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Parametric model

Observations x1, . . . , xn generated from a probability distribution
fi(xi|θi, x1, . . . , xi−1) = fi(xi|θi, x1:i−1)

x = (x1, . . . , xn) ∼ f(x|θ), θ = (θ1, . . . , θn)
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Introduction

Models

Parametric model

Observations x1, . . . , xn generated from a probability distribution
fi(xi|θi, x1, . . . , xi−1) = fi(xi|θi, x1:i−1)

x = (x1, . . . , xn) ∼ f(x|θ), θ = (θ1, . . . , θn)

Associated likelihood
ℓ(θ|x) = f(x|θ)

[inverted density]



Bayesian Statistics

Introduction

The Bayesian framework

Bayes Theorem

Bayes theorem = Inversion of probabilities

If A and E are events such that P (E) 6= 0, P (A|E) and P (E|A)
are related by

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|Ac)P (Ac)

=
P (E|A)P (A)

P (E)
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The Bayesian framework

Bayes Theorem

Bayes theorem = Inversion of probabilities

If A and E are events such that P (E) 6= 0, P (A|E) and P (E|A)
are related by

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|Ac)P (Ac)

=
P (E|A)P (A)

P (E)

[Thomas Bayes, 1764]

Actualisation principle
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Introduction

The Bayesian framework

New perspective

◮ Uncertainty on the parameter s θ of a model modeled through
a probability distribution π on Θ, called prior distribution

◮ Inference based on the distribution of θ conditional on x,
π(θ|x), called posterior distribution

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

.
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Introduction

The Bayesian framework

Definition (Bayesian model)

A Bayesian statistical model is made of a parametric statistical
model,

(X , f(x|θ)) ,
and a prior distribution on the parameters,

(Θ, π(θ)) .
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Introduction

The Bayesian framework

Justifications

◮ Semantic drift from unknown to random

◮ Actualization of the information on θ by extracting the
information on θ contained in the observation x

◮ Allows incorporation of imperfect information in the decision
process

◮ Unique mathematical way to condition upon the observations
(conditional perspective)

◮ Penalization factor
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The Bayesian framework

Bayes’ example:

Billiard ball W rolled on a line of length one, with a uniform
probability of stopping anywhere: W stops at p.
Second ball O then rolled n times under the same assumptions. X
denotes the number of times the ball O stopped on the left of W .



Bayesian Statistics

Introduction

The Bayesian framework

Bayes’ example:

Billiard ball W rolled on a line of length one, with a uniform
probability of stopping anywhere: W stops at p.
Second ball O then rolled n times under the same assumptions. X
denotes the number of times the ball O stopped on the left of W .

Bayes’ question

Given X, what inference can we make on p?
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The Bayesian framework

Modern translation:

Derive the posterior distribution of p given X, when

p ∼ U ([0, 1]) and X ∼ B(n, p)
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The Bayesian framework

Resolution

Since

P (X = x|p) =

(
n

x

)
px(1 − p)n−x,

P (a < p < b and X = x) =

∫ b

a

(
n

x

)
px(1 − p)n−xdp

and

P (X = x) =

∫ 1

0

(
n

x

)
px(1 − p)n−x dp,
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The Bayesian framework

Resolution (2)

then

P (a < p < b|X = x) =

∫ b
a

(n
x

)
px(1 − p)n−x dp

∫ 1
0

(n
x

)
px(1 − p)n−x dp

=

∫ b
a p

x(1 − p)n−x dp

B(x+ 1, n − x+ 1)
,
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The Bayesian framework

Resolution (2)

then

P (a < p < b|X = x) =

∫ b
a

(n
x

)
px(1 − p)n−x dp

∫ 1
0

(n
x

)
px(1 − p)n−x dp

=

∫ b
a p

x(1 − p)n−x dp

B(x+ 1, n − x+ 1)
,

i.e.
p|x ∼ Be(x+ 1, n− x+ 1)

[Beta distribution]
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(a) the joint distribution of (θ, x),

ϕ(θ, x) = f(x|θ)π(θ) ;
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Prior and posterior distributions

Prior and posterior distributions

Given f(x|θ) and π(θ), several distributions of interest:

(a) the joint distribution of (θ, x),

ϕ(θ, x) = f(x|θ)π(θ) ;

(b) the marginal distribution of x,

m(x) =

∫
ϕ(θ, x) dθ

=

∫
f(x|θ)π(θ) dθ ;
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Prior and posterior distributions

(c) the posterior distribution of θ,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

=
f(x|θ)π(θ)

m(x)
;
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Prior and posterior distributions

(c) the posterior distribution of θ,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ) dθ

=
f(x|θ)π(θ)

m(x)
;

(d) the predictive distribution of y, when y ∼ g(y|θ, x),

g(y|x) =

∫
g(y|θ, x)π(θ|x)dθ .
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◮ Operates conditional upon the observation s

◮ Incorporates the requirement of the Likelihood Principle

◮ Avoids averaging over the unobserved values of x

◮ Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected
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Introduction

Prior and posterior distributions

Posterior distribution

central to Bayesian inference

◮ Operates conditional upon the observation s

◮ Incorporates the requirement of the Likelihood Principle

◮ Avoids averaging over the unobserved values of x

◮ Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected

◮ Provides a complete inferential scope
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Prior and posterior distributions

Example (Flat prior (1))

Consider x ∼ N (θ, 1) and θ ∼ N (0, 10).

π(θ|x) ∝ f(x|θ)π(θ) ∝ exp

(
−(x− θ)2

2
− θ2

20

)

∝ exp

(
−11θ2

20
+ θx

)

∝ exp

(
−11

20
{θ − (10x/11)}2

)
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Prior and posterior distributions

Example (Flat prior (1))

Consider x ∼ N (θ, 1) and θ ∼ N (0, 10).

π(θ|x) ∝ f(x|θ)π(θ) ∝ exp

(
−(x− θ)2

2
− θ2

20

)

∝ exp

(
−11θ2

20
+ θx

)

∝ exp

(
−11

20
{θ − (10x/11)}2

)

and

θ|x ∼ N
(

10

11
x,

10

11

)
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Prior and posterior distributions

Example (HPD region)

Natural confidence region

C = {θ;π(θ|x) > k}

=

{
θ;

∣∣∣∣θ −
10

11
x

∣∣∣∣ > k′
}
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Prior and posterior distributions

Example (HPD region)

Natural confidence region

C = {θ;π(θ|x) > k}

=

{
θ;

∣∣∣∣θ −
10

11
x

∣∣∣∣ > k′
}

Highest posterior density (HPD) region
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Necessary extension from a prior distribution to a prior σ-finite
measure π such that

∫

Θ
π(θ) dθ = +∞
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Improper distributions

Necessary extension from a prior distribution to a prior σ-finite
measure π such that

∫

Θ
π(θ) dθ = +∞

Improper prior distribution
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Improper prior distributions

Justifications

Often automatic prior determination leads to improper prior
distributions

1. Only way to derive a prior in noninformative settings

2. Performances of estimators derived from these generalized
distributions usually good

3. Improper priors often occur as limits of proper distributions

4. More robust answer against possible misspecifications of the
prior
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(i) minimaxity
(ii) admissibility
(iii) invariance
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Improper prior distributions

5. Generally more acceptable to non-Bayesians, with frequentist
justifications, such as:

(i) minimaxity
(ii) admissibility
(iii) invariance

6. Improper priors prefered to vague proper priors such as a
N (0, 1002) distribution

7. Penalization factor in

min
d

∫
L(θ, d)π(θ)f(x|θ) dx dθ
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Improper prior distributions

Validation

Extension of the posterior distribution π(θ|x) associated with an
improper prior π as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ) dθ
,
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Improper prior distributions

Validation

Extension of the posterior distribution π(θ|x) associated with an
improper prior π as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ) dθ
,

when ∫

Θ
f(x|θ)π(θ) dθ <∞
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Improper prior distributions

Example

If x ∼ N (θ, 1) and π(θ) = ̟, constant, the pseudo marginal
distribution is

m(x) = ̟

∫ +∞

−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = ̟
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Improper prior distributions

Example

If x ∼ N (θ, 1) and π(θ) = ̟, constant, the pseudo marginal
distribution is

m(x) = ̟

∫ +∞

−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = ̟

and the posterior distribution of θ is

π(θ |x) =
1√
2π

exp

{
−(x− θ)2

2

}
,

i.e., corresponds to a N (x, 1) distribution.
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Improper prior distributions

Example

If x ∼ N (θ, 1) and π(θ) = ̟, constant, the pseudo marginal
distribution is

m(x) = ̟

∫ +∞

−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = ̟

and the posterior distribution of θ is

π(θ |x) =
1√
2π

exp

{
−(x− θ)2

2

}
,

i.e., corresponds to a N (x, 1) distribution.
[independent of ω]
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Improper prior distributions

Warning - Warning - Warning - Warning - Warning

The mistake is to think of them [non-informative priors] as
representing ignorance

[Lindley, 1990]
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Improper prior distributions

Example (Flat prior (2))

Consider a θ ∼ N (0, τ2) prior. Then

lim
τ→∞

P π (θ ∈ [a, b]) = 0

for any (a, b)
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Example ([Haldane prior)

Consider a binomial observation, x ∼ B(n, p), and

π∗(p) ∝ [p(1 − p)]−1

[Haldane, 1931]
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Improper prior distributions

Example ([Haldane prior)

Consider a binomial observation, x ∼ B(n, p), and

π∗(p) ∝ [p(1 − p)]−1

[Haldane, 1931]
The marginal distribution,

m(x) =

∫ 1

0
[p(1 − p)]−1

(
n

x

)
px(1 − p)n−xdp

= B(x, n− x),

is only defined for x 6= 0, n .



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Decision theory motivations

Introduction

Decision-Theoretic Foundations of Statistical Inference
Evaluation of estimators
Loss functions
Minimaxity and admissibility
Usual loss functions

From Prior Information to Prior Distributions

Bayesian Point Estimation

Bayesian Calculations
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Evaluation of estimators

Evaluating estimators

Purpose of most inferential studies

To provide the statistician/client with a decision d ∈ D

Requires an evaluation criterion for decisions and estimators

L(θ, d)

[a.k.a. loss function]
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Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f(x|θ);
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Decision-Theoretic Foundations of Statistical Inference

Evaluation of estimators

Bayesian Decision Theory

Three spaces/factors:

(1) On X , distribution for the observation, f(x|θ);
(2) On Θ, prior distribution for the parameter, π(θ);

(3) On Θ×D , loss function associated with the decisions, L(θ, δ);
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Evaluation of estimators

Foundations

Theorem (Existence)

There exists an axiomatic derivation of the existence of a
loss function.

[DeGroot, 1970]
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Decision procedure δ usually called estimator
(while its value δ(x) called estimate of θ)
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Decision-Theoretic Foundations of Statistical Inference

Loss functions

Estimators

Decision procedure δ usually called estimator
(while its value δ(x) called estimate of θ)

Fact

Impossible to uniformly minimize (in d) the loss function

L(θ, d)

when θ is unknown
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Loss functions

Frequentist Principle

Average loss (or frequentist risk)

R(θ, δ) = Eθ[L(θ, δ(x))]

=

∫

X
L(θ, δ(x))f(x|θ) dx
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Decision-Theoretic Foundations of Statistical Inference

Loss functions

Frequentist Principle

Average loss (or frequentist risk)

R(θ, δ) = Eθ[L(θ, δ(x))]

=

∫

X
L(θ, δ(x))f(x|θ) dx

Principle

Select the best estimator based on the risk function
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Loss functions

Difficulties with frequentist paradigm

(1) Error averaged over the different values of x proportionally to
the density f(x|θ): not so appealing for a client, who wants
optimal results for her data x!
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Decision-Theoretic Foundations of Statistical Inference

Loss functions

Difficulties with frequentist paradigm

(1) Error averaged over the different values of x proportionally to
the density f(x|θ): not so appealing for a client, who wants
optimal results for her data x!

(2) Assumption of repeatability of experiments not always
grounded.

(3) R(θ, δ) is a function of θ: there is no total ordering on the set
of procedures.
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Decision-Theoretic Foundations of Statistical Inference

Loss functions

Bayesian principle

Principle Integrate over the space Θ to get the posterior expected
loss

ρ(π, d|x) = E
π[L(θ, d)|x]

=

∫

Θ
L(θ, d)π(θ|x) dθ,
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Loss functions

Bayesian principle (2)

Alternative

Integrate over the space Θ and compute integrated risk

r(π, δ) = E
π[R(θ, δ)]

=

∫

Θ

∫

X
L(θ, δ(x)) f(x|θ) dx π(θ) dθ

which induces a total ordering on estimators.



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Loss functions

Bayesian principle (2)

Alternative

Integrate over the space Θ and compute integrated risk

r(π, δ) = E
π[R(θ, δ)]

=

∫

Θ

∫

X
L(θ, δ(x)) f(x|θ) dx π(θ) dθ

which induces a total ordering on estimators.

Existence of an optimal decision
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Loss functions

Bayes estimator

Theorem (Construction of Bayes estimators)

An estimator minimizing
r(π, δ)

can be obtained by selecting, for every x ∈ X , the value δ(x)
which minimizes

ρ(π, δ|x)
since

r(π, δ) =

∫

X
ρ(π, δ(x)|x)m(x) dx.
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Loss functions

Bayes estimator

Theorem (Construction of Bayes estimators)

An estimator minimizing
r(π, δ)

can be obtained by selecting, for every x ∈ X , the value δ(x)
which minimizes

ρ(π, δ|x)
since

r(π, δ) =

∫

X
ρ(π, δ(x)|x)m(x) dx.

Both approaches give the same estimator



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Loss functions

Bayes estimator (2)

Definition (Bayes optimal procedure)

A Bayes estimator associated with a prior distribution π and a loss
function L is

arg min
δ
r(π, δ)

The value r(π) = r(π, δπ) is called the Bayes risk
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Above result valid for both proper and improper priors when

r(π) <∞
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Loss functions

Infinite Bayes risk

Above result valid for both proper and improper priors when

r(π) <∞

Otherwise, generalized Bayes estimator that must be defined
pointwise:

δπ(x) = arg min
d

ρ(π, d|x)

if ρ(π, d|x) is well-defined for every x.
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Decision-Theoretic Foundations of Statistical Inference

Loss functions

Infinite Bayes risk

Above result valid for both proper and improper priors when

r(π) <∞

Otherwise, generalized Bayes estimator that must be defined
pointwise:

δπ(x) = arg min
d

ρ(π, d|x)

if ρ(π, d|x) is well-defined for every x.

Warning: Generalized Bayes 6= Improper Bayes
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Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Minimaxity

Frequentist insurance against the worst case and (weak) total
ordering on D∗

Definition (Frequentist optimality)

The minimax risk associated with a loss L is

R̄ = inf
δ∈D∗

sup
θ
R(θ, δ) = inf

δ∈D∗
sup
θ

Eθ[L(θ, δ(x))],
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Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Minimaxity

Frequentist insurance against the worst case and (weak) total
ordering on D∗

Definition (Frequentist optimality)

The minimax risk associated with a loss L is

R̄ = inf
δ∈D∗

sup
θ
R(θ, δ) = inf

δ∈D∗
sup
θ

Eθ[L(θ, δ(x))],

and a minimax estimator is any estimator δ0 such that

sup
θ
R(θ, δ0) = R̄.
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Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Criticisms

◮ Analysis in terms of the worst case

◮ Does not incorporate prior information



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Criticisms

◮ Analysis in terms of the worst case

◮ Does not incorporate prior information

◮ Too conservative



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Criticisms

◮ Analysis in terms of the worst case

◮ Does not incorporate prior information

◮ Too conservative

◮ Difficult to exhibit/construct
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Minimaxity and admissibility

Example (Normal mean)

Consider

δ2(x) =






(
1 − 2p− 1

||x||2
)
x if ||x||2 ≥ 2p− 1

0 otherwise,

to estimate θ when x ∼ Np(θ, Ip) under quadratic loss,

L(θ, d) = ||θ − d||2.
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Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Comparison of δ2 with δ1(x) = x,
maximum likelihood estimator, for p = 10.

0 2 4 6 8 10

0
2

4
6

8
10

theta

δ2 cannot be minimax
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Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Minimaxity (2)

Existence

If D ⊂ Rk convex and compact, and if L(θ, d) continuous and
convex as a function of d for every θ ∈ Θ, there exists a
nonrandomized minimax estimator.
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Minimaxity and admissibility

Connection with Bayesian approach

The Bayes risks are always smaller than the minimax risk:

r = sup
π
r(π) = sup

π
inf
δ∈D

r(π, δ) ≤ r = inf
δ∈D∗

sup
θ
R(θ, δ).
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Minimaxity and admissibility

Connection with Bayesian approach

The Bayes risks are always smaller than the minimax risk:

r = sup
π
r(π) = sup

π
inf
δ∈D

r(π, δ) ≤ r = inf
δ∈D∗

sup
θ
R(θ, δ).

Definition

The estimation problem has a value when r = r, i.e.

sup
π

inf
δ∈D

r(π, δ) = inf
δ∈D∗

sup
θ
R(θ, δ).

r is the maximin risk and the corresponding π the favourable prior
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Minimaxity and admissibility

Maximin-ity

When the problem has a value, some minimax estimators are Bayes
estimators for the least favourable distributions.
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Minimaxity and admissibility

Maximin-ity (2)

Example (Binomial probability)

Consider x ∼ Be(θ) with θ ∈ {0.1, 0.5} and

δ1(x) = 0.1, δ2(x) = 0.5,

δ3(x) = 0.1 Ix=0 + 0.5 Ix=1, δ4(x) = 0.5 Ix=0 + 0.1 Ix=1.

under

L(θ, d) =






0 if d = θ

1 if (θ, d) = (0.5, 0.1)

2 if (θ, d) = (0.1, 0.5)
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Minimaxity and admissibility

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δ2

δ4

δ1

δ3

δ*

Risk set



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Example (Binomial probability (2))

Minimax estimator at the intersection of the diagonal of R2 with
the lower boundary of R:

δ∗(x) =

{
δ3(x) with probability α = 0.87,

δ2(x) with probability 1 − α.
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Minimaxity and admissibility

Example (Binomial probability (2))

Minimax estimator at the intersection of the diagonal of R2 with
the lower boundary of R:

δ∗(x) =

{
δ3(x) with probability α = 0.87,

δ2(x) with probability 1 − α.

Also randomized Bayes estimator for

π(θ) = 0.22 I0.1(θ) + 0.78 I0.5(θ)
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Minimaxity and admissibility

Checking minimaxity

Theorem (Bayes & minimax)

If δ0 is a Bayes estimator for π0 and if

R(θ, δ0) ≤ r(π0)

for every θ in the support of π0, then δ0 is minimax and π0 is the
least favourable distribution
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Minimaxity and admissibility

Example (Binomial probability (3))

Consider x ∼ B(n, θ) for the loss

L(θ, δ) = (δ − θ)2.

When θ ∼ Be
(√

n
2 ,

√
n

2

)
, the posterior mean is

δ∗(x) =
x+

√
n/2

n+
√
n
.

with constant risk

R(θ, δ∗) = 1/4(1 +
√
n)2.

Therefore, δ∗ is minimax
[H. Rubin]
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Minimaxity and admissibility

Checking minimaxity (2)

Theorem (Bayes & minimax (2))

If for a sequence (πn) of proper priors, the generalised Bayes
estimator δ0 satisfies

R(θ, δ0) ≤ lim
n→∞

r(πn) < +∞

for every θ ∈ Θ, then δ0 is minimax.
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Minimaxity and admissibility

Example (Normal mean)

When x ∼ N (θ, 1),
δ0(x) = x

is a generalised Bayes estimator associated with

π(θ) ∝ 1
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Minimaxity and admissibility

Example (Normal mean)

When x ∼ N (θ, 1),
δ0(x) = x

is a generalised Bayes estimator associated with

π(θ) ∝ 1

Since, for πn(θ) = exp{−θ2/2n},

R(δ0, θ) = Eθ
[
(x− θ)2

]
= 1

= lim
n→∞

r(πn) = lim
n→∞

n

n+ 1

δ0 is minimax.
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Admissibility

Reduction of the set of acceptable estimators based on “local”
properties

Definition (Admissible estimator)

An estimator δ0 is inadmissible if there exists an estimator δ1 such
that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)
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Minimaxity and admissibility

Admissibility

Reduction of the set of acceptable estimators based on “local”
properties

Definition (Admissible estimator)

An estimator δ0 is inadmissible if there exists an estimator δ1 such
that, for every θ,

R(θ, δ0) ≥ R(θ, δ1)

and, for at least one θ0

R(θ0, δ0) > R(θ0, δ1)

Otherwise, δ0 is admissible
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The converse is false!
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Minimaxity and admissibility

Minimaxity & admissibility

If there exists a unique minimax estimator, this estimator is
admissible.

The converse is false!

If δ0 is admissible with constant risk, δ0 is the unique minimax
estimator.

The converse is false!
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The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes
estimators often constitute the class of admissible estimators

◮ If π is strictly positive on Θ, with

r(π) =

∫

Θ
R(θ, δπ)π(θ) dθ <∞

and R(θ, δ), is continuous, then the Bayes estimator δπ is
admissible.



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

The Bayesian perspective

Admissibility strongly related to the Bayes paradigm: Bayes
estimators often constitute the class of admissible estimators

◮ If π is strictly positive on Θ, with

r(π) =

∫

Θ
R(θ, δπ)π(θ) dθ <∞

and R(θ, δ), is continuous, then the Bayes estimator δπ is
admissible.

◮ If the Bayes estimator associated with a prior π is unique, it is
admissible.

Regular (6=generalized) Bayes estimators always admissible
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Minimaxity and admissibility

Example (Normal mean)

Consider x ∼ N (θ, 1) and the test of H0 : θ ≤ 0, i.e. the
estimation of

IH0(θ)
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Minimaxity and admissibility

Example (Normal mean)

Consider x ∼ N (θ, 1) and the test of H0 : θ ≤ 0, i.e. the
estimation of

IH0(θ)

Under the loss
(IH0(θ) − δ(x))2 ,

the estimator (p-value)

p(x) = P0(X > x) (X ∼ N (0, 1))

= 1 − Φ(x),

is Bayes under Lebesgue measure.
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Minimaxity and admissibility

Example (Normal mean (2))

Indeed

p(x) = E
π[IH0(θ)|x] = P π(θ < 0|x)

= P π(θ − x < −x|x) = 1 − Φ(x).

The Bayes risk of p is finite and p(s) is admissible.
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Minimaxity and admissibility

Example (Normal mean (3))

Consider x ∼ N (θ, 1). Then δ0(x) = x is a generalised Bayes
estimator, is admissible, but

r(π, δ0) =

∫ +∞

−∞
R(θ, δ0) dθ

=

∫ +∞

−∞
1 dθ = +∞.



Bayesian Statistics

Decision-Theoretic Foundations of Statistical Inference

Minimaxity and admissibility

Example (Normal mean (4))

Consider x ∼ Np(θ, Ip). If

L(θ, d) = (d− ||θ||2)2

the Bayes estimator for the Lebesgue measure is

δπ(x) = ||x||2 + p.

This estimator is not admissible because it is dominated by

δ0(x) = ||x||2 − p
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Usual loss functions

The quadratic loss

Historically, first loss function (Legendre, Gauss)

L(θ, d) = (θ − d)2

or
L(θ, d) = ||θ − d||2
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Usual loss functions

Proper loss

Posterior mean

The Bayes estimator δπ associated with the prior π and with the
quadratic loss is the posterior expectation

δπ(x) = E
π[θ|x] =

∫
Θ θf(x|θ)π(θ) dθ∫
Θ f(x|θ)π(θ) dθ

.
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Usual loss functions

The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) = | θ − d | ,

or

Lk1,k2
(θ, d) =

{
k2(θ − d) if θ > d,

k1(d− θ) otherwise.
(1)
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Usual loss functions

The absolute error loss

Alternatives to the quadratic loss:

L(θ, d) = | θ − d | ,

or

Lk1,k2
(θ, d) =

{
k2(θ − d) if θ > d,

k1(d− θ) otherwise.
(1)

L1 estimator

The Bayes estimator associated with π and (1) is a (k2/(k1 + k2))
fractile of π(θ|x).
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Test of H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0.
Then

D = {0, 1}
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Usual loss functions

The 0 − 1 loss

Neyman–Pearson loss for testing hypotheses

Test of H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0.
Then

D = {0, 1}

The 0 − 1 loss

L(θ, d) =

{
1 − d if θ ∈ Θ0

d otherwise,
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Usual loss functions

Type–one and type–two errors

Associated with the risk

R(θ, δ) = Eθ[L(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,
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Usual loss functions

Type–one and type–two errors

Associated with the risk

R(θ, δ) = Eθ[L(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0 − 1 loss is

δπ(x) =

{
1 if P (θ ∈ Θ0|x) > P (θ 6∈ Θ0|x),
0 otherwise,
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Usual loss functions

Intrinsic losses

Noninformative settings w/o natural parameterisation : the
estimators should be invariant under reparameterisation

[Ultimate invariance!]

Principle

Corresponding parameterisation-free loss functions:

L(θ, δ) = d(f(·|θ), f(·|δ)),
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Examples:

1. the entropy distance (or Kullback–Leibler divergence)

Le(θ, δ) = Eθ

[
log

(
f(x|θ)
f(x|δ)

)]
,
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Usual loss functions

Examples:

1. the entropy distance (or Kullback–Leibler divergence)

Le(θ, δ) = Eθ

[
log

(
f(x|θ)
f(x|δ)

)]
,

2. the Hellinger distance

LH(θ, δ) =
1

2
Eθ




(√

f(x|δ)
f(x|θ) − 1

)2


 .
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Usual loss functions

Example (Normal mean)

Consider x ∼ N (θ, 1). Then

Le(θ, δ) =
1

2
Eθ[−(x− θ)2 + (x− δ)2] =

1

2
(δ − θ)2,

LH(θ, δ) = 1 − exp{−(δ − θ)2/8}.

When π(θ|x) is a N (µ(x), σ2) distribution, the Bayes estimator of
θ is

δπ(x) = µ(x)

in both cases.
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Noninformative prior distributions

Bayesian Point Estimation
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Models

Prior Distributions

The most critical and most criticized point of Bayesian analysis !
Because...

the prior distribution is the key to Bayesian inference
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Models

But...

In practice, it seldom occurs that the available prior information is
precise enough to lead to an exact determination of the prior
distribution

There is no such thing as the prior distribution!
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Models

Rather...

The prior is a tool summarizing available information as well as
uncertainty related with this information,
And...
Ungrounded prior distributions produce unjustified posterior
inference
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Subjective determination

Subjective priors

Example (Capture probabilities)

Capture-recapture experiment on migrations between zones
Prior information on capture and survival probabilities, pt and qit

Time 2 3 4 5 6
pt Mean 0.3 0.4 0.5 0.2 0.2

95% cred. int. [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.05,0.4] [0.05,0.4]

Site A B
Time t=1,3,5 t=2,4 t=1,3,5 t=2,4

qit Mean 0.7 0.65 0.7 0.7
95% cred. int. [0.4,0.95] [0.35,0.9] [0.4,0.95] [0.4,0.95]
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Subjective determination

Example (Capture probabilities (2))

Corresponding prior modeling
Time 2 3 4 5 6
Dist. Be(6, 14) Be(8, 12) Be(12, 12) Be(3.5, 14) Be(3.5, 14)

Site A B
Time t=1,3,5 t=2,4 t=1,3,5 t=2,4
Dist. Be(6.0, 2.5) Be(6.5, 3.5) Be(6.0, 2.5) Be(6.0, 2.5)
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Strategies for prior determination

◮ Use a partition of Θ in sets (e.g., intervals), determine the
probability of each set, and approach π by an histogram
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◮ Select significant elements of Θ, evaluate their respective
likelihoods and deduce a likelihood curve proportional to π
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Subjective determination

Strategies for prior determination

◮ Use a partition of Θ in sets (e.g., intervals), determine the
probability of each set, and approach π by an histogram

◮ Select significant elements of Θ, evaluate their respective
likelihoods and deduce a likelihood curve proportional to π

◮ Use the marginal distribution of x,

m(x) =

∫

Θ
f(x|θ)π(θ) dθ
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From Prior Information to Prior Distributions

Subjective determination

Strategies for prior determination

◮ Use a partition of Θ in sets (e.g., intervals), determine the
probability of each set, and approach π by an histogram

◮ Select significant elements of Θ, evaluate their respective
likelihoods and deduce a likelihood curve proportional to π

◮ Use the marginal distribution of x,

m(x) =

∫

Θ
f(x|θ)π(θ) dθ

◮ Empirical and hierarchical Bayes techniques
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Subjective determination

◮ Select a maximum entropy prior when prior characteristics
are known:

E
π[gk(θ)] = ωk (k = 1, . . . ,K)

with solution, in the discrete case

π∗(θi) =
exp

{∑K
1 λkgk(θi)

}

∑
j exp

{∑K
1 λkgk(θj)

} ,

and, in the continuous case,

π∗(θ) =
exp

{∑K
1 λkgk(θ)

}
π0(θ)

∫
exp

{∑K
1 λkgk(η)

}
π0(dη)

,

the λk’s being Lagrange multipliers and π0 a reference
measure [Caveat]
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Subjective determination

◮ Parametric approximations
Restrict choice of π to a parameterised density

π(θ|λ)

and determine the corresponding (hyper-)parameters

λ

through the moments or quantiles of π
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Subjective determination

Example

For the normal model x ∼ N (θ, 1), ranges of the posterior
moments for fixed prior moments µ1 = 0 and µ2.

Minimum Maximum Maximum
µ2 x mean mean variance

3 0 -1.05 1.05 3.00
3 1 -0.70 1.69 3.63
3 2 -0.50 2.85 5.78

1.5 0 -0.59 0.59 1.50
1.5 1 -0.37 1.05 1.97
1.5 2 -0.27 2.08 3.80

[Goutis, 1990]
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Conjugate priors

Conjugate priors

Specific parametric family with analytical properties

Definition

A family F of probability distributions on Θ is conjugate for a
likelihood function f(x|θ) if, for every π ∈ F , the posterior
distribution π(θ|x) also belongs to F .

[Raiffa & Schlaifer, 1961]
Only of interest when F is parameterised : switching from prior to
posterior distribution is reduced to an updating of the
corresponding parameters.
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From Prior Information to Prior Distributions

Conjugate priors

Justifications

◮ Limited/finite information conveyed by x

◮ Preservation of the structure of π(θ)

◮ Exchangeability motivations

◮ Device of virtual past observations

◮ Linearity of some estimators

◮ Tractability and simplicity

◮ First approximations to adequate priors, backed up by
robustness analysis
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Conjugate priors

Exponential families

Definition

The family of distributions

f(x|θ) = C(θ)h(x) exp{R(θ) · T (x)}

is called an exponential family of dimension k. When Θ ⊂ Rk,
X ⊂ Rk and

f(x|θ) = C(θ)h(x) exp{θ · x},
the family is said to be natural.
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Conjugate priors

Interesting analytical properties :

◮ Sufficient statistics (Pitman–Koopman Lemma)

◮ Common enough structure (normal, binomial, Poisson,
Wishart, &tc...)

◮ Analycity (Eθ[x] = ∇ψ(θ), ...)

◮ Allow for conjugate priors

π(θ|µ, λ) = K(µ, λ) eθ.µ−λψ(θ)
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Conjugate priors

f(x|θ) π(θ) π(θ|x)
Normal Normal

N (θ, σ2) N (µ, τ2) N (ρ(σ2µ+ τ2x), ρσ2τ2)

ρ−1 = σ2 + τ2

Poisson Gamma
P(θ) G(α, β) G(α + x, β + 1)

Gamma Gamma
G(ν, θ) G(α, β) G(α+ ν, β + x)

Binomial Beta
B(n, θ) Be(α, β) Be(α+ x, β + n− x)
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Conjugate priors

f(x|θ) π(θ) π(θ|x)
Negative Binomial Beta

N eg(m, θ) Be(α, β) Be(α+m,β + x)

Multinomial Dirichlet
Mk(θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Normal Gamma

N (µ, 1/θ) Ga(α, β) G(α + 0.5, β + (µ− x)2/2)
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Conjugate priors

Linearity of the posterior mean

If
θ ∼ πλ,x0

(θ) ∝ eθ·x0−λψ(θ)

with x0 ∈ X , then

E
π[∇ψ(θ)] =

x0

λ
.

Therefore, if x1, . . . , xn are i.i.d. f(x|θ),

E
π[∇ψ(θ)|x1, . . . , xn] =

x0 + nx̄

λ+ n
.
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Conjugate priors

But...

Example

When x ∼ Be(α, θ) with known α,

f(x|θ) ∝ Γ(α + θ)(1 − x)θ

Γ(θ)
,

conjugate distribution not so easily manageable

π(θ|x0, λ) ∝
(

Γ(α + θ)

Γ(θ)

)λ
(1 − x0)

θ
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Conjugate priors

Example

Coin spun on its edge, proportion θ of heads
When spinning n times a given coin, number of heads

x ∼ B(n, θ)

Flat prior, or mixture prior

1

2
[Be(10, 20) + Be(20, 10)]

or
0.5Be(10, 20) + 0.2Be(15, 15) + 0.3Be(20, 10).

Mixtures of natural conjugate distributions also make conjugate families
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Conjugate priors

p
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 comp.
2 comp.
3 comp.

Three prior distributions for a spinning-coin experiment
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Conjugate priors

p
0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1 comp.
2 comp.
3 comp.

Posterior distributions for 50 observations
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Conjugate priors

What if all we know is that we know “nothing” ?!

In the absence of prior information, prior distributions solely
derived from the sample distribution f(x|θ)

[Noninformative priors]
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Conjugate priors

Re-Warning

Noninformative priors cannot be expected to represent
exactly total ignorance about the problem at hand, but
should rather be taken as reference or default priors,
upon which everyone could fall back when the prior
information is missing.

[Kass and Wasserman, 1996]



Bayesian Statistics

From Prior Information to Prior Distributions

Conjugate priors

Laplace’s prior

Principle of Insufficient Reason (Laplace)

Θ = {θ1, · · · , θp} π(θi) = 1/p

Extension to continuous spaces

π(θ) ∝ 1
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Conjugate priors

◮ Lack of reparameterization invariance/coherence

ψ = eθ π1(ψ) =
1

ψ
6= π2(ψ) = 1

◮ Problems of properness

x ∼ N (θ, σ2), π(θ, σ) = 1

π(θ, σ|x) ∝ e−(x−θ)2/2σ2
σ−1

⇒ π(σ|x) ∝ 1 (!!!)
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Conjugate priors

Invariant priors

Principle: Agree with the natural symmetries of the problem

- Identify invariance structures as group action

G : x→ g(x) ∼ f(g(x)|ḡ(θ))
Ḡ : θ → ḡ(θ)
G∗ : L(d, θ) = L(g∗(d), ḡ(θ))

- Determine an invariant prior

π(ḡ(A)) = π(A)
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Conjugate priors

Solution: Right Haar measure
But...

◮ Requires invariance to be part of the decision problem

◮ Missing in most discrete setups (Poisson)
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From Prior Information to Prior Distributions

Conjugate priors

The Jeffreys prior

Based on Fisher information

I(θ) = Eθ

[
∂ℓ

∂θt
∂ℓ

∂θ

]

The Jeffreys prior distribution is

π∗(θ) ∝ |I(θ)|1/2
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From Prior Information to Prior Distributions

Conjugate priors

Pros & Cons

◮ Relates to information theory

◮ Agrees with most invariant priors

◮ Parameterization invariant

◮ Suffers from dimensionality curse

◮ Not coherent for Likelihood Principle
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From Prior Information to Prior Distributions

Conjugate priors

Example

x ∼ Np(θ, Ip), η = ‖θ‖2, π(η) = ηp/2−1

E
π[η|x] = ‖x‖2 + p Bias 2p
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From Prior Information to Prior Distributions

Conjugate priors

Example

If x ∼ B(n, θ), Jeffreys’ prior is

Be(1/2, 1/2)

and, if n ∼ N eg(x, θ), Jeffreys’ prior is

π2(θ) = −Eθ

[
∂2

∂θ2
log f(x|θ)

]

= Eθ

[
x

θ2
+

n− x

(1 − θ)2

]
=

x

θ2(1 − θ)
,

∝ θ−1(1 − θ)−1/2
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From Prior Information to Prior Distributions

Conjugate priors

Reference priors

Generalizes Jeffreys priors by distinguishing between nuisance and
interest parameters
Principle: maximize the information brought by the data

E
n

[∫
π(θ|xn) log(π(θ|xn)/π(θ))dθ

]

and consider the limit of the πn
Outcome: most usually, Jeffreys prior
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From Prior Information to Prior Distributions

Conjugate priors

Nuisance parameters:

For θ = (λ, ω),

π(λ|ω) = πJ(λ|ω) with fixed ω

Jeffreys’ prior conditional on ω, and

π(ω) = πJ(ω)

for the marginal model

f(x|ω) ∝
∫
f(x|θ)πJ(λ|ω)dλ

◮ Depends on ordering

◮ Problems of definition
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From Prior Information to Prior Distributions

Conjugate priors

Example (Neyman–Scott problem)

Observation of xij iid N (µi, σ
2), i = 1, . . . , n, j = 1, 2.

The usual Jeffreys prior for this model is

π(µ1, . . . , µn, σ) = σ−n−1

which is inconsistent because

E[σ2|x11, . . . , xn2] = s2/(2n − 2),

where

s2 =

n∑

i=1

(xi1 − xi2)
2

2
,
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From Prior Information to Prior Distributions

Conjugate priors

Example (Neyman–Scott problem)

Associated reference prior with θ1 = σ and θ2 = (µ1, . . . , µn) gives

π(θ2|θ1) ∝ 1 ,

π(σ) ∝ 1/σ

Therefore,
E[σ2|x11, . . . , xn2] = s2/(n− 2)
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From Prior Information to Prior Distributions

Conjugate priors

Matching priors

Frequency-validated priors:
Some posterior probabilities

π(g(θ) ∈ Cx|x) = 1 − α

must coincide with the corresponding frequentist coverage

Pθ(Cx ∋ g(θ)) =

∫
ICx(g(θ)) f(x|θ) dx ,

...asymptotically
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From Prior Information to Prior Distributions

Conjugate priors

For instance, Welch and Peers’ identity

Pθ(θ ≤ kα(x)) = 1 − α+O(n−1/2)

and for Jeffreys’ prior,

Pθ(θ ≤ kα(x)) = 1 − α+O(n−1)
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From Prior Information to Prior Distributions

Conjugate priors

In general, choice of a matching prior dictated by the cancelation
of a first order term in an Edgeworth expansion, like

[I ′′(θ)]−1/2I ′(θ)∇ log π(θ) + ∇t{I ′(θ)[I ′′(θ)]−1/2} = 0 .
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From Prior Information to Prior Distributions

Conjugate priors

Example (Linear calibration model)

yi = α+βxi+εi, y0j = α+βx0+ε0j , (i = 1, . . . , n, j = 1, . . . , k)

with θ = (x0, α, β, σ
2) and x0 quantity of interest
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From Prior Information to Prior Distributions

Conjugate priors

Example (Linear calibration model (2))

One-sided differential equation:

|β|−1s−1/2 ∂

∂x0
{e(x0)π(θ)} − e−1/2(x0)sgn(β)n−1s1/2

∂π(θ)

∂x0

−e−1/2(x0)(x0 − x̄)s−1/2 ∂

∂β
{sgn(β)π(θ)} = 0

with

s = Σ(xi − x̄)2, e(x0) = [(n+ k)s + nk(x0 − x̄)2]/nk .
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From Prior Information to Prior Distributions

Conjugate priors

Example (Linear calibration model (3))

Solutions

π(x0, α, β, σ
2) ∝ e(x0)

(d−1)/2|β|dg(σ2) ,

where g arbitrary.
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From Prior Information to Prior Distributions

Conjugate priors

Reference priors
Partition Prior

(x0, α, β, σ
2) |β|(σ2)−5/2

x0, α, β, σ
2 e(x0)

−1/2(σ2)−1

x0, α, (σ
2, β) e(x0)

−1/2(σ2)−3/2

x0, (α, β), σ2 e(x0)
−1/2(σ2)−1

x0, (α, β, σ
2) e(x0)

−1/2(σ2)−2
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From Prior Information to Prior Distributions

Conjugate priors

Other approaches

◮ Rissanen’s transmission information theory and minimum
length priors

◮ Testing priors

◮ stochastic complexity
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Bayesian Point Estimation

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation
Bayesian inference
Bayesian Decision Theory
The particular case of the normal model
Dynamic models

Bayesian Calculations
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Bayesian Point Estimation

Posterior distribution

π(θ|x) ∝ f(x|θ)π(θ)

◮ extensive summary of the information available on θ

◮ integrate simultaneously prior information and information
brought by x

◮ unique motor of inference
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Bayesian Point Estimation

Bayesian inference

MAP estimator

With no loss function, consider using the maximum a posteriori
(MAP) estimator

arg max
θ
ℓ(θ|x)π(θ)
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Bayesian Point Estimation

Bayesian inference

Motivations

◮ Associated with 0 − 1 losses and Lp losses

◮ Penalized likelihood estimator

◮ Further appeal in restricted parameter spaces
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Bayesian Point Estimation

Bayesian inference

Example

Consider x ∼ B(n, p).
Possible priors:

π∗(p) =
1

B(1/2, 1/2)
p−1/2(1 − p)−1/2 ,

π1(p) = 1 and π2(p) = p−1(1 − p)−1 .

Corresponding MAP estimators:

δ∗(x) = max

(
x− 1/2

n− 1
, 0

)
,

δ1(x) =
x

n
,

δ2(x) = max

(
x− 1

n− 2
, 0

)
.
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Bayesian Point Estimation

Bayesian inference

Not always appropriate:

Example

Consider

f(x|θ) =
1

π

[
1 + (x− θ)2

]−1
,

and π(θ) = 1
2e

−|θ|. The MAP estimator of θ is then always

δ∗(x) = 0
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Bayesian Point Estimation

Bayesian inference

Prediction

If x ∼ f(x|θ) and z ∼ g(z|x, θ), the predictive of z is

gπ(z|x) =

∫

Θ
g(z|x, θ)π(θ|x) dθ.
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Bayesian Point Estimation

Bayesian inference

Example

Consider the AR(1) model

xt = ̺xt−1 + ǫt ǫt ∼ N (0, σ2)

the predictive of xT is then

xT |x1:(T−1) ∼
∫

σ−1

√
2π

exp{−(xT−̺xT−1)
2/2σ2}π(̺, σ|x1:(T−1))d̺dσ ,

and π(̺, σ|x1:(T−1)) can be expressed in closed form
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Bayesian Point Estimation

Bayesian Decision Theory

Bayesian Decision Theory

For a loss L(θ, δ) and a prior π, the Bayes rule is

δπ(x) = arg min
d

E
π[L(θ, d)|x].

Note: Practical computation not always possible analytically.
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Bayesian Point Estimation

Bayesian Decision Theory

Conjugate priors

For conjugate distributionsdistribution!conjugate, the posterior
expectations of the natural parameters can be expressed
analytically, for one or several observations.

Distribution Conjugate prior Posterior mean
Normal Normal

N (θ, σ2) N (µ, τ2)
µσ2 + τ2x

σ2 + τ2

Poisson Gamma

P(θ) G(α, β)
α+ x

β + 1
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Bayesian Point Estimation

Bayesian Decision Theory

Distribution Conjugate prior Posterior mean
Gamma Gamma

G(ν, θ) G(α, β)
α+ ν

β + x
Binomial Beta

B(n, θ) Be(α, β)
α+ x

α+ β + n
Negative binomial Beta

N eg(n, θ) Be(α, β)
α+ n

α+ β + x+ n
Multinomial Dirichlet

Mk(n; θ1, . . . , θk) D(α1, . . . , αk)
αi + xi(∑
j αj

)
+ n

Normal Gamma

N (µ, 1/θ) G(α/2, β/2)
α+ 1

β + (µ− x)2
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Bayesian Point Estimation

Bayesian Decision Theory

Example

Consider
x1, ..., xn ∼ U([0, θ])

and θ ∼ Pa(θ0, α). Then

θ|x1, ..., xn ∼ Pa(max (θ0, x1, ..., xn), α + n)

and

δπ(x1, ..., xn) =
α+ n

α+ n− 1
max (θ0, x1, ..., xn).
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Bayesian Point Estimation

Bayesian Decision Theory

Even conjugate priors may lead to computational difficulties

Example

Consider x ∼ Np(θ, Ip) and

L(θ, d) =
(d− ||θ||2)2
2||θ||2 + p

for which δ0(x) = ||x||2 − p has a constant risk, 1
For the conjugate distributions, Np(0, τ

2Ip),

δπ(x) =
Eπ[||θ||2/(2||θ||2 + p)|x]

Eπ[1/(2||θ||2 + p)|x]

cannot be computed analytically.
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Bayesian Point Estimation

The particular case of the normal model

The normal model

Importance of the normal model in many fields

Np(θ,Σ)

with known Σ, normal conjugate distribution, Np(µ,A).
Under quadratic loss, the Bayes estimator is

δπ(x) = x− Σ(Σ +A)−1(x− µ)

=
(
Σ−1 +A−1

)−1 (
Σ−1x+A−1µ

)
;
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Bayesian Point Estimation

The particular case of the normal model

Estimation of variance
If

x̄ =
1

n

n∑

i=1

xi and s2 =
n∑

i=1

(xi − x̄)2

the likelihood is

ℓ(θ, σ | x̄, s2) ∝ σ−n exp

[
− 1

2σ2

{
s2 + n (x̄− θ)2

}]

The Jeffreys prior for this model is

π∗(θ, σ) =
1

σ2

but invariance arguments lead to prefer

π̃(θ, σ) =
1

σ
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Bayesian Point Estimation

The particular case of the normal model

In this case, the posterior distribution of (θ, σ) is

θ|σ, x̄, s2 ∼ N

(
x̄,
σ2

n

)
,

σ2|x̄, s2 ∼ IG
(
n− 1

2
,
s2

2

)
.

◮ Conjugate posterior distributions have the same form

◮ θ and σ2 are not a priori independent.

◮ Requires a careful determination of the hyperparameters
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Bayesian Point Estimation

The particular case of the normal model

Linear models

Usual regression modelregression!model

y = Xβ + ǫ, ǫ ∼ Nk(0,Σ), β ∈ R
p

Conjugate distributions of the type

β ∼ Np(Aθ,C),

where θ ∈ Rq (q ≤ p).
Strong connection with random-effect models

y = X1β1 +X2β2 + ǫ,
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Bayesian Point Estimation

The particular case of the normal model

Σ unknown

In this general case, the Jeffreys prior is

πJ(β,Σ) =
1

|Σ|(k+1)/2
.

likelihood

ℓ(β,Σ|y) ∝ |Σ|−n/2 exp

{
−1

2
tr

[
Σ−1

n∑

i=1

(yi −Xiβ)(yi −Xiβ)t

]}



Bayesian Statistics

Bayesian Point Estimation

The particular case of the normal model

◮ suggests (inverse) Wishart distribution on Σ

◮ posterior marginal distribution on β only defined for sample
size large enough

◮ no closed form expression for posterior marginal
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Bayesian Point Estimation

The particular case of the normal model

Special case: ǫ ∼ Nk(0, σ
2Ik)

The least-squares estimator β̂ has a normal distribution

Np(β, σ
2(XtX)−1)

Corresponding conjugate distribution s on (β, σ2)

β|σ2 ∼ Np

(
µ,
σ2

n0
(XtX)−1

)
,

σ2 ∼ IG(ν/2, s20/2),
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Bayesian Point Estimation

The particular case of the normal model

since, if s2 = ||y −Xβ̂||2,

β|β̂, s2, σ2 ∼ Np

(
n0µ+ β̂

n0 + 1
,

σ2

n0 + 1
(XtX)−1

)
,

σ2|β̂, s2 ∼ IG
(
k − p+ ν

2
,
s2 + s20 + n0

n0+1(µ− β̂)tXtX(µ− β̂)

2

)
.
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Bayesian Point Estimation

Dynamic models

The AR(p) model

Markovian dynamic model

xt ∼ N

(
µ−

p∑

i=1

̺i(xt−i − µ), σ2

)

Appeal:

◮ Among the most commonly used model in dynamic settings

◮ More challenging than the static models (stationarity
constraints)

◮ Different models depending on the processing of the starting
value x0
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Bayesian Point Estimation

Dynamic models

Stationarity

Stationarity constraints in the prior as a restriction on the values of
θ.
AR(p) model stationary iff the roots of the polynomial

P(x) = 1 −
p∑

i=1

̺ix
i

are all outside the unit circle
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Dynamic models

Closed form likelihood

Conditional on the negative time values

L(µ, ̺1, . . . , ̺p, σ|x1:T , x0:(−p+1)) =

σ−T
T∏

t=1

exp




−
(
xt − µ+

p∑

i=1

̺i(xt−i − µ)

)2 /
2σ2




 ,

Natural conjugate prior for θ = (µ, ̺1, . . . , ̺p, σ
2) :

a normal distributiondistribution!normal on (µ, ̺1, . . . , ρp) and an
inverse gamma distributiondistribution!inverse gamma on σ2.
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Bayesian Point Estimation

Dynamic models

Stationarity & priors

Under stationarity constraint, complex parameter space
The Durbin–Levinson recursion proposes a reparametrization from
the parameters ̺i to the partial autocorrelations

ψi ∈ [−1, 1]

which allow for a uniform prior.
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Bayesian Point Estimation

Dynamic models

Transform:

0. Define ϕii = ψi and ϕij = ϕ(i−1)j − ψiϕ
(i−1)(i−j), for i > 1

and j = 1, · · · , i− 1 .

1. Take ̺i = ϕpi for i = 1, · · · , p.

Different approach via the real+complex roots of the polynomial
P, whose inverses are also within the unit circle.
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Bayesian Point Estimation

Dynamic models

Stationarity & priors (contd.)

Jeffreys’ prior associated with the stationary
representationrepresentation!stationary is

πJ1 (µ, σ2, ̺) ∝ 1

σ2

1√
1 − ̺2

.

Within the non-stationary region |̺| > 1, the Jeffreys prior is

πJ2 (µ, σ2, ̺) ∝ 1

σ2

1√
|1 − ̺2|

√∣∣∣∣1 − 1 − ̺2T

T (1 − ̺2)

∣∣∣∣ .

The dominant part of the prior is the non-stationary region!
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Dynamic models

The reference prior πJ1 is only defined when the stationary
constraint holds.
Idea Symmetrise to the region |̺| > 1

πB(µ, σ2, ̺) ∝ 1

σ2

{
1/
√

1 − ̺2 if |̺| < 1,

1/|̺|
√
̺2 − 1 if |̺| > 1,

,

−3 −2 −1 0 1 2 3

0
1

2
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4
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x

pi
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Dynamic models

The MA(q) model

xt = µ+ ǫt −
q∑

j=1

ϑjǫt−j , ǫt ∼ N (0, σ2)

Stationary but, for identifiability considerations, the polynomial

Q(x) = 1 −
q∑

j=1

ϑjx
j

must have all its roots outside the unit circle.
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Bayesian Point Estimation

Dynamic models

Example

For the MA(1) model, xt = µ+ ǫt − ϑ1ǫt−1,

var(xt) = (1 + ϑ2
1)σ

2

It can also be written

xt = µ+ ǫ̃t−1 −
1

ϑ1
ǫ̃t, ǫ̃ ∼ N (0, ϑ2

1σ
2) ,

Both couples (ϑ1, σ) and (1/ϑ1, ϑ1σ) lead to alternative
representations of the same model.
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Bayesian Point Estimation

Dynamic models

Representations

x1:T is a normal random variable with constant mean µ and
covariance matrix

Σ =





σ2 γ1 γ2 . . . γq 0 . . . 0 0
γ1 σ2 γ1 . . . γq−1 γq . . . 0 0

. . .

0 0 0 . . . 0 0 . . . γ1 σ2




,

with (|s| ≤ q)

γs = σ2

q−|s|∑

i=0

ϑiϑi+|s|

Not manageable in practice
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Bayesian Point Estimation

Dynamic models

Representations (contd.)

Conditional on (ǫ0, . . . , ǫ−q+1),

L(µ, ϑ1, . . . , ϑq, σ|x1:T , ǫ0, . . . , ǫ−q+1) =

σ−T
T∏

t=1

exp




−



xt − µ+

q∑

j=1

ϑj ǫ̂t−j




2

/
2σ2




 ,

where (t > 0)

ǫ̂t = xt − µ+

q∑

j=1

ϑj ǫ̂t−j , ǫ̂0 = ǫ0, . . . , ǫ̂1−q = ǫ1−q

Recursive definition of the likelihood, still costly O(T × q)
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Bayesian Point Estimation

Dynamic models

Representations (contd.)

State-space representation

xt = Gyyt + εt , (2)

yt+1 = Ftyt + ξt , (3)

(2) is the observation equation and (3) is the state equation
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Bayesian Point Estimation

Dynamic models

For the MA(q) model

yt = (ǫt−q, . . . , ǫt−1, ǫt)
′

and

yt+1 =





0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
0 0 0 . . . 0




yt + ǫt+1





0
0
...
0
1





xt = µ−
(
ϑq ϑq−1 . . . ϑ1 −1

)
yt .
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Bayesian Point Estimation

Dynamic models

Example

For the MA(1) model, observation equation

xt = (1 0)yt

with
yt = (y1t y2t)

′

directed by the state equation

yt+1 =

(
0 1
0 0

)
yt + ǫt+1

(
1
ϑ1

)
.
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Bayesian Point Estimation

Dynamic models

Identifiability

Identifiability condition on Q(x): the ϑj’s vary in a complex space.
New reparametrization: the ψi’s are the inverse partial
auto-correlations
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Bayesian Calculations

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

Bayesian Calculations
Implementation difficulties
Classical approximation methods
Markov chain Monte Carlo methods

Tests and model choice
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Bayesian Calculations

Implementation difficulties

B Implementation difficulties

◮ Computing the posterior distribution

π(θ|x) ∝ π(θ)f(x|θ)
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Bayesian Calculations

Implementation difficulties

B Implementation difficulties

◮ Computing the posterior distribution

π(θ|x) ∝ π(θ)f(x|θ)

◮ Resolution of

arg min

∫

Θ
L(θ, δ)π(θ)f(x|θ)dθ
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Bayesian Calculations

Implementation difficulties

B Implementation difficulties

◮ Computing the posterior distribution

π(θ|x) ∝ π(θ)f(x|θ)

◮ Resolution of

arg min

∫

Θ
L(θ, δ)π(θ)f(x|θ)dθ

◮ Maximisation of the marginal posterior

arg max

∫

Θ−1

π(θ|x)dθ−1
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Bayesian Calculations

Implementation difficulties

B Implementation further difficulties

◮ Computing posterior quantities

δπ(x) =

∫

Θ
h(θ) π(θ|x)dθ =

∫

Θ
h(θ) π(θ)f(x|θ)dθ
∫

Θ
π(θ)f(x|θ)dθ
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Bayesian Calculations

Implementation difficulties

B Implementation further difficulties

◮ Computing posterior quantities

δπ(x) =

∫

Θ
h(θ) π(θ|x)dθ =

∫

Θ
h(θ) π(θ)f(x|θ)dθ
∫

Θ
π(θ)f(x|θ)dθ

◮ Resolution (in k) of

P (π(θ|x) ≥ k|x) = α
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Bayesian Calculations

Implementation difficulties

Example (Cauchy posterior)

x1, . . . , xn ∼ C (θ, 1) and θ ∼ N (µ, σ2)

with known hyperparameters µ and σ2.
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Bayesian Calculations

Implementation difficulties

Example (Cauchy posterior)

x1, . . . , xn ∼ C (θ, 1) and θ ∼ N (µ, σ2)

with known hyperparameters µ and σ2.
The posterior distribution

π(θ|x1, . . . , xn) ∝ e−(θ−µ)2/2σ2
n∏

i=1

[1 + (xi − θ)2]−1

cannot be integrated analytically and

δπ(x1, . . . , xn) =

∫ +∞
−∞ θe−(θ−µ)2/2σ2 ∏n

i=1[1 + (xi − θ)2]−1dθ
∫ +∞
−∞ e−(θ−µ)2/2σ2 ∏n

i=1[1 + (xi − θ)2]−1dθ

requires two numerical integrations.
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Bayesian Calculations

Implementation difficulties

Example (Mixture of two normal distributions)

x1, . . . , xn ∼ f(x|θ) = pϕ(x;µ1, σ1) + (1 − p)ϕ(x;µ2, σ2)
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Bayesian Calculations

Implementation difficulties

Example (Mixture of two normal distributions)

x1, . . . , xn ∼ f(x|θ) = pϕ(x;µ1, σ1) + (1 − p)ϕ(x;µ2, σ2)

Prior

µi|σi ∼ N (ξi, σ
2
i /ni), σ2

i ∼ I G (νi/2, s
2
i /2), p ∼ Be(α, β)
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Implementation difficulties

Example (Mixture of two normal distributions)

x1, . . . , xn ∼ f(x|θ) = pϕ(x;µ1, σ1) + (1 − p)ϕ(x;µ2, σ2)

Prior

µi|σi ∼ N (ξi, σ
2
i /ni), σ2

i ∼ I G (νi/2, s
2
i /2), p ∼ Be(α, β)

Posterior

π(θ|x1, . . . , xn) ∝
n∏

j=1

{pϕ(xj ;µ1, σ1) + (1 − p)ϕ(xj ;µ2, σ2)}π(θ)

=

n∑

ℓ=0

∑

(kt)∈Σℓ

ω(kt)π(θ|(kt))

[O(2n)]
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Implementation difficulties

Example (Mixture of two normal distributions (2))

For a given permutation (kt), conditional posterior distribution

π(θ|(kt)) = N

(
ξ1(kt),

σ2
1

n1 + ℓ

)
× I G ((ν1 + ℓ)/2, s1(kt)/2)

× N

(
ξ2(kt),

σ2
2

n2 + n− ℓ

)
× I G ((ν2 + n− ℓ)/2, s2(kt)/2)

× Be(α+ ℓ, β + n− ℓ)
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Implementation difficulties

Example (Mixture of two normal distributions (3))

where

x̄1(kt) = 1
ℓ

∑ℓ
t=1 xkt , ŝ1(kt) =

∑ℓ
t=1(xkt − x̄1(kt))

2,
x̄2(kt) = 1

n−ℓ
∑n

t=ℓ+1 xkt , ŝ2(kt) =
∑n

t=ℓ+1(xkt − x̄2(kt))
2
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Implementation difficulties

Example (Mixture of two normal distributions (3))

where

x̄1(kt) = 1
ℓ

∑ℓ
t=1 xkt , ŝ1(kt) =

∑ℓ
t=1(xkt − x̄1(kt))

2,
x̄2(kt) = 1

n−ℓ
∑n

t=ℓ+1 xkt , ŝ2(kt) =
∑n

t=ℓ+1(xkt − x̄2(kt))
2

and

ξ1(kt) =
n1ξ1 + ℓx̄1(kt)

n1 + ℓ
, ξ2(kt) =

n2ξ2 + (n− ℓ)x̄2(kt)

n2 + n− ℓ
,

s1(kt) = s21 + ŝ21(kt) +
n1ℓ

n1 + ℓ
(ξ1 − x̄1(kt))

2,

s2(kt) = s22 + ŝ22(kt) +
n2(n − ℓ)

n2 + n− ℓ
(ξ2 − x̄2(kt))

2,

posterior updates of the hyperparameters
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Implementation difficulties

Example (Mixture of two normal distributions (4))

Bayes estimator of θ:

δπ(x1, . . . , xn) =

n∑

ℓ=0

∑

(kt)

ω(kt)E
π[θ|x, (kt)]
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Implementation difficulties

Example (Mixture of two normal distributions (4))

Bayes estimator of θ:

δπ(x1, . . . , xn) =

n∑

ℓ=0

∑

(kt)

ω(kt)E
π[θ|x, (kt)]

Too costly: 2n terms
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Numerical integration

Switch to Monte Carlo

◮ Simpson’s method
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Numerical integration

Switch to Monte Carlo

◮ Simpson’s method

◮ polynomial quadrature

∫ +∞

−∞
e−t

2/2f(t) dt ≈
n∑

i=1

ωif(ti),
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Classical approximation methods

Numerical integration

Switch to Monte Carlo

◮ Simpson’s method

◮ polynomial quadrature

∫ +∞

−∞
e−t

2/2f(t) dt ≈
n∑

i=1

ωif(ti),

where

ωi =
2n−1n!

√
n

n2[Hn−1(ti)]2

and ti is the ith zero of the nth Hermite polynomial, Hn(t).
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Classical approximation methods

Numerical integration

Switch to Monte Carlo

◮ Simpson’s method

◮ polynomial quadrature

∫ +∞

−∞
e−t

2/2f(t) dt ≈
n∑

i=1

ωif(ti),

where

ωi =
2n−1n!

√
n

n2[Hn−1(ti)]2

and ti is the ith zero of the nth Hermite polynomial, Hn(t).

◮ orthogonal bases

◮ wavelets

[Bumps into curse of dimen’ty]
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Monte Carlo methods

Approximation of the integral

I =

∫

Θ
g(θ)f(x|θ)π(θ) dθ,

should take advantage of the fact that f(x|θ)π(θ) is proportional
to a density.
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MC Principle

If the θi’s are generated from π(θ), the average

1

m

m∑

i=1

g(θi)f(x|θi)

converges (almost surely) to I
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Classical approximation methods

MC Principle

If the θi’s are generated from π(θ), the average

1

m

m∑

i=1

g(θi)f(x|θi)

converges (almost surely) to I

Confidence regions can be derived from a normal approximation
and the magnitude of the error remains of order

1/
√
m,

whatever the dimension of the problem.
[Commercial!!]
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No need to simulate from π(·|x) or from π
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Classical approximation methods

Importance function

No need to simulate from π(·|x) or from π
if h is a probability density,

[Importance function]

∫

Θ
g(θ)f(x|θ)π(θ) dθ =

∫
g(θ)f(x|θ)π(θ)

h(θ)
h(θ) dθ.

An approximation to Eπ[g(θ)|x] is given by

∑m
i=1 g(θi)ω(θi)∑m

i=1 ω(θi)
with ω(θi) =

f(x|θi)π(θi)

h(θi)

if
supp(h) ⊂ supp(f(x|·)π)
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Classical approximation methods

Requirements

◮ Simulation from h must be easy
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Classical approximation methods

Requirements

◮ Simulation from h must be easy

◮ h(θ) must be close enough to g(θ)π(θ|x)
◮ the variance of the importance sampling estimator must be

finite
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Classical approximation methods

The importance function may be π

Example (Cauchy Example continued)

Since π(θ) is N (µ, σ2),
possible to simulate a normal
sample θ1, . . . , θM and to
approximate the Bayes
estimator by

∑M
t=1 θt

∏n
i=1[1 + (xi − θt)

2]−1

∑M
t=1

∏n
i=1[1 + (xi − θt)2]−1
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Classical approximation methods

The importance function may be π

Example (Cauchy Example continued)

Since π(θ) is N (µ, σ2),
possible to simulate a normal
sample θ1, . . . , θM and to
approximate the Bayes
estimator by

∑M
t=1 θt

∏n
i=1[1 + (xi − θt)

2]−1

∑M
t=1

∏n
i=1[1 + (xi − θt)2]−1
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Classical approximation methods

The importance function may be π

Example (Cauchy Example continued)

Since π(θ) is N (µ, σ2),
possible to simulate a normal
sample θ1, . . . , θM and to
approximate the Bayes
estimator by

∑M
t=1 θt

∏n
i=1[1 + (xi − θt)

2]−1

∑M
t=1

∏n
i=1[1 + (xi − θt)2]−1

mu

va
ria

tio
n

0 2 4 6 8 10

-0
.5

0.
0

0.
5

90% variation
May be poor when the xi’s are all far from µ



Bayesian Statistics

Bayesian Calculations

Classical approximation methods
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Use a mix of prior and posterior

h(θ) = ρπ(θ) + (1 − ρ)π(θ|x) ρ≪ 1

[Newton & Raftery, 1994]
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Classical approximation methods

Defensive sampling

Use a mix of prior and posterior

h(θ) = ρπ(θ) + (1 − ρ)π(θ|x) ρ≪ 1

[Newton & Raftery, 1994]
Requires proper knowledge of normalising constants

[Bummer!]
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Classical approximation methods

Case of the Bayes factor

Models M1 vs. M2 compared via

B12 =
Pr(M1|x)
Pr(M2|x)

/
Pr(M1)

Pr(M2)

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

[Good, 1958 & Jeffreys, 1961]
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Classical approximation methods

Bridge sampling

If
π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

on same space,
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Bridge sampling

If
π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

on same space, then

B12 ≈ 1

n

n∑

i=1

π̃1(θi|x)
π̃2(θi|x)

θi ∼ π2(θ|x)

[Chen, Shao & Ibrahim, 2000]
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Further bridge sampling

Also

B12 =

∫
π̃2(θ)α(θ)π1(θ)dθ

∫
π̃1(θ)α(θ)π2(θ)dθ

∀ α(·)

≈

1

n1

n1∑

i=1

π̃2(θ1i)α(θ1i)

1

n2

n2∑

i=1

π̃1(θ2i)α(θ2i)

θji ∼ πj(θ)



Bayesian Statistics

Bayesian Calculations

Classical approximation methods

Umbrella sampling

Parameterized version

π1(θ) = π(θ|λ1) π2(θ) = π1(θ|λ2)
= π̃1(θ)/c(λ1) = π̃2(θ)/c(λ2)

Then

∀ π(λ) on [λ1, λ2], log(c(λ2)/c(λ1)) = E





d

dλ
log π̃(dθ)

π(λ)
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Classical approximation methods

Umbrella sampling

Parameterized version

π1(θ) = π(θ|λ1) π2(θ) = π1(θ|λ2)
= π̃1(θ)/c(λ1) = π̃2(θ)/c(λ2)

Then

∀ π(λ) on [λ1, λ2], log(c(λ2)/c(λ1)) = E





d

dλ
log π̃(dθ)

π(λ)





and

log(B12) ≈
1

n

n∑

i=1

d

dλ
log π̃(θi|λi)
π(λi)
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Markov chain Monte Carlo methods

MCMC methods

Idea

Given a density distribution π(·|x), produce a Markov chain
(θ(t))t with stationary distribution π(·|x)
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Markov chain Monte Carlo methods

Formal Warranty

Convergence

if the Markov chains produced by MCMC algorithms are
irreducible, these chains are both positive recurrent with stationary
distribution π(θ|x) and ergodic.
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Markov chain Monte Carlo methods

Formal Warranty

Convergence

if the Markov chains produced by MCMC algorithms are
irreducible, these chains are both positive recurrent with stationary
distribution π(θ|x) and ergodic.

Translation:
For k large enough, θ(k) is approximately distributed from π(θ|x),
no matter what the starting value θ(0) is.
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Practical use

◮ Produce an i.i.d. sample θ1, . . . , θm from π(θ|x), taking the
current θ(k) as the new starting value
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Practical use

◮ Produce an i.i.d. sample θ1, . . . , θm from π(θ|x), taking the
current θ(k) as the new starting value

◮ Approximate Eπ[g(θ)|x] by Ergodic Theorem as

1

K

K∑

k=1

g(θ(k))
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Practical use

◮ Produce an i.i.d. sample θ1, . . . , θm from π(θ|x), taking the
current θ(k) as the new starting value

◮ Approximate Eπ[g(θ)|x] by Ergodic Theorem as

1

K

K∑

k=1

g(θ(k))

◮ Achieve quasi-independence by batch sampling
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Markov chain Monte Carlo methods

Practical use

◮ Produce an i.i.d. sample θ1, . . . , θm from π(θ|x), taking the
current θ(k) as the new starting value

◮ Approximate Eπ[g(θ)|x] by Ergodic Theorem as

1

K

K∑

k=1

g(θ(k))

◮ Achieve quasi-independence by batch sampling

◮ Construct approximate posterior confidence regions

Cπx ≃ [θ(αT/2), θ(T−αT/2)]
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Metropolis–Hastings algorithms

Based on a conditional density q(θ′|θ)

HM Algorithm

1. Start with an arbitrary initial value θ(0)
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Markov chain Monte Carlo methods

Metropolis–Hastings algorithms

Based on a conditional density q(θ′|θ)

HM Algorithm

1. Start with an arbitrary initial value θ(0)

2. Update from θ(m) to θ(m+1) (m = 1, 2, . . .) by

2.1 Generate ξ ∼ q(ξ|θ(m))
2.2 Define

̺ =
π(ξ) q(θ(m)|ξ)

π(θ(m)) q(ξ|θ(m))
∧ 1
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Markov chain Monte Carlo methods

Metropolis–Hastings algorithms

Based on a conditional density q(θ′|θ)

HM Algorithm

1. Start with an arbitrary initial value θ(0)

2. Update from θ(m) to θ(m+1) (m = 1, 2, . . .) by

2.1 Generate ξ ∼ q(ξ|θ(m))
2.2 Define

̺ =
π(ξ) q(θ(m)|ξ)

π(θ(m)) q(ξ|θ(m))
∧ 1

2.3 Take

θ(m+1) =

{
ξ with probability ̺,

θ(m) otherwise.
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Markov chain Monte Carlo methods

Validation

Detailed balance condition

π(θ)K(θ′|θ) = π(θ′)K(θ|θ′)
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Markov chain Monte Carlo methods

Validation

Detailed balance condition

π(θ)K(θ′|θ) = π(θ′)K(θ|θ′)

K(θ′|θ) transition kernel

K(θ′|θ) = ̺(θ, θ′)q(θ′|θ) +

∫
[1 − ̺(θ, ξ)]q(ξ|θ)dξ δθ(θ′) ,

where δ Dirac mass
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Markov chain Monte Carlo methods

Random walk Metropolis–Hastings

Take
q(θ′|θ) = f(||θ′ − θ||)
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Markov chain Monte Carlo methods

Random walk Metropolis–Hastings

Take
q(θ′|θ) = f(||θ′ − θ||)

Corresponding Metropolis–Hastings acceptance ratio

̺ =
π(ξ)

π(θ(m))
∧ 1.
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Example (Repulsive normal)

For θ, x ∈ R2,

π(θ|x) ∝ exp{−||θ − x||2/2}
p∏

i=1

exp

{ −1

||θ − µi||2
}
,

where the µi’s are given
repulsive points
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Example (Repulsive normal)

For θ, x ∈ R2,

π(θ|x) ∝ exp{−||θ − x||2/2}
p∏

i=1

exp

{ −1

||θ − µi||2
}
,

where the µi’s are given
repulsive points

−4 −2 0 2 4

−
4

−
2

0
2

4
x

y

Path of the Markov chain (5000
iterations).
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Markov chain Monte Carlo methods

Pros & Cons

◮ Widely applicable

◮ limited tune-up requirements (scale calibrated thru
acceptance)

◮ never uniformely ergodic
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Noisy AR2
1

scale equal to .1
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Bayesian Calculations

Markov chain Monte Carlo methods

Noisy AR2
1

scale equal to .1

scale equal to .5
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Independent proposals

Take
q(θ′|θ) = h(θ′) .
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Take
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More limited applicability and closer connection with iid simulation
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Markov chain Monte Carlo methods

Independent proposals

Take
q(θ′|θ) = h(θ′) .

More limited applicability and closer connection with iid simulation

Examples

◮ prior distribution

◮ likelihood

◮ saddlepoint approximation
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Take advantage of hierarchical structures
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Markov chain Monte Carlo methods

The Gibbs sampler

Take advantage of hierarchical structures

If

π(θ|x) =

∫
π1(θ|x, λ)π2(λ|x) dλ ,

simulate instead from the joint distribution

π1(θ|x, λ) π2(λ|x)
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Example (beta-binomial)

Consider (θ, λ) ∈ N × [0, 1] and

π(θ, λ|x) ∝
(
n

θ

)
λθ+α−1(1 − λ)n−θ+β−1
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Example (beta-binomial)

Consider (θ, λ) ∈ N × [0, 1] and

π(θ, λ|x) ∝
(
n

θ

)
λθ+α−1(1 − λ)n−θ+β−1

Hierarchical structure:

θ|x, λ ∼ B(n, λ), λ|x ∼ Be(α, β)

then

π(θ|x) =

(
n

θ

)
B(α+ θ, β + n− θ)

B(α, β)

[beta-binomial distribution]
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Example (beta-binomial (2))

Difficult to work with this marginal
For instance, computation of E[θ/(θ + 1)|x] ?
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Markov chain Monte Carlo methods

Example (beta-binomial (2))

Difficult to work with this marginal
For instance, computation of E[θ/(θ + 1)|x] ?
More advantageous to simulate

λ(i) ∼ Be(α, β) and θ(i) ∼ B(n, λ(i))

and approximate E[θ/(θ + 1)|x] as

1

m

m∑

i=1

θ(i)

θ(i) + 1
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Conditionals

Usually π2(λ|x) is not available/simulable
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Markov chain Monte Carlo methods

Conditionals

Usually π2(λ|x) is not available/simulable
More often, both conditional posterior distributions,

π1(θ|x, λ) and π2(λ|x, θ)

can be simulated.
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Data augmentation

DA Algorithm

Initialization: Start with an arbitrary value λ(0)

Iteration t: Given λ(t−1), generate

1. θ(t) according to π1(θ|x, λ(t−1))
2. λ(t) according to π2(λ|x, θ(t))
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Markov chain Monte Carlo methods

Data augmentation

DA Algorithm

Initialization: Start with an arbitrary value λ(0)

Iteration t: Given λ(t−1), generate

1. θ(t) according to π1(θ|x, λ(t−1))
2. λ(t) according to π2(λ|x, θ(t))

π(θ, λ|x) is a stationary distribution for this transition
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Example (Beta-binomial Example cont’ed)

The conditional distributions are

θ|x, λ ∼ B(n, λ), λ|x, θ ∼ Be(α+ θ, β + n− θ)
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Histograms for samples of size 5000 from the beta-binomial
with n = 54, α = 3.4, and β = 5.2
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Very simple example: Independent N(µ, σ2) obs’ions

When Y1, . . . , Yn
iid∼ N(y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate but non-standard
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Very simple example: Independent N(µ, σ2) obs’ions

When Y1, . . . , Yn
iid∼ N(y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate but non-standard

But...

µ|Y0:n, σ
2 ∼ N

(
µ
∣∣∣ 1n
∑n

i=1 Yi,
σ2

n )

σ2|Y1:n, µ ∼ IG
(
σ2
∣∣n
2 − 1, 1

2

∑n
i=1(Yi − µ)2

)

assuming constant (improper) priors on both µ and σ2
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Very simple example: Independent N(µ, σ2) obs’ions

When Y1, . . . , Yn
iid∼ N(y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate but non-standard

But...

µ|Y0:n, σ
2 ∼ N

(
µ
∣∣∣ 1n
∑n

i=1 Yi,
σ2

n )

σ2|Y1:n, µ ∼ IG
(
σ2
∣∣n
2 − 1, 1

2

∑n
i=1(Yi − µ)2

)

assuming constant (improper) priors on both µ and σ2

◮ Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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R Gibbs Sampler for Gaussian posterior

n = length(Y);

S = sum(Y);

mu = S/n;

for (i in 1:500)

S2 = sum((Y-mu)^2);

sigma2 = 1/rgamma(1,n/2-1,S2/2);

mu = S/n + sqrt(sigma2/n)*rnorm(1);
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Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100
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Markov chain Monte Carlo methods

Example of results with n = 10 observations from the
N(0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500
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Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual
sample,

λ(1), . . . , λ(m),

should be exploited.
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Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual
sample,

λ(1), . . . , λ(m),
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Rao–Blackwellization

Conditional structure of the sampling algorithm and the dual
sample,

λ(1), . . . , λ(m),

should be exploited.
Eπ[g(θ)|x] can be approximated as

δ2 =
1

m

m∑

i=1

E
π[g(θ)|x, λ(m)],

instead of

δ1 =
1

m

m∑

i=1

g(θ(i)).
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Rao–Black’ed density estimation

Approximation of π(θ|x) by

1

m

m∑

i=1

π(θ|x, λi)
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The general Gibbs sampler

Consider several groups of parameters, θ, λ1, . . . , λp, such that

π(θ|x) =

∫
. . .

∫
π(θ, λ1, . . . , λp|x) dλ1 · · · dλp

or simply divide θ in
(θ1, . . . , θp)
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Example (Multinomial posterior)

Multinomial model

y ∼ M5 (n; a1µ+ b1, a2µ+ b2, a3η + b3, a4η + b4, c(1 − µ− η)) ,

parametrized by µ and η, where

0 ≤ a1 + a2 = a3 + a4 = 1 −
4∑

i=1

bi = c ≤ 1

and c, ai, bi ≥ 0 are known.
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Example (Multinomial posterior (2))

This model stems from sampling according to

x ∼ M9(n; a1µ, b1, a2µ, b2, a3η, b3, a4η, b4, c(1 − µ− η)),

and aggregating some coordinates:

y1 = x1+x2, y2 = x3+x4, y3 = x5+x6, y4 = x7+x8, y5 = x9.
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Example (Multinomial posterior (2))

This model stems from sampling according to

x ∼ M9(n; a1µ, b1, a2µ, b2, a3η, b3, a4η, b4, c(1 − µ− η)),

and aggregating some coordinates:

y1 = x1+x2, y2 = x3+x4, y3 = x5+x6, y4 = x7+x8, y5 = x9.

For the prior

π(µ, η) ∝ µα1−1ηα2−1(1 − η − µ)α3−1,

the posterior distribution of (µ, η) cannot be derived explicitly.
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Example (Multinomial posterior (3))

Introduce z = (x1, x3, x5, x7), which is not observed and

π(η, µ|y, z) = π(η, µ|x)
∝ µz1µz2ηz3ηz4(1 − η − µ)y5+α3−1µα1−1ηα2−1 ,

where we denote the coordinates of z as (z1, z2, z3, z4).
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Example (Multinomial posterior (3))

Introduce z = (x1, x3, x5, x7), which is not observed and

π(η, µ|y, z) = π(η, µ|x)
∝ µz1µz2ηz3ηz4(1 − η − µ)y5+α3−1µα1−1ηα2−1 ,

where we denote the coordinates of z as (z1, z2, z3, z4).
Therefore,

µ, η|y, z ∼ D(z1 + z2 + α1, z3 + z4 + α2, y5 + α3).
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The impact on Bayesian Statistics

◮ Radical modification of the way people work with models and
prior assumptions

◮ Allows for much more complex structures:
◮ use of graphical models
◮ exploration of latent variable models

◮ Removes the need for analytical processing

◮ Boosted hierarchical modeling

◮ Enables (truly) Bayesian model choice
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An application to mixture estimation

Use of the missing data representation

zj |θ ∼ Mp(1; p1, . . . , pk) ,

xj |zj , θ ∼ N

(
k∏

i=1

µ
zij

i ,

k∏

i=1

σ
2zij

i

)

.
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Corresponding conditionals (Gibbs)

zj |xj , θ ∼ Mk(1; p1(xj , θ), . . . , pk(xj , θ)),

with (1 ≤ i ≤ k)

pi(xj , θ) =
piϕ(xj ;µi, σi)∑k
t=1 ptϕ(xj ;µt, σt)

and

µi|x, z, σi ∼ N (ξi(x, z), σ
2
i /(n + σ2

i )),

σ−2
i |x, z ∼ G

(
νi + ni

2
,
1

2

[
s2i + ŝ2i (x, z) +

nimi(z)

ni +mi(z)
(x̄i(z) − ξi)

2

])

p|x, z ∼ Dk(α1 +m1(z), . . . , αk +mk(z)),
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Corresponding conditionals (Gibbs, 2)

where

mi(z) =

n∑

j=1

zij , x̄i(j) =
1

mi(z)

n∑

j=1

zijxj ,

and

ξi(x, z) =
niξi +mi(z)x̄i(z)

ni +mi(z)
, ŝ2i (x, z) =

n∑

j=1

zij(xj − x̄i(z))
2.
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Properties

◮ Slow moves sometimes

◮ Large increase in dimension, order O(n)

◮ Good theoretical properties (Duality principle)
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Galaxy benchmark (k = 4)
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Galaxy benchmark (k = 4)
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A wee problem with Gibbs on mixtures
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A wee problem with Gibbs on mixtures
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−
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Gibbs started at random

Gibbs stuck at the wrong mode
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2
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µ
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[Marin, Mengersen & Robert, 2005]
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Random walk Metropolis–Hastings

q(θ∗t |θt−1) = Ψ(θ∗t − θt−1)

ρ =
π(θ∗t |x1, . . . , xn)

π(θt−1|x1, . . . , xn)
∧ 1
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Properties

◮ Avoids completion

◮ Available (Normal vs. Cauchy vs... moves)

◮ Calibrated against acceptance rate

◮ Depends on parameterisation
λj −→ log λj pj −→ log(pj/1 − pk)
or

θi −→
exp θi

1 + exp θi
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Galaxy benchmark (k = 4)
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Galaxy benchmark (k = 4)
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Random walk MCMC output for
.7N (µ1, 1) + .3N (µ2, 1)

and scale 1
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Random walk MCMC output for
.7N (µ1, 1) + .3N (µ2, 1)
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Random walk MCMC output for
.7N (µ1, 1) + .3N (µ2, 1)

and scale
√
.1
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Iteration 5000
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Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of a
statistical model, a test is a statistical procedure that takes its
values in {0, 1}.
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Bayesian tests

Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of a
statistical model, a test is a statistical procedure that takes its
values in {0, 1}.

Example (Normal mean)

For x ∼ N (θ, 1), decide whether or not θ ≤ 0.
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Decision-theoretic perspective

Theorem (Optimal Bayes decision)

Under the 0 − 1 loss function

L(θ, d) =






0 if d = IΘ0
(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0
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Bayesian tests

Decision-theoretic perspective

Theorem (Optimal Bayes decision)

Under the 0 − 1 loss function

L(θ, d) =






0 if d = IΘ0
(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0

the Bayes procedure is

δπ(x) =

{
1 if Prπ(θ ∈ Θ0|x) ≥ a0/(a0 + a1)

0 otherwise
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Bound comparison

Determination of a0/a1 depends on consequences of “wrong
decision” under both circumstances



Bayesian Statistics

Tests and model choice

Bayesian tests

Bound comparison

Determination of a0/a1 depends on consequences of “wrong
decision” under both circumstances
Often difficult to assess in practice and replacement with “golden”
bounds like .05, biased towards H0



Bayesian Statistics

Tests and model choice

Bayesian tests

Bound comparison

Determination of a0/a1 depends on consequences of “wrong
decision” under both circumstances
Often difficult to assess in practice and replacement with “golden”
bounds like .05, biased towards H0

Example (Binomial probability)

Consider x ∼ B(n, p) and Θ0 = [0, 1/2]. Under the uniform prior
π(p) = 1, the posterior probability of H0 is

P π(p ≤ 1/2|x) =

∫ 1/2
0 px(1 − p)n−xdp

B(x+ 1, n− x+ 1)

=
(1/2)n+1

B(x+ 1, n − x+ 1)

{
1

x+ 1
+ . . .+

(n− x)!x!

(n + 1)!

}



Bayesian Statistics

Tests and model choice

Bayesian tests

Loss/prior duality

Decomposition

Prπ(θ ∈ Θ0|x) =
∫
Θ0
π(θ|x) dθ

=

R

Θ0
f(x|θ0)π(θ) dθ

R

Θ f(x|θ0)π(θ) dθ
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suggests representation
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Bayesian tests

Loss/prior duality

Decomposition

Prπ(θ ∈ Θ0|x) =
∫
Θ0
π(θ|x) dθ

=

R

Θ0
f(x|θ0)π(θ) dθ

R

Θ f(x|θ0)π(θ) dθ

suggests representation

π(θ) = π(Θ0)π0(θ) + (1 − π(Θ0))π1(θ)

and decision

δπ(x) = 1 iff
π(Θ0)

(1 − π(Θ0))

∫
Θ0
f(x|θ0)π0(θ) dθ

∫
Θc

0
f(x|θ0)π1(θ) dθ

≥ a0

a1
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Loss/prior duality

Decomposition

Prπ(θ ∈ Θ0|x) =
∫
Θ0
π(θ|x) dθ

=

R

Θ0
f(x|θ0)π(θ) dθ

R

Θ f(x|θ0)π(θ) dθ

suggests representation

π(θ) = π(Θ0)π0(θ) + (1 − π(Θ0))π1(θ)

and decision

δπ(x) = 1 iff
π(Θ0)

(1 − π(Θ0))

∫
Θ0
f(x|θ0)π0(θ) dθ

∫
Θc

0
f(x|θ0)π1(θ) dθ

≥ a0

a1

c©What matters is (π(Θ0)/a0, (1 − π(Θ0))/a1)
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A function of posterior probabilities

Definition (Bayes factors)

For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0

B01 =
π(Θ0|x)
π(Θc

0|x)

/
π(Θ0)

π(Θc
0)

=

∫

Θ0

f(x|θ)π0(θ)dθ

∫

Θc
0

f(x|θ)π1(θ)dθ

[Good, 1958 & Jeffreys, 1961]

Goto Poisson example

Equivalent to Bayes rule: acceptance if
B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}
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Bayesian Statistics

Tests and model choice

Bayes factors

Self-contained concept

Outside decision-theoretic environment:

◮ eliminates choice of π(Θ0)

◮ but depends on the choice of (π0, π1)



Bayesian Statistics

Tests and model choice

Bayes factors

Self-contained concept

Outside decision-theoretic environment:

◮ eliminates choice of π(Θ0)

◮ but depends on the choice of (π0, π1)

◮ Bayesian/marginal equivalent to the likelihood ratio



Bayesian Statistics

Tests and model choice

Bayes factors

Self-contained concept

Outside decision-theoretic environment:

◮ eliminates choice of π(Θ0)

◮ but depends on the choice of (π0, π1)

◮ Bayesian/marginal equivalent to the likelihood ratio

◮ Jeffreys’ scale of evidence:
◮ if log10(B

π
10) between 0 and 0.5, evidence against H0 weak,

◮ if log10(B
π
10) 0.5 and 1, evidence substantial,

◮ if log10(B
π
10) 1 and 2, evidence strong and

◮ if log10(B
π
10) above 2, evidence decisive
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Hot hand

Example (Binomial homogeneity)

Consider H0 : yi ∼ B(ni, p) (i = 1, . . . , G) vs. H1 : yi ∼ B(ni, pi).
Conjugate priors pi ∼ Be(ξ/ω, (1 − ξ)/ω), with a uniform prior on
E[pi|ξ, ω] = ξ and on p (ω is fixed)
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Bayes factors

Hot hand

Example (Binomial homogeneity)

Consider H0 : yi ∼ B(ni, p) (i = 1, . . . , G) vs. H1 : yi ∼ B(ni, pi).
Conjugate priors pi ∼ Be(ξ/ω, (1 − ξ)/ω), with a uniform prior on
E[pi|ξ, ω] = ξ and on p (ω is fixed)

B10 =

∫ 1

0

G∏

i=1

∫ 1

0
pyi

i (1 − pi)
ni−yipα−1

i (1 − pi)
β−1d pi

×Γ(1/ω)/[Γ(ξ/ω)Γ((1 − ξ)/ω)]dξ
∫ 1
0 p

P

i yi(1 − p)
P

i(ni−yi)d p

where α = ξ/ω and β = (1 − ξ)/ω.
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Bayes factors

Hot hand

Example (Binomial homogeneity)

Consider H0 : yi ∼ B(ni, p) (i = 1, . . . , G) vs. H1 : yi ∼ B(ni, pi).
Conjugate priors pi ∼ Be(ξ/ω, (1 − ξ)/ω), with a uniform prior on
E[pi|ξ, ω] = ξ and on p (ω is fixed)

B10 =

∫ 1

0

G∏

i=1

∫ 1

0
pyi

i (1 − pi)
ni−yipα−1

i (1 − pi)
β−1d pi

×Γ(1/ω)/[Γ(ξ/ω)Γ((1 − ξ)/ω)]dξ
∫ 1
0 p

P

i yi(1 − p)
P

i(ni−yi)d p

where α = ξ/ω and β = (1 − ξ)/ω.
For instance, log10(B10) = −0.79 for ω = 0.005 and G = 138
slightly favours H0.
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[End of the story?!]

Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0
(θ), π1(θ) ∝ π(θ)IΘ1

(θ),

(under the standard dominating measures on Θ0 and Θ1)
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Bayes factors

A major modification

When the null hypothesis is supported by a set of measure 0,
π(Θ0) = 0

[End of the story?!]

Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0
(θ), π1(θ) ∝ π(θ)IΘ1

(θ),

(under the standard dominating measures on Θ0 and Θ1)

Using the prior probabilities π(Θ0) = ̺0 and π(Θ1) = ̺1,

π(θ) = ̺0π0(θ) + ̺1π1(θ).

Note If Θ0 = {θ0}, π0 is the Dirac mass in θ0
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Take ρ0 = Prπ(θ = θ0) and g1 prior density under Ha.
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Bayes factors

Point null hypotheses

Particular case H0 : θ = θ0
Take ρ0 = Prπ(θ = θ0) and g1 prior density under Ha.
Posterior probability of H0

π(Θ0|x) =
f(x|θ0)ρ0∫
f(x|θ)π(θ) dθ

=
f(x|θ0)ρ0

f(x|θ0)ρ0 + (1 − ρ0)m1(x)

and marginal under Ha

m1(x) =

∫

Θ1

f(x|θ)g1(θ) dθ.
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Point null hypotheses (cont’d)

Dual representation

π(Θ0|x) =

[
1 +

1 − ρ0

ρ0

m1(x)

f(x|θ0)

]−1

.

and

Bπ
01(x) =

f(x|θ0)ρ0

m1(x)(1 − ρ0)

/
ρ0

1 − ρ0
=
f(x|θ0)
m1(x)
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Point null hypotheses (cont’d)

Dual representation

π(Θ0|x) =

[
1 +

1 − ρ0

ρ0

m1(x)

f(x|θ0)

]−1

.

and

Bπ
01(x) =

f(x|θ0)ρ0

m1(x)(1 − ρ0)

/
ρ0

1 − ρ0
=
f(x|θ0)
m1(x)

Connection

π(Θ0|x) =

[
1 +

1 − ρ0

ρ0

1

Bπ
01(x)

]−1

.
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Point null hypotheses (cont’d)

Example (Normal mean)

Test of H0 : θ = 0 when x ∼ N (θ, 1): we take π1 as N (0, τ2)

m1(x)

f(x|0) =
σ√

σ2 + τ2

e−x
2/2(σ2+τ2)

e−x2/2σ2

=

√
σ2

σ2 + τ2
exp

{
τ2x2

2σ2(σ2 + τ2)

}

and

π(θ = 0|x) =



1 +
1 − ρ0

ρ0

√
σ2

σ2 + τ2
exp

(
τ2x2

2σ2(σ2 + τ2)

)


−1
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Point null hypotheses (cont’d)

Example (Normal mean)

Influence of τ :

τ/x 0 0.68 1.28 1.96

1 0.586 0.557 0.484 0.351
10 0.768 0.729 0.612 0.366
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Improper priors are not allowed here

If ∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be coherently normalised
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Tests and model choice

Bayes factors

A fundamental difficulty

Improper priors are not allowed here

If ∫

Θ1

π1(dθ1) = ∞ or

∫

Θ2

π2(dθ2) = ∞

then either π1 or π2 cannot be coherently normalised but the
normalisation matters in the Bayes factor Recall Bayes factor
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Tests and model choice

Bayes factors

Constants matter

Example (Poisson versus Negative binomial)

If M1 is a P(λ) distribution and M2 is a N B(m,p) distribution,
we can take

π1(λ) = 1/λ
π2(m, p) = 1

M I{1,··· ,M}(m) I[0,1](p)



Bayesian Statistics

Tests and model choice

Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (2))

then

Bπ
12 =

∫ ∞

0

λx−1

x!
e−λdλ

1

M

M∑

m=1

∫ ∞

0

(
m

x− 1

)
px(1 − p)m−xdp

= 1

/
1

M

M∑

m=x

(
m

x− 1

)
x!(m− x)!

m!

= 1

/
1

M

M∑

m=x

x/(m− x+ 1)
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Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

◮ does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!



Bayesian Statistics

Tests and model choice

Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

◮ does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!

◮ same thing when both priors are improper
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Tests and model choice

Bayes factors

Constants matter (cont’d)

Example (Poisson versus Negative binomial (3))

◮ does not make sense because π1(λ) = 10/λ leads to a
different answer, ten times larger!

◮ same thing when both priors are improper

Improper priors on common (nuisance) parameters do not matter
(so much)
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Tests and model choice

Bayes factors

Normal illustration

Take x ∼ N (θ, 1) and H0 : θ = 0

Influence of the constant

π(θ)/x 0.0 1.0 1.65 1.96 2.58

1 0.285 0.195 0.089 0.055 0.014
10 0.0384 0.0236 0.0101 0.00581 0.00143



Bayesian Statistics

Tests and model choice

Bayes factors

Vague proper priors are not the solution

Taking a proper prior and take a “very large” variance (e.g.,
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Tests and model choice

Bayes factors

Vague proper priors are not the solution

Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley’s paradox)

If testing H0 : θ = 0 when observing x ∼ N (θ, 1), under a normal
N (0, α) prior π1(θ),

B01(x)
α−→∞−→ 0
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Tests and model choice

Bayes factors

Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m− x+ 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α+ x)

x! Γ(α)
β−x

/
1

M

∑

m

x

m− x+ 1

=
(x+ α− 1) · · ·α
x(x− 1) · · · 1 β−x

/
1

M

∑

m

x

m− x+ 1
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Tests and model choice

Bayes factors

Vague proper priors are not the solution (cont’d)

Example (Poisson versus Negative binomial (4))

B12 =

∫ 1

0

λα+x−1

x!
e−λβdλ

1

M

∑

m

x

m− x+ 1

βα

Γ(α)

if λ ∼ Ga(α, β)

=
Γ(α+ x)

x! Γ(α)
β−x

/
1

M

∑

m

x

m− x+ 1

=
(x+ α− 1) · · ·α
x(x− 1) · · · 1 β−x

/
1

M

∑

m

x

m− x+ 1

depends on choice of α(β) or β(α) −→ 0
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Tests and model choice

Bayes factors

Learning from the sample

Definition (Learning sample)

Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample
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Bayes factors

Learning from the sample

Definition (Learning sample)

Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample

There is just enough information in a minimal learning sample to
make inference about θ under the prior π
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Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:
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Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

◮ πi improper but πi(·|x[i]) proper

◮ and ∫
fi(x[n/i]|θi) πi(θi|x[i])dθi∫
fj(x[n/i]|θj) πj(θj|x[i])dθj

independent of normalizing constant
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Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

◮ πi improper but πi(·|x[i]) proper

◮ and ∫
fi(x[n/i]|θi) πi(θi|x[i])dθi∫
fj(x[n/i]|θj) πj(θj|x[i])dθj

independent of normalizing constant

◮ Use remaining x[n/i] to run test as if πj(θj |x[i]) is the true
prior
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◮ Provides a working principle for improper priors
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Tests and model choice

Pseudo-Bayes factors

Motivation

◮ Provides a working principle for improper priors

◮ Gather enough information from data to achieve properness

◮ and use this properness to run the test on remaining data

◮ does not use x twice as in Aitkin’s (1991)
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Tests and model choice

Pseudo-Bayes factors

Details

Since π1(θ1|x[i]) =
π1(θ1)f

1
[i](x[i]|θ1)∫

π1(θ1)f
1
[i](x[i]|θ1)dθ1

B12(x[n/i]) =

∫
f1
[n/i](x[n/i]|θ1)π1(θ1|x[i])dθ1

∫
f2
[n/i](x[n/i]|θ2)π2(θ2|x[i])dθ2

=

∫
f1(x|θ1)π1(θ1)dθ1

∫
f2(x|θ2)π2(θ2)dθ2

∫
π2(θ2)f

2
[i](x[i]|θ2)dθ2

∫
π1(θ1)f

1
[i](x[i]|θ1)dθ1

= BN
12(x)B21(x[i])

c© Independent of scaling factor!
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Pseudo-Bayes factors

Unexpected problems!

◮ depends on the choice of x[i]

◮ many ways of combining pseudo-Bayes factors

◮ AIBF = BN
ji

1

L

∑

ℓ

Bij(x[ℓ])

◮ MIBF = BN
ji med[Bij(x[ℓ])]

◮ GIBF = BN
ji exp

1

L

∑

ℓ

logBij(x[ℓ])

◮ not often an exact Bayes factor

◮ and thus lacking inner coherence

B12 6= B10B02 and B01 6= 1/B10 .

[Berger & Pericchi, 1996]
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Pseudo-Bayes factors

Unexpec’d problems (cont’d)

Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a
training sample is allocated to each component
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Pseudo-Bayes factors

Unexpec’d problems (cont’d)

Example (Mixtures)

There is no sample size that proper-ises improper priors, except if a
training sample is allocated to each component
Reason If

x1, . . . , xn ∼
k∑

i=1

pif(x|θi)

and

π(θ) =
∏

i

πi(θi) with

∫
πi(θi)dθi = +∞ ,

the posterior is never defined, because

Pr(“no observation from f(·|θi)”) = (1 − pi)
n
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Intrinsic priors

There may exist a true prior that provides the same Bayes factor
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Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean)

Take x ∼ N (θ, 1) with either θ = 0 (M1) or θ 6= 0 (M2) and
π2(θ) = 1.
Then

BAIBF
21 = B21

1√
2π

1
n

∑n
i=1 e

−x2
1/2 ≈ B21 for N (0, 2)

BMIBF
21 = B21

1√
2π
e−med(x2

1)/2 ≈ 0.93B21 for N (0, 1.2)

[Berger and Pericchi, 1998]
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Intrinsic priors

There may exist a true prior that provides the same Bayes factor

Example (Normal mean)

Take x ∼ N (θ, 1) with either θ = 0 (M1) or θ 6= 0 (M2) and
π2(θ) = 1.
Then

BAIBF
21 = B21

1√
2π

1
n

∑n
i=1 e

−x2
1/2 ≈ B21 for N (0, 2)

BMIBF
21 = B21

1√
2π
e−med(x2

1)/2 ≈ 0.93B21 for N (0, 1.2)

[Berger and Pericchi, 1998]

When such a prior exists, it is called an intrinsic prior
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Intrinsic priors (cont’d)
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Intrinsic priors (cont’d)

Example (Exponential scale)

Take x1, . . . , xn
i.i.d.∼ exp(θ − x)Ix≥θ

and H0 : θ = θ0, H1 : θ > θ0 , with π1(θ) = 1
Then

BA
10 = B10(x)

1

n

n∑

i=1

[
exi−θ0 − 1

]−1

is the Bayes factor for

π2(θ) = eθ0−θ
{
1 − log

(
1 − eθ0−θ

)}
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Intrinsic priors (cont’d)

Example (Exponential scale)

Take x1, . . . , xn
i.i.d.∼ exp(θ − x)Ix≥θ

and H0 : θ = θ0, H1 : θ > θ0 , with π1(θ) = 1
Then

BA
10 = B10(x)

1

n

n∑

i=1

[
exi−θ0 − 1

]−1

is the Bayes factor for

π2(θ) = eθ0−θ
{
1 − log

(
1 − eθ0−θ

)}

Most often, however, the pseudo-Bayes factors do not correspond
to any true Bayes factor

[Berger and Pericchi, 2001]
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Intrinsic priors

Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb2(θ2)π2(θ2)dθ2

∫
Lb1(θ1)π1(θ1)dθ1

[O’Hagan, 1995]
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Intrinsic priors

Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb2(θ2)π2(θ2)dθ2

∫
Lb1(θ1)π1(θ1)dθ1

[O’Hagan, 1995]

Proportion b of the sample used to gain proper-ness
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Intrinsic priors

Fractional Bayes factor (cont’d)

Example (Normal mean)

BF
12 =

1√
b
en(b−1)x̄2

n/2

corresponds to exact Bayes factor for the prior N
(
0, 1−b

nb

)

◮ If b constant, prior variance goes to 0

◮ If b =
1

n
, prior variance stabilises around 1

◮ If b = n−α, α < 1, prior variance goes to 0 too.
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Comparison with classical tests

Standard answer

Definition (p-value)

The p-value p(x) associated with a test is the largest significance
level for which H0 is rejected
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Opposition to classical tests

Comparison with classical tests

Standard answer

Definition (p-value)

The p-value p(x) associated with a test is the largest significance
level for which H0 is rejected

Note

An alternative definition is that a p-value is distributed uniformly
under the null hypothesis.
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Opposition to classical tests

p-value

Example (Normal mean)

Since the UUMP test is {|x| > k}, standard p-value

p(x) = inf{α; |x| > kα}
= PX(|X| > |x|), X ∼ N (0, 1)

= 1 − Φ(|x|) + Φ(|x|) = 2[1 − Φ(|x|)].

Thus, if x = 1.68, p(x) = 0.10 and, if x = 1.96, p(x) = 0.05.
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Tests and model choice

Opposition to classical tests

Problems with p-values

◮ Evaluation of the wrong quantity, namely the probability to
exceed the observed quantity.(wrong conditionin)

◮ No transfer of the UMP optimality

◮ No decisional support (occurences of inadmissibility)

◮ Evaluation only under the null hypothesis

◮ Huge numerical difference with the Bayesian range of answers
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Opposition to classical tests

Bayesian lower bounds

For illustration purposes, consider a class G of prior distributions

B(x,G ) = inf
g∈G

f(x|θ0)∫
Θ f(x|θ)g(θ) dθ ,

P (x,G ) = inf
g∈G

f(x|θ0)
f(x|θ0) +

∫
Θ f(x|θ)g(θ) dθ

when ̺0 = 1/2 or

B(x,G ) =
f(x|θ0)

supg∈G

∫
Θ f(x|θ)g(θ)dθ , P (x,G ) =

[
1 +

1

(x,G )

]−1

.
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Opposition to classical tests

Resolution

Lemma

If there exists a mle for θ, θ̂(x), the solutions to the Bayesian lower
bounds are

B(x,G ) =
f(x|θ0)
f(x|θ̂(x))

, P (x,G ) =

[

1 +
f(x|θ̂(x))
f(x|θ0)

]−1

respectively
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Opposition to classical tests

Normal case

When x ∼ N (θ, 1) and H0 : θ0 = 0, the lower bounds are

(x,GA) = e−x
2/2 et (x,GA) =

(
1 + ex

2/2
)−1

,
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Normal case

When x ∼ N (θ, 1) and H0 : θ0 = 0, the lower bounds are

(x,GA) = e−x
2/2 et (x,GA) =

(
1 + ex

2/2
)−1

,

i.e.
p-value 0.10 0.05 0.01 0.001

P 0.205 0.128 0.035 0.004
B 0.256 0.146 0.036 0.004
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Tests and model choice

Opposition to classical tests

Normal case

When x ∼ N (θ, 1) and H0 : θ0 = 0, the lower bounds are

(x,GA) = e−x
2/2 et (x,GA) =

(
1 + ex

2/2
)−1

,

i.e.
p-value 0.10 0.05 0.01 0.001

P 0.205 0.128 0.035 0.004
B 0.256 0.146 0.036 0.004

[Quite different!]
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Tests and model choice

Opposition to classical tests

Unilateral case

Different situation when H0 : θ ≤ 0

◮ Single prior can be used both for H0 and Ha

◮ Improper priors are therefore acceptable

◮ Similar numerical values compared with p-values
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Opposition to classical tests

Unilateral agreement

Theorem

When x ∼ f(x− θ), with f symmetric around 0 and endowed with
the monotone likelihood ratio property, if H0 : θ ≤ 0, the p-value
p(x) is equal to the lower bound of the posterior probabilities,
P (x,GSU ), when GSU is the set of symmetric unimodal priors and
when x > 0.
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Unilateral agreement

Theorem

When x ∼ f(x− θ), with f symmetric around 0 and endowed with
the monotone likelihood ratio property, if H0 : θ ≤ 0, the p-value
p(x) is equal to the lower bound of the posterior probabilities,
P (x,GSU ), when GSU is the set of symmetric unimodal priors and
when x > 0.

Reason:

p(x) = Pθ=0(X > x) =

∫ +∞

x
f(t) dt = inf

K

1

1 +

[
R 0
−K

f(x−θ) dθ
R K
−K

f(x−θ)
dθ

]−1
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Tests and model choice

Opposition to classical tests

Cauchy example

When x ∼ C (θ, 1) and H0 : θ ≤ 0, lower bound inferior to p-value:

p-value 0.437 0.102 0.063 0.013 0.004

P 0.429 0.077 0.044 0.007 0.002
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Tests and model choice

Model choice

Model choice and model comparison

Choice of models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Model choice

Example (Galaxy normal mixture)

Set of observations of radial speeds of 82 galaxies possibly
modelled as a mixture of normal distributions

Mi : xj ∼
i∑

ℓ=1

pℓiN (µℓi, σ
2
ℓi)

1.0 1.5 2.0 2.5 3.0 3.5

0.0
0.5

1.0
1.5

2.0

vitesses
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Tests and model choice

Bayesian resolution

Bayesian resolution

B Framework

Probabilises the entire model/parameter space
This means:

◮ allocating probabilities pi to all models Mi

◮ defining priors πi(θi) for each parameter space Θi



Bayesian Statistics

Tests and model choice

Bayesian resolution

Formal solutions

Resolution

1. Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi
∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj
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Bayesian resolution

Formal solutions

Resolution

1. Compute

p(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi
∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj

2. Take largest p(Mi|x) to determine ‘‘best’’ model,

or use averaged predictive

∑

j

p(Mj |x)
∫

Θj

fj(x
′|θj)πj(θj|x)dθj
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Several types of problems

◮ Concentrate on selection perspective:
◮ averaging = estimation = non-parsimonious = no-decision
◮ how to integrate loss function/decision/consequences
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Tests and model choice

Problems

Several types of problems

◮ Concentrate on selection perspective:
◮ averaging = estimation = non-parsimonious = no-decision
◮ how to integrate loss function/decision/consequences
◮ representation of parsimony/sparcity (Ockham’s rule)
◮ how to fight overfitting for nested models

Which loss ?
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◮ adequate weights pi:
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Tests and model choice

Problems

Several types of problems (2)

◮ Choice of prior structures
◮ adequate weights pi:

if M1 = M2 ∪ M3, p(M1) = p(M2) + p(M3) ?
◮ priors distributions

◮ πi(θi) defined for every i ∈ I

◮ πi(θi) proper (Jeffreys)
◮ πi(θi) coherent (?) for nested models

Warning

Parameters common to several models must be treated as separate
entities!
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Tests and model choice

Problems

Several types of problems (3)

◮ Computation of predictives and marginals

- infinite dimensional spaces
- integration over parameter spaces
- integration over different spaces
- summation over many models (2k)
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Compatible priors

Compatibility principle

Difficulty of finding simultaneously priors on a collection of models
Mi (i ∈ I)
Easier to start from a single prior on a “big” model and to derive
the others from a coherence principle

[Dawid & Lauritzen, 2000]
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Tests and model choice

Compatible priors

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1⊥)) = inf
θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]
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Compatible priors

Projection approach

For M2 submodel of M1, π2 can be derived as the distribution of
θ⊥2 (θ1) when θ1 ∼ π1(θ1) and θ⊥2 (θ1) is a projection of θ1 on M2,
e.g.

d(f(· |θ1), f(· |θ1⊥)) = inf
θ2∈Θ2

d(f(· |θ1) , f(· |θ2)) .

where d is a divergence measure
[McCulloch & Rossi, 1992]

Or we can look instead at the posterior distribution of

d(f(· |θ1), f(· |θ1⊥))

[Goutis & Robert, 1998]
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Tests and model choice

Compatible priors

Operational principle for variable selection

Selection rule

Among all subsets A of covariates such that

d(Mg,MA) = Ex[d(fg(·|x, α), fA(·|xA, α⊥))] < ǫ

select the submodel with the smallest number of variables.

[Dupuis & Robert, 2001]
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Kullback proximity

Alternative to above

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫
Θ1
f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫
Θ2
f2(x|θ)π2(θ)dθ,
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Kullback proximity

Alternative to above

Definition (Compatible prior)

Given a prior π1 on a model M1 and a submodel M2, a prior π2 on
M2 is compatible with π1 when it achieves the minimum Kullback
divergence between the corresponding marginals:
m1(x;π1) =

∫
Θ1
f1(x|θ)π1(θ)dθ and

m2(x);π2 =
∫
Θ2
f2(x|θ)π2(θ)dθ,

π2 = arg min
π2

∫
log

(
m1(x;π1)

m2(x;π2)

)
m1(x;π1) dx
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Compatible priors

Difficulties

◮ Does not give a working principle when M2 is not a submodel
M1

◮ Depends on the choice of π1

◮ Prohibits the use of improper priors

◮ Worse: useless in unconstrained settings...
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and
M2 : {f2(x|λ), λ ∈ Λ}

sub-model of M1,

∀λ ∈ Λ,∃ θ(λ) ∈ Θ, f2(x|λ) = f1(x|θ(λ))
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Case of exponential families

Models
M1 : {f1(x|θ), θ ∈ Θ}

and
M2 : {f2(x|λ), λ ∈ Λ}

sub-model of M1,

∀λ ∈ Λ,∃ θ(λ) ∈ Θ, f2(x|λ) = f1(x|θ(λ))

Both M1 and M2 are natural exponential families

f1(x|θ) = h1(x) exp(θTt1(x) −M1(θ))

f2(x|λ) = h2(x) exp(λTt2(x) −M2(λ))
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Conjugate priors

Parameterised (conjugate) priors

π1(θ; s1, n1) = C1(s1, n1) exp(sT1 θ − n1M1(θ))

π2(λ; s2, n2) = C2(s2, n2) exp(sT2 λ− n2M2(λ))
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Conjugate priors

Parameterised (conjugate) priors

π1(θ; s1, n1) = C1(s1, n1) exp(sT1 θ − n1M1(θ))

π2(λ; s2, n2) = C2(s2, n2) exp(sT2 λ− n2M2(λ))

with closed form marginals (i = 1, 2)

mi(x; si, ni) =

∫
fi(x|u)πi(u)du =

hi(x)Ci(si, ni)

Ci(si + ti(x), ni + 1)
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Conjugate compatible priors

(Q.) Existence and unicity of Kullback-Leibler projection

(s∗2, n
∗
2) = arg min

(s2,n2)
KL(m1(·; s1, n1),m2(·; s2, n2))

= arg min
(s2,n2)

∫
log

(
m1(x; s1, n1)

m2(x; s2, n2)

)
m1(x; s1, n1)dx
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A sufficient condition

Sufficient statistic ψ = (λ,−M2(λ))

Theorem (Existence)

If, for all (s2, n2), the matrix

V
π2
s2,n2

[ψ] − E
m1
s1,n1

[
V
π2
s2,n2

(ψ|x)
]

is semi-definite negative,
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A sufficient condition

Sufficient statistic ψ = (λ,−M2(λ))

Theorem (Existence)

If, for all (s2, n2), the matrix

V
π2
s2,n2

[ψ] − E
m1
s1,n1

[
V
π2
s2,n2

(ψ|x)
]

is semi-definite negative, the conjugate compatible prior exists, is
unique and satisfies

E
π2
s∗2 ,n

∗
2
[λ] − E

m1
s1,n1

[Eπ2
s∗2 ,n

∗
2
(λ|x)] = 0

E
π2
s∗2 ,n

∗
2
(M2(λ)) − E

m1
s1,n1

[Eπ2
s∗2 ,n

∗
2
(M2(λ)|x)] = 0.
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An application to linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1. M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ2 ∼ N
(
s1, σ

2n1(X
T
1 X1)

−1
)

where X1 is a (n× k1) matrix of rank k1 ≤ n
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An application to linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1. M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ2 ∼ N
(
s1, σ

2n1(X
T
1 X1)

−1
)

where X1 is a (n× k1) matrix of rank k1 ≤ n

2. M2 :

y|β2, σ
2 ∼ N (X2β2, σ

2), β2|σ2 ∼ N
(
s2, σ

2n2(X
T
2 X2)

−1
)
,

where X2 is a (n× k2) matrix with span(X2) ⊆ span(X1)
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An application to linear regression

M1 and M2 are two nested Gaussian linear regression models with
Zellner’s g-priors and the same variance σ2 ∼ π(σ2):

1. M1 :

y|β1, σ
2 ∼ N (X1β1, σ

2), β1|σ2 ∼ N
(
s1, σ

2n1(X
T
1 X1)

−1
)

where X1 is a (n× k1) matrix of rank k1 ≤ n

2. M2 :

y|β2, σ
2 ∼ N (X2β2, σ

2), β2|σ2 ∼ N
(
s2, σ

2n2(X
T
2 X2)

−1
)
,

where X2 is a (n× k2) matrix with span(X2) ⊆ span(X1)

For a fixed (s1, n1), we need the projection (s2, n2) = (s1, n1)
⊥
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Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ2; s1, n1) and m2(y|σ2; s2, n2)
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Compatible g-priors

Since σ2 is a nuisance parameter, we can minimize the
Kullback-Leibler divergence between the two marginal distributions
conditional on σ2: m1(y|σ2; s1, n1) and m2(y|σ2; s2, n2)

Theorem

Conditional on σ2, the conjugate compatible prior of M2 wrt M1 is

β2|X2, σ
2 ∼ N

(
s∗2, σ

2n∗2(X
T

2 X2)
−1
)

with

s∗2 = (XT

2 X2)
−1XT

2 X1s1

n∗2 = n1
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Variable selection

Regression setup where y regressed on a set {x1, . . . , xp} of p
potential explanatory regressors (plus intercept)

Corresponding 2p submodels Mγ , where γ ∈ Γ = {0, 1}p indicates
inclusion/exclusion of variables by a binary representation,
e.g. γ = 101001011 means that x1, x3, x5, x7 and x8 are included.
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Notations

For model Mγ ,

◮ qγ variables included

◮ t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} indices of those variables and
t0(γ) indices of the variables not included

◮ For β ∈ Rp+1,

βt1(γ) =
[
β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

Xt1(γ) =
[
1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]
.
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Notations

For model Mγ ,

◮ qγ variables included

◮ t1(γ) = {t1,1(γ), . . . , t1,qγ (γ)} indices of those variables and
t0(γ) indices of the variables not included

◮ For β ∈ Rp+1,

βt1(γ) =
[
β0, βt1,1(γ), . . . , βt1,qγ (γ)

]

Xt1(γ) =
[
1n|xt1,1(γ)| . . . |xt1,qγ (γ)

]
.

Submodel Mγ is thus

y|β, γ, σ2 ∼ N
(
Xt1(γ)βt1(γ), σ

2In
)
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Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g
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Use Zellner’s g-prior, i.e. a normal prior for β conditional on σ2,

β|σ2 ∼ N (β̃, cσ2(XTX)−1)

and a Jeffreys prior for σ2,

π(σ2) ∝ σ−2

Noninformative g

Resulting compatible prior

N
((

XT
t1(γ)

Xt1(γ)

)−1
XT
t1(γ)

Xβ̃, cσ2
(
XT
t1(γ)

Xt1(γ)

)−1
)

[Surprise!]
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Model index

For the hierarchical parameter γ, we use

π(γ) =

p∏

i=1

τγi

i (1 − τi)
1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model (and a priori independence between the
presence/absence of variables)
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Model index

For the hierarchical parameter γ, we use

π(γ) =

p∏

i=1

τγi

i (1 − τi)
1−γi ,

where τi corresponds to the prior probability that variable i is
present in the model (and a priori independence between the
presence/absence of variables)
Typically, when no prior information is available,
τ1 = . . . = τp = 1/2, ie a uniform prior

π(γ) = 2−p
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Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c+1)−(qγ+1)/2

[
yTy − cyTP1y

c+ 1
+
β̃TXTP1Xβ̃

c+ 1
− 2yTP1Xβ̃

c+ 1

]
−n/2

.
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Posterior model probability

Can be obtained in closed form:

π(γ|y) ∝ (c+1)−(qγ+1)/2

[
yTy − cyTP1y

c+ 1
+
β̃TXTP1Xβ̃

c+ 1
− 2yTP1Xβ̃

c+ 1

]
−n/2

.

Conditionally on γ, posterior distributions of β and σ2:

βt1(γ)|σ2, y, γ ∼ N
[

c

c+ 1
(U1y + U1Xβ̃/c),

σ2c

c+ 1

(
XT

t1(γ)Xt1(γ)

)
−1
]
,

σ2|y, γ ∼ IG
[
n

2
,
yTy

2
− cyTP1y

2(c+ 1)
+
β̃TXTP1Xβ̃

2(c+ 1)
− yTP1Xβ̃

c+ 1

]
.



Bayesian Statistics

Tests and model choice

Variable selection

Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
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Recall g-prior
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β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:
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Noninformative case

Use the same compatible informative g-prior distribution with
β̃ = 0p+1 and a hierarchical diffuse prior distribution on c,

π(c) ∝ c−1
IN∗(c)

Recall g-prior

The choice of this hierarchical diffuse prior distribution on c is due
to the model posterior sensitivity to large values of c:

Taking β̃ = 0p+1 and c large does not work
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Influence of c

Erase influence

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]
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Influence of c

Erase influence

Consider the 10-predictor full model

y|β, σ
2 ∼ N

0

@β0 +
3

X

i=1

βixi +
3

X

i=1

βi+3x
2
i + β7x1x2 + β8x1x3 + β9x2x3 + β10x1x2x3, σ

2
In

1

A

where the xis are iid U (0, 10)
[Casella & Moreno, 2004]

True model: two predictors x1 and x2, i.e. γ∗ = 110. . .0,
(β0, β1, β2) = (5, 1, 3), and σ2 = 4.
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Influence of c2

t1(γ) c = 10 c = 100 c = 103 c = 104 c = 106

0,1,2 0.04062 0.35368 0.65858 0.85895 0.98222
0,1,2,7 0.01326 0.06142 0.08395 0.04434 0.00524
0,1,2,4 0.01299 0.05310 0.05805 0.02868 0.00336
0,2,4 0.02927 0.03962 0.00409 0.00246 0.00254
0,1,2,8 0.01240 0.03833 0.01100 0.00126 0.00126
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Noninformative case (cont’d)

In the noninformative setting,

π(γ|y) ∝
∞∑

c=1

c−1(c+ 1)−(qγ+1)/2

[
yTy − c

c+ 1
yTP1y

]−n/2

converges for all y’s
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Casella & Moreno’s example

t1(γ)
106∑

i=1

π(γ|y, c)π(c)

0,1,2 0.78071
0,1,2,7 0.06201
0,1,2,4 0.04119
0,1,2,8 0.01676
0,1,2,5 0.01604
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the 2p models.
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Gibbs approximation

When p large, impossible to compute the posterior probabilities of
the 2p models.
Use of a Monte Carlo approximation of π(γ|y)

Gibbs sampling

• At t = 0, draw γ0 from the uniform distribution on Γ

• At t, for i = 1, . . . , p, draw
γti ∼ π(γi|y, γt1, . . . , γti−1, . . . , γ

t−1
i+1 , . . . , γ

t−1
p )
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Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N
(

β0 +

20∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
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Gibbs approximation (cont’d)

Example (Simulated data)

Severe multicolinearities among predictors for a 20-predictor full
model

y|β, σ2 ∼ N
(

β0 +

20∑

i=1

βixi, σ
2In

)

where xi = zi + 3z, the zi’s and z are iid Nn(0n, In).
True model with n = 180, σ2 = 4 and seven predictor variables

x1, x3, x5, x6, x12, x18, x20,
(β0, β1, β3, β5, β6, β12, β18, β20) = (3, 4, 1,−3, 12,−1, 5,−6)
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Gibbs approximation (cont’d)

Example (Simulated data (2))

γ π(γ|y) π̂(γ|y)
GIBBS

0,1,3,5,6,12,18,20 0.1893 0.1822
0,1,3,5,6,18,20 0.0588 0.0598
0,1,3,5,6,9,12,18,20 0.0223 0.0236
0,1,3,5,6,12,14,18,20 0.0220 0.0193
0,1,2,3,5,6,12,18,20 0.0216 0.0222
0,1,3,5,6,7,12,18,20 0.0212 0.0233
0,1,3,5,6,10,12,18,20 0.0199 0.0222
0,1,3,4,5,6,12,18,20 0.0197 0.0182
0,1,3,5,6,12,15,18,20 0.0196 0.0196

Gibbs (T = 100, 000) results for β̃ = 021 and c = 100
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development of caterpillar colonies
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Variable selection

Processionary caterpillar

Influence of some forest settlement characteristics on the
development of caterpillar colonies

Response y log-transform of the average number of nests of
caterpillars per tree on an area of 500 square meters (n = 33 areas)
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Processionary caterpillar (cont’d)

Potential explanatory variables

x1 altitude (in meters), x2 slope (in degrees),

x3 number of pines in the square,

x4 height (in meters) of the tree at the center of the square,

x5 diameter of the tree at the center of the square,

x6 index of the settlement density,

x7 orientation of the square (from 1 if southb’d to 2 ow),

x8 height (in meters) of the dominant tree,

x9 number of vegetation strata,

x10 mix settlement index (from 1 if not mixed to 2 if mixed).
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x1 x2 x3

x4 x5 x6

x7 x8 x9
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Bayesian regression output

Estimate BF log10(BF)

(Intercept) 9.2714 26.334 1.4205 (***)
X1 -0.0037 7.0839 0.8502 (**)
X2 -0.0454 3.6850 0.5664 (**)
X3 0.0573 0.4356 -0.3609
X4 -1.0905 2.8314 0.4520 (*)
X5 0.1953 2.5157 0.4007 (*)
X6 -0.3008 0.3621 -0.4412
X7 -0.2002 0.3627 -0.4404
X8 0.1526 0.4589 -0.3383
X9 -1.0835 0.9069 -0.0424
X10 -0.3651 0.4132 -0.3838

evidence against H0: (****) decisive, (***) strong, (**)
subtantial, (*) poor
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Bayesian variable selection

t1(γ) π(γ|y,X) π̂(γ|y,X)

0,1,2,4,5 0.0929 0.0929
0,1,2,4,5,9 0.0325 0.0326
0,1,2,4,5,10 0.0295 0.0272
0,1,2,4,5,7 0.0231 0.0231
0,1,2,4,5,8 0.0228 0.0229
0,1,2,4,5,6 0.0228 0.0226
0,1,2,3,4,5 0.0224 0.0220
0,1,2,3,4,5,9 0.0167 0.0182
0,1,2,4,5,6,9 0.0167 0.0171
0,1,2,4,5,8,9 0.0137 0.0130

Noninformative G-prior model choice and Gibbs estimations
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Previous principle requires embedded models (or an encompassing
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exponential families
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Symmetrised compatible priors

Postulate

Previous principle requires embedded models (or an encompassing
model) and proper priors, while being hard to implement outside
exponential families
Now we determine prior measures on two models M1 and M2, π1

and π2, directly by a compatibility principle.
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Symmetrised compatible priors

Generalised expected posterior priors

[Perez & Berger, 2000]

EPP Principle

Starting from reference priors πN1 and πN2 , substitute by prior
distributions π1 and π2 that solve the system of integral equations

π1(θ1) =

∫

X

πN1 (θ1 |x)m2(x)dx

and

π2(θ2) =

∫

X

πN2 (θ2 |x)m1(x)dx,

where x is an imaginary minimal training sample and m1, m2 are
the marginals associated with π1 and π2 respectively.
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Tests and model choice

Symmetrised compatible priors

Motivations

◮ Eliminates the “imaginary observation” device and
proper-isation through part of the data by integration under
the “truth”

◮ Assumes that both models are equally valid and equipped
with ideal unknown priors

πi, i = 1, 2,

that yield “true” marginals balancing each model wrt the
other

◮ For a given π1, π2 is an expected posterior prior
Using both equations introduces symmetry into the game



Bayesian Statistics

Tests and model choice

Symmetrised compatible priors

Dual properness

Theorem (Proper distributions)

If π1 is a probability density then π2 solution to

π2(θ2) =

∫

X

πN2 (θ2 |x)m1(x)dx

is a probability density

c© Both EPPs are either proper or improper
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Symmetrised compatible priors

Bayesian coherence

Theorem (True Bayes factor)

If π1 and π2 are the EPPs and if their marginals are finite, then the
corresponding Bayes factor

B1,2(x)

is either a (true) Bayes factor or a limit of (true) Bayes factors.
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Symmetrised compatible priors

Bayesian coherence

Theorem (True Bayes factor)

If π1 and π2 are the EPPs and if their marginals are finite, then the
corresponding Bayes factor

B1,2(x)

is either a (true) Bayes factor or a limit of (true) Bayes factors.

Obviously only interesting when both π1 and π2 are improper.
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Symmetrised compatible priors

Existence/Unicity

Theorem (Recurrence condition)

When both the observations and the parameters in both models
are continuous, if the Markov chain with transition

Q
(
θ′1 | θ1

)
=

∫
g
(
θ1, θ

′
1, θ2, x, x

′) dxdx′dθ2

where

g
(
θ1, θ

′
1, θ2, x, x

′) = πN1
(
θ′1 |x

)
f2 (x | θ2)πN2

(
θ2 |x′

)
f1

(
x′ | θ1

)
,

is recurrent, then there exists a solution to the integral equations,
unique up to a multiplicative constant.
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Symmetrised compatible priors

Consequences

◮ If the M chain is positive recurrent, there exists a unique pair
of proper EPPS.

◮ The transition density Q (θ′1 | θ1) has a dual transition density
on Θ2.

◮ There exists a parallel M chain on Θ2 with identical
properties; if one is (Harris) recurrent, so is the other.

◮ Duality property found both in the MCMC literature and in
decision theory

[Diebolt & Robert, 1992; Eaton, 1992]

◮ When Harris recurrence holds but the EPPs cannot be found,
the Bayes factor can be approximated by MCMC simulation
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Tests and model choice

Examples

Point null hypothesis testing

Testing H0 : θ = θ∗ versus H1 : θ 6= θ∗, i.e.

M1 : f (x | θ∗) ,
M2 : f (x | θ) , θ ∈ Θ.

Default priors

πN1 (θ) = δθ∗ (θ) and πN2 (θ) = πN (θ)

For x minimal training sample, consider the proper priors

π1 (θ) = δθ∗ (θ) and π2 (θ) =

∫
πN (θ |x) f (x | θ∗) dx
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Tests and model choice

Examples

Point null hypothesis testing (cont’d)

Then
∫
πN1 (θ |x)m2 (x) dx = δθ∗ (θ)

∫
m2 (x) dx = δθ∗ (θ) = π1 (θ)

and
∫
πN2 (θ |x)m1 (x) dx =

∫
πN (θ |x) f (x | θ∗) dx = π2 (θ)



Bayesian Statistics

Tests and model choice

Examples

Point null hypothesis testing (cont’d)

Then
∫
πN1 (θ |x)m2 (x) dx = δθ∗ (θ)

∫
m2 (x) dx = δθ∗ (θ) = π1 (θ)

and
∫
πN2 (θ |x)m1 (x) dx =

∫
πN (θ |x) f (x | θ∗) dx = π2 (θ)

c©π1 (θ) and π2 (θ) are integral priors
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Tests and model choice

Examples

Point null hypothesis testing (cont’d)

Then
∫
πN1 (θ |x)m2 (x) dx = δθ∗ (θ)

∫
m2 (x) dx = δθ∗ (θ) = π1 (θ)

and
∫
πN2 (θ |x)m1 (x) dx =

∫
πN (θ |x) f (x | θ∗) dx = π2 (θ)

c©π1 (θ) and π2 (θ) are integral priors

Note

Uniqueness of the Bayes factor
Integral priors and intrinsic priors coincide

[Moreno, Bertolino and Racugno, 1998]
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Tests and model choice

Examples

Location models

Two location models

M1 : f1 (x | θ1) = f1 (x− θ1)

M2 : f2 (x | θ2) = f2 (x− θ2)

Default priors
πNi (θi) = ci, i = 1, 2

with minimal training sample size one
Marginal densities

mN
i (x) = ci, i = 1, 2
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Tests and model choice

Examples

Location models (cont’d)

In that case, πN1 (θ1) and πN2 (θ2) are integral priors when c1 = c2:

∫
πN1 (θ1 |x)mN

2 (x) dx =

∫
c2f1 (x− θ1) dx = c2

∫
πN2 (θ2 |x)mN

1 (x) dx =

∫
c1f2 (x− θ2) dx = c1.
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Tests and model choice

Examples

Location models (cont’d)

In that case, πN1 (θ1) and πN2 (θ2) are integral priors when c1 = c2:

∫
πN1 (θ1 |x)mN

2 (x) dx =

∫
c2f1 (x− θ1) dx = c2

∫
πN2 (θ2 |x)mN

1 (x) dx =

∫
c1f2 (x− θ2) dx = c1.

c© If the associated Markov chain is recurrent,

πN1 (θ1) = πN2 (θ2) = c

are the unique integral priors and they are intrinsic priors
[Cano, Kessler & Moreno, 2004]



Bayesian Statistics

Tests and model choice

Examples

Location models (cont’d)

Example (Normal versus double exponential)

M1 : N (θ, 1), πN1 (θ) = c1,

M2 : DE(λ, 1), πN2 (λ) = c2.

Minimal training sample size one and posterior densities

πN1 (θ |x) = N (x, 1) and πN2 (λ |x) = DE (x, 1)
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Examples

Location models (cont’d)

Example (Normal versus double exponential (2))

Transition θ → θ′ of the Markov chain made of steps :

1. x′ = θ + ε1, ε1 ∼ N (0, 1)

2. λ = x′ + ε2, ε2 ∼ DE(0, 1)

3. x = λ+ ε3, ε3 ∼ DE(0, 1)

4. θ′ = x+ ε4, ε4 ∼ N (0, 1)

i.e. θ′ = θ + ε1 + ε2 + ε3 + ε4
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Tests and model choice

Examples

Location models (cont’d)

Example (Normal versus double exponential (2))

Transition θ → θ′ of the Markov chain made of steps :

1. x′ = θ + ε1, ε1 ∼ N (0, 1)

2. λ = x′ + ε2, ε2 ∼ DE(0, 1)

3. x = λ+ ε3, ε3 ∼ DE(0, 1)

4. θ′ = x+ ε4, ε4 ∼ N (0, 1)

i.e. θ′ = θ + ε1 + ε2 + ε3 + ε4

random walk in θ with finite second moment, null recurrent
c© Resulting Lebesgue measures π1 (θ) = 1 = π2 (λ) invariant
and unique solutions to integral equations
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Admissibility and Complete Classes

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

Bayesian Calculations

Tests and model choice

Admissibility and Complete Classes
Admissibility of Bayes estimators
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Admissibility of Bayes estimators

Admissibility of Bayes estimators

Warning

Bayes estimators may be inadmissible when the Bayes risk is infinite
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Admissibility of Bayes estimators

Example (Normal mean)

Consider x ∼ N (θ, 1) with a conjugate prior θ ∼ N (0, σ2) and
loss

Lα(θ, δ) = eθ
2/2α(θ − δ)2
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Admissibility of Bayes estimators

Example (Normal mean)

Consider x ∼ N (θ, 1) with a conjugate prior θ ∼ N (0, σ2) and
loss

Lα(θ, δ) = eθ
2/2α(θ − δ)2

The associated generalized Bayes estimator is defined for
α > σ2

/
σ2 + 1 and

δπα(x) =
σ2 + 1

σ2

(
σ2 + 1

σ2
− α−1

)−1

δπ(x)

=
α

α− σ2

σ2+1

δπ(x).
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Admissibility of Bayes estimators

Example (Normal mean (2))

The corresponding Bayes risk is

r(π) =

∫ +∞

−∞
eθ

2/2αe−θ
2/2σ2

dθ
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Admissibility of Bayes estimators

Example (Normal mean (2))

The corresponding Bayes risk is

r(π) =

∫ +∞

−∞
eθ

2/2αe−θ
2/2σ2

dθ

which is infinite for α ≤ σ2.



Bayesian Statistics

Admissibility and Complete Classes

Admissibility of Bayes estimators

Example (Normal mean (2))

The corresponding Bayes risk is

r(π) =

∫ +∞

−∞
eθ

2/2αe−θ
2/2σ2

dθ

which is infinite for α ≤ σ2. Since δπα(x) = cx with c > 1 when

α > α
σ2 + 1

σ2
− 1,

δπα is inadmissible
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Admissibility of Bayes estimators

Formal admissibility result

Theorem (Existence of an admissible Bayes estimator)

If Θ is a discrete set and π(θ) > 0 for every θ ∈ Θ, then there
exists an admissible Bayes estimator associated with π
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Admissibility of Bayes estimators

Boundary conditions

If
f(x|θ) = h(x)eθ.T (x)−ψ(θ), θ ∈ [θ, θ̄]

and π is a conjugate prior,

π(θ|t0, λ) = eθ.t0−λψ(θ)
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Admissibility of Bayes estimators

Boundary conditions

If
f(x|θ) = h(x)eθ.T (x)−ψ(θ), θ ∈ [θ, θ̄]

and π is a conjugate prior,

π(θ|t0, λ) = eθ.t0−λψ(θ)

Theorem (Conjugate admissibility)

A sufficient condition for Eπ[∇ψ(θ)|x] to be admissible is that, for
every θ < θ0 < θ̄,

∫ θ̄

θ0

e−γ0λθ+λψ(θ) dθ =

∫ θ0

θ
e−γ0λθ+λψ(θ) dθ = +∞.
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Admissibility of Bayes estimators

Example (Binomial probability)

Consider x ∼ B(n, p).

f(x|θ) =

(
n

x

)
e(x/n)θ

(
1 + eθ/n

)−n
θ = n log(p/1 − p)
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Admissibility of Bayes estimators

Example (Binomial probability)

Consider x ∼ B(n, p).

f(x|θ) =

(
n

x

)
e(x/n)θ

(
1 + eθ/n

)−n
θ = n log(p/1 − p)

Then the two integrals

∫ θ0

−∞
e−γ0λθ

(
1 + eθ/n

)λn
dθ and

∫ +∞

θ0

e−γ0λθ
(
1 + eθ/n

)λn
dθ

cannot diverge simultaneously if λ < 0.
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Admissibility of Bayes estimators

Example (Binomial probability (2))

For λ > 0, the second integral is divergent if λ(1 − γ0) > 0 and
the first integral is divergent if γ0λ ≥ 0.
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Admissibility of Bayes estimators

Example (Binomial probability (2))

For λ > 0, the second integral is divergent if λ(1 − γ0) > 0 and
the first integral is divergent if γ0λ ≥ 0.

Admissible Bayes estimators of p

δπ(x) = a
x

n
+ b, 0 ≤ a ≤ 1, b ≥ 0, a+ b ≤ 1.
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Differential representations

Setting of multidimensional exponential families

f(x|θ) = h(x)eθ.x−ψ(θ), θ ∈ R
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Admissibility of Bayes estimators

Differential representations

Setting of multidimensional exponential families

f(x|θ) = h(x)eθ.x−ψ(θ), θ ∈ R
p

Measure g such that

Ix(∇g) =

∫
||∇g(θ)||eθ.x−ψ(θ) dθ < +∞

Representation of the posterior mean of ∇ψ(θ)

δg(x) = x+
Ix(∇g)
Ix(g)

.
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Admissibility of Bayes estimators

Sufficient admissibility conditions

∫

{||θ||>1}

g(θ)

||θ||2 log2(||θ|| ∨ 2)
dθ < ∞,

∫ ||∇g(θ)||2
g(θ)

dθ < ∞,

and
∀θ ∈ Θ, R(θ, δg) <∞,
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Admissibility of Bayes estimators

Consequence

Theorem

If
Θ = R

p p ≤ 2

the estimator
δ0(x) = x

is admissible.
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Admissibility of Bayes estimators

Consequence

Theorem

If
Θ = R

p p ≤ 2

the estimator
δ0(x) = x

is admissible.

Example (Normal mean (3))

If x ∼ Np(θ, Ip), p ≤ 2, δ0(x) = x is admissible.
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Admissibility of Bayes estimators

Special case of Np(θ, Σ)

A generalised Bayes estimator of the form
δ(x) = (1 − h(||x||))x

1. is inadmissible if there exist ǫ > 0 and K < +∞ such that

||x||2h(||x||) < p− 2 − ǫ for ||x|| > K

2. is admissible if there exist K1 and K2 such that
h(||x||)||x|| ≤ K1 for every x and

||x||2h(||x||) ≥ p− 2 for ||x|| > K2

[Brown, 1971]
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Admissibility of Bayes estimators

Recurrence conditions

General case
Estimation of a bounded function g(θ)
For a given prior π, Markovian transition kernel

K(θ|η) =

∫

X

π(θ|x)f(x|η) dx,

Theorem (Recurrence)

The generalised Bayes estimator of g(θ) is admissible if the
associated Markov chain (θ(n)) is π-recurrent.

[Eaton, 1994]
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Admissibility of Bayes estimators

Recurrence conditions (cont.)

Extension to the unbounded case, based on the (case dependent)
transition kernel

T (θ|η) = Ψ(η)−1(ϕ(θ) − ϕ(η))2K(θ|η) ,

where Ψ(θ) normalizing factor
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Admissibility of Bayes estimators

Recurrence conditions (cont.)

Extension to the unbounded case, based on the (case dependent)
transition kernel

T (θ|η) = Ψ(η)−1(ϕ(θ) − ϕ(η))2K(θ|η) ,

where Ψ(θ) normalizing factor

Theorem (Recurrence(2))

The generalised Bayes estimator of ϕ(θ) is admissible if the
associated Markov chain (θ(n)) is π-recurrent.

[Eaton, 1999]
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Necessary and sufficient admissibility conditions

Formalisation of the statement that...
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Necessary and sufficient admissibility conditions

Necessary and sufficient admissibility conditions

Formalisation of the statement that...
...all admissible estimators are limits of Bayes estimators...
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Necessary and sufficient admissibility conditions

Blyth’s sufficient condition

Theorem (Blyth condition)

If, for an estimator δ0, there exists a sequence (πn) of generalised
prior distributions such that

(i) r(πn, δ0) is finite for every n;

(ii) for every nonempty open set C ⊂ Θ, there exist K > 0 and N
such that, for every n ≥ N , πn(C) ≥ K; and

(iii) lim
n→+∞

r(πn, δ0) − r(πn) = 0;

then δ0 is admissible.
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Necessary and sufficient admissibility conditions

Example (Normal mean (4))

Consider x ∼ N (θ, 1) and δ0(x) = x
Choose πn as the measure with density

gn(x) = e−θ
2/2n

[condition (ii) is satisfied]
The Bayes estimator for πn is

δn(x) =
nx

n+ 1
,

and

r(πn) =

∫

R

[
θ2

(n+ 1)2
+

n2

(n+ 1)2

]
gn(θ) dθ =

√
2πn

n

n+ 1

[condition (i) is satisfied]
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Necessary and sufficient admissibility conditions

Example (Normal mean (5))

while

r(πn, δ0) =

∫

R

1 gn(θ) dθ =
√

2πn.

Moreover,
r(πn, δ0) − r(πn) =

√
2πn/(n+ 1)

converges to 0.
[condition (iii) is satisfied]
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Necessary and sufficient admissibility conditions

Stein’s necessary and sufficient condition

Assumptions

(i) f(x|θ) is continuous in θ and strictly positive on Θ; and

(ii) the loss L is strictly convex, continuous and, if E ⊂ Θ is
compact,

lim
‖δ‖→+∞

inf
θ∈E

L(θ, δ) = +∞.
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Necessary and sufficient admissibility conditions

Stein’s necessary and sufficient condition (cont.)

Theorem (Stein’s n&s condition)

δ is admissible iff there exist

1. a sequence (Fn) of increasing compact sets such that

Θ =
⋃

n

Fn,

2. a sequence (πn) of finite measures with support Fn, and

3. a sequence (δn) of Bayes estimators associated with πn

such that
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Necessary and sufficient admissibility conditions

Stein’s necessary and sufficient condition (cont.)

Theorem (Stein’s n&s condition (cont.))

(i) there exists a compact set E0 ⊂ Θ such that infn πn(E0) ≥ 1;

(ii) if E ⊂ Θ is compact, sup
n
πn(E) < +∞;

(iii) lim
n
r(πn, δ) − r(πn) = 0; and

(iv) lim
n
R(θ, δn) = R(θ, δ).
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Complete classes

Definition (Complete class)

A class C of estimators is complete if, for every δ′ 6∈ C , there
exists δ ∈ C that dominates δ′. The class is essentially complete if,
for every δ′ 6∈ C , there exists δ ∈ C that is at least as good as δ′.
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Complete classes

A special case

Θ = {θ1, θ2}, with risk set

R = {r = (R(θ1, δ), R(θ2, δ)), δ ∈ D
∗},

bounded and closed from below
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Complete classes

A special case

Θ = {θ1, θ2}, with risk set

R = {r = (R(θ1, δ), R(θ2, δ)), δ ∈ D
∗},

bounded and closed from below
Then, the lower boundary, Γ(R), provides the admissible points of
R.
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Complete classes
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Complete classes

A special case (cont.)

Reason

For every r ∈ Γ(R), there exists a tangent line to R going through
r, with positive slope and equation

p1r1 + p2r2 = k
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Complete classes

A special case (cont.)

Reason

For every r ∈ Γ(R), there exists a tangent line to R going through
r, with positive slope and equation

p1r1 + p2r2 = k

Therefore r is a Bayes estimator for π(θi) = pi (i = 1, 2)
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Complete classes

Wald’s theorems

Theorem

If Θ is finite and if R is bounded and closed from below, then the
set of Bayes estimators constitutes a complete class
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Complete classes

Wald’s theorems

Theorem

If Θ is finite and if R is bounded and closed from below, then the
set of Bayes estimators constitutes a complete class

Theorem

If Θ is compact and the risk set R is convex, if all estimators have
a continuous risk function, the Bayes estimators constitute a
complete class.
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Complete classes

Extensions

If Θ not compact, in many cases, complete classes are made of
generalised Bayes estimators
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Complete classes

Extensions

If Θ not compact, in many cases, complete classes are made of
generalised Bayes estimators

Example

When estimating the natural parameter θ of an exponential family

x ∼ f(x|θ) = eθ·x−ψ(θ)h(x), x, θ ∈ R
k,

under quadratic loss, every admissible estimator is a generalised
Bayes estimator.
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Hierarchical and Empirical Bayes Extensions

Introduction

Decision-Theoretic Foundations of Statistical Inference

From Prior Information to Prior Distributions

Bayesian Point Estimation

Bayesian Calculations

Tests and model choice

Admissibility and Complete Classes
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The Bayesian analysis is sufficiently reductive to produce effective
decisions, but this efficiency can also be misused.
The prior information is rarely rich enough to define a prior
distribution exactly.

Uncertainty must be included within the Bayesian model:

◮ Further prior modelling

◮ Upper and lower probabilities [Dempster-Shafer]

◮ Imprecise probabilities [Walley]
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Hierarchical Bayes analysis

Decomposition of the prior distribution into several conditional
levels of distributions

Often two levels: the first-level distribution is generally a conjugate
prior, with parameters distributed from the second-level distribution

Real life motivations (multiple experiments, meta-analysis, ...)
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Hierarchical models

Definition (Hierarchical model)

A hierarchical Bayes model is a Bayesian statistic model,
(f(x|θ), π(θ)), where

π(θ) =

∫

Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · · πn+1(θn) dθ1 · · · dθn+1.
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Hierarchical models

Definition (Hierarchical model)

A hierarchical Bayes model is a Bayesian statistic model,
(f(x|θ), π(θ)), where

π(θ) =

∫

Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · · πn+1(θn) dθ1 · · · dθn+1.

The parameters θi are called hyperparameters of level i
(1 ≤ i ≤ n).
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Example (Rats (1))

Experiment where rats are intoxicated by a substance, then treated
by either a placebo or a drug:

xij ∼ N (θi, σ
2
c ), 1 ≤ j ≤ Jci , control

yij ∼ N (θi + δi, σ
2
a), 1 ≤ j ≤ Jai , intoxication

zij ∼ N (θi + δi + ξi, σ
2
t ), 1 ≤ j ≤ J ti , treatment
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Example (Rats (1))

Experiment where rats are intoxicated by a substance, then treated
by either a placebo or a drug:

xij ∼ N (θi, σ
2
c ), 1 ≤ j ≤ Jci , control

yij ∼ N (θi + δi, σ
2
a), 1 ≤ j ≤ Jai , intoxication

zij ∼ N (θi + δi + ξi, σ
2
t ), 1 ≤ j ≤ J ti , treatment

Additional variable wi, equal to 1 if the rat is treated with the
drug, and 0 otherwise.
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Example (Rats (2))

Prior distributions (1 ≤ i ≤ I),

θi ∼ N (µθ, σ
2
θ), δi ∼ N (µδ, σ

2
δ ),

and
ξi ∼ N (µP , σ

2
P ) or ξi ∼ N (µD, σ

2
D),

depending on whether the ith rat is treated with a placebo or a
drug.
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Example (Rats (2))

Prior distributions (1 ≤ i ≤ I),

θi ∼ N (µθ, σ
2
θ), δi ∼ N (µδ, σ

2
δ ),

and
ξi ∼ N (µP , σ

2
P ) or ξi ∼ N (µD, σ

2
D),

depending on whether the ith rat is treated with a placebo or a
drug.
Hyperparameters of the model,

µθ, µδ, µP , µD, σc, σa, σt, σθ, σδ, σP , σD ,

associated with Jeffreys’ noninformative priors.
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Justifications

1. Objective reasons based on prior information

Example (Rats (3))

Alternative prior

δi ∼ pN (µδ1, σ
2
δ1) + (1 − p)N (µδ2, σ

2
δ2),

allows for two possible levels of intoxication.
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where h is the link function



Bayesian Statistics

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

2. Separation of structural information from subjective
information

Example (Uncertainties about generalized linear models)

yi|xi ∼ exp{θi · yi − ψ(θi)} , ∇ψ(θi) = E[yi|xi] = h(xtiβ) ,

where h is the link function
The linear constraint ∇ψ(θi) = h(xtiβ) can move to an higher level
of the hierarchy,

θi ∼ exp {λ [θi · ξi − ψ(θi)]}

with E[∇ψ(θi)] = h(xtiβ) and

β ∼ Nq(0, τ
2Iq)
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3. In noninformative settings, compromise between the
Jeffreys noninformative distributions, and the conjugate
distributions.

4. Robustification of the usual Bayesian analysis from a
frequentist point of view

5. Often simplifies Bayesian calculations
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Conditional decompositions

Easy decomposition of the posterior distribution
For instance, if

θ|θ1 ∼ π1(θ|θ1), θ1 ∼ π2(θ1),

then

π(θ|x) =

∫

Θ1

π(θ|θ1, x)π(θ1|x) dθ1,
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Conditional decompositions (cont.)

where

π(θ|θ1, x) =
f(x|θ)π1(θ|θ1)
m1(x|θ1)

,

m1(x|θ1) =

∫

Θ
f(x|θ)π1(θ|θ1) dθ,

π(θ1|x) =
m1(x|θ1)π2(θ1)

m(x)
,

m(x) =

∫

Θ1

m1(x|θ1)π2(θ1) dθ1.
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Conditional decompositions (cont.)

Moreover, this decomposition works for the posterior moments,
that is, for every function h,

E
π[h(θ)|x] = E

π(θ1|x) [Eπ1 [h(θ)|θ1, x]] ,

where

E
π1[h(θ)|θ1, x] =

∫

Θ
h(θ)π(θ|θ1, x) dθ.
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Example (Posterior distribution of the complete parameter
vector)

Posterior distribution of the complete parameter vector

π((θi, δi, ξi)i, µθ, . . . , σc, . . . |D) ∝
I∏

i=1

{
exp−{(θi − µθ)

2/2σ2
θ + (δi − µδ)

2/2σ2
δ}

Jc
i∏

j=1

exp−{(xij − θi)
2/2σ2

c}
Ja

i∏

j=1

exp−{(yij − θi − δi)
2/2σ2

a}

Jt
i∏

j=1

exp−{(zij − θi − δi − ξi)
2/2σ2

t }
}

∏

ℓi=0

exp−{(ξi − µP )2/2σ2
P }
∏

ℓi=1

exp−{(ξi − µD)2/2σ2
D}

−
P

Jc−1 −
P

Ja−1 −
P

Jt−1 −I−1 −I −1 −I −1
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Local conditioning property

Theorem (Decomposition)

For the hierarchical model

π(θ) =

∫

Θ1×...×Θn

π1(θ|θ1)π2(θ1|θ2) · · · πn+1(θn) dθ1 · · · dθn+1.

we have
π(θi|x, θ, θ1, . . . , θn) = π(θi|θi−1, θi+1)

with the convention θ0 = θ and θn+1 = 0.
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Computational issues

Rarely an explicit derivation of the corresponding Bayes estimators
Natural solution in hierarchical settings: use a simulation-based
approach exploiting the hierarchical conditional structure

Example (Rats (4))

The full conditional distributions correspond to standard
distributions and Gibbs sampling applies.
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µδ µD µP µD − µP
Probability 1.00 0.9998 0.94 0.985
Confidence [-3.48,-2.17] [0.94,2.50] [-0.17,1.24] [0.14,2.20]

Posterior probabilities of significant effects
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Hierarchical extensions for the normal model

For
x ∼ Np(θ,Σ) , θ ∼ Np(µ,Σπ)

the hierarchical Bayes estimator is

δπ(x) = E
π2(µ,Σπ|x)[δ(x|µ,Σπ)],
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Hierarchical extensions for the normal model

For
x ∼ Np(θ,Σ) , θ ∼ Np(µ,Σπ)

the hierarchical Bayes estimator is

δπ(x) = E
π2(µ,Σπ|x)[δ(x|µ,Σπ)],

with

δ(x|µ,Σπ) = x− ΣW (x− µ),

W = (Σ + Σπ)
−1,

π2(µ,Σπ|x) ∝ (detW )1/2 exp{−(x− µ)tW (x− µ)/2}π2(µ,Σπ).
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Example (Exchangeable normal)

Consider the exchangeable hierarchical model

x|θ ∼ Np(θ, σ
2
1Ip),

θ|ξ ∼ Np(ξ1, σ
2
πIp),

ξ ∼ N (ξ0, τ
2),

where 1 = (1, . . . , 1)t ∈ Rp. In this case,

δ(x|ξ, σπ) = x− σ2
1

σ2
1 + σ2

π

(x− ξ1),
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Example (Exchangeable normal (2))

π2(ξ, σ
2
π|x) ∝ (σ

2
1 + σ

2
π)

−p/2
exp{−

‖x − ξ1‖2

2(σ2
1 + σ2

π)
}e

−(ξ−ξ0)2/2τ2
π2(σ

2
π)

∝
π2(σ2

π)

(σ2
1 + σ2

π)p/2
exp

(

−
p(x̄ − ξ)2

2(σ2
1 + σ2

π)
−

s2

2(σ2
1 + σ2

π)
−

(ξ − ξ0)2

2τ2

)

with s2 =
P

i(xi − x̄)2.
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Example (Exchangeable normal (2))

π2(ξ, σ
2
π|x) ∝ (σ

2
1 + σ

2
π)

−p/2
exp{−

‖x − ξ1‖2

2(σ2
1 + σ2

π)
}e

−(ξ−ξ0)2/2τ2
π2(σ

2
π)

∝
π2(σ2

π)

(σ2
1 + σ2

π)p/2
exp

(

−
p(x̄ − ξ)2

2(σ2
1 + σ2

π)
−

s2

2(σ2
1 + σ2

π)
−

(ξ − ξ0)2

2τ2

)

with s2 =
P

i(xi − x̄)2. Then

δ
π

(x) = E
π2(σ2

π|x)

"

x −
σ2

1

σ2
1 + σ2

π

(x − x̄1) −
σ2

1 + σ2
π

σ2
1 + σ2

π + pτ2
(x̄ − ξ0)1

#

and

π2(σ
2
π|x) ∝

τ exp − 1
2

"

s2

σ2
1 + σ2

π

+
p(x̄ − ξ0)2

pτ2 + σ2
1 + σ2

π

#

(σ2
1 + σ2

π)(p−1)/2(σ2
1 + σ2

π + pτ2)1/2
π2(σ

2
π).
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Example (Exchangeable normal (3))

Notice the particular form of the hierarchical Bayes estimator

δπ(x) = x− E
π2(σ

2
π |x)

[
σ2

1

σ2
1 + σ2

π

]
(x− x̄1)

−E
π2(σ

2
π |x)

[
σ2

1 + σ2
π

σ2
1 + σ2

π + pτ2

]
(x̄− ξ0)1.

[Double shrinkage]
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If a minimax estimator is unique, it is admissible
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The Stein effect

If a minimax estimator is unique, it is admissible

Converse

If a constant risk minimax estimator is inadmissible, every other
minimax estimator has a uniformly smaller risk (!)



Bayesian Statistics

Hierarchical and Empirical Bayes Extensions, and the Stein Effect

Hierarchical Bayes analysis

The Stein Paradox

If a standard estimator δ∗(x) = (δ0(x1), . . . , δ0(xp)) is evaluated
under weighted quadratic loss

p∑

i=1

ωi(δi − θi)
2,

with ωi > 0 (i = 1, . . . , p), there exists p0 such that δ∗ is not
admissible for p ≥ p0,
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The Stein Paradox

If a standard estimator δ∗(x) = (δ0(x1), . . . , δ0(xp)) is evaluated
under weighted quadratic loss

p∑

i=1

ωi(δi − θi)
2,

with ωi > 0 (i = 1, . . . , p), there exists p0 such that δ∗ is not
admissible for p ≥ p0, although the components δ0(xi) are
separately admissible to estimate the θi’s.
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James–Stein estimator
In the normal case,

δJS(x) =

(
1 − p− 2

||x||2
)
x,

dominates δ0(x) = x under quadratic loss for p ≥ 3, that is,

p = Eθ[||δ0(x) − θ||2] > Eθ[||δJS(x) − θ||2].
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James–Stein estimator
In the normal case,

δJS(x) =

(
1 − p− 2

||x||2
)
x,

dominates δ0(x) = x under quadratic loss for p ≥ 3, that is,

p = Eθ[||δ0(x) − θ||2] > Eθ[||δJS(x) − θ||2].
And

δ+c (x) =

(
1 − c

||x||2
)+

x

=

{
(1 − c

||x||2 )x if ||x||2 > c,

0 otherwise,

improves on δ0 when

0 < c < 2(p − 2)
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Universality

◮ Other distributions than the normal distribution

◮ Other losses other than the quadratic loss

◮ Connections with admissibility

◮ George’s multiple shrinkage

◮ Robustess against distribution

◮ Applies for confidence regions

◮ Applies for accuracy (or loss) estimation

◮ Cannot occur in finite parameter spaces
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A general Stein-type domination result

Consider z = (xt, yt)t ∈ Rp, with distribution

z ∼ f(||x− θ||2 + ||y||2),

and x ∈ Rq, y ∈ Rp−q.
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A general Stein-type domination result (cont.)

Theorem (Stein domination of δ0)

δh(z) = (1 − h(||x||2, ||y||2))x
dominates δ0 under quadratic loss if there exist α, β > 0 such
that:

(1) tαh(t, u) is a nondecreasing function of t for every u;

(2) u−βh(t, u) is a nonincreasing function of u for every t; and

(3) 0 ≤ (t/u)h(t, u) ≤ 2(q − 2)α

p− q − 2 + 4β
.
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Optimality of hierarchical Bayes estimators

Consider
x ∼ Np(θ,Σ)

where Σ is known.
Prior distribution on θ is θ ∼ Np(µ,Σπ).
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Optimality of hierarchical Bayes estimators

Consider
x ∼ Np(θ,Σ)

where Σ is known.
Prior distribution on θ is θ ∼ Np(µ,Σπ).
The prior distribution π2 of the hyperparameters

(µ,Σπ)

is decomposed as

π2(µ,Σπ) = π1
2(Σπ|µ)π2

2(µ).
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Optimality of hierarchical Bayes estimators

In this case,

m(x) =

∫

Rp

m(x|µ)π2
2(µ) dµ,

with

m(x|µ) =

∫
f(x|θ)π1(θ|µ,Σπ)π

1
2(Σπ|µ) dθ dΣπ.
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Optimality of hierarchical Bayes estimators

Moreover, the Bayes estimator

δπ(x) = x+ Σ∇ logm(x)

can be written

δπ(x) =

∫
δ(x|µ)π2

2(µ|x) dµ,

with

δ(x|µ) = x+ Σ∇ logm(x|µ),

π2
2(µ|x) =

m(x|µ)π2
2(µ)

m(x)
.
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A sufficient condition

An estimator δ is minimax under the loss

LQ(θ, δ) = (θ − δ)tQ(θ − δ).

if it satisfies

R(θ, δ) = Eθ[LQ(θ, δ(x))] ≤ tr(ΣQ)
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A sufficient condition (contd.)

Theorem (Minimaxity)

If m(x) satisfies the three conditions

(1) Eθ‖∇ logm(x)‖2 < +∞; (2) Eθ

∣∣∣∣
∂2m(x)

∂xi∂xj

/
m(x)

∣∣∣∣ < +∞;

and (1 ≤ i ≤ p)

(3) lim
|xi|→+∞

∣∣∇ logm(x)
∣∣ exp{−(1/2)(x − θ)tΣ−1(x− θ)} = 0,
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The unbiased estimator of the risk of δπ is given by

Dδπ(x) = tr(QΣ)

+
2

m(x)
tr(Hm(x)Q̃) − (∇ logm(x))tQ̃(∇ logm(x))

where

Q̃ = ΣQΣ, Hm(x) =

(
∂2m(x)

∂xi∂xj

)

and...
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Hierarchical Bayes analysis

δπ is minimax if
div
(
Q̃∇

√
m(x)

)
≤ 0,
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Hierarchical Bayes analysis

δπ is minimax if
div
(
Q̃∇

√
m(x)

)
≤ 0,

When Σ = Q = Ip, this condition is

∆
√
m(x) =

n∑

i=1

∂2

∂x2
i

(
√
m(x)) ≤ 0

[
√
m(x) superharmonic]
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Hierarchical Bayes analysis

Superharmonicity condition

Theorem (Superharmonicity)

δπ is minimax if
div
(
Q̃∇m(x|µ)

)
≤ 0.
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Hierarchical Bayes analysis

Superharmonicity condition

Theorem (Superharmonicity)

δπ is minimax if
div
(
Q̃∇m(x|µ)

)
≤ 0.

N&S condition that does not depend on π2
2(µ)!
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Empirical Bayes alternative

Strictly speaking, not a Bayesian method !
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The empirical Bayes alternative

Empirical Bayes alternative

Strictly speaking, not a Bayesian method !

(i) can be perceived as a dual method of the hierarchical Bayes
analysis;

(ii) asymptotically equivalent to the Bayesian approach;

(iii) usually classified as Bayesian by others; and

(iv) may be acceptable in problems for which a genuine Bayes
modeling is too complicated/costly.
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The empirical Bayes alternative

Parametric empirical Bayes

When hyperparameters from a conjugate prior π(θ|λ) are
unavailable, estimate these hyperparameters from the marginal
distribution

m(x|λ) =

∫

Θ
f(x|θ)π(θ|λ) dθ

by λ̂(x) and to use π(θ|λ̂(x), x) as a pseudo-posterior
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The empirical Bayes alternative

Fundamental ad-hocquery

Which estimate λ̂(x) for λ ?
Moment method or maximum likelihood or Bayes or &tc...
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The empirical Bayes alternative

Example (Poisson estimation)

Consider xi distributed according to P(θi) (i = 1, . . . , n). When
π(θ|λ) is E xp(λ),

m(xi|λ) =

∫ +∞

0
e−θ

θxi

xi!
λe−θλdθ

=
λ

(λ+ 1)xi+1
=

(
1

λ+ 1

)xi λ

λ+ 1
,

i.e. xi|λ ∼ G eo(λ/λ+ 1).
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The empirical Bayes alternative

Example (Poisson estimation)

Consider xi distributed according to P(θi) (i = 1, . . . , n). When
π(θ|λ) is E xp(λ),

m(xi|λ) =

∫ +∞

0
e−θ

θxi

xi!
λe−θλdθ

=
λ

(λ+ 1)xi+1
=

(
1

λ+ 1

)xi λ

λ+ 1
,

i.e. xi|λ ∼ G eo(λ/λ+ 1). Then

λ̂(x) = 1/x̄

and the empirical Bayes estimator of θn+1 is

δEB(xn+1) =
xn+1 + 1

λ̂+ 1
=

x̄

x̄+ 1
(xn+1 + 1),
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The empirical Bayes alternative

Empirical Bayes justifications of the Stein effect

A way to unify the different occurrences of this paradox and show
its Bayesian roots
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The empirical Bayes alternative

a. Point estimation

Example (Normal mean)

Consider x ∼ Np(θ, Ip) and θi ∼ N (0, τ2). The marginal
distribution of x is then

x|τ2 ∼ Np(0, (1 + τ2)Ip)

and the maximum likelihood estimator of τ2 is

τ̂2 =

{
(||x||2/p) − 1 if ||x||2 > p,

0 otherwise.

The corresponding empirical Bayes estimator of θi is then

δEB(x) =
τ̂2x

1 + τ̂2
=

(
1 − p

||x||2
)+

x.
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Normal model

Take

x|θ ∼ Np(θ,Λ),

θ|β, σ2
π ∼ Np(Zβ, σ

2
πIp),

with Λ = diag(λ1, . . . , λp) and Z a (p× q) full rank matrix.
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The empirical Bayes alternative

Normal model

Take

x|θ ∼ Np(θ,Λ),

θ|β, σ2
π ∼ Np(Zβ, σ

2
πIp),

with Λ = diag(λ1, . . . , λp) and Z a (p× q) full rank matrix.
The marginal distribution of x is

xi|β, σ2
π ∼ N (z′iβ, σ

2
π + λi)

and the posterior distribution of θ is

θi|xi, β, σ2
π ∼ N

(
(1 − bi)xi + biz

′
iβ, λi(1 − bi)

)
,

with bi = λi/(λi + σ2
π).
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Normal model (cont.)

If
λ1 = . . . = λn = σ2

the best equivariant estimators of β and b are given by

β̂ = (ZtZ)−1Ztx and b̂ =
(p− q − 2)σ2

s2
,

with s2 =
∑p

i=1(xi − z′iβ̂)2.
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The empirical Bayes alternative

Normal model (cont.)

If
λ1 = . . . = λn = σ2

the best equivariant estimators of β and b are given by

β̂ = (ZtZ)−1Ztx and b̂ =
(p− q − 2)σ2

s2
,

with s2 =
∑p

i=1(xi − z′iβ̂)2.
The corresponding empirical Bayes estimator of θ are

δEB(x) = Zβ̂ +

(

1 − (p− q − 2)σ2

||x− Zβ̂||2

)

(x− Zβ̂),

which is of the form of the general Stein estimator
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The empirical Bayes alternative

Normal model (cont.)

When the means are assumed to be identical (exchangeability), the
matrix Z reduces to the vector 1 and β ∈ R
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Normal model (cont.)

When the means are assumed to be identical (exchangeability), the
matrix Z reduces to the vector 1 and β ∈ R

The empirical Bayes estimator is then

δEB(x) = x̄1 +

(
1 − (p − 3)σ2

||x− x̄1||2
)

(x− x̄1).
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The empirical Bayes alternative

b. Variance evaluation

Estimation of the hyperparameters β and σ2
π considerably modifies

the behavior of the procedures.
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The empirical Bayes alternative

b. Variance evaluation

Estimation of the hyperparameters β and σ2
π considerably modifies

the behavior of the procedures.
Point estimation generally efficient, but estimation of the posterior
variance of π(θ|x, β, b) by the empirical variance,

var(θi|x, β̂, b̂)

induces an underestimation of this variance
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The empirical Bayes alternative

Morris’ correction

δEB(x) = x− B̃(x− x̄1),

V EB
i (x) =

(
σ2 − p− 1

p
B̃

)
+

2

p− 3
b̂(xi − x̄)2,

with

b̂ =
p− 3

p− 1

σ2

σ2 + σ̂2
π

, σ̂2
π = max

(
0,

||x− x̄1||2
p− 1

− σ2
π

)

and

B̃ =
p− 3

p− 1
min

(
1,
σ2(p− 1)

||x− x̄1||2
)
.
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Unlimited range of applications

◮ artificial intelligence

◮ biostatistic

◮ econometrics

◮ epidemiology

◮ environmetrics

◮ finance
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A Defense of the Bayesian Choice

◮ genomics

◮ geostatistics

◮ image processing and pattern recognition

◮ neural networks

◮ signal processing

◮ Bayesian networks



Bayesian Statistics

A Defense of the Bayesian Choice

rabicnameusec@enumi). Choosing a probabilistic representation

Bayesian Statistics appears as the calculus of uncertainty
Reminder:
A probabilistic model is nothing but an interpretation of a
given phenomenon
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Conditioning on the data
At the basis of inference lies an inversion process between
cause and effect. Using a prior brings a necessary balance
between observations and parameters and enable to operate
conditional upon x
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Exhibiting the true likelihood
Provides a complete quantitative inference on the parameters
and predictive that points out inadequacies of frequentist
statistics, while implementing the Likelihood Principle.
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Using priors as tools and summaries
The choice of a prior π does not require any kind of
belief belief in this : rather consider it as a tool that
summarizes the available prior and the uncertainty
surrounding this
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Accepting the subjective basis of knowledge
Knowledge is a critical confrontation between a prioris and
experiments. Ignoring these a prioris impoverishes analysis.
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A Defense of the Bayesian Choice

We have, for one thing, to use a language and
our language is entirely made of preconceived ideas
and has to be so. However, these are unconscious
preconceived ideas, which are a million times more
dangerous than the other ones. Were we to assert
that if we are including other preconceived ideas,
consciously stated, we would aggravate the evil! I do
not believe so: I rather maintain that they would
balance one another.

Henri Poincaré, 1902
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Choosing a coherent system of inference
To force inference into a decision-theoretic mold allows for a
clarification of the way inferential tools should be evaluated,
and therefore implies a conscious (although subjective) choice
of the retained optimality.
Logical inference process Start with requested properties,
i.e. loss function and prior , then derive the best solution
satisfying these properties.
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Looking for optimal procedures
Bayesian inference widely intersects with the three notions of
minimaxity, and equivariance. Looking for an optimal most
often ends up finding a Bayes .
Optimality is easier to attain through the Bayes “filter”
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Solving the actual problem
Frequentist methods justified on a long-term basis, i.e., from
the statistician viewpoint. From a decision-maker’s point of
view, only the problem at hand matters! That is, he/she calls
for an inference conditional on x.
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Providing a universal system of inference
Given the three factors

(X , f(x|θ), (Θ, π(θ)), (D ,L(θ, d)) ,

the Bayesian approach validates one and only one inferential
procedure
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A Defense of the Bayesian Choice

rabicnameusec@enumi). Computing procedures as a minimization problem
Bayesian procedures are easier to compute than procedures of
alternative theories, in the sense that there exists a universal
methodmethod!universal for the computation of Bayes
estimators
In practice, the effective calculation of the Bayes estimators is
often more delicate but this defect is of another magnitude.
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