{nb}
ight)$ 

- ▶ If *b* constant, prior variance goes to 0
- If  $b = \frac{1}{n}$ , prior variance stabilises around 1
- If  $b = n^{-\alpha}$ ,  $\alpha < 1$ , prior variance goes to 0 too.
-Tests and model choice

Opposition to classical tests

## Comparison with classical tests

Standard answer

Definition (*p*-value)

The *p*-value p(x) associated with a test is the largest significance level for which  $H_0$  is rejected

Tests and model choice

Opposition to classical tests

## Comparison with classical tests

Standard answer

Definition (*p*-value)

The *p*-value p(x) associated with a test is the largest significance level for which  $H_0$  is rejected

#### Note

An alternative definition is that a p-value is distributed uniformly under the null hypothesis.

Tests and model choice

Opposition to classical tests

## p-value

Example (Normal mean) Since the UUMP test is  $\{|x| > k\}$ , standard *p*-value

$$p(x) = \inf\{\alpha; |x| > k_{\alpha}\} \\ = P^{X}(|X| > |x|), \qquad X \sim \mathcal{N}(0, 1) \\ = 1 - \Phi(|x|) + \Phi(|x|) = 2[1 - \Phi(|x|)].$$

Thus, if x = 1.68, p(x) = 0.10 and, if x = 1.96, p(x) = 0.05.

Tests and model choice

Opposition to classical tests

## Problems with *p*-values

- Evaluation of the wrong quantity, namely the probability to exceed the observed quantity.(wrong conditionin)
- No transfer of the UMP optimality
- No decisional support (occurences of inadmissibility)
- Evaluation only under the null hypothesis
- Huge numerical difference with the Bayesian range of answers

Lests and model choice

Opposition to classical tests

#### Bayesian lower bounds

For illustration purposes, consider a class  ${\mathscr G}$  of prior distributions

$$B(x,\mathscr{G}) = \inf_{g \in \mathscr{G}} \frac{f(x|\theta_0)}{\int_{\Theta} f(x|\theta)g(\theta) \, d\theta},$$
  

$$P(x,\mathscr{G}) = \inf_{g \in \mathscr{G}} \frac{f(x|\theta_0)}{f(x|\theta_0) + \int_{\Theta} f(x|\theta)g(\theta) \, d\theta}$$

when  $\varrho_0 = 1/2$  or

$$B(x,\mathscr{G}) = \frac{f(x|\theta_0)}{\sup_{g \in \mathscr{G}} \int_{\Theta} f(x|\theta)g(\theta)d\theta}, \quad P(x,\mathscr{G}) = \left[1 + \frac{1}{(x,\mathscr{G})}\right]^{-1}$$

.

Tests and model choice

Opposition to classical tests

## Resolution

#### Lemma

If there exists a mle for  $\theta,\,\hat{\theta}(x),$  the solutions to the Bayesian lower bounds are

$$B(x,\mathscr{G}) = \frac{f(x|\theta_0)}{f(x|\hat{\theta}(x))}, \quad P(x,\mathscr{G}) = \left[1 + \frac{f(x|\hat{\theta}(x))}{f(x|\theta_0)}\right]^{-1}$$

(日) (日) (日) (日) (日) (日) (日) (日)

respectively

Lests and model choice

Opposition to classical tests

## Normal case

When  $x \sim \mathcal{N}(\theta, 1)$  and  $H_0: \theta_0 = 0$ , the lower bounds are

$$(x,G_A) = e^{-x^2/2}$$
 et  $(x,G_A) = \left(1 + e^{x^2/2}\right)^{-1}$ ,

Lests and model choice

Opposition to classical tests

#### Normal case

When  $x \sim \mathcal{N}(\theta, 1)$  and  $H_0: \theta_0 = 0$ , the lower bounds are

$$(x, G_A) = e^{-x^2/2}$$
 et  $(x, G_A) = \left(1 + e^{x^2/2}\right)^{-1}$ 

i.e.

| p-value | 0.10  | 0.05  | 0.01  | 0.001 |
|---------|-------|-------|-------|-------|
| Р       | 0.205 | 0.128 | 0.035 | 0.004 |
| B       | 0.256 | 0.146 | 0.036 | 0.004 |

Lests and model choice

Opposition to classical tests

#### Normal case

When  $x \sim \mathcal{N}(\theta, 1)$  and  $H_0: \theta_0 = 0$ , the lower bounds are

$$(x, G_A) = e^{-x^2/2}$$
 et  $(x, G_A) = \left(1 + e^{x^2/2}\right)^{-1}$ ,

i.e.

| p-value | 0.10     | 0.05  | 0.01  | 0.001              |
|---------|----------|-------|-------|--------------------|
| P       | 0.205    | 0.128 | 0.035 | 0.004              |
| В       | 0.256    | 0.146 | 0.036 | 0.004              |
|         | <u>.</u> |       |       | [Quite different!] |

Lests and model choice

-Opposition to classical tests

## Unilateral case

Different situation when  $H_0: \theta \leq 0$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ▲豆 > ◇ < ♡ < ♡

Lests and model choice

Opposition to classical tests

#### Unilateral case

Different situation when  $H_0: \theta \leq 0$ 

• Single prior can be used both for  $H_0$  and  $H_a$ 

Tests and model choice

Opposition to classical tests

#### Unilateral case

Different situation when  $H_0: \theta \leq 0$ 

- Single prior can be used both for  $H_0$  and  $H_a$
- Improper priors are therefore acceptable

Tests and model choice

Opposition to classical tests

#### Unilateral case

Different situation when  $H_0: \theta \leq 0$ 

- Single prior can be used both for  $H_0$  and  $H_a$
- Improper priors are therefore acceptable
- Similar numerical values compared with p-values

Opposition to classical tests

## Unilateral agreement

#### Theorem

When  $x \sim f(x - \theta)$ , with f symmetric around 0 and endowed with the monotone likelihood ratio property, if  $H_0: \theta \leq 0$ , the p-value p(x) is equal to the lower bound of the posterior probabilities,  $P(x, \mathscr{G}_{SU})$ , when  $\mathscr{G}_{SU}$  is the set of symmetric unimodal priors and when x > 0.

Opposition to classical tests

## Unilateral agreement

#### Theorem

When  $x \sim f(x - \theta)$ , with f symmetric around 0 and endowed with the monotone likelihood ratio property, if  $H_0: \theta \leq 0$ , the p-value p(x) is equal to the lower bound of the posterior probabilities,  $P(x, \mathscr{G}_{SU})$ , when  $\mathscr{G}_{SU}$  is the set of symmetric unimodal priors and when x > 0.

Reason:

$$p(x) = P_{\theta=0}(X > x) = \int_{x}^{+\infty} f(t) \, \mathrm{d}t = \inf_{K} \frac{1}{1 + \left[\frac{\int_{-K}^{0} f(x-\theta) \, \mathrm{d}\theta}{\int_{-K}^{K} f(x-\theta)} \, \mathrm{d}\theta\right]^{-1}}$$

LTests and model choice

-Opposition to classical tests

## Cauchy example

| When $x \sim \mathscr{C}(\theta, 1)$ and $H_0: \theta \leq 0$ , lower bound inferior to <i>p</i> -value: |       |       |       |       |       |  |  |
|----------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|--|--|
| p-value                                                                                                  | 0.437 | 0.102 | 0.063 | 0.013 | 0.004 |  |  |
| <u>P</u>                                                                                                 | 0.429 | 0.077 | 0.044 | 0.007 | 0.002 |  |  |

(ロト (個) (E) (E) (E) (の)()

-Tests and model choice

Model choice

## Model choice and model comparison

#### **Choice of models**

Several models available for the same observation

$$\mathfrak{M}_i: x \sim f_i(x|\theta_i), \qquad i \in \mathfrak{I}$$

where  $\ensuremath{\mathfrak{I}}$  can be finite or infinite

Tests and model choice

Model choice

#### Example (Galaxy normal mixture)

Set of observations of radial speeds of 82 galaxies possibly modelled as a mixture of normal distributions

$$\mathfrak{M}_i: x_j \sim \sum_{\ell=1}^{i} p_{\ell i} \mathcal{N}(\mu_{\ell i}, \sigma_{\ell i}^2)$$



◆ロ > ◆母 > ◆母 > ◆母 > → 母 = ∽ へ ⊙ >

LTests and model choice

Bayesian resolution

## Bayesian resolution

#### **B** Framework

Probabilises the entire model/parameter space

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Tests and model choice

Bayesian resolution

## Bayesian resolution

#### **B** Framework

Probabilises the entire model/parameter space This means:

- allocating probabilities  $p_i$  to all models  $\mathfrak{M}_i$
- defining priors  $\pi_i(\theta_i)$  for each parameter space  $\Theta_i$

LTests and model choice

Bayesian resolution

## Formal solutions

Resolution

1. Compute

$$p(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) \mathrm{d}\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) \mathrm{d}\theta_j}$$

Lests and model choice

Bayesian resolution

## Formal solutions

Resolution

1. Compute

$$p(\mathfrak{M}_i|x) = rac{p_i \int_{\Theta_i} f_i(x| heta_i) \pi_i( heta_i) \mathrm{d} heta_i}{\displaystyle\sum_j p_j \int_{\Theta_j} f_j(x| heta_j) \pi_j( heta_j) \mathrm{d} heta_j}$$

2. Take largest  $p(\mathfrak{M}_i|x)$  to determine ''best'' model,

or use averaged predictive

$$\sum_{j} p(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

Tests and model choice

Problems

## Several types of problems

Concentrate on selection perspective:

- averaging = estimation = non-parsimonious = no-decision
- how to integrate loss function/decision/consequences

Problems

# Several types of problems

Concentrate on selection perspective:

- averaging = estimation = non-parsimonious = no-decision
- how to integrate loss function/decision/consequences
- representation of parsimony/sparcity (Ockham's rule)
- how to fight overfitting for nested models

Tests and model choice

Problems

# Several types of problems

Concentrate on selection perspective:

- averaging = estimation = non-parsimonious = no-decision
- how to integrate loss function/decision/consequences
- representation of parsimony/sparcity (Ockham's rule)
- how to fight overfitting for nested models

Which loss ?

LTests and model choice

Problems

# Several types of problems (2)

Choice of prior structures

• adequate weights  $p_i$ : if  $\mathfrak{M}_1 = \mathfrak{M}_2 \cup \mathfrak{M}_3$ ,

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・ の へ ()・

Lests and model choice

Problems

# Several types of problems (2)

#### Choice of prior structures

▶ adequate weights  $p_i$ :

if 
$$\mathfrak{M}_1 = \mathfrak{M}_2 \cup \mathfrak{M}_3$$
,  $p(\mathfrak{M}_1) = p(\mathfrak{M}_2) + p(\mathfrak{M}_3)$  ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

priors distributions

• 
$$\pi_i( heta_i)$$
 defined for every  $i\in\mathfrak{I}$ 

-Tests and model choice

Problems

# Several types of problems (2)

#### Choice of prior structures

▶ adequate weights p<sub>i</sub>:

if 
$$\mathfrak{M}_1=\mathfrak{M}_2\cup\mathfrak{M}_3$$
,  $p(\mathfrak{M}_1)=p(\mathfrak{M}_2)+p(\mathfrak{M}_3)$  ?

- priors distributions
  - $\pi_i( heta_i)$  defined for every  $i \in \mathfrak{I}$
  - $\pi_i(\theta_i)$  proper (Jeffreys)

Tests and model choice

Problems

# Several types of problems (2)

#### Choice of prior structures

▶ adequate weights  $p_i$ :

if 
$$\mathfrak{M}_1=\mathfrak{M}_2\cup\mathfrak{M}_3$$
,  $p(\mathfrak{M}_1)=p(\mathfrak{M}_2)+p(\mathfrak{M}_3)$  ?

- priors distributions
  - $\pi_i( heta_i)$  defined for every  $i \in \mathfrak{I}$
  - $\pi_i(\theta_i)$  proper (Jeffreys)
  - $\pi_i(\theta_i)$  coherent (?) for nested models

Tests and model choice

Problems

# Several types of problems (2)

#### Choice of prior structures

▶ adequate weights  $p_i$ :

if 
$$\mathfrak{M}_1 = \mathfrak{M}_2 \cup \mathfrak{M}_3$$
,  $p(\mathfrak{M}_1) = p(\mathfrak{M}_2) + p(\mathfrak{M}_3)$  ?

- priors distributions
  - $\pi_i( heta_i)$  defined for every  $i \in \mathfrak{I}$
  - $\pi_i(\theta_i)$  proper (Jeffreys)
  - $\pi_i(\theta_i)$  coherent (?) for nested models

#### Warning

Parameters common to several models must be treated as separate entities!

Tests and model choice

Problems

# Several types of problems (3)

Computation of predictives and marginals

- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over many models  $(2^k)$

LTests and model choice

Compatible priors

## Compatibility principle

# Difficulty of finding simultaneously priors on a collection of models $\mathfrak{M}_i$ $(i\in\mathfrak{I})$

Compatible priors

# Compatibility principle

Difficulty of finding simultaneously priors on a collection of models  $\mathfrak{M}_i$   $(i \in \mathfrak{I})$ Easier to start from a single prior on a "big" model and to derive the others from a coherence principle

[Dawid & Lauritzen, 2000]

Compatible priors

## Projection approach

For  $\mathfrak{M}_2$  submodel of  $\mathfrak{M}_1$ ,  $\pi_2$  can be derived as the distribution of  $\theta_2^{\perp}(\theta_1)$  when  $\theta_1 \sim \pi_1(\theta_1)$  and  $\theta_2^{\perp}(\theta_1)$  is a projection of  $\theta_1$  on  $\mathfrak{M}_2$ , e.g.

$$d(f(\cdot | \theta_1), f(\cdot | \theta_1^{\perp})) = \inf_{\theta_2 \in \Theta_2} d(f(\cdot | \theta_1), f(\cdot | \theta_2)).$$

where d is a divergence measure

[McCulloch & Rossi, 1992]

Compatible priors

# Projection approach

For  $\mathfrak{M}_2$  submodel of  $\mathfrak{M}_1$ ,  $\pi_2$  can be derived as the distribution of  $\theta_2^{\perp}(\theta_1)$  when  $\theta_1 \sim \pi_1(\theta_1)$  and  $\theta_2^{\perp}(\theta_1)$  is a projection of  $\theta_1$  on  $\mathfrak{M}_2$ , e.g.

$$d(f(\cdot | \theta_1), f(\cdot | \theta_1^{\perp})) = \inf_{\theta_2 \in \Theta_2} d(f(\cdot | \theta_1), f(\cdot | \theta_2)).$$

where d is a divergence measure

[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

 $d(f(\cdot |\theta_1), f(\cdot |\theta_1^{\perp}))$ 

[Goutis & Robert, 1998]

Compatible priors

# Operational principle for variable selection

Selection rule Among all subsets  $\mathcal{A}$  of covariates such that

$$d(\mathfrak{M}_g,\mathfrak{M}_{\mathcal{A}}) = \mathbb{E}_x[d(f_g(\cdot|x,\alpha), f_{\mathcal{A}}(\cdot|x_{\mathcal{A}}, \alpha^{\perp}))] < \epsilon$$

select the submodel with the smallest number of variables.

[Dupuis & Robert, 2001]
Lests and model choice

Compatible priors

## Kullback proximity

Alternative to above

Definition (Compatible prior)

Given a prior  $\pi_1$  on a model  $\mathfrak{M}_1$  and a submodel  $\mathfrak{M}_2$ , a prior  $\pi_2$  on  $\mathfrak{M}_2$  is *compatible* with  $\pi_1$ 

Tests and model choice

Compatible priors

# Kullback proximity

Alternative to above

Definition (Compatible prior)

Given a prior  $\pi_1$  on a model  $\mathfrak{M}_1$  and a submodel  $\mathfrak{M}_2$ , a prior  $\pi_2$  on  $\mathfrak{M}_2$  is *compatible* with  $\pi_1$  when it achieves the minimum Kullback divergence between the corresponding marginals:  $m_1(x; \pi_1) = \int_{\Theta_1} f_1(x|\theta)\pi_1(\theta)d\theta$  and  $m_2(x); \pi_2 = \int_{\Theta_2} f_2(x|\theta)\pi_2(\theta)d\theta$ , Tests and model choice

Compatible priors

# Kullback proximity

#### Alternative to above

#### Definition (Compatible prior)

Given a prior  $\pi_1$  on a model  $\mathfrak{M}_1$  and a submodel  $\mathfrak{M}_2$ , a prior  $\pi_2$  on  $\mathfrak{M}_2$  is *compatible* with  $\pi_1$  when it achieves the minimum Kullback divergence between the corresponding marginals:  $m_1(x;\pi_1) = \int_{\Theta_1} f_1(x|\theta)\pi_1(\theta)d\theta$  and  $m_2(x); \pi_2 = \int_{\Theta_2} f_2(x|\theta)\pi_2(\theta)d\theta$ ,

$$\pi_2 = \arg\min_{\pi_2} \int \log\left(\frac{m_1(x;\pi_1)}{m_2(x;\pi_2)}\right) m_1(x;\pi_1) \,\mathrm{d}x$$

Lests and model choice

Compatible priors

## Difficulties

 $\blacktriangleright$  Does not give a working principle when  $\mathfrak{M}_2$  is not a submodel  $\mathfrak{M}_1$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LTests and model choice

Compatible priors

## Difficulties

 $\blacktriangleright$  Does not give a working principle when  $\mathfrak{M}_2$  is not a submodel  $\mathfrak{M}_1$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

• Depends on the choice of  $\pi_1$ 

Tests and model choice

Compatible priors

## Difficulties

- $\blacktriangleright$  Does not give a working principle when  $\mathfrak{M}_2$  is not a submodel  $\mathfrak{M}_1$
- Depends on the choice of  $\pi_1$
- Prohibits the use of improper priors

LTests and model choice

Compatible priors

## Difficulties

- $\blacktriangleright$  Does not give a working principle when  $\mathfrak{M}_2$  is not a submodel  $\mathfrak{M}_1$
- Depends on the choice of  $\pi_1$
- Prohibits the use of improper priors
- ▶ Worse: useless in unconstrained settings...

LTests and model choice

Compatible priors

#### Case of exponential families

Models

 $\mathfrak{M}_1: \{f_1(x|\theta), \theta \in \Theta\}$ 

and

$$\mathfrak{M}_2: \{f_2(x|\lambda), \lambda \in \Lambda\}$$

sub-model of  $\mathcal{M}_1$ ,

$$\forall \lambda \in \Lambda, \exists \theta(\lambda) \in \Theta, f_2(x|\lambda) = f_1(x|\theta(\lambda))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Lests and model choice

Compatible priors

#### Case of exponential families

Models

 $\mathfrak{M}_1: \{f_1(x|\theta), \theta \in \Theta\}$ 

and

$$\mathfrak{M}_2$$
: { $f_2(x|\lambda), \lambda \in \Lambda$ }

sub-model of  $\mathcal{M}_1$ ,

$$\forall \lambda \in \Lambda, \exists \theta(\lambda) \in \Theta, f_2(x|\lambda) = f_1(x|\theta(\lambda))$$

Both  $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are natural exponential families

$$f_1(x|\theta) = h_1(x) \exp(\theta^{\mathsf{T}} t_1(x) - M_1(\theta))$$
  

$$f_2(x|\lambda) = h_2(x) \exp(\lambda^{\mathsf{T}} t_2(x) - M_2(\lambda))$$

(ロト・日本・日本・日本・ 日) うえぐ

LTests and model choice

Compatible priors

## Conjugate priors

Parameterised (conjugate) priors

$$\pi_1(\theta; s_1, n_1) = C_1(s_1, n_1) \exp(s_1^\mathsf{T} \theta - n_1 M_1(\theta))$$
  
$$\pi_2(\lambda; s_2, n_2) = C_2(s_2, n_2) \exp(s_2^\mathsf{T} \lambda - n_2 M_2(\lambda))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

LTests and model choice

Compatible priors

## Conjugate priors

Parameterised (conjugate) priors

$$\pi_1(\theta; s_1, n_1) = C_1(s_1, n_1) \exp(s_1^{\mathsf{T}} \theta - n_1 M_1(\theta))$$
  
$$\pi_2(\lambda; s_2, n_2) = C_2(s_2, n_2) \exp(s_2^{\mathsf{T}} \lambda - n_2 M_2(\lambda))$$

with closed form marginals (i = 1, 2)

$$m_i(x; s_i, n_i) = \int f_i(x|u) \pi_i(u) du = rac{h_i(x)C_i(s_i, n_i)}{C_i(s_i + t_i(x), n_i + 1)}$$

LTests and model choice

Compatible priors

## Conjugate compatible priors

(Q.) Existence and unicity of Kullback-Leibler projection

$$\begin{array}{lll} (s_2^*, n_2^*) &=& \arg\min_{(s_2, n_2)} \mathfrak{KL}(m_1(\cdot; s_1, n_1), m_2(\cdot; s_2, n_2)) \\ &=& \arg\min_{(s_2, n_2)} \int \log\left(\frac{m_1(x; s_1, n_1)}{m_2(x; s_2, n_2)}\right) m_1(x; s_1, n_1) dx \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Lests and model choice

Compatible priors

## A sufficient condition

Sufficient statistic  $\psi = (\lambda, -M_2(\lambda))$ 

Theorem (Existence)

If, for all  $(s_2, n_2)$ , the matrix

$$\mathbb{V}_{s_{2},n_{2}}^{\pi_{2}}[\psi] - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}\left[\mathbb{V}_{s_{2},n_{2}}^{\pi_{2}}(\psi|x)
ight]$$

is semi-definite negative,

Lests and model choice

Compatible priors

## A sufficient condition

Sufficient statistic  $\psi = (\lambda, -M_2(\lambda))$ 

Theorem (Existence)

If, for all  $(s_2, n_2)$ , the matrix

$$\mathbb{V}_{s_{2},n_{2}}^{\pi_{2}}[\psi] - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}\left[\mathbb{V}_{s_{2},n_{2}}^{\pi_{2}}(\psi|x)\right]$$

is semi-definite negative, the conjugate compatible prior exists, is unique and satisfies

$$\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}[\lambda] - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}[\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}(\lambda|x)] = 0$$
  
$$\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}(M_{2}(\lambda)) - \mathbb{E}_{s_{1},n_{1}}^{m_{1}}[\mathbb{E}_{s_{2}^{*},n_{2}^{*}}^{\pi_{2}}(M_{2}(\lambda)|x)] = 0.$$

Lests and model choice

Compatible priors

## An application to linear regression

 $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are two nested Gaussian linear regression models with Zellner's *g*-priors and the same variance  $\sigma^2 \sim \pi(\sigma^2)$ :

1.  $\mathfrak{M}_1$  :

$$y|\beta_1, \sigma^2 \sim \mathcal{N}(X_1\beta_1, \sigma^2), \quad \beta_1|\sigma^2 \sim \mathcal{N}\left(s_1, \sigma^2 n_1(X_1^\mathsf{T}X_1)^{-1}\right)$$

where  $X_1$  is a  $(n \times k_1)$  matrix of rank  $k_1 \leq n$ 

-Tests and model choice

Compatible priors

## An application to linear regression

 $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are two nested Gaussian linear regression models with Zellner's *g*-priors and the same variance  $\sigma^2 \sim \pi(\sigma^2)$ :

1.  $\mathfrak{M}_1$  :

$$y|\beta_1, \sigma^2 \sim \mathcal{N}(X_1\beta_1, \sigma^2), \quad \beta_1|\sigma^2 \sim \mathcal{N}\left(s_1, \sigma^2 n_1(X_1^\mathsf{T}X_1)^{-1}\right)$$

where  $X_1$  is a  $(n \times k_1)$  matrix of rank  $k_1 \le n$ 2.  $\mathfrak{M}_2$ :

$$y|\beta_2, \sigma^2 \sim \mathcal{N}(X_2\beta_2, \sigma^2), \quad \beta_2|\sigma^2 \sim \mathcal{N}\left(s_2, \sigma^2 n_2(X_2^\mathsf{T}X_2)^{-1}\right),$$

where  $X_2$  is a  $(n \times k_2)$  matrix with span $(X_2) \subseteq$  span $(X_1)$ 

Tests and model choice

Compatible priors

## An application to linear regression

 $\mathfrak{M}_1$  and  $\mathfrak{M}_2$  are two nested Gaussian linear regression models with Zellner's *g*-priors and the same variance  $\sigma^2 \sim \pi(\sigma^2)$ :

1.  $\mathfrak{M}_1$  :

$$y|\beta_1, \sigma^2 \sim \mathcal{N}(X_1\beta_1, \sigma^2), \quad \beta_1|\sigma^2 \sim \mathcal{N}\left(s_1, \sigma^2 n_1(X_1^\mathsf{T}X_1)^{-1}\right)$$

where  $X_1$  is a  $(n \times k_1)$  matrix of rank  $k_1 \le n$ 2.  $\mathfrak{M}_2$ :

$$y|\beta_2, \sigma^2 \sim \mathcal{N}(X_2\beta_2, \sigma^2), \quad \beta_2|\sigma^2 \sim \mathcal{N}\left(s_2, \sigma^2 n_2(X_2^\mathsf{T}X_2)^{-1}\right),$$

where  $X_2$  is a  $(n \times k_2)$  matrix with span $(X_2) \subseteq$  span $(X_1)$ For a fixed  $(s_1, n_1)$ , we need the projection  $(s_2, n_2) = (s_1, n_1)^{\perp}$  Tests and model choice

Compatible priors

# Compatible *g*-priors

Since  $\sigma^2$  is a nuisance parameter, we can minimize the Kullback-Leibler divergence between the two marginal distributions conditional on  $\sigma^2$ :  $m_1(y|\sigma^2; s_1, n_1)$  and  $m_2(y|\sigma^2; s_2, n_2)$ 

Tests and model choice

Compatible priors

# Compatible *g*-priors

Since  $\sigma^2$  is a nuisance parameter, we can minimize the Kullback-Leibler divergence between the two marginal distributions conditional on  $\sigma^2$ :  $m_1(y|\sigma^2; s_1, n_1)$  and  $m_2(y|\sigma^2; s_2, n_2)$ 

#### Theorem

Conditional on  $\sigma^2$ , the conjugate compatible prior of  $\mathfrak{M}_2$  wrt  $\mathfrak{M}_1$  is

$$\beta_2 | X_2, \sigma^2 \sim \mathcal{N}\left(s_2^*, \sigma^2 n_2^* (X_2^T X_2)^{-1}\right)$$

with

$$s_2^* = (X_2^T X_2)^{-1} X_2^T X_1 s_1$$
  
 $n_2^* = n_1$ 

Tests and model choice

Variable selection

#### Variable selection

Regression setup where y regressed on a set  $\{x_1, \ldots, x_p\}$  of p potential explanatory regressors (plus intercept)

Tests and model choice

Variable selection

### Variable selection

Regression setup where y regressed on a set  $\{x_1, \ldots, x_p\}$  of p potential explanatory regressors (plus intercept)

Corresponding  $2^p$  submodels  $\mathfrak{M}_{\gamma}$ , where  $\gamma \in \Gamma = \{0, 1\}^p$  indicates inclusion/exclusion of variables by a binary representation,

Tests and model choice

Variable selection

## Variable selection

Regression setup where y regressed on a set  $\{x_1, \ldots, x_p\}$  of p potential explanatory regressors (plus intercept)

Corresponding  $2^p$  submodels  $\mathfrak{M}_{\gamma}$ , where  $\gamma \in \Gamma = \{0, 1\}^p$  indicates inclusion/exclusion of variables by a binary representation, e.g.  $\gamma = 101001011$  means that  $x_1$ ,  $x_3$ ,  $x_5$ ,  $x_7$  and  $x_8$  are included.

-Tests and model choice

Variable selection

## Notations

For model  $\mathfrak{M}_{\gamma}$ ,

- $q_{\gamma}$  variables included
- ►  $t_1(\gamma) = \{t_{1,1}(\gamma), \ldots, t_{1,q_{\gamma}}(\gamma)\}$  indices of those variables and  $t_0(\gamma)$  indices of the variables *not* included
- $\blacktriangleright \ \, {\rm For} \ \, \beta \in \mathbb{R}^{p+1} \text{,}$

$$\beta_{t_1(\gamma)} = \left[\beta_0, \beta_{t_{1,1}(\gamma)}, \dots, \beta_{t_{1,q_{\gamma}}(\gamma)}\right]$$
$$X_{t_1(\gamma)} = \left[\mathbf{1}_n | x_{t_{1,1}(\gamma)} | \dots | x_{t_{1,q_{\gamma}}(\gamma)}\right].$$

-Tests and model choice

Variable selection

### Notations

For model  $\mathfrak{M}_{\gamma}$ ,

- $q_{\gamma}$  variables included
- ►  $t_1(\gamma) = \{t_{1,1}(\gamma), \ldots, t_{1,q_{\gamma}}(\gamma)\}$  indices of those variables and  $t_0(\gamma)$  indices of the variables *not* included
- $\blacktriangleright \ \, {\rm For} \ \beta \in \mathbb{R}^{p+1} \text{,}$

$$\beta_{t_1(\gamma)} = \left[\beta_0, \beta_{t_{1,1}(\gamma)}, \dots, \beta_{t_{1,q_{\gamma}}(\gamma)}\right]$$
$$X_{t_1(\gamma)} = \left[\mathbf{1}_n | x_{t_{1,1}(\gamma)} | \dots | x_{t_{1,q_{\gamma}}(\gamma)}\right].$$

Submodel  $\mathfrak{M}_{\gamma}$  is thus

$$y|\beta,\gamma,\sigma^2 \sim \mathcal{N}\left(X_{t_1(\gamma)}\beta_{t_1(\gamma)},\sigma^2 I_n\right)$$

Lests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

▶ Noninformative g

Lests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

Noninformative g

#### Resulting compatible prior

$$\mathcal{N}\left(\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}X_{t_1(\gamma)}^{\mathsf{T}}X\tilde{\beta}, c\sigma^2\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}\right)$$

-Tests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

Noninformative g

#### Resulting compatible prior

$$\mathcal{N}\left(\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}X_{t_1(\gamma)}^{\mathsf{T}}X\tilde{\beta}, c\sigma^2\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}\right)$$

#### [Surprise!]

Lests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

▶ Noninformative g

Lests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

Noninformative g

#### Resulting compatible prior

$$\mathcal{N}\left(\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}X_{t_1(\gamma)}^{\mathsf{T}}X\tilde{\beta}, c\sigma^2\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}\right)$$

-Tests and model choice

Variable selection

## Global and compatible priors

Use Zellner's g-prior, i.e. a normal prior for  $\beta$  conditional on  $\sigma^2$ ,

$$\beta | \sigma^2 \sim \mathcal{N}(\tilde{\beta}, c\sigma^2 (X^\mathsf{T} X)^{-1})$$

and a Jeffreys prior for  $\sigma^2$ ,

$$\pi(\sigma^2) \propto \sigma^{-2}$$

Noninformative g

#### Resulting compatible prior

$$\mathcal{N}\left(\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}X_{t_1(\gamma)}^{\mathsf{T}}X\tilde{\beta}, c\sigma^2\left(X_{t_1(\gamma)}^{\mathsf{T}}X_{t_1(\gamma)}\right)^{-1}\right)$$

#### [Surprise!]

-Tests and model choice

Variable selection

## Model index

For the hierarchical parameter  $\gamma$ , we use

$$\pi(\gamma) = \prod_{i=1}^p \tau_i^{\gamma_i} (1-\tau_i)^{1-\gamma_i},$$

where  $\tau_i$  corresponds to the prior probability that variable *i* is present in the model (and a priori independence between the presence/absence of variables)

-Tests and model choice

Variable selection

## Model index

For the hierarchical parameter  $\gamma$ , we use

$$\pi(\gamma) = \prod_{i=1}^p \tau_i^{\gamma_i} (1-\tau_i)^{1-\gamma_i},$$

where  $\tau_i$  corresponds to the prior probability that variable *i* is present in the model (and a priori independence between the presence/absence of variables)

Typically, when no prior information is available,

 $au_1=\ldots= au_p=1/2$ , ie a uniform prior

$$\pi(\gamma) = 2^{-p}$$

LTests and model choice

Variable selection

### Posterior model probability

Can be obtained in closed form:

$$\pi(\gamma|y) \propto (c+1)^{-(q_{\gamma}+1)/2} \left[ y^{\mathsf{T}}y - \frac{cy^{\mathsf{T}}P_1y}{c+1} + \frac{\tilde{\beta}^{\mathsf{T}}X^{\mathsf{T}}P_1X\tilde{\beta}}{c+1} - \frac{2y^{\mathsf{T}}P_1X\tilde{\beta}}{c+1} \right]^{-n/2}$$

.

LTests and model choice

Variable selection

#### Posterior model probability

Can be obtained in closed form:

$$\pi(\gamma|y) \propto (c+1)^{-(q_{\gamma}+1)/2} \left[ y^{\mathsf{T}}y - \frac{cy^{\mathsf{T}}P_1y}{c+1} + \frac{\tilde{\beta}^{\mathsf{T}}X^{\mathsf{T}}P_1X\tilde{\beta}}{c+1} - \frac{2y^{\mathsf{T}}P_1X\tilde{\beta}}{c+1} \right]^{-n/2}$$

Conditionally on  $\gamma$ , posterior distributions of  $\beta$  and  $\sigma^2$ :

$$\begin{aligned} \beta_{t_1(\gamma)} | \sigma^2, y, \gamma &\sim \mathcal{N}\left[\frac{c}{c+1} (U_1 y + U_1 X \tilde{\beta}/c), \frac{\sigma^2 c}{c+1} \left(X_{t_1(\gamma)}^\mathsf{T} X_{t_1(\gamma)}\right)^{-1}\right], \\ \sigma^2 | y, \gamma &\sim \mathcal{IG}\left[\frac{n}{2}, \frac{y^\mathsf{T} y}{2} - \frac{c y^\mathsf{T} P_1 y}{2(c+1)} + \frac{\tilde{\beta}^\mathsf{T} X^\mathsf{T} P_1 X \tilde{\beta}}{2(c+1)} - \frac{y^\mathsf{T} P_1 X \tilde{\beta}}{c+1}\right]. \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Tests and model choice

Variable selection

### Noninformative case

Use the same compatible informative g-prior distribution with  $\tilde{\beta}=\mathbf{0}_{p+1}$  and a hierarchical diffuse prior distribution on c,

$$\pi(c) \propto c^{-1} \mathbb{I}_{\mathbb{N}^*}(c)$$

▶ Recall *g*-prior

Tests and model choice

Variable selection

### Noninformative case

Use the same compatible informative g-prior distribution with  $\tilde{\beta}=\mathbf{0}_{p+1}$  and a hierarchical diffuse prior distribution on c,

$$\pi(c) \propto c^{-1} \mathbb{I}_{\mathbb{N}^*}(c)$$

▶ Recall *g*-prior

The choice of this hierarchical diffuse prior distribution on c is due to the model posterior sensitivity to large values of c:
Variable selection

## Noninformative case

Use the same compatible informative g-prior distribution with  $\tilde{\beta}=\mathbf{0}_{p+1}$  and a hierarchical diffuse prior distribution on c,

$$\pi(c) \propto c^{-1} \mathbb{I}_{\mathbb{N}^*}(c)$$

▶ Recall *g*-prior

The choice of this hierarchical diffuse prior distribution on c is due to the model posterior sensitivity to large values of c:

 $\label{eq:constraint} {\rm Taking} ~~ \tilde{\beta} = {\rm O}_{p+1} ~~ {\rm and} ~ c ~ {\rm large ~ does ~ not ~ work}$ 

Variable selection

# Influence of $\boldsymbol{c}$

▶ Erase influence

#### Consider the 10-predictor full model

$$y|\beta,\sigma^{2} \sim \mathcal{N}\left(\beta_{0} + \sum_{i=1}^{3}\beta_{i}x_{i} + \sum_{i=1}^{3}\beta_{i+3}x_{i}^{2} + \beta_{7}x_{1}x_{2} + \beta_{8}x_{1}x_{3} + \beta_{9}x_{2}x_{3} + \beta_{10}x_{1}x_{2}x_{3}, \sigma^{2}I_{n}\right)$$

where the  $x_i$ s are iid  $\mathscr{U}(0, 10)$ 

[Casella & Moreno, 2004]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Variable selection

# Influence of $\boldsymbol{c}$

▶ Erase influence

#### Consider the 10-predictor full model

$$y|\beta,\sigma^2 \sim \mathcal{N}\left(\beta_0 + \sum_{i=1}^3 \beta_i x_i + \sum_{i=1}^3 \beta_{i+3} x_i^2 + \beta_7 x_1 x_2 + \beta_8 x_1 x_3 + \beta_9 x_2 x_3 + \beta_{10} x_1 x_2 x_3, \sigma^2 I_n\right)$$

where the  $x_i$ s are iid  $\mathscr{U}(0,10)$ 

[Casella & Moreno, 2004] True model: two predictors  $x_1$  and  $x_2$ , i.e.  $\gamma^* = 110...0$ ,  $(\beta_0, \beta_1, \beta_2) = (5, 1, 3)$ , and  $\sigma^2 = 4$ .

LTests and model choice

Variable selection

Influence of  $c^2$ 

| $t_1(\gamma)$ | <i>c</i> = 10 | <i>c</i> = 100 | $c = 10^{3}$ | $c = 10^{4}$ | $c = 10^{6}$ |
|---------------|---------------|----------------|--------------|--------------|--------------|
| 0,1,2         | 0.04062       | 0.35368        | 0.65858      | 0.85895      | 0.98222      |
| 0,1,2,7       | 0.01326       | 0.06142        | 0.08395      | 0.04434      | 0.00524      |
| 0,1,2,4       | 0.01299       | 0.05310        | 0.05805      | 0.02868      | 0.00336      |
| 0,2,4         | 0.02927       | 0.03962        | 0.00409      | 0.00246      | 0.00254      |
| 0,1,2,8       | 0.01240       | 0.03833        | 0.01100      | 0.00126      | 0.00126      |

LTests and model choice

Variable selection

Noninformative case (cont'd)

In the noninformative setting,

$$\pi(\gamma|y) \propto \sum_{c=1}^{\infty} c^{-1} (c+1)^{-(q_{\gamma}+1)/2} \left[ y^{\mathsf{T}} y - \frac{c}{c+1} y^{\mathsf{T}} P_1 y \right]^{-n/2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の久ぐ

converges for all y's

LTests and model choice

-Variable selection

#### Casella & Moreno's example

$$\begin{array}{c|c} t_1(\gamma) & \sum_{i=1}^{10^6} \pi(\gamma|y,c)\pi(c) \\ \hline 0,1,2 & 0.78071 \\ 0,1,2,7 & 0.06201 \\ 0,1,2,4 & 0.04119 \\ 0,1,2,8 & 0.01676 \\ 0,1,2,5 & 0.01604 \\ \hline \end{array}$$

LTests and model choice

Variable selection

## Gibbs approximation

When p large, impossible to compute the posterior probabilities of the  $2^p$  models.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Tests and model choice

Variable selection

## Gibbs approximation

When p large, impossible to compute the posterior probabilities of the  $2^p$  models. Use of a Monte Carlo approximation of  $\pi(\gamma|y)$ 

Variable selection

# Gibbs approximation

When p large, impossible to compute the posterior probabilities of the  $2^p$  models. Use of a Monte Carlo approximation of  $\pi(\gamma|y)$ 

#### Gibbs sampling

• At t = 0, draw  $\gamma^0$  from the uniform distribution on  $\Gamma$ 

• At t, for 
$$i = 1, \dots, p$$
, draw  
 $\gamma_i^t \sim \pi(\gamma_i | y, \gamma_1^t, \dots, \gamma_{i-1}^t, \dots, \gamma_{i+1}^{t-1}, \dots, \gamma_p^{t-1})$ 

Tests and model choice

Variable selection

# Gibbs approximation (cont'd)

#### Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full model

$$y|\beta, \sigma^2 \sim \mathcal{N}\left(\beta_0 + \sum_{i=1}^{20} \beta_i x_i, \sigma^2 I_n\right)$$

where  $x_i = z_i + 3z$ , the  $z_i$ 's and z are iid  $\mathcal{N}_n(\mathbf{0}_n, I_n)$ .

Tests and model choice

Variable selection

# Gibbs approximation (cont'd)

#### Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full model

$$y|\beta, \sigma^2 \sim \mathcal{N}\left(\beta_0 + \sum_{i=1}^{20} \beta_i x_i, \sigma^2 I_n\right)$$

where  $x_i = z_i + 3z$ , the  $z_i$ 's and z are iid  $\mathcal{N}_n(0_n, I_n)$ . True model with n = 180,  $\sigma^2 = 4$  and seven predictor variables  $x_1, x_3, x_5, x_6, x_{12}, x_{18}, x_{20},$  $(\beta_0, \beta_1, \beta_3, \beta_5, \beta_6, \beta_{12}, \beta_{18}, \beta_{20}) = (3, 4, 1, -3, 12, -1, 5, -6)$ 

Lests and model choice

Variable selection

# Gibbs approximation (cont'd)

| Example (Simulated data (2)) |                       |                 |                                   |  |
|------------------------------|-----------------------|-----------------|-----------------------------------|--|
|                              | $\gamma$              | $\pi(\gamma y)$ | $\widehat{\pi(\gamma y)}^{GIBBS}$ |  |
|                              | 0,1,3,5,6,12,18,20    | 0.1893          | 0.1822                            |  |
|                              | 0,1,3,5,6,18,20       | 0.0588          | 0.0598                            |  |
|                              | 0,1,3,5,6,9,12,18,20  | 0.0223          | 0.0236                            |  |
|                              | 0,1,3,5,6,12,14,18,20 | 0.0220          | 0.0193                            |  |
|                              | 0,1,2,3,5,6,12,18,20  | 0.0216          | 0.0222                            |  |
|                              | 0,1,3,5,6,7,12,18,20  | 0.0212          | 0.0233                            |  |
|                              | 0,1,3,5,6,10,12,18,20 | 0.0199          | 0.0222                            |  |
|                              | 0,1,3,4,5,6,12,18,20  | 0.0197          | 0.0182                            |  |
|                              | 0,1,3,5,6,12,15,18,20 | 0.0196          | 0.0196                            |  |
|                              |                       | -               | •                                 |  |

Gibbs (T = 100,000) results for  $\tilde{\beta} = 0_{21}$  and c = 100

-Tests and model choice

Variable selection

#### Processionary caterpillar

Influence of some forest settlement characteristics on the development of caterpillar colonies

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

-Tests and model choice

Variable selection

#### Processionary caterpillar

Influence of some forest settlement characteristics on the development of caterpillar colonies



◆□> ◆□> ◆三> ◆三> ・三 のへで

-Tests and model choice

Variable selection

#### Processionary caterpillar

Influence of some forest settlement characteristics on the development of caterpillar colonies



Response y log-transform of the average number of nests of caterpillars per tree on an area of 500 square meters (n = 33 areas)

Variable selection

# Processionary caterpillar (cont'd)

Potential explanatory variables

 $x_1$  altitude (in meters),  $x_2$  slope (in degrees),

 $x_3$  number of pines in the square,

 $x_4$  height (in meters) of the tree at the center of the square,

 $x_5$  diameter of the tree at the center of the square,

 $x_{\rm 6}$  index of the settlement density,

 $x_7$  orientation of the square (from 1 if southb'd to 2 ow),

 $x_8$  height (in meters) of the dominant tree,

 $x_9$  number of vegetation strata,

 $x_{10}$  mix settlement index (from 1 if not mixed to 2 if mixed).

L<sub>Tests</sub> and model choice

LVariable selection



Variable selection

#### Bayesian regression output

|             | Estimate | BF     | log10(BF)    |
|-------------|----------|--------|--------------|
| (Intercept) | 9.2714   | 26.334 | 1.4205 (***) |
| X1          | -0.0037  | 7.0839 | 0.8502 (**)  |
| X2          | -0.0454  | 3.6850 | 0.5664 (**)  |
| X3          | 0.0573   | 0.4356 | -0.3609      |
| X4          | -1.0905  | 2.8314 | 0.4520 (*)   |
| X5          | 0.1953   | 2.5157 | 0.4007 (*)   |
| X6          | -0.3008  | 0.3621 | -0.4412      |
| X7          | -0.2002  | 0.3627 | -0.4404      |
| X8          | 0.1526   | 0.4589 | -0.3383      |
| X9          | -1.0835  | 0.9069 | -0.0424      |
| X10         | -0.3651  | 0.4132 | -0.3838      |

evidence against H0: (\*\*\*\*) decisive, (\*\*\*) strong, (\*\*) subtantial, (\*) poor

・ロト ・ 通 ト ・ 直 ト ・ 直 ・ うへぐ

Lests and model choice

Variable selection

#### Bayesian variable selection

| $t_1(\gamma)$ | $\pi(\gamma y,X)$ | $\widehat{\pi}(\gamma y,X)$ |
|---------------|-------------------|-----------------------------|
| 0,1,2,4,5     | 0.0929            | 0.0929                      |
| 0,1,2,4,5,9   | 0.0325            | 0.0326                      |
| 0,1,2,4,5,10  | 0.0295            | 0.0272                      |
| 0,1,2,4,5,7   | 0.0231            | 0.0231                      |
| 0,1,2,4,5,8   | 0.0228            | 0.0229                      |
| 0,1,2,4,5,6   | 0.0228            | 0.0226                      |
| 0,1,2,3,4,5   | 0.0224            | 0.0220                      |
| 0,1,2,3,4,5,9 | 0.0167            | 0.0182                      |
| 0,1,2,4,5,6,9 | 0.0167            | 0.0171                      |
| 0,1,2,4,5,8,9 | 0.0137            | 0.0130                      |

Noninformative G-prior model choice and Gibbs estimations

-Tests and model choice

Symmetrised compatible priors

#### Postulate

Previous principle requires embedded models (or an encompassing model) and proper priors, while being hard to implement outside exponential families

Tests and model choice

Symmetrised compatible priors

## Postulate

Previous principle requires embedded models (or an encompassing model) and proper priors, while being hard to implement outside exponential families

Now we determine prior measures on two models  $\mathfrak{M}_1$  and  $\mathfrak{M}_2$ ,  $\pi_1$  and  $\pi_2$ , directly by a compatibility principle.

Tests and model choice

Symmetrised compatible priors

## Generalised expected posterior priors

[Perez & Berger, 2000]

#### **EPP** Principle

Starting from reference priors  $\pi_1^N$  and  $\pi_2^N$ , substitute by prior distributions  $\pi_1$  and  $\pi_2$  that solve the system of integral equations

$$\pi_1(\theta_1) = \int_{\mathscr{X}} \pi_1^N(\theta_1 \,|\, x) m_2(x) \mathsf{d}x$$

and

$$\pi_2(\theta_2) = \int_{\mathscr{X}} \pi_2^N(\theta_2 \,|\, x) m_1(x) \mathsf{d}x,$$

where x is an imaginary minimal training sample and  $m_1$ ,  $m_2$  are the marginals associated with  $\pi_1$  and  $\pi_2$  respectively.

Tests and model choice

Symmetrised compatible priors

## Motivations

Eliminates the "imaginary observation" device and proper-isation through part of the data by integration under the "truth"

Symmetrised compatible priors

# Motivations

- Eliminates the "imaginary observation" device and proper-isation through part of the data by integration under the "truth"
- Assumes that both models are *equally* valid and equipped with ideal unknown priors

$$\pi_i, \quad i=1,2,$$

that yield "true" marginals balancing each model wrt the other

Symmetrised compatible priors

# Motivations

- Eliminates the "imaginary observation" device and proper-isation through part of the data by integration under the "truth"
- Assumes that both models are *equally* valid and equipped with ideal unknown priors

$$\pi_i, \quad i=1,2,$$

that yield "true" marginals balancing each model wrt the other

For a given π<sub>1</sub>, π<sub>2</sub> is an expected posterior prior Using both equations introduces symmetry into the game

Tests and model choice

Symmetrised compatible priors

# Dual properness

#### Theorem (Proper distributions)

If  $\pi_1$  is a probability density then  $\pi_2$  solution to

$$\pi_2(\theta_2) = \int_{\mathscr{X}} \pi_2^N(\theta_2 \,|\, x) m_1(x) dx$$

is a probability density

ⓒ Both EPPs are either proper or improper

Tests and model choice

Symmetrised compatible priors

#### Bayesian coherence

# Theorem (True Bayes factor) If $\pi_1$ and $\pi_2$ are the EPPs and if their marginals are finite, then the corresponding Bayes factor

 $B_{1,2}(x)$ 

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Tests and model choice

Symmetrised compatible priors

#### Bayesian coherence

Theorem (True Bayes factor) If  $\pi_1$  and  $\pi_2$  are the EPPs and if their marginals are finite, then the corresponding Bayes factor

 $B_{1,2}(x)$ 

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Obviously only interesting when both  $\pi_1$  and  $\pi_2$  are improper.

Tests and model choice

Symmetrised compatible priors

# Existence/Unicity

#### Theorem (Recurrence condition)

When both the observations and the parameters in both models are continuous, if the Markov chain with transition

$$Q\left(\theta_{1}' \mid \theta_{1}\right) = \int g\left(\theta_{1}, \theta_{1}', \theta_{2}, x, x'\right) \mathrm{d}x \mathrm{d}x' \mathrm{d}\theta_{2}$$

where

$$g\left(\theta_{1},\theta_{1}^{\prime},\theta_{2},x,x^{\prime}\right)=\pi_{1}^{N}\left(\theta_{1}^{\prime}\mid x\right)f_{2}\left(x\mid\theta_{2}\right)\pi_{2}^{N}\left(\theta_{2}\mid x^{\prime}\right)f_{1}\left(x^{\prime}\mid\theta_{1}\right),$$

is recurrent, then there exists a solution to the integral equations, unique up to a multiplicative constant.

Lests and model choice

Symmetrised compatible priors

#### Consequences

If the M chain is positive recurrent, there exists a unique pair of proper EPPS.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Symmetrised compatible priors

# Consequences

- If the M chain is positive recurrent, there exists a unique pair of proper EPPS.
- ► The transition density Q (θ'<sub>1</sub> | θ<sub>1</sub>) has a dual transition density on Θ<sub>2</sub>.

Symmetrised compatible priors

# Consequences

- If the M chain is positive recurrent, there exists a unique pair of proper EPPS.
- ► The transition density Q (θ'<sub>1</sub> | θ<sub>1</sub>) has a dual transition density on Θ<sub>2</sub>.
- There exists a parallel M chain on Θ<sub>2</sub> with identical properties; if one is (Harris) recurrent, so is the other.

Symmetrised compatible priors

# Consequences

- If the M chain is positive recurrent, there exists a unique pair of proper EPPS.
- ► The transition density Q (θ'<sub>1</sub> | θ<sub>1</sub>) has a dual transition density on Θ<sub>2</sub>.
- There exists a parallel M chain on Θ<sub>2</sub> with identical properties; if one is (Harris) recurrent, so is the other.
- Duality property found both in the MCMC literature and in decision theory

[Diebolt & Robert, 1992; Eaton, 1992]

Symmetrised compatible priors

# Consequences

- If the M chain is positive recurrent, there exists a unique pair of proper EPPS.
- ► The transition density Q (θ'<sub>1</sub> | θ<sub>1</sub>) has a dual transition density on Θ<sub>2</sub>.
- There exists a parallel M chain on Θ<sub>2</sub> with identical properties; if one is (Harris) recurrent, so is the other.
- Duality property found both in the MCMC literature and in decision theory

#### [Diebolt & Robert, 1992; Eaton, 1992]

When Harris recurrence holds but the EPPs cannot be found, the Bayes factor can be approximated by MCMC simulation

| Bayesian Statistics     |
|-------------------------|
| LTests and model choice |
| Examples                |

## Point null hypothesis testing

Testing  $H_0: \theta = \theta^*$  versus  $H_1: \theta \neq \theta^*$ , i.e.

$$\mathfrak{M}_{1}$$
 :  $f(x | \theta^{*})$ ,  
 $\mathfrak{M}_{2}$  :  $f(x | \theta)$ ,  $\theta \in \Theta$ .

Bayesian Statistics — Tests and model choice — Examples

#### Point null hypothesis testing

Testing  $H_0: \theta = \theta^*$  versus  $H_1: \theta \neq \theta^*$ , i.e.

$$\begin{aligned} \mathfrak{M}_1 &: f(x \mid \theta^*), \\ \mathfrak{M}_2 &: f(x \mid \theta), \theta \in \Theta. \end{aligned}$$

Default priors

$$\pi_{1}^{N}\left( heta
ight)=\delta_{ heta^{st}}\left( heta
ight)$$
 and  $\pi_{2}^{N}\left( heta
ight)=\pi^{N}\left( heta
ight)$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ
#### Point null hypothesis testing

Testing  $H_0: \theta = \theta^*$  versus  $H_1: \theta \neq \theta^*$ , i.e.

$$\begin{aligned} \mathfrak{M}_1 &: \quad f(x \mid \theta^*) \,, \\ \mathfrak{M}_2 &: \quad f(x \mid \theta) \,, \theta \in \Theta. \end{aligned}$$

Default priors

$$\pi_{1}^{N}\left( heta
ight)=\delta_{ heta^{st}}\left( heta
ight)$$
 and  $\pi_{2}^{N}\left( heta
ight)=\pi^{N}\left( heta
ight)$ 

For x minimal training sample, consider the proper priors

$$\pi_1\left( heta
ight) = \delta_{ heta^*}\left( heta
ight) ext{ and } \pi_2\left( heta
ight) = \int \pi^N\left( heta \,|\, x
ight) f\left(x \,|\, heta^*
ight) \mathsf{d}x$$

## Point null hypothesis testing (cont'd)

Then

$$\int \pi_1^N \left(\theta \,|\, x\right) m_2 \left(x\right) \mathsf{d}x = \delta_{\theta^*} \left(\theta\right) \int m_2 \left(x\right) \mathsf{d}x = \delta_{\theta^*} \left(\theta\right) = \pi_1 \left(\theta\right)$$

and

$$\int \pi_2^N\left(\theta \,|\, x\right) m_1\left(x\right) \mathsf{d} x = \int \pi^N\left(\theta \,|\, x\right) f\left(x \,|\, \theta^*\right) \mathsf{d} x = \pi_2\left(\theta\right)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ▲豆 > ◇ < ♡ < ♡

## Point null hypothesis testing (cont'd)

Then

$$\int \pi_1^N \left(\theta \,|\, x\right) m_2 \left(x\right) \mathsf{d}x = \delta_{\theta^*} \left(\theta\right) \int m_2 \left(x\right) \mathsf{d}x = \delta_{\theta^*} \left(\theta\right) = \pi_1 \left(\theta\right)$$

and

$$\int \pi_2^N\left(\theta \,|\, x\right) m_1\left(x\right) \mathsf{d} x = \int \pi^N\left(\theta \,|\, x\right) f\left(x \,|\, \theta^*\right) \mathsf{d} x = \pi_2\left(\theta\right)$$

 $(\hat{\mathbf{C}}\pi_1(\theta) \text{ and } \pi_2(\theta) \text{ are integral priors}$ 

# Point null hypothesis testing (cont'd)

Then

$$\int \pi_{1}^{N}(\theta \mid x) m_{2}(x) dx = \delta_{\theta^{*}}(\theta) \int m_{2}(x) dx = \delta_{\theta^{*}}(\theta) = \pi_{1}(\theta)$$

and

$$\int \pi_2^N\left(\theta \,|\, x\right) m_1\left(x\right) \mathsf{d} x = \int \pi^N\left(\theta \,|\, x\right) f\left(x \,|\, \theta^*\right) \mathsf{d} x = \pi_2\left(\theta\right)$$

 $(\hat{\mathbf{C}}\pi_1(\theta) \text{ and } \pi_2(\theta) \text{ are integral priors}$ 

#### Note

Uniqueness of the Bayes factor Integral priors and intrinsic priors coincide

[Moreno, Bertolino and Racugno, 1998]

LTests and model choice

Examples

## Location models

Two location models

$$\mathfrak{M}_{1} : f_{1}(x \mid \theta_{1}) = f_{1}(x - \theta_{1})$$
  
$$\mathfrak{M}_{2} : f_{2}(x \mid \theta_{2}) = f_{2}(x - \theta_{2})$$

lests and model choi

Examples

# Location models

Two location models

$$\mathfrak{M}_{1} : f_{1}(x \mid \theta_{1}) = f_{1}(x - \theta_{1})$$
  
$$\mathfrak{M}_{2} : f_{2}(x \mid \theta_{2}) = f_{2}(x - \theta_{2})$$

Default priors

$$\pi_{i}^{N}\left( heta_{i}
ight)=c_{i},\quad i=1,2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の久ぐ

with minimal training sample size one

L Tests and model choice

Examples

## Location models

Two location models

$$\mathfrak{M}_{1} : f_{1}(x \mid \theta_{1}) = f_{1}(x - \theta_{1})$$
  
$$\mathfrak{M}_{2} : f_{2}(x \mid \theta_{2}) = f_{2}(x - \theta_{2})$$

Default priors

$$\pi_{i}^{N}\left( heta_{i}
ight)=c_{i},\quad i=1,2$$

with minimal training sample size **one** Marginal densities

$$m_i^N(x) = c_i, \quad i = 1, 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の久ぐ

LTests and model choice

Examples

## Location models (cont'd)

In that case,  $\pi_1^N(\theta_1)$  and  $\pi_2^N(\theta_2)$  are integral priors when  $c_1 = c_2$ :

$$\int \pi_{1}^{N} (\theta_{1} | x) m_{2}^{N} (x) dx = \int c_{2} f_{1} (x - \theta_{1}) dx = c_{2}$$
  
$$\int \pi_{2}^{N} (\theta_{2} | x) m_{1}^{N} (x) dx = \int c_{1} f_{2} (x - \theta_{2}) dx = c_{1}.$$

-Tests and model choice

Examples

# Location models (cont'd)

In that case,  $\pi_1^N(\theta_1)$  and  $\pi_2^N(\theta_2)$  are integral priors when  $c_1 = c_2$ :

$$\int \pi_{1}^{N} (\theta_{1} | x) m_{2}^{N} (x) dx = \int c_{2} f_{1} (x - \theta_{1}) dx = c_{2}$$
  
$$\int \pi_{2}^{N} (\theta_{2} | x) m_{1}^{N} (x) dx = \int c_{1} f_{2} (x - \theta_{2}) dx = c_{1}.$$

© If the associated Markov chain is recurrent,

$$\pi_1^N\left(\theta_1\right) = \pi_2^N\left(\theta_2\right) = c$$

are the unique integral priors and they are intrinsic priors [Cano, Kessler & Moreno, 2004]

Lests and model choice

Examples

# Location models (cont'd)

Example (Normal versus double exponential)

$$\begin{aligned} \mathfrak{M}_1 &: \quad \mathcal{N}(\theta, 1), \quad \pi_1^N(\theta) = c_1, \\ \mathfrak{M}_2 &: \quad \mathcal{D}\mathcal{E}(\lambda, 1), \quad \pi_2^N(\lambda) = c_2. \end{aligned}$$

Minimal training sample size one and posterior densities

$$\pi_1^N\left( heta\,|\,x
ight)=\mathcal{N}(x,1)$$
 and  $\pi_2^N\left(\lambda\,|\,x
ight)=\mathcal{D}\mathcal{E}\left(x,1
ight)$ 

-Tests and model choice

Examples

## Location models (cont'd)

Example (Normal versus double exponential (2)) Transition  $\theta \to \theta'$  of the Markov chain made of steps : 1.  $x' = \theta + \varepsilon_1, \varepsilon_1 \sim \mathcal{N}(0, 1)$ 2.  $\lambda = x' + \varepsilon_2, \varepsilon_2 \sim \mathcal{DE}(0, 1)$ 3.  $x = \lambda + \varepsilon_3, \varepsilon_3 \sim \mathcal{DE}(0, 1)$ 4.  $\theta' = x + \varepsilon_4, \varepsilon_4 \sim \mathcal{N}(0, 1)$ i.e.  $\theta' = \theta + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4$  -Tests and model choice

Examples

# Location models (cont'd)

Example (Normal versus double exponential (2)) Transition  $\theta \to \theta'$  of the Markov chain made of steps : 1.  $x' = \theta + \varepsilon_1, \varepsilon_1 \sim \mathcal{N}(0, 1)$ 2.  $\lambda = x' + \varepsilon_2, \varepsilon_2 \sim \mathcal{DE}(0, 1)$ 3.  $x = \lambda + \varepsilon_3, \varepsilon_3 \sim \mathcal{DE}(0, 1)$ 4.  $\theta' = x + \varepsilon_4, \varepsilon_4 \sim \mathcal{N}(0, 1)$ i.e.  $\theta' = \theta + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4$ 

random walk in  $\theta$  with finite second moment, null recurrent © Resulting Lebesgue measures  $\pi_1(\theta) = 1 = \pi_2(\lambda)$  invariant and unique solutions to integral equations

# Admissibility and Complete Classes

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

**Bayesian Calculations** 

Tests and model choice

#### Admissibility and Complete Classes

Admissibility of Bayes estimators

Admissibility and Complete Classes

Admissibility of Bayes estimators

## Admissibility of Bayes estimators

## Warning

Bayes estimators may be inadmissible when the Bayes risk is infinite

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Normal mean)

Consider  $x \sim \mathcal{N}(\theta, 1)$  with a conjugate prior  $\theta \sim \mathcal{N}(0, \sigma^2)$  and loss

$$\mathsf{L}_{\alpha}(\theta,\delta) = e^{\theta^2/2\alpha}(\theta-\delta)^2$$

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Normal mean)

Consider  $x \sim \mathcal{N}(\theta, 1)$  with a conjugate prior  $\theta \sim \mathcal{N}(0, \sigma^2)$  and loss

$$L_{\alpha}(\theta, \delta) = e^{\theta^2/2\alpha}(\theta - \delta)^2$$

The associated generalized Bayes estimator is defined for  $\alpha > \sigma^2/\sigma^2 + 1$  and

$$\delta_{\alpha}^{\pi}(x) = \frac{\sigma^2 + 1}{\sigma^2} \left( \frac{\sigma^2 + 1}{\sigma^2} - \alpha^{-1} \right)^{-1} \delta^{\pi}(x)$$
$$= \frac{\alpha}{\alpha - \frac{\sigma^2}{\sigma^2 + 1}} \delta^{\pi}(x).$$

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <の<○</p>

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Normal mean (2))

The corresponding Bayes risk is

$$r(\pi) = \int_{-\infty}^{+\infty} e^{ heta^2/2lpha} e^{- heta^2/2\sigma^2} d heta$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Admissibility and Complete Classes

Admissibility of Bayes estimators

Example (Normal mean (2))

The corresponding Bayes risk is

$$r(\pi) = \int_{-\infty}^{+\infty} e^{ heta^2/2lpha} e^{- heta^2/2\sigma^2} d heta$$

which is infinite for  $\alpha \leq \sigma^2$ .

Admissibility and Complete Classes

Admissibility of Bayes estimators

Example (Normal mean (2))

The corresponding Bayes risk is

$$r(\pi) = \int_{-\infty}^{+\infty} e^{\theta^2/2lpha} e^{-\theta^2/2\sigma^2} d heta$$

which is infinite for  $\alpha \leq \sigma^2$ . Since  $\delta^{\pi}_{\alpha}(x) = cx$  with c > 1 when

$$\alpha > \alpha \frac{\sigma^2 + 1}{\sigma^2} - 1,$$

 $\delta^{\pi}_{\alpha}$  is inadmissible

Admissibility and Complete Classes

Admissibility of Bayes estimators

### Formal admissibility result

Theorem (Existence of an admissible Bayes estimator) If  $\Theta$  is a discrete set and  $\pi(\theta) > 0$  for every  $\theta \in \Theta$ , then there exists an admissible Bayes estimator associated with  $\pi$ 

Admissibility and Complete Classes

Admissibility of Bayes estimators

## Boundary conditions

lf

$$f(x|\theta) = h(x)e^{\theta \cdot T(x) - \psi(\theta)}, \qquad \theta \in [\underline{\theta}, \overline{\theta}]$$

and  $\pi$  is a conjugate prior,

$$\pi(\theta|t_0,\lambda) = e^{\theta.t_0 - \lambda\psi(\theta)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Admissibility and Complete Classes

Admissibility of Bayes estimators

# Boundary conditions

#### lf

$$f(x|\theta) = h(x)e^{\theta \cdot T(x) - \psi(\theta)}, \qquad \theta \in [\underline{\theta}, \overline{\theta}]$$

and  $\pi$  is a conjugate prior,

$$\pi(\theta|t_0,\lambda) = e^{\theta.t_0 - \lambda\psi(\theta)}$$

#### Theorem (Conjugate admissibility)

A sufficient condition for  $\mathbb{E}^{\pi}[\nabla \psi(\theta)|x]$  to be admissible is that, for every  $\underline{\theta} < \theta_0 < \overline{\theta}$ ,

$$\int_{\theta_0}^{\bar{\theta}} e^{-\gamma_0 \lambda \theta + \lambda \psi(\theta)} d\theta = \int_{\underline{\theta}}^{\theta_0} e^{-\gamma_0 \lambda \theta + \lambda \psi(\theta)} d\theta = +\infty.$$

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Binomial probability)

Consider  $x \sim \mathscr{B}(n, p)$ .

$$f(x|\theta) = {n \choose x} e^{(x/n)\theta} \left(1 + e^{\theta/n}\right)^{-n} \qquad \theta = n \log(p/1 - p)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Binomial probability)

Consider  $x \sim \mathscr{B}(n, p)$ .

$$f(x| heta) = inom{n}{x} e^{(x/n) heta} \left(1 + e^{ heta/n}
ight)^{-n} \qquad heta = n\log(p/1-p)$$

Then the two integrals

$$\int_{-\infty}^{\theta_0} e^{-\gamma_0\lambda\theta} \left(1+e^{\theta/n}\right)^{\lambda n} d\theta \text{ and } \int_{\theta_0}^{+\infty} e^{-\gamma_0\lambda\theta} \left(1+e^{\theta/n}\right)^{\lambda n} d\theta$$

cannot diverge simultaneously if  $\lambda < 0$ .

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Binomial probability (2))

For  $\lambda > 0$ , the second integral is divergent if  $\lambda(1 - \gamma_0) > 0$  and the first integral is divergent if  $\gamma_0 \lambda \ge 0$ .

Admissibility and Complete Classes

Admissibility of Bayes estimators

#### Example (Binomial probability (2))

For  $\lambda > 0$ , the second integral is divergent if  $\lambda(1 - \gamma_0) > 0$  and the first integral is divergent if  $\gamma_0 \lambda \ge 0$ .

Admissible Bayes estimators of p

$$\delta^{\pi}(x) = a \frac{x}{n} + b, \qquad 0 \le a \le 1, \quad b \ge 0, \quad a+b \le 1.$$

Admissibility and Complete Classes

Admissibility of Bayes estimators

### Differential representations

Setting of multidimensional exponential families

$$f(x|\theta) = h(x)e^{\theta \cdot x - \psi(\theta)}, \qquad \theta \in \mathbb{R}^p$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Admissibility and Complete Classes

Admissibility of Bayes estimators

### Differential representations

Setting of multidimensional exponential families

$$f(x|\theta) = h(x)e^{\theta \cdot x - \psi(\theta)}, \qquad \theta \in \mathbb{R}^p$$

Measure g such that

$$I_x(\nabla g) = \int ||\nabla g(\theta)|| e^{\theta \cdot x - \psi(\theta)} d\theta < +\infty$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Admissibility and Complete Classes

Admissibility of Bayes estimators

### Differential representations

Setting of multidimensional exponential families

$$f(x|\theta) = h(x)e^{\theta \cdot x - \psi(\theta)}, \qquad \theta \in \mathbb{R}^p$$

Measure g such that

$$I_x(\nabla g) = \int ||\nabla g( heta)|| e^{ heta.x - \psi( heta)} \, d heta < +\infty$$

Representation of the posterior mean of  $\nabla \psi(\theta)$ 

$$\delta_g(x) = x + \frac{I_x(\nabla g)}{I_x(g)}.$$

LAdmissibility and Complete Classes

Admissibility of Bayes estimators

## Sufficient admissibility conditions

$$\begin{split} \int_{\{||\theta||>1\}} \frac{g(\theta)}{||\theta||^2 \log^2(||\theta|| \vee 2)} d\theta &< \infty, \\ \int \frac{||\nabla g(\theta)||^2}{g(\theta)} d\theta &< \infty, \end{split}$$

and

$$\forall heta \in \Theta, \qquad R( heta, \delta_g) < \infty,$$

Admissibility and Complete Classes

Admissibility of Bayes estimators

# Consequence

| Theorem        |                                         |  |
|----------------|-----------------------------------------|--|
| lf             |                                         |  |
|                | $\Theta = \mathbb{R}^p \qquad p \leq 2$ |  |
| the estimator  |                                         |  |
|                | $\delta_0(x) = x$                       |  |
| is admissible. |                                         |  |

(ロト (個) (E) (E) (E) (の)()

Admissibility and Complete Classes

Admissibility of Bayes estimators

## Consequence

| Theorem        |                                         |  |
|----------------|-----------------------------------------|--|
| lf             |                                         |  |
|                | $\Theta = \mathbb{R}^p \qquad p \leq 2$ |  |
| the estimator  |                                         |  |
|                | $\delta_0(x) = x$                       |  |
| is admissible. |                                         |  |

(日) (日) (日) (日) (日) (日) (日)

Example (Normal mean (3)) If  $x \sim \mathcal{N}_p(\theta, I_p)$ ,  $p \leq 2$ ,  $\delta_0(x) = x$  is admissible.

Admissibility and Complete Classes

Admissibility of Bayes estimators

Special case of  $\mathcal{N}_{p}(\theta, \Sigma)$ 

A generalised Bayes estimator of the form  $\delta(x) = (1 - h(||x||))x$ 

1. is inadmissible if there exist  $\epsilon > 0$  and  $K < +\infty$  such that

$$||x||^2 h(||x||) for  $||x|| > K$$$

2. is admissible if there exist  $K_1$  and  $K_2$  such that  $h(||x||)||x|| \le K_1$  for every x and

$$||x||^2 h(||x||) \ge p - 2$$
 for  $||x|| > K_2$ 

[Brown, 1971]

Admissibility and Complete Classes

Admissibility of Bayes estimators

### Recurrence conditions

#### **General case**

Estimation of a **bounded** function  $g(\theta)$ For a given prior  $\pi$ , Markovian transition kernel

$$K( heta|\eta) = \int_{\mathscr{X}} \pi( heta|x) f(x|\eta) \, dx,$$

#### Theorem (Recurrence)

The generalised Bayes estimator of  $g(\theta)$  is admissible if the associated Markov chain  $(\theta^{(n)})$  is  $\pi$ -recurrent.

[Eaton, 1994]

Admissibility and Complete Classes

Admissibility of Bayes estimators

# Recurrence conditions (cont.)

Extension to the **unbounded case**, based on the (case dependent) transition kernel

$$T(\theta|\eta) = \Psi(\eta)^{-1}(\varphi(\theta) - \varphi(\eta))^2 K(\theta|\eta),$$

where  $\Psi(\theta)$  normalizing factor

Admissibility and Complete Classes

Admissibility of Bayes estimators

# Recurrence conditions (cont.)

Extension to the **unbounded case**, based on the (case dependent) transition kernel

$$T(\theta|\eta) = \Psi(\eta)^{-1}(\varphi(\theta) - \varphi(\eta))^2 K(\theta|\eta),$$

where  $\Psi(\theta)$  normalizing factor

Theorem (Recurrence(2))

The generalised Bayes estimator of  $\varphi(\theta)$  is admissible if the associated Markov chain  $(\theta^{(n)})$  is  $\pi$ -recurrent.

[Eaton, 1999]
Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

# Necessary and sufficient admissibility conditions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Formalisation of the statement that...

Admissibility and Complete Classes

-Necessary and sufficient admissibility conditions

# Necessary and sufficient admissibility conditions

Formalisation of the statement that...

...all admissible estimators are limits of Bayes estimators...

Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

# Blyth's sufficient condition

## Theorem (Blyth condition)

If, for an estimator  $\delta_0$ , there exists a sequence  $(\pi_n)$  of generalised prior distributions such that

- (i)  $r(\pi_n, \delta_0)$  is finite for every n;
- (ii) for every nonempty open set  $C \subset \Theta$ , there exist K > 0 and N such that, for every  $n \ge N$ ,  $\pi_n(C) \ge K$ ; and

(iii) 
$$\lim_{n \to +\infty} r(\pi_n, \delta_0) - r(\pi_n) = 0;$$

then  $\delta_0$  is admissible.

Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

Example (Normal mean (4)) Consider  $x \sim \mathcal{N}(\theta, 1)$  and  $\delta_0(x) = x$ Choose  $\pi_n$  as the measure with density

$$g_n(x) = e^{-\theta^2/2n}$$

### [condition (ii) is satisfied]

The Bayes estimator for  $\pi_n$  is

$$\delta_n(x) = \frac{nx}{n+1},$$

and

$$r(\pi_n) = \int_{\mathbb{R}} \left[ \frac{\theta^2}{(n+1)^2} + \frac{n^2}{(n+1)^2} \right] g_n(\theta) \, d\theta = \sqrt{2\pi n} \, \frac{n}{n+1}$$

[condition (i) is satisfied]

Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

## Example (Normal mean (5))

while

$$r(\pi_n, \delta_0) = \int_{\mathbb{R}} 1 g_n(\theta) d\theta = \sqrt{2\pi n}.$$

Moreover,

$$r(\pi_n, \delta_0) - r(\pi_n) = \sqrt{2\pi n}/(n+1)$$

converges to 0.

[condition (iii) is satisfied]

Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

# Stein's necessary and sufficient condition

### Assumptions

(i) f(x|θ) is continuous in θ and strictly positive on Θ; and
(ii) the loss L is strictly convex, continuous and, if E ⊂ Θ is compact,

 $\lim_{\|\delta\|\to+\infty}\inf_{\theta\in E}\mathsf{L}(\theta,\delta)=+\infty.$ 

Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

# Stein's necessary and sufficient condition (cont.)

## Theorem (Stein's n&s condition)

- $\delta$  is admissible iff there exist
  - 1. a sequence  $(F_n)$  of increasing compact sets such that

$$\Theta = \bigcup_n F_n,$$

2. a sequence  $(\pi_n)$  of finite measures with support  $F_n$ , and 3. a sequence  $(\delta_n)$  of Bayes estimators associated with  $\pi_n$ such that Admissibility and Complete Classes

Necessary and sufficient admissibility conditions

# Stein's necessary and sufficient condition (cont.)

Theorem (Stein's n&s condition (cont.))  
(i) there exists a compact set 
$$E_0 \subset \Theta$$
 such that  $\inf_n \pi_n(E_0) \ge 1$ ;  
(ii) if  $E \subset \Theta$  is compact,  $\sup_n \pi_n(E) < +\infty$ ;  
(iii)  $\lim_n r(\pi_n, \delta) - r(\pi_n) = 0$ ; and  
(iv)  $\lim_n R(\theta, \delta_n) = R(\theta, \delta)$ .

(日) (日) (日) (日) (日) (日) (日) (日)

Admissibility and Complete Classes

Complete classes

## Complete classes

Definition (Complete class)

A class  $\mathscr{C}$  of estimators is *complete* if, for every  $\delta' \notin \mathscr{C}$ , there exists  $\delta \in \mathscr{C}$  that dominates  $\delta'$ . The class is *essentially complete* if, for every  $\delta' \notin \mathscr{C}$ , there exists  $\delta \in \mathscr{C}$  that is at least as good as  $\delta'$ .

Admissibility and Complete Classes

Complete classes

## A special case

$$\Theta = \{\theta_1, \theta_2\}$$
, with risk set

$$\mathscr{R} = \{ r = (R(\theta_1, \delta), R(\theta_2, \delta)), \ \delta \in \mathscr{D}^* \},\$$

\*ロト \*部ト \*ミト \*ミト 「ミニ のくで

bounded and closed from below

Admissibility and Complete Classes

Complete classes

## A special case

$$\Theta = \{ heta_1, heta_2\}$$
, with risk set

$$\mathscr{R} = \{ r = (R(\theta_1, \delta), R(\theta_2, \delta)), \ \delta \in \mathscr{D}^* \},\$$

bounded and closed from below

Then, the lower boundary,  $\Gamma(\mathscr{R})$ , provides the *admissible* points of  $\mathscr{R}$ .

LAdmissibility and Complete Classes

Complete classes



<□> <□> <□> <=> <=> <=> <=> <=> <<

Admissibility and Complete Classes

Complete classes

## A special case (cont.)

#### Reason

For every  $r \in \Gamma(\mathscr{R})$ , there exists a tangent line to  $\mathscr{R}$  going through r, with positive slope and equation

$$p_1 r_1 + p_2 r_2 = k$$

Admissibility and Complete Classes

Complete classes

# A special case (cont.)

#### Reason

For every  $r \in \Gamma(\mathscr{R})$ , there exists a tangent line to  $\mathscr{R}$  going through r, with positive slope and equation

$$p_1 r_1 + p_2 r_2 = k$$

Therefore r is a Bayes estimator for  $\pi(\theta_i) = p_i$  (i = 1, 2)

Admissibility and Complete Classes

Complete classes

## Wald's theorems

Theorem

If  $\Theta$  is finite and if  $\mathscr{R}$  is bounded and closed from below, then the set of Bayes estimators constitutes a complete class

Admissibility and Complete Classes

Complete classes

## Wald's theorems

#### Theorem

If  $\Theta$  is finite and if  $\mathscr{R}$  is bounded and closed from below, then the set of Bayes estimators constitutes a complete class

#### Theorem

If  $\Theta$  is compact and the risk set  $\mathscr{R}$  is convex, if all estimators have a continuous risk function, the Bayes estimators constitute a complete class.

Admissibility and Complete Classes

Complete classes

## Extensions

If  $\Theta$  not compact, in many cases, complete classes are made of generalised Bayes estimators

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Admissibility and Complete Classes

Complete classes

## Extensions

If  $\Theta$  not compact, in many cases, complete classes are made of generalised Bayes estimators

#### Example

When estimating the natural parameter  $\boldsymbol{\theta}$  of an exponential family

$$x \sim f(x|\theta) = e^{\theta \cdot x - \psi(\theta)} h(x), \quad x, \theta \in \mathbb{R}^k,$$

under quadratic loss, every admissible estimator is a generalised Bayes estimator.

# **Hierarchical and Empirical Bayes Extensions**

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

Bayesian Calculations

Tests and model choice

Admissibility and Complete Classes

The Bayesian analysis is sufficiently reductive to produce effective decisions, but this efficiency can also be misused.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

The Bayesian analysis is sufficiently reductive to produce effective decisions, but this efficiency can also be misused. The prior information is rarely rich enough to define a prior distribution exactly. The Bayesian analysis is sufficiently reductive to produce effective decisions, but this efficiency can also be misused. The prior information is rarely rich enough to define a prior distribution exactly.

Uncertainty must be included within the Bayesian model:

- Further prior modelling
- Upper and lower probabilities [Dempster-Shafer]
- Imprecise probabilities [Walley]

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Hierarchical Bayes analysis

Decomposition of the prior distribution into several conditional levels of distributions

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Hierarchical Bayes analysis

Decomposition of the prior distribution into several conditional levels of distributions

Often two levels: the first-level distribution is generally a conjugate prior, with parameters distributed from the second-level distribution

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Hierarchical Bayes analysis

Decomposition of the prior distribution into several conditional levels of distributions

Often two levels: the first-level distribution is generally a conjugate prior, with parameters distributed from the second-level distribution

(日) (日) (日) (日) (日) (日) (日)

Real life motivations (multiple experiments, meta-analysis, ...)

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Hierarchical models

Definition (Hierarchical model) A *hierarchical Bayes model* is a Bayesian statistic model,  $(f(x|\theta), \pi(\theta))$ , where

$$\pi(\theta) = \int_{\Theta_1 \times \ldots \times \Theta_n} \pi_1(\theta | \theta_1) \pi_2(\theta_1 | \theta_2) \cdots \pi_{n+1}(\theta_n) d\theta_1 \cdots d\theta_{n+1}$$

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Hierarchical models

Definition (Hierarchical model) A *hierarchical Bayes model* is a Bayesian statistic model,  $(f(x|\theta), \pi(\theta))$ , where

$$\pi(\theta) = \int_{\Theta_1 \times \ldots \times \Theta_n} \pi_1(\theta | \theta_1) \pi_2(\theta_1 | \theta_2) \cdots \pi_{n+1}(\theta_n) \, d\theta_1 \cdots d\theta_{n+1}$$

The parameters  $\theta_i$  are called *hyperparameters of level* i  $(1 \le i \le n)$ .

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Example (Rats (1))

Experiment where rats are intoxicated by a substance, then treated by either a placebo or a drug:

$$\begin{array}{ll} x_{ij} & \sim \mathcal{N}(\theta_i, \sigma_c^2), & 1 \leq j \leq J_i^c, \quad \text{control} \\ y_{ij} & \sim \mathcal{N}(\theta_i + \delta_i, \sigma_a^2), & 1 \leq j \leq J_i^a, \quad \text{intoxication} \\ z_{ij} & \sim \mathcal{N}(\theta_i + \delta_i + \xi_i, \sigma_t^2), & 1 \leq j \leq J_i^t, \quad \text{treatment} \end{array}$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Example (Rats (1))

Experiment where rats are intoxicated by a substance, then treated by either a placebo or a drug:

$$\begin{array}{ll} x_{ij} & \sim \mathcal{N}(\theta_i, \sigma_c^2), & 1 \leq j \leq J_i^c \,, \quad \text{control} \\ y_{ij} & \sim \mathcal{N}(\theta_i + \delta_i, \sigma_a^2), & 1 \leq j \leq J_i^a \,, \quad \text{intoxication} \\ z_{ij} & \sim \mathcal{N}(\theta_i + \delta_i + \xi_i, \sigma_t^2), & 1 \leq j \leq J_i^t \,, \quad \text{treatment} \end{array}$$

Additional variable  $w_i$ , equal to 1 if the rat is treated with the drug, and 0 otherwise.

LHierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

Example (Rats (2)) Prior distributions  $(1 \le i \le I)$ ,

$$\theta_i \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2), \qquad \delta_i \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^2),$$

and

$$\xi_i \sim \mathcal{N}(\mu_P, \sigma_P^2)$$
 or  $\xi_i \sim \mathcal{N}(\mu_D, \sigma_D^2)$ 

depending on whether the ith rat is treated with a placebo or a drug.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

Example (Rats (2)) Prior distributions  $(1 \le i \le I)$ ,

$$\theta_i \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2), \qquad \delta_i \sim \mathcal{N}(\mu_{\delta}, \sigma_{\delta}^2),$$

and

$$\xi_i \sim \mathcal{N}(\mu_P, \sigma_P^2)$$
 or  $\xi_i \sim \mathcal{N}(\mu_D, \sigma_D^2)$ 

depending on whether the ith rat is treated with a placebo or a drug.

Hyperparameters of the model,

 $\mu_{\theta}, \mu_{\delta}, \mu_{P}, \mu_{D}, \sigma_{c}, \sigma_{a}, \sigma_{t}, \sigma_{\theta}, \sigma_{\delta}, \sigma_{P}, \sigma_{D},$ 

associated with Jeffreys' noninformative priors.

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Justifications

1. Objective reasons based on prior information

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Justifications

## 1. Objective reasons based on prior information

Example (Rats (3))

Alternative prior

$$\delta_i \sim p\mathcal{N}(\mu_{\delta 1}, \sigma_{\delta 1}^2) + (1-p)\mathcal{N}(\mu_{\delta 2}, \sigma_{\delta 2}^2),$$

allows for two possible levels of intoxication.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# 2. Separation of structural information from subjective information

\*ロト \*部ト \*ミト \*ミト 「ミニ のくで

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# 2. Separation of structural information from subjective information

Example (Uncertainties about generalized linear models)

$$y_i | x_i \sim \exp\{\theta_i \cdot y_i - \psi(\theta_i)\},\$$

$$\nabla \psi(\theta_i) = \mathbb{E}[y_i|x_i] = h(x_i^t \beta),$$

where h is the *link* function

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# 2. Separation of structural information from subjective information

Example (Uncertainties about generalized linear models)

$$y_i | x_i \sim \exp\{\theta_i \cdot y_i - \psi(\theta_i)\}, \qquad \nabla \psi(\theta_i) = \mathbb{E}[y_i | x_i] = h(x_i^t \beta),$$

where h is the link function The linear constraint  $\nabla \psi(\theta_i) = h(x_i^t \beta)$  can move to an higher level of the hierarchy,

$$\theta_i \sim \exp\left\{\lambda \left[\theta_i \cdot \xi_i - \psi(\theta_i)\right]\right\}$$

with  $\mathbb{E}[
abla\psi( heta_i)] = h(x_i^teta)$  and

 $\beta \sim \mathcal{N}_q(\mathbf{0}, \tau^2 I_q)$
Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

3. In noninformative settings, compromise between the Jeffreys noninformative distributions, and the conjugate distributions.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

- 3. In noninformative settings, compromise between the Jeffreys noninformative distributions, and the conjugate distributions.
- 4. Robustification of the usual Bayesian analysis from a frequentist point of view

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

- 3. In noninformative settings, compromise between the Jeffreys noninformative distributions, and the conjugate distributions.
- 4. Robustification of the usual Bayesian analysis from a frequentist point of view
- 5. Often simplifies Bayesian calculations

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Conditional decompositions

Easy decomposition of the posterior distribution

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Conditional decompositions

Easy decomposition of the posterior distribution For instance, if

$$\theta|\theta_1 \sim \pi_1(\theta|\theta_1), \qquad \theta_1 \sim \pi_2(\theta_1),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Conditional decompositions

# Easy decomposition of the posterior distribution For instance, if

$$heta| heta_1 \sim \pi_1( heta| heta_1), \qquad heta_1 \sim \pi_2( heta_1),$$

then

$$\pi(\theta|x) = \int_{\Theta_1} \pi(\theta|\theta_1, x) \pi(\theta_1|x) \, d\theta_1,$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Conditional decompositions (cont.)

#### where

$$\pi(\theta|\theta_1, x) = \frac{f(x|\theta)\pi_1(\theta|\theta_1)}{m_1(x|\theta_1)},$$
  

$$m_1(x|\theta_1) = \int_{\Theta} f(x|\theta)\pi_1(\theta|\theta_1) d\theta,$$
  

$$\pi(\theta_1|x) = \frac{m_1(x|\theta_1)\pi_2(\theta_1)}{m(x)},$$
  

$$m(x) = \int_{\Theta_1} m_1(x|\theta_1)\pi_2(\theta_1) d\theta_1$$

.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Conditional decompositions (cont.)

Moreover, this decomposition works for the posterior moments, that is, for every function h,

$$\mathbb{E}^{\pi}[h(\theta)|x] = \mathbb{E}^{\pi(\theta_1|x)}\left[\mathbb{E}^{\pi_1}\left[h(\theta)|\theta_1,x\right]\right],$$

where

$$\mathbb{E}^{\pi_1}[h(\theta)|\theta_1,x] = \int_{\Theta} h(\theta)\pi(\theta|\theta_1,x) \, d\theta.$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

Example (Posterior distribution of the complete parameter vector)

Posterior distribution of the complete parameter vector

$$\pi((\theta_{i}, \delta_{i}, \xi_{i})_{i}, \mu_{\theta}, \dots, \sigma_{c}, \dots | \mathscr{D}) \propto \prod_{i=1}^{I} \{\exp -\{(\theta_{i} - \mu_{\theta})^{2}/2\sigma_{\theta}^{2} + (\delta_{i} - \mu_{\delta})^{2}/2\sigma_{\delta}^{2}\} \prod_{j=1}^{J_{i}^{c}} \exp -\{(x_{ij} - \theta_{i})^{2}/2\sigma_{c}^{2}\} \prod_{j=1}^{J_{i}^{a}} \exp -\{(y_{ij} - \theta_{i} - \delta_{i})^{2}/2\sigma_{a}^{2}\} \prod_{j=1}^{J_{i}^{t}} \exp -\{(z_{ij} - \theta_{i} - \delta_{i} - \xi_{i})^{2}/2\sigma_{t}^{2}\} \right\}$$
$$\prod_{\ell_{i}=0}^{I} \exp -\{(\xi_{i} - \mu_{P})^{2}/2\sigma_{P}^{2}\} \prod_{\ell_{i}=1}^{I} \exp -\{(\xi_{i} - \mu_{D})^{2}/2\sigma_{D}^{2}\} \max_{\ell_{i}=1}^{I} \exp -\{(\xi_{i} - \mu_{D})^{2}/2\sigma_{D}^{2}/2\sigma_{D}^{2}\} \max_{\ell_{i}=1}^{I} \exp -\{(\xi_{i} - \mu$$

200

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Local conditioning property

Theorem (Decomposition) For the hierarchical model

$$\pi(\theta) = \int_{\Theta_1 \times \ldots \times \Theta_n} \pi_1(\theta | \theta_1) \pi_2(\theta_1 | \theta_2) \cdots \pi_{n+1}(\theta_n) \, d\theta_1 \cdots d\theta_{n+1}.$$

we have

$$\pi(\theta_i|x,\theta,\theta_1,\ldots,\theta_n) = \pi(\theta_i|\theta_{i-1},\theta_{i+1})$$

with the convention  $\theta_0 = \theta$  and  $\theta_{n+1} = 0$ .

Hierarchical Bayes analysis

### Computational issues

Rarely an explicit derivation of the corresponding Bayes estimators Natural solution in hierarchical settings: use a simulation-based approach exploiting the hierarchical conditional structure

Hierarchical Bayes analysis

### Computational issues

Rarely an explicit derivation of the corresponding Bayes estimators Natural solution in hierarchical settings: use a simulation-based approach exploiting the hierarchical conditional structure

Example (Rats (4))

The full conditional distributions correspond to standard distributions and Gibbs sampling applies.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis



#### Convergence of the posterior means

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis



#### Posteriors of the effects

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

|             | $\mu_{\delta}$ | $\mu_D$     | $\mu_P$      | $\mu_D - \mu_P$ |
|-------------|----------------|-------------|--------------|-----------------|
| Probability | 1.00           | 0.9998      | 0.94         | 0.985           |
| Confidence  | [-3.48,-2.17]  | [0.94,2.50] | [-0.17,1.24] | [0.14,2.20]     |

Posterior probabilities of significant effects

Hierarchical Bayes analysis

### Hierarchical extensions for the normal model

For

$$x \sim \mathscr{N}_p(\theta, \Sigma), \qquad \theta \sim \mathscr{N}_p(\mu, \Sigma_{\pi})$$

the hierarchical Bayes estimator is

$$\delta^{\pi}(x) = \mathbb{E}^{\pi_2(\mu, \Sigma_{\pi}|x)}[\delta(x|\mu, \Sigma_{\pi})],$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical Bayes analysis

### Hierarchical extensions for the normal model

For

$$x \sim \mathscr{N}_p(\theta, \Sigma), \qquad \theta \sim \mathscr{N}_p(\mu, \Sigma_{\pi})$$

the hierarchical Bayes estimator is

$$\delta^{\pi}(x) = \mathbb{E}^{\pi_2(\mu, \Sigma_{\pi}|x)}[\delta(x|\mu, \Sigma_{\pi})],$$

with

$$\delta(x|\mu, \Sigma_{\pi}) = x - \Sigma W(x - \mu),$$
  

$$W = (\Sigma + \Sigma_{\pi})^{-1},$$
  

$$\pi_2(\mu, \Sigma_{\pi}|x) \propto (\det W)^{1/2} \exp\{-(x - \mu)^t W(x - \mu)/2\} \pi_2(\mu, \Sigma_{\pi}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Example (Exchangeable normal)

Consider the exchangeable hierarchical model

$$\begin{array}{lll} x|\theta & \sim & \mathcal{N}_p(\theta, \sigma_1^2 I_p), \\ \theta|\xi & \sim & \mathcal{N}_p(\xi \mathbf{1}, \sigma_\pi^2 I_p), \\ \xi & \sim & \mathcal{N}(\xi_0, \tau^2), \end{array}$$

where  $\mathbf{1} = (1, \dots, 1)^t \in \mathbb{R}^p$ . In this case,

$$\delta(x|\xi,\sigma_{\pi}) = x - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_{\pi}^2} (x - \xi \mathbf{1}),$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Example (Exchangeable normal (2))

$$\begin{aligned} \pi_2(\xi, \sigma_\pi^2 | x) &\propto \quad (\sigma_1^2 + \sigma_\pi^2)^{-p/2} \exp\{-\frac{\|x - \xi\mathbf{1}\|^2}{2(\sigma_1^2 + \sigma_\pi^2)}\}e^{-(\xi - \xi_0)^2/2\tau^2}\pi_2(\sigma_\pi^2) \\ &\propto \quad \frac{\pi_2(\sigma_\pi^2)}{(\sigma_1^2 + \sigma_\pi^2)^{p/2}} \exp\left\{-\frac{p(\bar{x} - \xi)^2}{2(\sigma_1^2 + \sigma_\pi^2)} - \frac{s^2}{2(\sigma_1^2 + \sigma_\pi^2)} - \frac{(\xi - \xi_0)^2}{2\tau^2}\right\} \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

with  $s^2 = \sum_i (x_i - \bar{x})^2$ .

LHierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Example (Exchangeable normal (2))

$$\begin{aligned} r_2(\xi, \sigma_\pi^2 | x) &\propto \quad (\sigma_1^2 + \sigma_\pi^2)^{-p/2} \exp\{-\frac{\|x - \xi\mathbf{1}\|^2}{2(\sigma_1^2 + \sigma_\pi^2)}\}e^{-(\xi - \xi_0)^2/2\tau^2} \pi_2(\sigma_\pi^2) \\ &\propto \quad \frac{\pi_2(\sigma_\pi^2)}{(\sigma_1^2 + \sigma_\pi^2)^{p/2}} \exp\left\{-\frac{p(\bar{x} - \xi)^2}{2(\sigma_1^2 + \sigma_\pi^2)} - \frac{s^2}{2(\sigma_1^2 + \sigma_\pi^2)} - \frac{(\xi - \xi_0)^2}{2\tau^2}\right\} \end{aligned}$$

with  $s^2 = \sum_i (x_i - \bar{x})^2$ . Then

$$\delta^{\pi}(x) = \mathbb{E}^{\pi_{2}(\sigma_{\pi}^{2} \mid x)} \left[ x - \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{\pi}^{2}} (x - \bar{x}\mathbf{1}) - \frac{\sigma_{1}^{2} + \sigma_{\pi}^{2}}{\sigma_{1}^{2} + \sigma_{\pi}^{2} + p\tau^{2}} (\bar{x} - \xi_{0})\mathbf{1} \right]$$

and

$$\pi_2(\sigma_\pi^2|x) \propto \frac{\tau \exp{-\frac{1}{2} \left[ \frac{s^2}{\sigma_1^2 + \sigma_\pi^2} + \frac{p(\bar{x} - \xi_0)^2}{p\tau^2 + \sigma_1^2 + \sigma_\pi^2} \right]}{(\sigma_1^2 + \sigma_\pi^2)^{(p-1)/2} (\sigma_1^2 + \sigma_\pi^2 + p\tau^2)^{1/2}} \pi_2(\sigma_\pi^2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### Example (Exchangeable normal (3))

Notice the particular form of the hierarchical Bayes estimator

$$\delta^{\pi}(x) = x - \mathbb{E}^{\pi_{2}(\sigma_{\pi}^{2}|x)} \left[ \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{\pi}^{2}} \right] (x - \bar{x}\mathbf{1}) \\ - \mathbb{E}^{\pi_{2}(\sigma_{\pi}^{2}|x)} \left[ \frac{\sigma_{1}^{2} + \sigma_{\pi}^{2}}{\sigma_{1}^{2} + \sigma_{\pi}^{2} + p\tau^{2}} \right] (\bar{x} - \xi_{0})\mathbf{1}.$$

[Double shrinkage]

Hierarchical Bayes analysis

### The Stein effect

If a minimax estimator is unique, it is admissible

Hierarchical Bayes analysis

### The Stein effect

If a minimax estimator is unique, it is admissible

#### Converse

If a constant risk minimax estimator is inadmissible, every other minimax estimator has a uniformly smaller risk (!)

Hierarchical Bayes analysis

### The Stein Paradox

If a standard estimator  $\delta^*(x) = (\delta_0(x_1), \dots, \delta_0(x_p))$  is evaluated under weighted quadratic loss

$$\sum_{i=1}^p \omega_i (\delta_i - \theta_i)^2,$$

with  $\omega_i > 0$  (i = 1, ..., p), there exists  $p_0$  such that  $\delta^*$  is not admissible for  $p \ge p_0$ ,

Hierarchical Bayes analysis

### The Stein Paradox

If a standard estimator  $\delta^*(x) = (\delta_0(x_1), \dots, \delta_0(x_p))$  is evaluated under weighted quadratic loss

$$\sum_{i=1}^p \omega_i (\delta_i - \theta_i)^2,$$

with  $\omega_i > 0$  (i = 1, ..., p), there exists  $p_0$  such that  $\delta^*$  is not admissible for  $p \ge p_0$ , although the components  $\delta_0(x_i)$  are separately admissible to estimate the  $\theta_i$ 's.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### James-Stein estimator

In the normal case,

$$\delta^{JS}(x) = \left(1 - \frac{p-2}{||x||^2}\right)x,$$

dominates  $\delta_0(x) = x$  under quadratic loss for  $p \ge 3$ , that is,

$$p = \mathbb{E}_{\theta}[||\delta_0(x) - \theta||^2] > \mathbb{E}_{\theta}[||\delta^{JS}(x) - \theta||^2].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### James-Stein estimator

In the normal case,

$$\delta^{JS}(x) = \left(1 - \frac{p-2}{||x||^2}\right)x,$$

dominates  $\delta_0(x) = x$  under quadratic loss for  $p \ge 3$ , that is,

$$p = \mathbb{E}_{\theta}[||\delta_0(x) - \theta||^2] > \mathbb{E}_{\theta}[||\delta^{JS}(x) - \theta||^2].$$

And

$$\begin{split} \delta_c^+(x) &= \left(1 - \frac{c}{||x||^2}\right)^+ x \\ &= \begin{cases} (1 - \frac{c}{||x||^2})x & \text{if } ||x||^2 > c, \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

improves on  $\delta_0$  when

0 < c < 2(p-2)

Hierarchical Bayes analysis

### Universality

Other distributions than the normal distribution

Hierarchical Bayes analysis

### Universality

Other distributions than the normal distribution

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Other losses other than the quadratic loss

Hierarchical Bayes analysis

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility

Hierarchical Bayes analysis

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility
- George's multiple shrinkage

Hierarchical Bayes analysis

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility
- George's multiple shrinkage
- Robustess against distribution

Hierarchical Bayes analysis

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility
- George's multiple shrinkage
- Robustess against distribution
- Applies for confidence regions

Hierarchical Bayes analysis

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility
- George's multiple shrinkage
- Robustess against distribution
- Applies for confidence regions
- Applies for accuracy (or loss) estimation

Hierarchical Bayes analysis

# Universality

- Other distributions than the normal distribution
- Other losses other than the quadratic loss
- Connections with admissibility
- George's multiple shrinkage
- Robustess against distribution
- Applies for confidence regions
- Applies for accuracy (or loss) estimation
- Cannot occur in finite parameter spaces

(日) (日) (日) (日) (日) (日) (日)

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

### A general Stein-type domination result

Consider  $z = (x^t, y^t)^t \in \mathbb{R}^p$ , with distribution $z \sim f(||x - heta||^2 + ||y||^2),$ 

and  $x \in \mathbb{R}^q$ ,  $y \in \mathbb{R}^{p-q}$ .
Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# A general Stein-type domination result (cont.)

Theorem (Stein domination of  $\delta_0$ )

$$\delta_h(z) = (1 - h(||x||^2, ||y||^2))x$$

dominates  $\delta_0$  under quadratic loss if there exist  $\alpha$ ,  $\beta>0$  such that:

(1)  $t^{\alpha}h(t,u)$  is a nondecreasing function of t for every u; (2)  $u^{-\beta}h(t,u)$  is a nonincreasing function of u for every t; and (3)  $0 \le (t/u)h(t,u) \le \frac{2(q-2)\alpha}{p-q-2+4\beta}$ .

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# Optimality of hierarchical Bayes estimators

Consider

 $x \sim \mathcal{N}_p(\theta, \Sigma)$ 

where  $\Sigma$  is known. Prior distribution on  $\theta$  is  $\theta \sim \mathcal{N}_p(\mu, \Sigma_{\pi})$ .

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# Optimality of hierarchical Bayes estimators

Consider

 $x \sim \mathcal{N}_p(\theta, \Sigma)$ 

where  $\Sigma$  is known. Prior distribution on  $\theta$  is  $\theta \sim \mathcal{N}_p(\mu, \Sigma_{\pi})$ . The prior distribution  $\pi_2$  of the hyperparameters

 $(\mu, \Sigma_{\pi})$ 

is decomposed as

$$\pi_2(\mu, \Sigma_{\pi}) = \pi_2^1(\Sigma_{\pi}|\mu)\pi_2^2(\mu).$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Optimality of hierarchical Bayes estimators

In this case,

$$m(x) = \int_{\mathbb{R}^p} m(x|\mu) \pi_2^2(\mu) \, d\mu,$$

with

$$m(x|\mu) = \int f(x|\theta) \pi_1(\theta|\mu, \Sigma_{\pi}) \pi_2^1(\Sigma_{\pi}|\mu) \, d\theta \, d\Sigma_{\pi}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Optimality of hierarchical Bayes estimators

Moreover, the Bayes estimator

$$\delta^{\pi}(x) = x + \Sigma \nabla \log m(x)$$

can be written

$$\delta^{\pi}(x) = \int \delta(x|\mu) \pi_2^2(\mu|x) \, d\mu,$$

with

$$\delta(x|\mu) = x + \Sigma \nabla \log m(x|\mu),$$
  

$$\pi_2^2(\mu|x) = \frac{m(x|\mu)\pi_2^2(\mu)}{m(x)}.$$

(日) 《聞) 《思》 《思》 『思 』 ろくの

Bayesian Statistics Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## A sufficient condition

An estimator  $\delta$  is minimax under the loss

$$\mathsf{L}_Q(\theta, \delta) = (\theta - \delta)^t Q(\theta - \delta).$$

if it satisfies

 $R(\theta, \delta) = \mathbb{E}_{\theta}[\mathsf{L}_Q(\theta, \delta(x))] \le \mathsf{tr}(\Sigma Q)$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

# A sufficient condition (contd.)

Theorem (Minimaxity) If m(x) satisfies the three conditions (1)  $\mathbb{E}_{\theta} \| \nabla \log m(x) \|^2 < +\infty;$  (2)  $\mathbb{E}_{\theta} \left| \frac{\partial^2 m(x)}{\partial x_i \partial x_j} \middle/ m(x) \right| < +\infty;$ and  $(1 \le i \le p)$ (3)  $\lim_{|x_i| \to +\infty} |\nabla \log m(x)| \exp\{-(1/2)(x-\theta)^t \Sigma^{-1}(x-\theta)\} = 0,$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

The unbiased estimator of the risk of  $\delta^\pi$  is given by

$$egin{aligned} \mathscr{D}\delta^{\pi}(x) &= \operatorname{tr}(Q\Sigma) \ &+ rac{2}{m(x)} \operatorname{tr}(H_m(x) ilde{Q}) - (
abla \log m(x))^t ilde{Q} (
abla \log m(x))^t \end{aligned}$$

where

$$\tilde{Q} = \Sigma Q \Sigma, \qquad H_m(x) = \left(\frac{\partial^2 m(x)}{\partial x_i \partial x_j}\right)$$

and...

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## $\delta^\pi$ is minimax if

 $\operatorname{div}\left( ilde{Q}
abla \sqrt{m(x)}
ight)\leq 0,$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

$$\delta^{\pi}$$
 is minimax if  ${
m div}\left( ilde{Q}
abla\sqrt{m(x)}
ight)\leq 0,$ 

When  $\Sigma = Q = I_p$ , this condition is

$$\Delta \sqrt{m(x)} = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} (\sqrt{m(x)}) \le 0$$

 $\left[\sqrt{m(x)} \text{ superharmonic}\right]$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Superharmonicity condition

Theorem (Superharmonicity)

 $\delta^{\pi}$  is minimax if

 $\operatorname{div}\left(\tilde{Q}
abla m(x|\mu)
ight)\leq 0.$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

## Superharmonicity condition

Theorem (Superharmonicity)

 $\delta^{\pi}$  is minimax if

 $\operatorname{div}\left( ilde{Q}
abla m(x|\mu)
ight)\leq \mathsf{0}.$ 

N&S condition that does not depend on  $\pi_2^2(\mu)!$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## Empirical Bayes alternative

Strictly speaking, not a Bayesian method !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Empirical Bayes alternative

#### Strictly speaking, not a Bayesian method !

- (i) can be perceived as a dual method of the hierarchical Bayes analysis;
- (ii) asymptotically equivalent to the Bayesian approach;
- (iii) usually classified as Bayesian by others; and
- (iv) may be acceptable in problems for which a genuine Bayes modeling is too complicated/costly.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Parametric empirical Bayes

When hyperparameters from a conjugate prior  $\pi(\theta|\lambda)$  are unavailable, estimate these hyperparameters from the marginal distribution

$$m(x|\lambda) = \int_{\Theta} f(x| heta) \pi( heta|\lambda) \, d heta$$

by  $\hat{\lambda}(x)$  and to use  $\pi(\theta|\hat{\lambda}(x),x)$  as a pseudo-posterior

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## Fundamental ad-hocquery

## Which estimate $\hat{\lambda}(x)$ for $\lambda$ ?

Moment method or maximum likelihood or Bayes or &tc...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Example (Poisson estimation)

Consider  $x_i$  distributed according to  $\mathscr{P}(\theta_i)$  (i = 1, ..., n). When  $\pi(\theta|\lambda)$  is  $\mathscr{E}xp(\lambda)$ ,

$$m(x_i|\lambda) = \int_0^{+\infty} e^{-\theta} \frac{\theta^{x_i}}{x_i!} \lambda e^{-\theta\lambda} d\theta$$
$$= \frac{\lambda}{(\lambda+1)^{x_i+1}} = \left(\frac{1}{\lambda+1}\right)^{x_i} \frac{\lambda}{\lambda+1},$$

i.e.  $x_i | \lambda \sim \mathscr{G}eo(\lambda/\lambda + 1)$ .

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Example (Poisson estimation)

Consider  $x_i$  distributed according to  $\mathscr{P}(\theta_i)$  (i = 1, ..., n). When  $\pi(\theta|\lambda)$  is  $\mathscr{E}xp(\lambda)$ ,

$$\begin{split} m(x_i|\lambda) &= \int_0^{+\infty} e^{-\theta} \frac{\theta^{x_i}}{x_i!} \lambda e^{-\theta\lambda} d\theta \\ &= \frac{\lambda}{(\lambda+1)^{x_i+1}} = \left(\frac{1}{\lambda+1}\right)^{x_i} \frac{\lambda}{\lambda+1}, \end{split}$$

i.e.  $x_i | \lambda \sim \mathscr{G}eo(\lambda/\lambda + 1)$ . Then

$$\hat{\lambda}(x) = 1/\bar{x}$$

and the empirical Bayes estimator of  $\theta_{n+1}$  is

$$\delta^{\mathsf{EB}}(x_{n+1}) = \frac{x_{n+1}+1}{\hat{\lambda}+1} = \frac{\bar{x}}{\bar{x}+1}(x_{n+1}+1),$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

# Empirical Bayes justifications of the Stein effect

A way to unify the different occurrences of this paradox and show its Bayesian roots

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## a. Point estimation

## Example (Normal mean)

Consider  $x \sim \mathcal{N}_p(\theta, I_p)$  and  $\theta_i \sim \mathcal{N}(0, \tau^2)$ . The marginal distribution of x is then

$$x| au^2 \sim \mathscr{N}_p(\mathbf{0}, (\mathbf{1}+ au^2)I_p)$$

and the maximum likelihood estimator of  $\tau^2$  is

$$\hat{\tau}^2 = \begin{cases} (||x||^2/p) - 1 & \text{if } ||x||^2 > p, \\ 0 & \text{otherwise.} \end{cases}$$

The corresponding empirical Bayes estimator of  $\theta_i$  is then

$$\delta^{\mathsf{EB}}(x) = \frac{\hat{\tau}^2 x}{1 + \hat{\tau}^2} = \left(1 - \frac{p}{||x||^2}\right)^+ x.$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## Normal model

Take

$$x| heta \sim \mathcal{N}_p( heta, \Lambda),$$
  
 $heta|eta, \sigma_{\pi}^2 \sim \mathcal{N}_p(Zeta, \sigma_{\pi}^2 I_p),$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

with  $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$  and Z a  $(p \times q)$  full rank matrix.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Normal model

Take

$$x| heta \sim \mathcal{N}_p( heta, \Lambda),$$
  
 $heta|eta, \sigma_{\pi}^2 \sim \mathcal{N}_p(Zeta, \sigma_{\pi}^2 I_p),$ 

with  $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_p)$  and Z a  $(p \times q)$  full rank matrix. The marginal distribution of x is

$$x_i|\beta, \sigma_\pi^2 \sim \mathcal{N}(z_i'\beta, \sigma_\pi^2 + \lambda_i)$$

and the posterior distribution of  $\theta$  is

$$egin{aligned} & heta_i | x_i, eta, \sigma_\pi^2 \sim \mathscr{N} \left( (1-b_i) x_i + b_i z_i' eta, \lambda_i (1-b_i) 
ight), \end{aligned}$$
 with  $b_i &= \lambda_i / (\lambda_i + \sigma_\pi^2).$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## Normal model (cont.)

lf

$$\lambda_1 = \ldots = \lambda_n = \sigma^2$$

the best equivariant estimators of  $\beta$  and b are given by

$$\hat{\beta} = (Z^t Z)^{-1} Z^t x \quad \text{and} \quad \hat{b} = \frac{(p-q-2)\sigma^2}{s^2},$$
  
with  $s^2 = \sum_{i=1}^p (x_i - z'_i \hat{\beta})^2.$ 

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

# Normal model (cont.)

lf

$$\lambda_1 = \ldots = \lambda_n = \sigma^2$$

the best equivariant estimators of  $\beta$  and b are given by

$$\hat{\beta} = (Z^t Z)^{-1} Z^t x$$
 and  $\hat{b} = \frac{(p-q-2)\sigma^2}{s^2},$ 

with  $s^2 = \sum_{i=1}^{p} (x_i - z'_i \hat{\beta})^2$ . The corresponding empirical Bayes estimator of  $\theta$  are

$$\delta^{\mathsf{EB}}(x) = Z\hat{\beta} + \left(1 - \frac{(p-q-2)\sigma^2}{||x-Z\hat{\beta}||^2}\right)(x-Z\hat{\beta}),$$

which is of the form of the general Stein estimator

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

# Normal model (cont.)

# When the means are assumed to be identical (exchangeability), the matrix Z reduces to the vector 1 and $\beta\in\mathbb{R}$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

-The empirical Bayes alternative

## Normal model (cont.)

When the means are assumed to be identical (exchangeability), the matrix Z reduces to the vector 1 and  $\beta \in \mathbb{R}$ The empirical Bayes estimator is then

$$\delta^{\mathsf{EB}}(x) = \bar{x}\mathbf{1} + \left(1 - \frac{(p-3)\sigma^2}{||x-\bar{x}\mathbf{1}||^2}\right)(x-\bar{x}\mathbf{1}).$$

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## b. Variance evaluation

Estimation of the hyperparameters  $\beta$  and  $\sigma_{\pi}^2$  considerably modifies the behavior of the procedures.

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## b. Variance evaluation

Estimation of the hyperparameters  $\beta$  and  $\sigma_{\pi}^2$  considerably modifies the behavior of the procedures.

Point estimation generally efficient, but estimation of the posterior variance of  $\pi(\theta|x, \beta, b)$  by the empirical variance,

# $\mathsf{var}(\theta_i|x,\hat{\beta},\hat{b})$

induces an underestimation of this variance

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

The empirical Bayes alternative

## Morris' correction

$$\delta^{\mathsf{EB}}(x) = x - \tilde{B}(x - \bar{x}\mathbf{1}),$$
  

$$V_i^{\mathsf{EB}}(x) = \left(\sigma^2 - \frac{p - 1}{p}\tilde{B}\right) + \frac{2}{p - 3}\hat{b}(x_i - \bar{x})^2,$$

with

$$\hat{b} = \frac{p-3}{p-1} \frac{\sigma^2}{\sigma^2 + \hat{\sigma}_\pi^2}, \qquad \hat{\sigma}_\pi^2 = \max\left(0, \frac{||x-\bar{x}\mathbf{1}||^2}{p-1} - \sigma_\pi^2\right)$$

and

$$\tilde{B} = \frac{p-3}{p-1} \min\left(1, \frac{\sigma^2(p-1)}{||x-\bar{x}\mathbf{1}||^2}\right).$$

## Unlimited range of applications

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへぐ

- artificial intelligence
- biostatistic
- econometrics
- epidemiology
- environmetrics
- finance

- genomics
- geostatistics
- image processing and pattern recognition

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ◆ 臣 ● のへで

- neural networks
- signal processing
- Bayesian networks

LA Defense of the Bayesian Choice

### c@enumi). Choosing a probabilistic representation

Bayesian Statistics appears as the calculus of uncertainty **Reminder:** 

A probabilistic model is nothing but an *interpretation* of a given phenomenon

A Defense of the Bayesian Choice

#### c@enumi). Conditioning on the data

At the basis of inference lies an *inversion process* between cause and effect. Using a prior brings a necessary balance between observations and parameters and enable to operate *conditional upon* x

A Defense of the Bayesian Choice

#### c@enumi). Exhibiting the true likelihood

Provides a complete *quantitative inference* on the parameters and predictive that points out inadequacies of frequentist statistics, while implementing the Likelihood Principle.

A Defense of the Bayesian Choice

#### c@enumi). Using priors as tools and summaries

The choice of a prior  $\pi$  does not require any kind of *belief* belief in this : rather consider it as a *tool* that *summarizes* the available prior *and* the uncertainty surrounding this

LA Defense of the Bayesian Choice

#### c@enumi). Accepting the subjective basis of knowledge

Knowledge is a critical confrontation between *a prioris* and experiments. Ignoring these *a prioris* impoverishes analysis.
A Defense of the Bayesian Choice

We have, for one thing, to use a language and our language is entirely made of preconceived ideas and has to be so. However, these are unconscious preconceived ideas, which are a million times more dangerous than the other ones. Were we to assert that if we are including other preconceived ideas, consciously stated, we would aggravate the evil! I do not believe so: I rather maintain that they would balance one another.

Henri Poincaré, 1902

A Defense of the Bayesian Choice

### c@enumi). Choosing a coherent system of inference

To force inference into a decision-theoretic mold allows for a clarification of the way inferential tools should be evaluated, and therefore implies a conscious (although subjective) choice of the *retained optimality*.

**Logical inference process** Start with requested properties, i.e. loss function and prior , then derive the best solution satisfying these properties.

A Defense of the Bayesian Choice

# c@enumi). Looking for optimal procedures

Bayesian inference widely intersects with the three notions of minimaxity, and equivariance. Looking for an optimal most often ends up finding a Bayes .

Optimality is easier to attain through the Bayes "filter"

A Defense of the Bayesian Choice

### c@enumi). Solving the actual problem

Frequentist methods justified on a *long-term* basis, i.e., from the statistician viewpoint. From a decision-maker's point of view, only the problem at hand matters! That is, he/she calls for an inference *conditional* on x.

# c@enumi). **Providing a universal system of inference** Given the three factors

 $(\mathscr{X}, f(x|\theta), (\Theta, \pi(\theta)), (\mathscr{D}, \mathsf{L}(\theta, d)),$ 

the Bayesian approach validates one and only one inferential procedure

A Defense of the Bayesian Choice

### c@enumi). Computing procedures as a minimization problem

Bayesian procedures are *easier to compute* than procedures of alternative theories, in the sense that there exists a *universal method*method!universal for the computation of Bayes estimators

In practice, the *effective* calculation of the Bayes estimators is often more delicate but this defect is of another magnitude.