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Chapter 1

Introduction to optimal
transportation

In this introductory chapter, we introduce the Monge and Monge-Kantorovich
optimal transport problems. In these notes, we will mainly stay at a rather
elementary (or heuristic) level, so we refer the interested reader to the recent
books of Villani [73], [74] for a much more exhaustive and detailed account
of the theory and its most recent developments (see also [65] for a more
probabilistic-oriented presentation and the lecture notes [5] and [42] for a
very comprehensive treatment of both the quadratic and distance cases).

Throughout these notes, given a metric space X, we shall denote by
M+

1 (X) the set of Borel probability measures on X.

1.1 The Monge and the Monge-Kantorovich

problems

In 1781, the french mathematician Gaspard Monge, first considered the prob-
lem of ”remblais et déblais” which asks what is the most efficent (that is work
minimizing) way to move a pile of soil or rubble to an excavation or fill. Imag-
ine that the soil initially occupies the bounded region A ⊂ R3 and that the
excavation is the region B, assume also that A and B have the same volume.
One then looks for a map T : A→ B (T (x) ∈ B represents the destinationon
of the element of mass initially located at x ∈ A), the total work involved is∫

A

|x− T (x)|dx

and one has to minimize it in the set of volume preserving maps T : A→ B.
It is this constraint (of incompressibility) that makes the problem difficult

6



(and in fact, the first rigorous existence proofs for a minimizer were given
in the mid 90’s!). We’ll come back to the original Monge problem in more
details in paragraph 2.4.

More generally, assume that X and Y are two compact (to make things
as simple as possible) metric spaces and that µ and ν are two Borel measures
with the same total mass (which we shall of course normalize to 1) and
that we are also given a continuous transportation cost function c : X ×
Y → R. Transport maps are then maps that fulfill some mass conservation
requirement that is naturally defined as follows:

Definition 1.1 Let T be a Borel map : X → Y , the push forward (or image
measure) of µ through T is the Borel measure, denoted T#µ defined on Y by

T#µ(B) = µ(T−1(B)), for every Borel subset B of Y .

A Borel map : X → Y is said to be a transport map (between µ and ν) if
T#µ = ν.

Let us remark that T#µ can equivalently be defined by the change of
variables formula:∫

Y

ϕdT#µ =

∫
X

ϕ(T (x))dµ(x), ∀ϕ ∈ C(Y )

so that the requirement that T is a transport can be reformulated as∫
X

ϕ(T (x))dµ(x) =

∫
Y

ϕ(y)dν(y), ∀ϕ ∈ C(Y ).

The (generalized) Monge’s problem then consists in finding a cost mini-
mizing transport between µ and ν, it thus reads

inf
T : T#µ=ν

∫
X

c(x, T (x))dµ(x). (1.1)

A solution to this problem (if any!) is called an optimal transport map or a
Monge solution.

We should now remark, that Monge’s problem presents serious difficulties
and in the first place the fact that there may be no transport map : if µ = δa
then it is impossible to transport µ on a target measure that is not itself a
Dirac mass! This example is somehow extreme and can be ruled out when
one assumes that µ is nonatomic. But even for very ”well-behaved” measures
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(say measures with smooth densities, ρ0 and ρ1 on Rd) the requirement that
a diffeomorphism T is a transport reads as the highly non linear equation

| detDT |ρ1(T ) = ρ0

and there is no reason in general to think that we should restrict ourselves
to diffeomorphisms. One should also remark that the Monge’s formulation is
rather rigid in the sense that it requires that all the mass that is at x should
be associated to the same target T (x).

In the 1940’s, Kantorovich proposed a relaxed formulation that allows
mass splitting. More precisely, he introduced the problem which is by now
known as the Monge-Kantorovich problem and reads as:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) (1.2)

where Π(µ, ν) is the set of transport plans i.e. the set of Borel probability
measures on X × Y that have µ and ν as marginals, which means

γ(A× Y ) = µ(A), γ(X ×B) = ν(B), for every Borel A ⊂ X, and B ⊂ Y

which can also be formulated as∫
X×Y

(ϕ(x) + ψ(y))dγ(x, y) =

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y),

fo every (ϕ, ψ) ∈ C(X)× C(Y ).

The Monge-Kantorovich problem is much simpler than the Monge’s one:
Π(µ, ν) is never empty since it contains µ ⊗ ν and moreover it is a linear
problem. In addition, Π(µ, ν) is obviously weakly-∗ compact and since c is
continuous the criterion γ 7→

∫
X×Y cdγ is continuous for the weak-∗ topology,

hence we get for free:

Theorem 1.1 The Monge-Kantorovich problem (1.2) admits solutions : such
solutions are called optimal transport plans.

Existence of transport plans is therefore a straightforward fact but it does
not say much about existence of optimal transport maps in general. However,
let us remark that if T is a transport map then it induces a transport plan
γT by γT := (id, T )#µ i.e∫

X×Y
ϕ(x, y)dγT (x, y) :=

∫
X

ϕ(x, T (x))dµ(x), ∀ϕ ∈ C(X, Y )
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in other words, one can canonically imbed transport maps into the set of
transport plan. As for the cost, of course one has∫

X

c(x, T (x))dµ(x) =

∫
X×Y

c(x, y)dγT (x, y).

This proves that the minimum in the Monge-Kantorovich problem is smaller
than the infimum of the Monge problem but it also means that if we are
lucky enough to find an optimal plan that is of the form γT (which roughly
speaking means that it is supported by the graph of T ) then T is actually
an optimal transport map. We will see two situations where, one may solve
Monge’s problem this way:

• the discrete case, where transport maps simply are permutations and
transport plans bistochastic matrices, as we shall see, a celebrated re-
sult of Birkhoff says that the extreme points of bistochastic measures
are permutation matrices,

• the case of strictly convex costs where a careful inspection of the opti-
mality conditions obtained via duality theory enables one to prove that
optimal plans are actually induced by transport maps.

A related question is whether the Monge-Kantorovich is a relaxation of
the Monge problem in the usual sense i.e. is it true that the minimum in
(1.2) coincides with the infimum in (1.1). The answer is positive when µ is
nonatomic:

Theorem 1.2 If µ is nonatomic then the set {γT : T#µ = ν} is weak-∗
dense in Π(µ, ν) and therefore one has the relaxation relation:

inf
T : T#µ=ν

∫
X

c(x, T (x))dµ(x) = min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y).

The proof of the density statement uses Lyapunov’s convexity theorem,
we refer to the lecture notes of Ambrosio [5] for details. As we already
mentioned if the source measure has atoms there may be no such transport
map, the previous theorem says in particular that without atoms, transport
maps exist (and actually form a set that is large enough to be dense in
transport plans). The presence of atoms actually is therefore the only serious
source of nonexistence of transport maps.

Let us end this paragraph, by remarking that there is an obvious proba-
bilistic interpretation of the Monge-Kantorovich in terms of optimal coupling.
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Indeed, one can see the Monge-Kantorovich problem as finding a coupling
(X, Y ) which minimizes the average cost

E(c(X, Y ))

among all pairs (X, Y ) with prescribed marginal laws respectively µ and ν.

1.2 Some examples of transport maps

Before, going further, we wish to abandon for a while the question of opti-
mality and spend some time by describing some examples of transport maps.

The monotone rearrangement

Let µ and ν be Borel probability measures on the real line such that µ has
no atom, then set for every x ∈ R:

T (x) := inf{t ∈ R : ν((−∞, t]) > µ((−∞, x])}

T is obviously monotone and T#µ = ν. It is also easy to see that T is the
only monotone map such that T#µ = ν. It turns out, as we shall explain
later on that the monotone rearrangement is in fact an optimal transport
for a wide class of transportation costs (but this is very peculiar to the one-
dimensional case where the order of R plays a crucial role). Of course, the
statistic-orienter reader will naturally have made the connection with the
notion of quantile.

Knothe’s transport

Let us assume (for simplicity) that d = 2 and that µ is absolutely continuous,
let µ1 and ν1 be respectively the first marginal of µ and ν respectively. By
the disintegration theorem (see appendix), we may write

µ = µ1 ⊗ µx1
2 , ν := ν1 ⊗ νy12

i.e. µx1
2 is the conditional probability distribution of x2 given x1 according

to µ. Or, put differently, for every continuous ϕ one has∫
ϕ(x1, x2)dµ(x1, x2) =

∫ (∫
ϕ(x1, x2)dµx1

2 (x2)
)
dµ1(x1)
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and a similar interpretation holds for νy1 . Now let T1 be the monotone rear-
rangement from µ1 to ν1. Then for fixed x1 let T2(x1, .) be the monotone re-

arrangement from µx1
2 to ν

T1(x1)
2 . Finally set T (x1, x2) := (T1(x1), T2(x1, x2)),

for any test function ϕ, we thus have∫
ϕ(T (x))dµ(x) =

∫ (∫
ϕ(T1(x1), T2(x1, x2))dµx1

2 (x2)
)
dµ1(x1)

=

∫ (∫
ϕ(T1(x1), y2)dν

T1(x1)
2 (y2)

)
dµ1(x1)

=

∫ (∫
ϕ(y1, y2)dνy12 (y2)

)
dν1(x1) =

∫
ϕdν

so that T transport µ to ν. Note that by construction the Jacobian matrix
DT is triangular and has nonnegative entries on the diagonal, T is called
Knothe’s transport (or sometimes conditional quantile transform by statisti-
cians, see [69]). One can of course define the Knothe transport between mea-
sures in Rd, since the construction uses monotone rearrangements at each
step, it is necessary that the successive disintegrations of µ are nonatomic.

Knothe [52] realized that this transport map could be a simple and pow-
erful tool for proving certain geometric inequalities. Let us give a ”transport
proof” of the isoperimetric inequality. Let B be the unit ball of Rd and A be
another (regular enough) domain. Let T be the Knothe transport between
|A|−1χA and |B|−1χB so that

det(DT ) =
|B|
|A|

.

Since by construction DT is triangular with nonnegative eigenvalues, the
arithmetico-geometric inequality gives

det(DT )1/d ≤ 1

d
tr(DT ) =

1

d
div(T )

integrating, we obtain

|B|1/d|A|1−1/d ≤ 1

d

∫
A

div(T ) =
1

d

∫
∂A

T · n

and since T ∈ B, we get

|B|1/d|A|1−1/d ≤ 1

d
Per(A) = |B|Per(A)

Per(B)

that is
|A|1−1/d

Per(A)
≤ |B|

1−1/d

Per(B)
.
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Moser’s transport

We now consider the case of probability measures having smooth densities
denoted respectively ρ0 and ρ1 defined on some smooth open bounded subset
Ω of Rd, we also assume that these densities are uniformly bounded away
from 0 on Ω. It is then a natural question to try to construct a smooth
diffeomorphism transporting ρ0 to ρ1. In [64], Moser gave such a construction
by a very elegant flow argument (see also Dacorogna and Moser [34] for sharp
regularity results and Evans and Gangbo [43] who used a similar construction
in the framework of the Monge problem). The construction is as follows, first
solve the Laplace equation with Neumann boundary condition:

∆u = ρ0 − ρ1 in Ω,
∂u

∂n
= 0 on ∂Ω.

This Neumann problem is solvable because ρ0 − ρ1 has zero mean and by
standard elliptic regularity u is a smooth function. Then consider the inter-
polation

ρt := (1− t)ρ0 + tρ1, t ∈ [0, 1]

as well as the smooth vector-field

v(t, x) :=
∇u(x)

ρt(x)
.

And let Xt denote the flow of this vector field i.e. the solution of

∂tXt(x) = v(t,Xt(x)), X0(x) = x.

This defines a family of diffeomorphisms x 7→ Xt(x), and one can prove that

ρt = Xt#ρ0

so that in particular X1#ρ0 = ρ1 : X1 is therefore a smooth diffeomorphism
transporting ρ0 to ρ1. In the appendix, we give two different proofs of the
fact that ρt = Xt#ρ0. The first one is based on the fact, that by construction,
ρt solves the continuity equation:

∂tρ+ div(ρv) = ρ1 − ρ0 + ∆u = 0.

The second proof is more direct and follows Moser’s initial deformation argu-
ments. It is important to understand this flow construction, since we will use
it again in chapter 6 devoted to congested transport. Let us finally remark
that Moser’s construction does much more than just constructing a smooth
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and invertible transport between ρ0 and ρ1: the flow at time t, Xt transports
ρ0 to the linear interpolation ρt for every t ∈ [0, 1].

We end this paragraph devoted to examples by mentioning that it is
possible to find a continuous curve T : [0, 1]→ [0, 1]×[0, 1] that is continuous
and transports the unidimensional Lebesgue measure on the segment to the
two-dimensional Lebesgue measure on the square. This may seem strange
at first glance, but the existence and construction of such curves is a special
case of space-filling curves that may be traced back to Peano in the early
1890’s.

1.3 Remarks on existence and uniqueness

We have seen in theorem 1.2 that when the source measure is nonatomic, the
infimum of the Monge problem coincides with the minimum of the Monge-
Kantorovich problem. If we then take a minimizing sequence of transport
maps (Tn), by compactness of Π(µ, ν), up to a subsequence one may assume
that γTn weakly ∗ converges to some optimal transport plan γ, now in general
there is no reason why γ should be of the form γT . Nonexistence of an op-
timal transport typically happens when minimizing sequences exhibit strong
oscillations. behavior. Let us now give a simple example: let µ be uniformly
distributed on [0, 1], ν be uniformly distributed on [−1, 1] and take as cost
function:

c(x, y) := (x2 − y2)2.

Now let n ∈ N∗ and divide [0, 1] into the 2n intervals [k/(2n), (k + 1)/(2n)],
k = 0, ..., 2n− 1 and then define

Tn(x) =

{
(2x− k/n) if x ∈ [k/(2n), (k + 1)/2n] with k even
(−2x+ k/n) if x ∈ [k/(2n), (k + 1)/2n] with k odd.

It is easy to check Tn#µ = ν and that
∫ 1

0
c(x, Tn(x))dµ(x) tends to 0, hence

the infimum of the Monge problem is zero. Now if there was an optimal
transport T then since it has zero cost, one would have T (x) ∈ {−x;x} a.e.
and one could thus write

T (x) = (χA(x)− χ[0,1]\A)x

for some measurable A ⊂ [0, 1] with measure 1/2 (note that A = {T ≥ 0})
but since T−1(A) = A, we should also have ν(A) = µ(T−1(A)) = 1/4 which
yields a contradiction. An optimal plan is given by

γ = µ⊗ (
1

2
δx +

1

2
δ−x)
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that is the optimal plan consists in splitting the mass at x, sending half of
it at −x leaving the remaining mass at x. In this example, the cost is a
polynomial, this suggests that existence or nonexistence is not only a matter
of regularity but is also related to some structure of the cost.

As for nonuniqueness, let us consider the so-called book shifting example.
Again in dimension 1 take, c(x, y) = |x−y|, µ uniform on [0, 1] and ν uniform
on [1/2, 3/2], then one can check that the translation T (x) = x + 1/2 is
optimal but the transport that consists in translating the mass on [0, 1/2]
to [1, 3/2] and leaving the common mass yields the same total cost 1 (the
translation is twice longer but the mass transported is half of the total mass).

1.4 Kantorovich duality, c-concave functions

A key feature of the linear Monge-Kantorovich formulation is that it has
a nice dual formulation that we are going to describe here in an informal
way (a rigorous proof via the Fenchel-Rockafellar duality theorem is given in
the appendix). As we shall see later, the dual problem is an essential tool
to understand the geometry of optimal transport as well as for establishing
existence of optimal transport maps for certain cost functions.

Let γ be a nonnegative measure on X×Y , then we have already remarked
that γ ∈ Π(µ, ν) if and only if for every (ϕ, ψ) ∈ C(X)× C(Y ) one has:∫

X×Y
(ϕ(x) + ψ(y))dγ(x, y) =

∫
X

ϕdµ+

∫
Y

ψdν.

The intuition behind Kantorovich duality is to view the functions ϕ and ψ
as Lagrange multipliers associated to the constraints on the marginals.

If γ ≥ 0, the quantity

sup
(ϕ,ψ)∈C(X)×C(Y )

∫
X

ϕdµ+

∫
Y

ψdν −
∫
X×Y

(ϕ(x) + ψ(y))dγ(x, y)

is either +∞ or 0 and is 0 exactly when γ is a transport plan. We may then
rewrite (1.2) in the ”inf-sup” form:

inf
γ≥0

sup
(ϕ,ψ)∈C(X)×C(Y )

{∫
X

ϕdµ+

∫
Y

ψdν+

∫
X×Y

(c(x, y)−ϕ(x)−ψ(y))dγ(x, y)
}
.

(1.3)
In an informal way, the dual problem is obtained by switching the inf and

the sup in the previous program. We then remark that

inf
γ≥0

{∫
X×Y

(c(x, y)− ϕ(x)− ψ(y))dγ(x, y)
}
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is 0 whenever the inequality c(x, y) ≥ ϕ(x)+ψ(y) holds everywhere and +∞
otherwise. The ”sup-inf” problem then reads as

sup
(ϕ,ψ)∈C(X)×C(Y )

{∫
X

ϕdµ+

∫
Y

ψdν : c(x, y) ≥ ϕ(x)+ψ(y) on X × Y
}

(1.4)

This problem is called the dual1 formulation of the transport problem (1.2).
Let γ ∈ Π(µ, ν) and (ϕ, ψ) be a pair of continuous functions that satisfy the
constraint of (1.4), we then have∫

X×Y
c(x, y)dγ(x, y) ≥

∫
X×Y

(ϕ(x) + ψ(y))dγ(x, y) =

∫
X

ϕdµ+

∫
Y

ψdν

we therefore have the weak duality inequality

min(1.2) ≥ sup(1.4)

and if we are lucky enough to find γ ∈ Π(µ, ν) and an admissible pair (ϕ, ψ)
such that ∫

X×Y
c(x, y)dγ(x, y) =

∫
X

ϕdµ+

∫
Y

ψdν

then γ is an optimal transport plan and (ϕ, ψ) solves (1.4). Kantorovich
duality formula asserts (see the appendix for a proof) that there is no gap
between the value of (1.2) and that (1.4) i.e. that

min(1.2) = sup(1.4).

Now, let us have a closer look at (1.4), first remark that the constraint
on (ϕ, ψ) may be rewritten as

ϕ(x) ≤ inf
y∈Y
{c(x, y)− ψ(y)}

i.e. ϕ ≤ ψc where ψc is the c-concave transform of ψ i.e. the rightmost
member of the previous inequality:

ψc(x) := inf
y∈Y
{c(x, y)− ψ(y)}, ∀x ∈ X.

Let us denote by J the criterion in (1.4):

J(ϕ, ψ) :=

∫
X

ϕdµ+

∫
Y

ψdν, (ϕ, ψ) ∈ C(X)× C(Y ).

1This is a slight abuse of language, since in view of the usual convex duality theory, it
is (1.2) which naturally appears as the dual of (1.4): indeed (1.2) is posed on a space of
measures i.e. in the dual of a space of continuous functions. See the appendix for details.
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For an admissible pair (ϕ, ψ) since ψc ≥ ϕ we have

J(ψc, ψ) ≥ J(ϕ, ψ)

and by construction, (ψc, ψ) is also admissible. Remarking that for every
(x, y) ∈ X × Y

c(x, y)− ψc(x) ≥ ψ(y)

we get
ψcc(y) := inf

x∈X
{c(x, y)− ψc(x)} ≥ ψ(y)

so that
J(ψc, ψcc) ≥ J(ψc, ψ) ≥ J(ϕ, ψ)

and again (ψc, ψcc) is admissible (the fact that it remains continuous is easy
to see). This ”double c-concavification” trick enables one to reduce the op-
timization in (1.4) to pairs of the form (ψc, ψ) or even (ψc, ψcc):

sup(1.4) = sup
ψ∈C(Y )

J(ψc, ψ) = sup
ψ∈C(Y )

J(ψc, ψcc).

Pairs of the form (ψc, ψcc) are called conjugate pairs of c-concave functions.
Indeed, we have by definition

ψcc(y) = inf
x∈X
{c(x, y)− ψc(x)} (1.5)

and thus
ψc(x) ≤ inf

y∈Y
{c(x, y)− ψcc(y)}

but since ψ ≤ ψcc we also get

ψc(x) = inf
y∈Y
{c(x, y)− ψ(y)} ≤ inf

y∈Y
{c(x, y)− ψcc(y)}.

So that in addition to the conjugacy formula (1.5) we have a kind of sym-
metric one

ψc(x) = inf
y∈Y
{c(x, y)− ψcc(y)}. (1.6)

It turns out that such pairs form a sufficiently rigid set (because their modulus
of continuity is controlled by that of c) to get compactness and thus prove
existence of a maximizer in (1.4):

Theorem 1.3 The supremum is attained in (1.4) : there exists a pair of
conjugate c-concave functions (ψcc, ψc) that solves (1.4).
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Proof:
Let us first remark that since µ and ν have the same total mass, for every
constant λ and every pair (ψ, ϕ) we have J(ϕ − λ, ψ + λ) = J(ϕ, ψ). We
may therefore find a maximizing sequence of the form (ψccn , ψ

c
n) such that in

addition
min
X

ψcn = 0. (1.7)

Let us denote by dX and dY the distances on X and Y respectively and define
the modulus of continuity of c by:

ωc(t) := sup{|c(x′, y′)− c(x, y)| : dX(x, x′) + dY (y, y′) ≤ t}

since c is uniformly continuous ωc(t) tends to 0 as t→ 0+. Now it is easy to
check that for every (x, x′) ∈ X2 and (y, y′) ∈ Y 2 one has

|ψcn(x)− ψcn(x′)| ≤ ωc(dX(x, x′)), |ψccn (y)− ψccn (y′)| ≤ ωc(dY (y, y′))

so that both sequences (ψcn) and (ψccn ) are uniformly equicontinuous. More-
over, by our normalization condition (1.7), we have the bounds

0 ≤ ψcn ≤ ωc(diam(K))

from which we also deduce uniform bounds on ψccn . Thanks to Ascoli-Arzelà
theorem, we may then assume that some (not relabeled) subsequence con-
verges uniformly to some pair (ϕ, ψ), obviously (ϕ, ψ) satisfies the inequality
constraint of (1.4) and since (ψcn, ψ

cc
n ) is a maximizing sequence (ϕ, ψ) solves

(1.4). Now if one wants a solution that is a pair of c-concave functions, it is
enough to consider (ψ

cc
, ψ

c
).

2

To sum up, we now know that : the infimum in (1.2) and the supremum
in (1.4) are attained and that both values coincide. Now if γ is any solution
of (1.2) and if (ψc, ψcc) is any solution of (1.4), we sould have∫

X×Y
(c(x, y)− ϕ(x)− ψ(y))dγ(x, y) = 0

in other words, one should have c(x, y) − ψc(x) − ψcc(y) = 0 γ-a.e. (and in
fact, by continuity, this identity should hold on the support of γ). It means
that γ is concentrated on the set of pairs (x, y) for which

ψc(x) = ψcc(y)− c(x, y) = min
z∈Y
{ψcc(z)− c(x, z)}.

If, one can prove that for µ-a.e. x ∈ X there is a single y ∈ Y that solves
the minimization problem above, then this will prove that in fact γ has to be
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induced by a map and thus prove the existence of an optimal transport map.
We will see in the next chapter a class of costs for which this strategy works
and actually provides existence of a Monge solution. Finally, let us remark
that if γ ∈ Π(µ, ν) is supported on the set of pairs (x, y) such that

ψc(x) + ψcc(y) = c(x, y)

then γ is in fact an optimal transport plan (and (ψc, ψcc) is an optimal pair
for the dual).

Let us finally illustrate, what Kantorovich duality formula tells us in the
case where X = Y and c(x, y) = d(x, y), the distance of X (which was the
case originally considered by Monge himself). The constraint in the dual
reads as

ϕ(x) + ψ(y) ≤ d(x, y)

and we have seen that this can be replaced by

ϕ(x) = inf
y∈X
{d(x, y)− ψ(y)}

from which we immediately deduce that ϕ is 1-Lipschitz. But for such a
1-Lipschitz function, one has

inf
x∈X
{d(x, y)− ϕ(x)} = −ϕ(y).

This means that in the problem, it is enough to maximize over pairs of the
form (u,−u) with u 1-Lipschitz. Kantorovich duality formula then takes the
form

inf
γ∈Π(µ,ν)

∫
X×X

d(x, y)dγ(x, y) = sup
{∫

X

ud(µ− ν) : u 1-Lipschitz
}
. (1.8)

We thus see an interesting feature of this particular case : the value of the
optimal transport problem with d as cost is the dual of the Lipschitz semi-
norm (in particular it only depends on the difference µ− ν).

1.5 The unidimensional case

In the scalar case, one may take advantage of the natural order structure
which leads to rearrangement inequalities which give a simple solution to
a large class of transport problems on the real line. For the sake of sim-
plicity, we will restrict ourselves here to the case X = [0, 1] equipped with
the Lebesgue measure denoted µ. Given a measurable, and bounded (say)
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function x : [0, 1] → R, the rearrangement of x, denoted x̃ is given by the
(generalized) inverse of the distribution function of x:

x̃(t) := inf{α ∈ R : µ({x ≤ α}) > t}.

By construction x̃ is nondecreasing and x and x̃ are equimeasurable i.e.
x#µ = x̃#µ (because x and x̃ have the same cumulative distribution func-
tion) and in fact, x̃ is the only such function (up to µ-a.e.). It turns out, that
among equimeasurable functions to x, x̃ is optimal for a wide class of costs.
Let us start with the following which is nothing but a particular case of the
celebrated Hardy-Littlewood inequality:

Proposition 1.1 Let φ : [0, 1] → R+ be a nondecreasing bounded function
and x be bounded and measurable, then∫ 1

0

φ(t)x̃(t)dt ≥
∫ 1

0

φ(t)x(t)dt (1.9)

in particular, x̃ solves:

sup
{∫ 1

0

φ(t)z(t)dt : z#µ = x#µ
}
.

Proof:
Adding a constant to x if necessary, we may assume that x ≥ 0. Let us
assume first that φ is of the form φ = χ[a,1] for some a ∈ [0, 1], then by
Fubini’s theorem we have∫ 1

0

φ(t)x̃(t)dt =

∫ ∞
0

µ([a, 1] ∩ {x ≥ α})dα

and ∫ 1

0

φ(t)x̃(t)dt =

∫ ∞
0

µ([a, 1] ∩ {x̃ ≥ α})dα

Now, we remark that {x ≥ α} and {x̃ ≥ α} have same measure, the latter
being (for a.e. α) an interval of the form [a(α), 1], we thus have

µ([a, 1] ∩ {x ≥ α}) ≤ min(1− a, µ({x ≥ α}))
= 1−max(a, a(α)) = µ([a, 1] ∩ {x̃ ≥ α})

which proves that (1.9) holds when φ = χ[0,a] and thus also when φ is any lin-
ear combination with nonnegative coefficients of such elementary functions.
We conclude the general case by a standard approximation argument.
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2

The previous result means that x̃ is the optimal rearrangement of x as far
as the correlation with a nondecreasing function is concerned. This is actually
quite clear intuitively that if one wants to maximize the integral in (1.9), one
should associate large values of x to large values of φ which is precisely
what the monotone rearrangement does. The previous result extends to
a more general class of integrands, namely those for which, this kind of
complementarity property holds. Such integrands are sometimes refered to
as supermodular. Here, we shall restrict ourselves to smooth functions and
say that L: R × R → R is supermodular if its mixed second derivative is
always nonnegative:

∂2L

∂t∂x
≥ 0.

The interpretation of this condition is again clear in terms of complemen-
tarity: larger values of x should be associated to larger values of t. Such a
condition plays an important role in adverse selection problems in economics
where it is usually refered to as the Spence-Mirrlees condition.

Proposition 1.2 Let L be a supermodular function and x be bounded, and
measurable, then ∫ 1

0

L(t, x̃(t))dt ≥
∫ 1

0

L(t, x(t))dt

in particular, x̃ solves:

sup
{∫ 1

0

L(t, z(t))dt : z#µ = x#µ
}
.

Proof:
Replacing L(t, x) by L(t, x)−L(0, x) if necessary, we may assume L(0, x) = 0
(by equimeasurability, adding a function of x only to L does not affect the
inequality to be proven). We thus have:∫ 1

0

L(t, x̃(t))dt−
∫ 1

0

L(t, x(t))dt =

∫ 1

0

(∫ t

0

[∂tL(s, x̃(t))− ∂tL(s, x(t))]ds
)
dt

=

∫ 1

0

(∫ 1

s

[∂tL(s, x̃(t))− ∂tL(s, x(t))]dt
)
ds

=

∫ 1

0

(∫ 1

0

χ[s,1][∂tL(s, x̃(t))− ∂tL(s, x(t))]dt
)
ds

where we have used Fubini’s theorem in the second line. Now, for fixed s,
we remark that t 7→ ∂tL(s, x(t)) and t 7→ ∂tL(s, x̃(t)) are equimeasurable
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and that the latter is nondecreasing since L is supermodular and x̃ is nonde-
creasing. This implies that t 7→ ∂tL(s, x̃(t)) is the monotone rearrangement
of t 7→ ∂tL(s, x(t)). Using (1.9) (with φ = χ[s,1]), we obtain the desired
inequality.

2

The requirement that L is smooth was only for conveniency and is by
no means a restriction (supermodularity is preserved by convolution so that
usual regularization arguments enable one to treat the general case). There is
no difficulty to check that the previous rearrangement inequalities also hold
when one replaces the Lebesgue measure by a general nonatomic measure on
the real line. Let us finally remark that if c is convex, then (t, x) 7→ −c(t−x)
is supermodular. In particular, one therefore has∫ 1

0

c(t− x̃(t))dt ≤
∫ 1

0

c(t− x(t))dt

which proves the optimality of the monotone rearrangement for any convex
cost. In particular x̃ solves:

inf
{∫ 1

0

|t− z(t)|pdt : z#µ = x#µ
}
.

whatever the exponent p ∈ [1,∞) is! This is extremely specific to the one-
dimensional case.

1.6 The discrete case

Let us consider now the case of finitely supported measures and equal masses:

µ =
N∑
i=1

δxi
, ν =

N∑
j=1

δyj

and denote by cij the cost of transporting xi to yj. The Monge-Kantorovich
problem then takes the form of the linear program

inf
{∑

ij

cijγij : γij ≥ 0,
∑
j

γij = 1,
∑
i

γij = 1
}

this problem is often refered to as the assignment or Hitchcock’s problem.
The admissible set is the set of N × N matrices with nonnegatives entries,
such the sum of entries on each row and each column is 1, such matrices are
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called bistochastic. Clearly, the set of bistochastic matrices form a convex
and compact set, so in the assignment problem the minimal cost is attained
at at least one extreme point. A permutation matrix is a matrix of the
form γij = δjσ(i) where σ is a permutation of {1, ..., N}. In other words a
permutation matrix is a bistochastic matrix that contains exactly one entry
equal to 1 on each line and each column. The following result due to Birkhoff
identifies the set of extremal points of the set of bistochastic matrices to the
permutation matrices:

Theorem 1.4 The set of extreme points of the set of bistochastic matrices
coincides with the set of permutation matrices. In particular, the set of bis-
tochastic measures is a polyhedron with N ! vertices and every bistochastic
matrix is a convex combination of permutation matrices (as a consequence
of the Krein-Milman’s theorem).

Proof:
First, it is easy to see that permutation matrices are extremal points. Let γ =
[γij] be a bistochastic matrix and assume that it is not a permutation matrix:
then there is some row index i1 and two different column indices j1 and j1 such
that γi1,j1 and γi1,j2 are in (0, 1), then there is a i2 6= i1 such that γi2,j2 > 0
and j3 6= j2 such that γi2,j3 > 0. If j3 = j1 then (i1, j1), (i1, j2), (i2, j2), (i2, j3)
is a cycle, if j3 6= j1, one repeats the argument. One easily finds that after
a finite number of steps, there necessarily is a cycle in the matrix that is
a succession of positions (i′1, j

′
1), (i′1, j

′
2), ...., (i′k, j

′
k), (i

′
k, j
′
k+1) with j′k+1 = j1

all with entries in (0, 1) and such that i′1, ...., i
′
k are all different as well as

j′1, ..., j
′
k, let us then set i′k+1 = i′1 and let ∆ be the matrix with zero entries

outside the cycle, +1 at position (i′l, j
′
l) and −1 at position (i′l, j

′
l+1). Then,

for ε > 0 small enough γ±ε∆ is bistochastic and γ = (γ+ε∆)/2+(γ−ε∆)/2
which contradicts the extremality of γ.

2

As a consequence, we deduce that there is a permutation matrix that
solves the assignment problem. In other words, the discrete problem that
consists in finding an optimal permutation can be reformulated as a linear
programming problem.

A natural question, at this point is whether the previous arguments could
give a general strategy to prove existence of optimal transport maps i.e. is
it true, under quite general assumptions, that extreme points of the set of
transport plans are in fact given by transport maps? Unfortunately, it is not
the case in the continuous setting, for more on extremal transport plans, we
refer for instance to the recent paper [4] and the references therein.
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Chapter 2

The case of strictly convex
costs

In this chapter, we shall prove existence of an optimal transport map when
the cost is strictly convex and smooth. The first result in this vein is in the
seminal paper of Yann Brenier [14] that solved the quadratic case, the gener-
alization to more general strictly convex costs is due to Robert McCann and
Wilfrid Gangbo [51]. In the final paragraph, we will discuss the borderline
case of the distance as cost and emphasize its connections with a problem
posed by Martin Beckmann in the 50’s.

2.1 Existence by duality

We shall prove existence (and uniqueness) of an optimal transport map for
the problem

inf
T#µ=ν

∫
B

c(x− T (x))dµ(x). (2.1)

under the following (not optimal) assumptions:

• µ and ν are Borel probability measures supported on a ball B of Rd and
µ is absolutely continuous with respect to the d-dimensional Lebesgue
measure, Ld,

• c is a C1 and strictly convex function : Rd → R.

Let γ ∈ Π(µ, ν) be an optimal transport plan i.e. a solution of :

min
γ∈Π(µ,ν)

∫
B×B

c(x− y)dγ(x, y). (2.2)
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We shall prove that γ is necessarily induced by a transport map i.e. is of the
form γ = γT for some transport T . Let (ϕ, ψ) be an optimal solution to the
dual problem as introduced in the previous chapter:

sup
{∫

B

ϕdµ+

∫
B

ψdν : ϕ(x) + ψ(y) ≤ c(x− y)
}
. (2.3)

We already know that ϕ can be chosen as the c-tranform of ψ i.e.

ϕ(x) := min
y∈B
{c(x− y)− ψ(y)} (2.4)

and that γ is supported by the closed set

{(x, y) ∈ B2 : ϕ(x) = c(x, y)− ψ(y)}.

One deduces from (2.4) that ϕ is Lipschitz continuous (with Lipschitz con-
stant less than ‖∇c‖L∞(2B)). By a well-known theorem of Rademacher, ϕ
is therefore differentiable Ld-a.e. hence also µ-a.e., let us denote by S the
negligible set where ϕ fails to be continuous, we then first have

Lemme 2.1 Let x ∈ B \ (S ∪ ∂B) and y ∈ B be such that

ϕ(x) = c(x, y)− ψ(y)

then one has
∇ϕ(x) = ∇c(x− y).

Proof:
For h small enough, we have:

ϕ(x+ h) = ϕ(x) +∇ϕ(x) · h+ o(h)

≤ c(x+ h− y)− ψ(y) = ϕ(x) +∇c(x− y) · h+ o(h)

from which we deduce the desired result.
2

Now since c is stricly convex, ∇c is injective and we therefore deduce that
for every x ∈ B \ (S ∪ ∂B), the set

{y ∈ B : ϕ(x) = c(x, y)− ψ(y)}

consists of the single element:

T (x) = x−∇c∗(∇ϕ(x)). (2.5)

Since boundary points and points where ϕ fails to be differentiable are µ-
negligible, it is easy to check that γ = γT and thus to deduce that T is
an optimal transport map. We have also proved uniqueness since we have
started with an arbitrary optimal plan γ and constructed T depending only
on a solution to the dual problem. We therefore have:
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Theorem 2.1 There exists an optimal transport map T in problem (2.1).
Moreover T is of the form:

T (x) = x−∇c∗(∇ϕ(x)), for a.e. x

for some c-concave potential ϕ. Uniqueness also holds : γT is the only optimal
transport plan in (2.2), in particular if R is another optimal transport map
then T = R µ-a.e..

For refinements of this result, we refer to [51], see also [25] for other costs.

2.2 The quadratic case, Brenier’s Theorem

Let us now have a closer look at the quadratic case of the quadratic cost
which was initially solved by Yann Brenier in his pathbreaking article [14]
i.e. let us consider

inf
T#µ=ν

∫
B

1

2
|x− T (x)|2dµ(x). (2.6)

We already know that there is a unique optimal transport T that is charac-
terized by the fact that

ϕ(x) + ψ(T (x)) =
1

2
|x− T (x)|2

where ϕ and ψ are related by the conjugacy relations:

ϕ(x) = inf
y
{1

2
|x− y|2 − ψ(y)}, ψ(y) = inf

x
{1

2
|x− y|2 − ϕ(x)}

which can be rewritten as

1

2
|x|2 − ϕ(x) = sup

y
{x · y − 1

2
|y|2 + ψ(y)}

and
1

2
|y|2 − ψ(y) = sup

x
{x · y − 1

2
|x|2 + ϕ(x)}

which means that the functions:

u :=
1

2
|.|2 − ϕ, v :=

1

2
|.|2 − ϕ

are convex and conjugate to each other in the usual sense of convex analysis
i.e. u = v∗ and v = u∗. Now, in the quadratic case, formula (2.5) gives that
T has the form

T (x) = x−∇ϕ(x) = ∇u(x)
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in other words, the optimal transport is the gradient of a convex function and
it is actually a characterization of optimality. The optimal map ∇u is called
the Brenier’s map between µ and ν, it generalizes in some sense the notion of
monotone rearrangement to the multidimensional setting. Brenier’s theorem
reads as the following

Theorem 2.2 There exists a unique (up to µ negligible sets) map of the form
T = ∇u with u convex that transports µ to ν, this map is also the optimal
transport between µ to ν for the quadratic cost.

If µ = ρ0 · Ld, ν = ρ1 · Ld, then the Brenier’s map ∇u, at least formally
satfies the Monge-Ampère equation:

det(D2u)ρ1(∇u) = ρ0 (2.7)

as for boundary condition, is the requirement that ∇u maps the support of
ρ0 onto that of ρ1. A deep regularity theory due to Luis Caffarelli ([22], [23])
establishes conditions under which the Brenier’s map is in fact smooth.

2.3 Related PDEs: Monge-Ampère, Hamilton-

Jacobi and the continuity equations

The Monge-Ampère equation

If µ = ρ0 · Ld, ν = ρ1 · Ld, then the Brenier’s map ∇u, at least formally
satisfies the Monge-Ampère equation:

det(D2u)ρ1(∇u) = ρ0 (2.8)

as for boundary condition, is the requirement that ∇u maps the support of
ρ0 onto that of ρ1. A deep regularity theory due to Luis Caffarelli ([22], [23],
[24]) establishes conditions under which the Brenier’s map is in fact smooth.

The Brenier-Benamou dynamic formulation

So far, we have only considered a static framework, Brenier and Benamou
in [9], [10] gave a very interesting and fruitful dynamic formulation of the
quadratic optimal transport problem (but this can be generalized to more
general convex costs) that we aim now to describe in an informal way. Let us
assume that we have as source and target measures two probability measures
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with densities ρ0 and ρ1, the value of the corresponding quadratic optimal
transportation is the squared 2-Wasserstein distance between ρ0 and ρ1:

W 2
2 (ρ0, ρ1) := inf

γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|2dγ(x, y).

The starting point of the Brenier-Benamou formulation is that we are now
looking for a curve of measures connecting ρ0 and ρ1 and minimizing some
action functional. This curve of measure will be given by the solution of the
continuity equation:

∂tρ+ div(ρv) = 0, ρ|t=0 = ρ0. (2.9)

As explained in the appendix, when v is smooth, this equation captures the
evolution of the spatial distribution of particles that are initially distributed
according to ρ0 and whose velocity is v. In other words, ρt = Xt#ρ0 where
Xt is the flow of v:

X0(x) = x, ∂tXt(x) = v(t,Xt(x)).

The Brenier-Benamou problem then reads as the average kinetic energy min-
imization:

inf
(ρ,v)

{
E(ρ, v) =

∫ 1

0

∫
Rd

|v(t, x)|2ρt(x)dxdt : (2.9) holds , ρ|t=0 = ρ0, ρ|t=1 = ρ1

}
.

(2.10)
Let us now prove that the value of the Brenier-Benamou problem (2.10)
coincides with W 2

2 (ρ0, ρ1). Let (ρ, v) be admissible for (2.10) (with v smooth)
and let Xt be the flow of v so that ρt = Xt#ρ0, we then have∫

Rd

|v(t, x)|2ρt(x)dx =

∫
Rd

|v(t,Xt(x))|2ρ0(x)dx. (2.11)

By Fubini’s theorem and Jensen’s inequality, we get

E(ρ, v) =

∫
Rd

(∫ 1

0

|∂tXt(x)|2dt
)
ρ0(x)dx

≥
∫

Rd

∣∣∣ ∫ 1

0

∂tXt(x)dt
∣∣∣2ρ0(x)dx

=

∫
Rd

|X1(x)− x|2ρ0(x)dx

≥ W 2
2 (ρ0, ρ1)
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where in the last line, we have used the fact that X1 is a transport. This
proves that the value of (2.10) is larger than W 2

2 (ρ0, ρ1). To prove the con-
verse inequality let ∇u be the Brenier’s map and define:

Xt(x) = (1− t)x+ t∇u(x) = ∇ut(x), ut :=
(1− t)

2
|x|2 + tu(x), ρt = ∇ut#ρ0,

the associated velocity field is defined through:

∂tXt(x) = ∇u(x)− x = v(t,Xt(x)) = v(t,∇ut(x))

and since Xt = ∇ut is the gradient of a strictly convex function, it is at least
formally invertible with inverse ∇u∗t . This yields

v(t, x) = ∇u(∇u∗t (x))−∇u∗t (x).

By construction (ρ, v) is admissible for the Brenier-Benamou problem, and
using (2.11) directly yields

E(ρ, v) =

∫
Rd

|∇u(x)− x|2ρ0(x)dx = W 2(ρ0, ρ1)

which proves not only that the value of (2.10) equals W 2
2 (ρ0, ρ1), but also

that (ρ, v) constructed above is optimal for the Brenier Benamou problem.
Note the special form of the optimal curve of measures:

ρt = ∇ut#ρ0 = ((1− t)id + t∇u)#ρ0.

This optimal ρt is then obtained by interpolating linearly the optimal trans-
port, this interpolation is called the McCann’s interpolation.

If in (2.10), we make the change of variables (ρ, v) 7→ (ρ, ρv), the conti-
nuity equation becomes linear and E becomes a convex functional (because
(ρ,m) 7→ |m|2/ρ is convex on (0,+∞)×Rd). There is then a dual formulation
to (2.10) that consists in maximizing the linear criterion:∫

Rd

ϕ(1, x)ρ1(x)dx−
∫

Rd

ϕ(0, x)ρ0(x)dx

among subsolutions of the Hamilton-Jacobi equation:

∂tϕ+
1

2
|∇ϕ|2 ≤ 0.

We shall not give details here, but simply mention why Hamilton-Jacobi
equations naturally enter the picture: we have used above the change of
variables∇u∗t and it is well known that u∗t actually solves an Hamilton-Jacobi
equation of the type above.
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2.4 The borderline case of the distance cost

and its connection with Beckmann’s prob-

lem

In this final paragraph, we discuss the case, originally considered by Monge
himself, where the cost is |x− y|, |.| denoting the euclidean norm (for other
norms we refer the interested reader to [32], [2]). It is a borderline case since
the cost is convex but not strictly convex (note also that it is not differentiable
on the diagonal). Existence of an optimal transport map is a very delicate
issue that was only solved recently (see Evans and Gangbo [43], Caffarelli,
Feldman and McCann [21], Ambrosio and Pratelli [1] , Champion and De
Pascale [31], [32]). The optimal transport problem (originally considered by
Monge himself) reads:

inf
T : T#µ=ν

∫
Rd

|x− T (x)|dµ(x). (2.12)

As usual, it is natural to introduce its Monge-Kantorovich relaxation, whose
value is the 1-Wasserstein distance between µ and ν:

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫
Rd×Rd

|x− y|dγ(x, y). (2.13)

As we have seen in the first chapter, the dual problem in the case where the
cost is the distance reads as:

sup
{∫

Rd

u(x)dµ(x)−
∫

Rd

u(y)dν(y) : u 1-Lipschitz
}

(2.14)

Let u be a Kantorovich potential i.e. a solution to this dual problem and let
γ be an optimal transport plan, then, Kantorovich duality tells us that the
extremality relation

u(x)− u(y) = |x− y|
holds on the support of γ, supp(γ), and that it is actually a sufficient opti-
mality condition. This means that if (x, y) ∈ supp(γ) then u decreases with
its maximal rate on the segment [x, y]; (maximal) segments on which u has
slope −1 are called (maximal) transport rays. If, in addition, x 6= y and if x
is a point of differentiability of u, arguing as in the strictly convex case, one
has

∇u(x) =
x− y
|x− y|

i.e. the gradient of the Kantorovich potential gives the direction of trans-
port rays. In other words, duality tells us in which direction x should be
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transported but due to lack of strict convexity in the radial direction it does
not give any information about the length of the displacement |x − y|. To
recover this missing piece of information, extra efforts have to be spent. Note
that, as the book-shifting counter-example indicates, there is no hope to have
uniqueness, so extra selection principles have to be carefully designed in order
to recover the missing piece of information about the displacement length.
We refer to the papers cited in the beginning of this paragraph, for different
such selection strategies and a proof of the following:

Theorem 2.3 If µ is absolutely continuous with respect to Ld then there
exists an optimal transport map for the Monge problem (2.12).

In [7], Beckmann proposed what he called a continuous model of trans-
portation that can be described as follows. Assume that we are given an ur-
ban area Ω, which is an open bounded connected subset of Rd with a smooth
boundary, µ and ν the respective distributions of residents and services in
the city. As a normalization, we may assume that µ and ν are probabil-
ity measures on Ω and that µ (respectively ν) also gives the distribution of
consumption (respectively of production) so that the signed measure µ − ν
represents the local measure of excess demand. Following [7], we assume that
the consumers’ traffic is given by a traffic flow field, i.e. a vector field y :
Ω→ Rd whose direction indicates the consumers’ travel direction and whose
modulus |y| is the intensity of traffic. The relationship between the excess
demand and the traffic flow is obtained from an equilibrium condition as fol-
lows. There is equilibrium in a subregion K ⊂ Ω if the outflow of consumers
equals the excess demand of K:∫

∂K

y · n dS = (µ− ν)(K).

Since the previous has to hold for arbitrary K, this formally yields:

div y = µ− ν. (2.15)

It is also assumed that the urban area is isolated, i.e. no traffic flow should
cross the boundary of the city, hence:

y · n = 0 on ∂Ω. (2.16)

One has to understand the conditions (2.15) and (2.16) in the weak sense (or
in the sense of distributions) i.e.:∫

Ω

∇ϕ · y =

∫
Ω

ϕd(ν − µ), ∀ϕ ∈ C1(Ω).
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If the transportation cost per consumer is assumed to be uniform, then the
total transportation cost is given by the L1 norm of y. Beckmann therefore
argued that one may define the transportation cost between µ and ν as the
infimum of ‖y‖L1 subject to the equilibrium conditions (2.15)-(2.16). There
is no reason why an L1 solution should exist since L1 is not reflexive. One
therefore has to relax the problem in the space of measures which leads
to minimize the total variation in the set of vector-valued measures y that
satisfy (2.15) and (2.16) in the sense of distributions. This gives the minimal
flow problem:

inf {‖y‖M : y satisfies (2.15)-(2.16)} . (2.17)

What was not realized by Beckmann is that, problem (2.17) is tightly related
to the Monge-Kantorovich (2.13) in the following sense:

Theorem 2.4 The value of the minimal flow problem (2.17) coincides with
W1(µ, ν). Moreover, if γ is an optimal transport plan for (2.13) then the
vector-valued measure y defined by

〈yγ, X〉 :=

∫
Ω×Ω

(∫ 1

0

X(x+ t(y − x)) · (y − x)dt
)
dγ(x, y), ∀X ∈ C(Ω,Rd)

is a solution of Beckmann’s problem (2.17).

Proof:
First, let us check that yγ satisfies (2.15)-(2.16), let ϕ ∈ C1(Ω), by definition

〈yγ,∇ϕ〉 =

∫
Ω×Ω

(∫ 1

0

∇ϕ(x+ t(y − x)) · (y − x)dt
)
dγ(x, y)

=

∫
Ω×Ω

(ϕ(y)− ϕ(x))dγ(x, y) =

∫
Ω

ϕd(ν − µ).

.

Now let u be a Kantorovich potential, since it is 1-Lipschitz function, for
every y that is admissible for (2.17), we have

‖y‖M ≥ 〈y,−∇u〉 =

∫
Ω

ud(µ− ν) = W1(µ, ν)

which proves that the value of (2.17) is larger than that of (2.13). Next, we
remark that

‖yγ‖M ≤
∫

Ω×Ω

|y − x|dγ(x, y) = W1(µ, ν)

which proves that the value of (2.17) is W1(µ, ν) and that yγ is optimal for
(2.17). 2
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Remark 1. One can directly deduce that the values of (2.17) and (2.14)
coincide. We leave as an instructive exercise the proof of this fact as an
application of the Fenchel-Rockafellar duality theorem. In other words, both
Monge-Kantorovich problem (2.13) and the min-flow problem (2.17) have
(2.14) as dual.

Remark 2. The total variation measure |yγ| can be alternatively be defined
as

|yγ|(A) =

∫
Ω×Ω

H1([x, y] ∩ A)dγ(x, y), ∀A Borel

so that it represents the total cumulated traffic in region A associated with
the transport plan γ when consumers travel along straight lines (that are
geodesics here). In the L1 theory of optimal transport, |yγ| is called the
transport density. Regularity results for the transport density (which implies
the existence of L1 solutions to Beckmann’s problem) were established by De
Pascale and Pratelli [37] and Santambrogio [70].
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Chapter 3

Transport, economics, optima
and equilibria

This chapter is intended to illustrate how optimal transportation theory (as
presented in chapter 1 or in the disguise of slight variants) may be a powerful
and natural tool to attack a variety of problems in economics in particular
equilibrium problems but also urban planning and multidimensional screen-
ing.

Before foing further, let us indicate that the Kantorovich duality formula
has a strong ”economic flavour” and can be interpreted either as a decentral-
ization principle or in equilibrium terms. This will be useful in the sequel to
keep these interpretation in mind.

Let us first recall the Kantorovich duality formula in the form

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) = sup
{∫

X

ϕdµ+

∫
Y

ψdν : ϕ(x)+ψ(y) ≤ c(x, y)
}

(3.1)
The left hand-side is the least cost for a planner that chooses a total trans-
port cost minimizing plan (planning which amount of coal should be sent
from different mines to different steel factories in the USSR being a typical
example). The right-hand side may be interpreted as a decentralized solu-
tion, indeed, interpret ϕ(x) as a price paid per unit of mass taken out from
location x and ψ(y) represents the price paid per unit of mass delivered at
location y. The right hand-side then represents the maximal profit from
transport companies, their tariffs being constrained by the reservation con-
straint ϕ(x)+ψ(y) ≤ c(x, y) meaning that the total cost paid to the transport
sector for shipping one unit from x to y should not exceed the ”if I do it my-
self” cost c(x, y). In other words, the Kantorovich duality formula expresses
a decentralization principle according to which the planning solution and the
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solution where transport is delegated to a decentralized transport sector have
the same cost.

Let us now consider the discrete optimal transport problem:

sup
γij

∑
ij

uijγij :
∑
j

γij = µi,
∑
i

γij = νj, γij ≥ 0 (3.2)

where the marginals satisfy the obvious compatibility constraint:∑
i

µi =
∑
j

νj.

Now interpret j as an indivisible object available in quantity νj, i as a type
of customer with µi the number of customer of type i and think of uij as the
valuation or utility of agent i consuming object j. Let us further assume that
utility is transferable in the sense that agent i paying p for object j has net
utility uij − p. Given a price system pj, agent i of course chooses an object
j that maximizes uij − pj. The dual to (3.2) reads

inf
pj

{∑
j

νjpj +
∑
i

µi max
j

(uij − pj)
}
. (3.3)

and the equality of values of these two problems says that if γij is optimal
for (3.2) then

γij > 0⇒ uij − pj = max
j′

(uij′ − pj′)

which means that j is a maximizing utility object given the price system pj
solving (3.3). This captures rational behavior of agents and the fact that
γij satisfy the constraints of (3.2) express that offer=demand for each type
of object. A price system that solves (3.3) is therefore an equilibrium price
system.

3.1 Matching and equilibria

Ivar Ekeland in [40], [41] showed that some equilibrium issues in matching
situations as well as in hedonic models can be attacked by duality tech-
niques that present great similarities with the Monge-Kantorovich problem.
In an independent but related article, Chiappori, McCann and Nesheim [33]
introduced a Monge-Kantorovich formulation and obtained new uniqueness
results for the optimal transportation problem. In this paragraph, we briefly
describe the matching for teams situations studied in Carlier Ekeland [27]
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which generalizes the one-to-one matching model to the case of several pop-
ulations. We consider a market where there is a single, indivisible good which
comes in different qualities z ∈ Z. In the sequel, we will refer to Z as the
quality space. The quality good z requires the formation of a team (say, one
buyer, and a set of producers that have to gather to make the quality good
available, a typical example is the market for houses). The different popu-
lations that constitute the teams are heterogeneous in the sense that each
agent in these populations has her own utility (for a consumer) or marginal
cost (for a producer) for the quality z. The data of the model are:

• a compact metric quality good Z,

• compact metric spaces Xj, j = 0, ..., N , modeling the different popu-
lations, a generic element xj ∈ Xj has to be interpreted as an agent
type affecting her utility or cost/disutility function, each Xj is equipped
with a Borel probability µj measure capturing the distribution of type
xj in population j,

• (continuous) cost functions cj : Xj × Z → R, with the interpretation
that cj(xj, z) is the cost or disutility of an agent of population j with
type xj when she participates to a team that produces z ∈ Z,

• disutilites are all quasi-linear, which means that an agent of popula-
tion j with type xj who participates a team that produces z and gets
monetary transfer wj has total disutility:

cj(xj, z)− wj.

One can think for instance that j = 0 corresponds to buyers and j =
1, ..., N to producers (mason, plumber etc... in the case of houses). In this
case, one naturally has to interpret c0 as −u0 where u0 is the (type and
quality dependent) consumer utility function. In this case, for j ≥ 1, wj is
the wage received by member j of the team and w0 is minus the total price
paid by the consumer, at equilibrium we shall require that are self-financing
which will be expressed by the fact that the sum of all transfers is 0. Note
that the quasi-linear (dis)utility assumption is a strong one that restricts the
subsequent analysis to the so-called transferable utility case.

We are now looking for a sytem of (quality dependent) monetary transfers
that clears the market for the quality good. A system of price transfers is
a family of function ϕj Z → R, and we shall require that it is balanced i.e.
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fulfills the self-financing condition:

N∑
j=0

ϕ(z) = 0, ∀z ∈ Z.

For given transfers, optimal qualities for type xj are determined by

ϕ
cj
j (xj) := inf

z∈Z
{cj(xj, z)− ϕj(z))}. (3.4)

which is the indirect disutility which type xj derives from the transfer ϕj.
Note that ϕ

cj
j is nothing but the cj-concave transform of the transfer function

ϕj as defined in parapraph 1.4. Note that for every (xj, z) ∈ Xj×Z, one has
the so-called Young’s inequality

ϕ
cj
j (xj) + ϕj(z) ≤ cj(xj, z)

and cost-minimizing qualities are characterized by

ϕ
cj
j (xj) + ϕj(z) = cj(xj, z). (3.5)

This induces for each j, a coupling γj ∈ M+
1 (Xi × Z) such that (3.5) holds

γj a.e., the interpretation of γj(Aj×B) is the probability that an agent with
type in Aj has an optimal quality choice in B (given the transfer scheme ϕj).
Of course, the first marginal of the coupling γj, πXj

γj should be µj. The last
equilibrium requirement is that the demand distribution for the quality good
should be the same for any population. In other words the marginal on Z of
the coupling γj should be independent of j (this common distribution is an
equilibrium quality line). Putting everything together, this leads to

Definition 3.1 A matching equilibrium consists of a family of transfers
ϕj ∈ C(Z,R), a family of probabilities γj ∈ M+

1 (Xj × Z), j = 0, ...., N
and a quality line ν ∈M+

1 (Z) such that:

1. For all z ∈ Z:
N∑
j=0

ϕj(z) = 0, (3.6)

2. γj ∈ Π(µj, ν) for every j = 0, ...., N ,

3. for every j = 0, ..., N , one has:

ϕ
cj
j (xj) + ϕj(z) = cj(xj, z) γj-a.e. on Xj × Z.
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Thanks to the Kantorovich duality formula

Wcj (µ,ν) := inf
γj∈Π(µj ,ν)

∫
Xj×Z

cj(xj, z)dγj(x, z)

= sup
ϕj∈C(Z)

{∫
Xj

ϕ
cj
j dµj +

∫
Z

ϕjdµj

}
we see that requirements 2 and 3 exactly mean that γj is an optimal plan for
the optimal transport problem Wcj (µj, ν) and that ϕj solves its dual. Let us
assume now that (ϕj, γj, ν) is a matching equilibrium. We thus have

Wcj (µj, ν) =

∫
Xj×Z

cj(xj, z)dγj(xj, z) =

∫
Xj

ϕ
cj
j dµj +

∫
Z

ϕjdν.

Summing these equalities and using the balance condition (3.6) then yields:

d∑
j=0

Wcj (µj, ν) =
d∑
j=0

∫
Xj

ϕ
cj
j dµj (3.7)

Now let ψj ∈ C(Z,R) be another balanced family of transfers:

N∑
j=0

ψj(z) = 0, ∀z ∈ Z. (3.8)

The Monge-Kantorovich duality formula yields:

Wcj (µj, ν) ≥
∫
Xj

ψ
cj
j dµj +

∫
Z

ψjdν (3.9)

summing these inequalities and using (3.8) we then get:

d∑
j=0

Wcj (µj, ν) ≥
d∑
j=0

∫
Xj

ψ
cj
j dµj. (3.10)

With (3.7), we deduce that the transfers ϕj’s solve the following (concave)
program:

(P) sup

{
d∑
j=0

∫
Xj

ϕ
cj
j dµj :

d∑
j=0

ϕj = 0

}
.
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Take now some η ∈ M+
1 (Z). With the Monge-Kantorovich duality formula,

the balance condition (3.6) and (3.7), we get

d∑
j=0

Wcj (µj, η) ≥
d∑
j=0

(∫
Xj

ϕ
cj
j dµj +

∫
Z

ϕjdη

)

=
d∑
j=0

∫
Xj

ϕ
cj
j dµj =

d∑
j=0

Wcj (µj, ν)

So that ν solves

(P∗) inf

{
d∑
j=0

Wcj (µj, ν) : ν ∈M+
1 (Z)

}
.

At this point, we haven’t proven anything about the existence of equilibria,
but have discovered that if (ϕj, γj, ν) is a matching equilibrium then: the
transfers ϕj’s solve (P), the quality line ν solves (P∗), and for each j, γj
solves Wcj (µj, ν).

It turns out that in fact, we have much more:

Theorem 3.1 The supremum in (P) and the supremum in (P∗) are attained
and the two values are equal. Moreover (ϕj, γj, ν) is a matching equilibrium
if and only if:

• the transfers ϕj’s solve (P),

• the quality line ν solves (P∗),

• for each j, γj solves Wcj (µj, ν).

In particular matching equilibria exist.

For a complete proof of the previous result, we refer to [27]. It is a quite
remarkable fact that equilibrium prices and equilibrium quality lines can be
determined by solving independently the optimization problems (P) and (P∗)
respectively. Also remark that (P) is a concave maximization program and
(P∗) is a convex minimization program. We will see in the sequel two other
situations (discrete choice models and Wardrop equilibria in congested trans-
port) where equilibria are characterized by a convex minimization problem
(where optimal transport in some broad sense plays an important role).
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Remark 3. Interestingly, there is an alternative linear programming formu-
lation due to Chiappori, McCann and Nesheim [33] based on the opposite of
the surplus function

S(x0, ..., xN) := inf
z∈Z

N∑
j=0

cj(xj, z)

as well as the multi marginals optimal transport problem which consists in
minimizing ∫

X0×...×XN

S(x0, ...xN)dγ(x0, ...., xN)

among probability measures γ on X0×...×XN having µ0, ..., µN as marginals.
Exercise: guess what the dual form of the multi-marginals Monge-Kantorovich
problem looks like, then prove it rigorously.

3.2 Equilibria in discrete choice models

Discrete choice models have been very popular among econometricians since
they lead to tractable and testable models with possibly qualitative data.
The celebrated Logit and Probit models rely on discrete choice models. The
article of McFadden [59] gives a very comprehensive exposition of the theory,
and we also refer the reader to Mc Fadden [60] for applications to residential
choice. It is fair, especially in view of the general subject of these notes,
to quote here the contributions of Daganzo (see in particular [35]), strongly
motivated by route choice in urban traffic. These models also have an ap-
pealing flavour of statistical mechanics : arguing that the way an agent ranks
a finite number of alternatives inherently involves some randomness one is
naturally led to replace brute force exact optimization by a probability other
all alternatives that is a clear analogue of Gibbs measures.

The purpose of this paragraph is to show that discrete choice models are a
kind of stochastic perturbation of the Monge-Kantorovich optimal transport
problem in its dual form and to give a variational argument for the existence
and equilibria of equilibrium prices in such models. I am grateful to Roberto
Cominetti for showing me this variational characterization.

There is a finite number of agents types denoted i = 1, ..., N and a finite
number of different indivisible goods or objects denoted j = 1, ...,M (typical
examples being apartments, houses, paintings etc...). Utility of agent i for
good j is again quasi-linear but now contains a random component, it is of
the form

uij + εij − pj

39



where uij ∈ R is the deterministic part of utility, εij is a random variable and
pj is the price of object j. We shall assume that the random variables εij are
integrable, i.i.d., centered, with a continuous distribution and have the whole
real line as support. We assume that the number of agents of the different
types types is given by µi, i = 1, ..., N and the different objects are available
in quantity νj, j = 1, ...,M , we assume also that total demand equals total
offer

N∑
i=1

µi =
M∑
j=1

νj.

In this setting, any object has a positive probability to be chosen by any
agent so that demand is described by probabilities for the different objects
to be chosen. Given prices p = (p1, ..., pM) define for every i ∈ {1, ..., N}

Ui(p) := max
j=1,..,M

(uij + εij − pj), Vi(p) := E(Ui(p))

the probability of i choosing j is then

P(Ui(p) = uij + εij − pj).
so that the price system p is an equilibrium if

νj =
N∑
i=1

µiP(Ui(p) = uij + εij − pj), ∀j = 1, ..,M. (3.11)

It is easy to see that Vi is a C1 convex function and that

∂Vi
∂pj

(p) = −P(Ui(p) = uij + εij − pj)

so that (3.11) is nothing but the Euler-Lagrange equation for the convex
minimization problem:

inf
p

{ M∑
j=1

νjpj +
N∑
i=1

µiVi(p)
}
. (3.12)

This proves that p is an equlibrium if and only if it solves (3.12). We let the
reader check that (3.12) admits minimizers so that there exists equilibria.

Note that when there is no noise i.e. εij = 0 the previous problem reads
as

inf
p

{ M∑
j=1

νjpj +
N∑
i=1

µi( max
j=1,...,M

(uij − pj))
}

which is the dual formulation of the discrete Monge-Kantorovich problem

sup
{∑

i,j

uijγij : γij ≥ 0,
∑
i

γij = νj,
∑
j

γij = µi

}
.
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3.3 Urban economics I : optimal planning

We aim to show now that optimal transport may be a powerful tool to study
(toy but instructive) urban planning problems. Imagine the situation where
some planner has to design a city from scratch, meaning that he as at disposal
some land domain and has to choose the structure of the city in this domain.
In a very idealized situation, this structure is simply given by two probability
measures : µ the distribution of residents and ν the distribution of services.
It is often argued in urban economics that:

• ν should be concentrated (because of production externalities: if there
are 50 mathematicians in the room, each of them is presumed to be
more productive than if he/she was just by him/herself),

• µ should be spread (because residents like to live at large, for instance),

• there is a force that balances the two previous ones : residents have to
commute from their home to the services (to shop, to work or both) :
this is of course where transport will naturally come into play.

The city shape is given by Ω, a bounded open connected subset of R2

and the structure of the city will be determined by two measures on Ω. A
reasonable way for the planner to take into account these three effects is to
minimize with respect to µ and ν (of same total mass normalized to 1 as
usual) a criterion of the form:

T (µ, ν) +G(µ) + V (ν)

where the coupling term T measures in some sense how close from each
other µ and ν are, G is a term that favourishes dispersion or uniformity and
V favourishes concentration. Following Santambrogio [71], let us make the
following choices for the three terms T , G and V (see [30] ar [20] for other
specifications):

• T is given by the value of some optimal transport problem, for simplic-
ity let’s take the quadratic cost which gives

T (µ, ν) =
1

2
W 2

2 (µ, ν) :=
1

2
inf

γ∈Π(µ,ν)

∫
|x− y|2dγ(x, y)

• G is given by a convex integral functional forcing absolute continuity,
for simplicity we take a quadratic functional:

G(µ) =

{
1
2

∫
Ω
u2 if µ = u · L2, u ∈ L2(Ω),

+∞ otherwise,
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• V is an interaction term

V (ν) :=

∫
Ω×Ω

F (|x− y|2)dν(x)dν(y)

where F is a smooth function such that F ′ > 0 on R+.

The planner’s problem then is

inf
(µ,ν)
{W 2

2 (µ, ν) +G(µ) + V (ν)}.

It is easy to see that this problem admits solutions but since the problem
is nonconvex (due to the interaction term) uniqueness is not guaranteed.
Minimizing with respect to µ for fixed ν (this is a convex problem), the
optimal µ is characterized by µ = u · L2 with

u(x) =
(
ϕ(x)− 1

2
|x|2 + c1

)
+

where ∇ϕ is the Brenier’s map between µ and ν and c is some constant
(that is a multiplier associated to the constraint that µ has mass 1). Now
the first-order optimality condition with respect to ν reads as: there exists a
constant c2 such that(

ϕ∗(y)− 1

2
|y|2
)
≥ 2

∫
F (|x− y|2)dν(x) + c2

and this equality is in fact an equality ν-a.e., these optimality conditions
formally have to be complemented with the Monge-Ampère equation:

det(D2ϕ)ν(∇ϕ) = u.

In general, these conditions cannot be solved explicitly, but they enabled
Santambrogio to prove some regularity of minimizers : u ∈ C(Ω) (it is even
Lipschitz) and ν ∈ L∞. Moreover when F (t) = t (i.e. V is the variance),
Santambrogio proved that the optimal structure consists of measures with the
same center of mass, having as densities two truncated quadratic functions
(and ν is more concentrated than µ in the sense that it is the homothetic
image of µ with an homothety factor < 1).

Let us finally mention that other problems in urban planning can also
be considered in the framework of optimal mass transport, like the design
of a transport network [18] or optimal pricing policies (see [19] for tarifi-
cation of public transport or [17] for location dependedent tarification of a
consumption good).
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3.4 Urban economics II : equilibria

Another important issue in urban economics is whether one can deduce the
structure of the city as an equilibrium solution from the competition between
firms and individuals for land use. As before, the structure of the city cap-
tures the way land is shared between those uses in terms of two densities µ
(number of residents per land unit) and ν (number of jobs per land unit).

Classical references for competitive equilibrium models where the struc-
ture of the city results the from rational behaviour of firms and residents
can be found in Fujita and Ogawa [48], [49], Fujita [46] and Lucas and
Rossi-Hansberg [58]. Most of the literature on the topic is restricted to
the unidimensional (or radially symmetric) case, in [28] Carlier and Ekeland
attacked the two-dimensional case without assuming radial symmetry thanks
to optimal transport arguments. The model considered in [28] is directly in-
spired by that of Lucas and Rossi-Hansberg [58], the main departure from
the Lucas-Rossi-Hansberg model is in the form of the transport cost assumed
to be monetary as in Berliant et al. [13]. More generally, we refer the reader
interested in urban economics to the textbooks [46], [50] and [47].

As in the previous paragraph, the city is given by some, bounded, open
and connected subset of R2. There are three kinds of actors: agents, firms
and landowners. A single good is consumed and produced in Ω.

Agents are assumed to be identical and to have a utility function (c, S) 7→
U(c, S), where c denotes consumption of the good and S denotes land con-
sumption i.e. surface occupied. Firms are also identical, with production
function (z, n) 7→ f(z, n) where z is a productivity parameter (which may
vary from one movation to another due to production externalities), and n is
level of employment. Landowners paly no role in consumption or production
(absentee landlords) but they extract all the surplus and rent the land to
highest bidder.

An important ingredient is production externalities. Given employment
density ν(y)dy in the city, the productivity function is:

z(x) = Zν(x) := χ
(∫

Ω

ρ(x, y)ν(y)dy
)

for allx ∈ Ω (3.13)

With ρ a continuous positive kernel and χ a continuous increasing func-
tion such that χ(R+) ⊂ [z, z] ⊂ (0,+∞). There are finally monetary com-
muting1 costs given by (x, y) 7→ c(x, y). Finally, we consider and open city

1In Lucas and Rossi-Hansberg [58], transport costs are taken into account in terms of
time lost in commuting: an employee that leaves home has one unit of working time to
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model in the sense that population size is not fixed (but the utility of agents
is).

Before defining equilibria, we have to spend some time describing the
actors’ rational behavior. There are two aspects in this behavior: a local one
and a nonlocal one (free mobility of labor).

Agents At equilibrium all agents have the same utility u. If available
revenue at x ∈ Ω is ϕ = ϕ(x), and denoting Q the rent, one gets:

ϕ = V (Q) := min {c+QS : U(c, S) ≥ u} (3.14)

Using Q = V −1(ϕ) one gets c(ϕ) and S(ϕ).

The number of residents per unit of surface used for residential use then
is

N(ϕ) =
1

S(ϕ)

note that Q(ϕ) is the rent for residential use.
Firms If, at y ∈ Ω, productivity is z and wage is ψ the firm solves

q(z, ψ) := max
n≥0

f(z, n)− ψ · n (3.15)

q(z, ψ) is then the rent for business use. The employment level then is n(z, ψ):
the solution of (3.15).

Landowners At x ∈ Ω, if productivity is z, wage is ψ and residents’
revenue is ϕ there are two two rents : q(z, ψ) (business) and Q(ϕ) (residence).
Landowners determine the fraction of surface devoted to business use i.e. a
fraction θ ∈ [0, 1]. The landowners being rational, they allocate land to the
highest bidder i.e.

q(z(x), ψ(x)) > Q(ϕ(x))⇒ θ(x) = 1, (3.16)

q(z(x), ψ(x)) < Q(ϕ(x))⇒ θ(x) = 0, (3.17)

From agents, firms and landowners behaviors, we obtain the residents and
employment densities:

µ = (1− θ)N(ϕ) and ν = θn(z, ψ). (3.18)

These two formulas capture pointwise rationality, another crucial (nonlocal)
aspect that has to be taken into account in the definition of equilibria is in
job/residential location choice, namely:

offer, some fraction of this time is lost in commuting so that the employee is not paid for
one unit but for unit net of the commuting time. This leads to the so-called iceberg-like
costs.
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Free mobility of labor
An agent living at x chooses a job location that maximizes her wage net

of transport cost which gives a first conjugacy relation:

ϕ(x) = sup
y∈Ω
{ψ(y)− c(x, y)}, ∀x ∈ Ω (3.19)

firms will also look for the cheapest employees which symetrically yields

ψ(y) = inf
x∈Ω
{ϕ(x) + c(x, y)}, ∀y ∈ Ω. (3.20)

All this induces a residence location/job location transport plan γ ∈
Π(µ, ν) (γ(A× B) represents the number of agents living in A and working
in B) that is compatible with free-mobility of labor i.e.

ψ(y)− ϕ(x) = c(x, y) γ-a.e. (3.21)

Of course, free mobility of labor translates directly in the language of
optimal transport by the requirement that γ solves the Monge-Kantorovich
problem

inf
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y), (3.22)

and (ϕ, ψ) solves its dual in the form

sup
{∫

ψdν −
∫
ϕdµ : ψ(y)− ϕ(x) ≤ c(x, y)

}
. (3.23)

An equilibrium then is a situation where there are as many jobs as agents
that is consistent with pointwise rational behavior and free mobility of labor,
which gives the formal definition:

Definition 3.2 An equilibrium consists of (µ, ν) ∈ (L1(Ω,R+))2, z ∈ C(Ω,R),
(ψ, ϕ) ∈ (C(Ω,R++))2, θ ∈ L∞(Ω, [0, 1]), and γ a nonnegative measure on
Ω× Ω such that

1.
∫

Ω
µ =

∫
Ω
ν > 0,

2. z = Zν,

3. for L2 ⊗ L2 a.e. (x, y) ∈ Ω2:

µ(x) = (1− θ(x))N(ϕ(x)), ν(y) = θ(y)n(z(y), ψ(y)),

4. (3.16) and (3.17) hold,
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5. (ψ, ϕ) are conjugate (in the sense of (3.19) and (3.20)),

6. γ ∈ Π(µ, ν) and:

ψ(y)− ϕ(x) = c(x, y) γ-a.e..

Under some natural assumptions that we do not reproduce here, the exis-
tence of equilibria is proved in [28]. Without entering the details, let us very
informally explain the strategy proof. First, we regularize θ (landowners’s
choice) by replacing it by θε(z, ψ, ϕ) the solution of

max
θ∈[0,1]

{θq(z, ψ) + (1− θ)Q(ϕ)− ε

2
θ2}

where ε > 0 is a small regularization parameter. Then, we start with densities
µ and ν of same total positive mass, we then compute z = Zν by formula
(3.13), and (ψ, ϕ) as a solution of (3.23). We have one more degree of freedom
since (ψ, ϕ) are defined up to a constant λ, this degree of freedom is used to
solve the equal mass condition:∫

θε(z, ψ, ϕ)n(z, ψ + λ) =

∫
(1− θε(z, ψ + λ, ϕ+ λ))N(ϕ+ λ)

we then obtain two densities

µ′ = (1− θε(z, ψ + λ, ϕ+ λ))N(ϕ+ λ)

and
ν ′ = θε(z, ψ, ϕ)n(z, ψ + λ)

and using Schauder’s fixed-point theorem, we find a fixed-point of the map
(µ, ν) 7→ (µ′, ν ′). It remains to let ε→ 0 and prove that we recover an equi-
librium this way. Again we refer to [28] for precise statements and proofs. A
crucial step in the construction is to deduce wages and revenues from densi-
ties: this is possible thanks to the dual formulation of the optimal transport
(3.22).

3.5 Multidimensional screening

A central paradigm in modern microeconomic theory is the principal-agent
model with adverse selection which we shall exemplify by the optimal design
of a nonlinear tariff by a monopolist (the principal) facing an heterogeoneous
population of customers (the agents) the preferences of whom he is not able
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to observe (this is a typical case of adverse selection : i.e. asymmetric in-
formation with hidden types). The agents’ type space is denoted X and the
type distribution (known to the principal) is given by a probability µ, the
product space is denoted Y and utility is quasi-linear once again i.e. of the
form

u(x, y)− p
where x ∈ X is the agent’s type, y ∈ Y the good attributes (that may be a
quality, a vector of attributes or both) and p is the price. The principal has to
design a contract that is a map x ∈ X 7→ (y(x), p(x)) that associates to each
type the product and price designed for her. Of course, for this specification
to be consistent (y(x), p(x)) has to be a utility-maximizing contract for type
x i.e.

u(x, y(x))− p(x) := max
x′∈X
{u(x, y(x′))− p(x′)}, ∀x ∈ X (3.24)

which is the so-called incentive-compatibility constraint. There should be
some freedom left to consumers not to accept the contract and then get the
outside option (get nothing and pay nothing say), let us denote by y0 this
outside option (and take as new product space Y ∪ {y0} if necessary) and
assume that assume u(x, 0) = 0 for every type x. Type x thus accepts the
contract offered by the principal if

u(x, y(x))− p(x) ≥ 0, ∀x ∈ X, (3.25)

that is the participation consraint. There is a cost for producing y which is
denoted C(y) so that the monopolist’s net average cost is∫

X

[C(y(x))− p(x)]dµ(x)

that he seeks to minimize subject to (3.24) and (3.25). In this form, this
seems a quite intricate problem (because of the nonlocal constraint (3.25)).
Let us transform it by changing variables (y, p) into (v, p) with

v(x) := u(x, y(x))− p(x) := max
x′∈X
{u(x, y(x′))− p(x′)}

and let’s see what happens to the nasty constraint (3.24). Firstly, (3.24)
implies that v is restricted to be u-convex that is v is a supremum of functions
of the form x 7→ u(x, y) − p (up to some minus signs this is the notion of
c-concavity we encountered so many times), secondly y(x) is related to v by
the condition that it belongs to the u-subgradient of v at x, i.e. the set

∂uv(x) := {y ∈ Y : v(x′)− v(x) ≥ u(x′, y)− u(x, y), ∀x′ ∈ X}.
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Conversely, it is easy to check that whenever v is u-convex and y(x) ∈ ∂uv(x)
for all x ∈ X then the contract x 7→ (y(x), p(x)) satifies (3.24) with p(x) :=
u(x, y(x))− v(x). So that the monopolist’s problem can be reformulated as:

inf

∫
X

[C(y(x))− u(x, y(x)) + v(x)]dµ(x) (3.26)

subject to : v ≥ 0, v is u-convex, and y(x) ∈ ∂uv(x), ∀x ∈ X. (3.27)

This reformulation as an unusual calculus of variations problem looks slightly
more elegant but it is still not clear how to solve it. There is one advantage
though, in this reformulation, in terms of existence. Recall indeed that under
some continuity/compactness assumptions, u-convex functions are equicon-
tinuous, this enables one to prove quite general existence results (this is
basically what is done in [26]) but...not much more. What about uniqueness
issues, qualitative properties, tractable optimality conditions and numerical
computations? Almost nothing is known except in some very specific cases.
First of all the one-dimensional case is very well-understrood at least when u
satisfies Spence-Mirrlees condition ([72], [63]) for instance a fairly complete
analysis of the solution can be found in Mussa and Rosen [62]. In the mul-
tidimensional case, the picture is far from being complete. Even in the case
of the Rochet and Choné model [68] where X is some convex body in Rd,
Y = Rd

+, u(x, y) := x ·y (so that u-convexity essentially reduces to usual con-
vexity and the u-subgradient is the usual subgradient from convex analysis)
and a quadratic cost function, the analysis is very delicate. A very interest-
ing variant due to Rochet [66] leads to the additional constraint that v solves
a multi-time Hamilton-Jacobi equations (see Lions and Rochet[57] for Hopf-
like representation formulas). This introduces nonconvexities that render the
mathematical and numerical analysis of the corresponding multidimensional
screening extremely challenging.

Recently, by arguments coming from optimal transport theory, Figalli,
Kim and McCann in [44] identified structural conditions on u (too techni-
cal to reproduce here) under which the multidimensional screening problem
(3.26)-(3.27) is a convex program. A remarkable and somehow intriguing fact
is that these conditions are initimately linked to the so-called Ma-Trudinger-
Wang condition (see [61]) which plays a crucial role in the regularity theory
for optimal transport with a general cost function. More importantly, the
results of [44] open the way for a totally new research program on qualitative
properties (regularity in particular), characterization and numerical com-
putational strategies for multidimensional screening. All these perspectives
were totally out of reach before Figalli, Kim and McCann made this major
breakthrough and we are convinced that [44] will be the starting point of an
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exciting and totally new field of investigation combining deep mathematics
and extremely important economic problems.
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Chapter 4

Congested Transport

In the classical Monge-Kantorovich problem, the transportation cost only
depends on the amount of mass sent from sources to destinations and not on
the paths followed by each particle forming this mass. Thus, it does not allow
for congestion effects. By congestion effect, we mean that the travelling cost
(or time) of a path depends on ”how crowded” this path is. Starting from a
simple network network model, we shall define equilibria in the presence of
congestion. We will then extend this theory to the continuous setting.

4.1 Wardrop equilibria in a simple congested

network model

The main data of the model are a finite oriented connected graph G = (N,E)
modelling the network, and edge travel times functions w ∈ R+ 7→ ge(w)
which for each edge e ∈ E gives the travel time on arc e when the flow on this
edge is w. The functions ge are all nonnegative, continuous, nondecreasing
and capture the congestion effect (which may different on the different edges
capturing for instance the idea that some roads may be longer or wider
and may have different responses to congestion). The last ingedient of the
problem is a transport plan on pairs of nodes (x, y) ∈ N2 interpreted as pairs
of sources/destinations, we denote by (γx,y)(x,y)∈N2 this transport plan i.e.
γx,y represents the ”mass” to be sent from x to y. We denote by Cx,y the
set of simple paths connecting x to y, so that C := ∪(x,y)∈N2Cx,y is the set
of all simple paths, a generic path will be denoted by σ and we will use the
notation e ∈ σ to indicate that the path σ uses the edge e.

The unknown of the problem is the flow configuration. The edge flows
are denoted by w = (we)e∈E and the path flows are denoted by q = (qσ)σ∈C ,
this means that we is the total flow on edge e and qσ is the mass traveling
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on the path σ. Of course the we’s and qσ’s are nonnegative and constrained
by the mass conservation conditions:

γx,y =
∑
σ∈Cx,y

qσ, ∀(x, y) ∈ N2 (4.1)

and
we =

∑
σ∈C : e∈σ

qσ, ∀e ∈ E. (4.2)

Given edge flows w = (we)e∈E, the total travel-time of the path σ ∈ C is

Tw(σ) =
∑
e∈σ

ge(we). (4.3)

In [76], Wardrop defined a notion of noncooperative equilibrium that
has been very popular since among engineers working in the field of con-
gested transport and that may be described as follows. Roughly speaking,
a Wardrop equilibrium is a flow configuration such that every actually used
path should be a shortest path taking into account the congestion effect i.e.
formula (4.3). This leads to

Definition 4.1 A Wardrop equlibrium is a flow configuration w = (we)e∈E,
q = (qσ)σ∈C (all nonnegative of course), satisfying the mass conservation
constraints (4.1) and (4.2) such that in addition, for every (x, y) ∈ N2 and
every σ ∈ Cx,y, if qσ > 0 then

Tw(σ) = min
σ′∈Cx,y

Tw(σ′).

A few years after Wardrop introduced his equilibrium concept, Beck-
mann, McGuire and Winsten [8] realized that Wardrop equilibria can be
characterized by the following variational principle:

Theorem 4.1 The flow configuration w = (we)e∈E, q = (qσ)σ∈C is a Wardrop
equilibrium if and only if it solves the convex minimization problem

inf
(w,q)

∑
e∈E

He(we) s.t. nonnegativity and (4.1) (4.2) (4.4)

where for each e, and w ∈ R+,

He(w) :=

∫ w

0

ge(s)ds.
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Proof:
Note that due to (4.2), one can deduce w from q so that (4.4) is an optimiza-
tion problem on q = (qσ)σ∈C only. Assume that q = (qσ)σ∈C (with associated
edge flows (we)e∈E) is optimal for (4.4) then for every admissible η = (ησ)σ∈C
with associated (through (4.2)) edge-flows (ue)e∈E, one has

0 ≤
∑
e∈E

H ′e(we)(ue − we) =
∑
e∈E

ge(we)
∑

σ∈C : e∈σ

(ησ − qσ)

=
∑
σ∈C

(ησ − qσ)
∑
e∈σ

ge(we)

so that ∑
σ∈C

qσTw(σ) ≤
∑
σ∈C

ησTw(σ)

minimizing the right-hand side thus yields∑
(x,y)∈N2

∑
σ∈Cx,y

qσTw(σ) =
∑

(x,y)∈N2

γx,y min
σ′∈Cx,y

Tw(σ′)

which exactly says that (q, w) is a Wardrop equilibrium. To prove the con-
verse, it is enough to see that problem (4.4) is convex so that the inequality
above is indeed sufficient for a global minimum.

2

The previous characterization actually is the reason why Wardrop equi-
libria became so popular. Not only, one deduces for free existence results but
also uniqueness for w (not for q) as soon as the functions ge are increasing (so
that He is strictly convex). The variational formulation (4.4) also admits a
dual formulation. Another major advantage of (4.4) is that the techniques of
numerical convex optimization can be used to compute Wardrop equilibria,
however there are as many variables as the number of paths which obviously
restricts computations to small networks, the dual formulation has much less
variables but involves nonsmooth terms. Let us also mention an interesting
extension of the model to a stochastic setting by Baillon and Cominetti [6].

Remark 4. In the problem above, the transport plan γ is fixed, this may
be interpreted as a short term problem. Instead, we could consider the long
term problem where only the distribution of sources µ0 and the distribution
of destinations µ1 are fixed. In this case, one requires in addition, in the
definition of an equilibrium that γ is efficient in the sense that it minimizes
among transport plans between µ0 and µ1 the total cost∑

γx,ydw(x, y) with dw(x, y) := min
σ∈Cx,y

Tw(σ).
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In the long term problem where one is allowed to change the assignment
as well, equilibria still are characterized by a convex minimization problem
where one also optimizes over γ.

4.2 Optimal transport with congestion and

equilibria in a continuous framework

This paragraph aims to generalize the previous results to a continuous setting.
This means that there will be no network, all paths in a certain given region
will therefore be admissible. The first idea is to formulate the whole path
dependent transport pattern in terms of a probability measure Q on the set of
paths (this is the continuous analogue of the path flows (qσ))σ of the previous
paragraph). The second one is to measure the intensity traffic generated by
Q through an analogue of the transport density we saw in paragraph 2.4
(except that the paths considered will be more general than straight lines).
The last and main idea will be in modelling the congestion effect through a
metric that is monotone increasing in the traffic intensity.

We will deliberately avoid to enter into technicalities so the following
description will be pretty informal (see [29] for details). From now on, Ω
denotes an open bounded connected subset of R2 (a city say), and we are
also given :

• either probability measures µ0 and µ1 (distribution of sources and des-
tinations) on Ω in the case of the long-term problem,

• or a transport plan γ (joint distribution of sources and destinations)
that is a joint probability on Ω × Ω) in the case of the short-term
problem.

Given an absolutely curve σ ; [0, 1] 7→ Ω and a continuous function ϕ, let
us set

Lϕ(σ) :=

∫ 1

0

ϕ(σ(t))|σ̇(t)|dt. (4.5)

A transport pattern is by definition a probability measure Q on C :=
C([0, 1],Ω) concentrated on absolutely continuous curves that is compatible
with mass conservation, i.e. such that either

e0#Q = µ0, e1#Q = µ1

in the case of the long-term problem, or

(e0, e1)#Q = γ, with et(σ) := σ(t), ∀t ∈ [0, 1]
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in the case of the short-term problem. We shall denote by Q(µ0, µ1) and
Q(γ) the set of admissible transport patterns respectively for the long-term
and for the short-term problem:

Q(µ0, µ1) := {Q : e0#Q = µ0, e1#Q = µ1}

and
Q(γ) := {Q : (e0, e1)#Q = γ}.

In the remainder of this paragraph, we will focus on the long-term problem.
We are interested in finding an equilibrium i.e. a Q ∈ Q(µ0, µ1) that is
supported by geodesics for a metric ξQ depending on Q itself (congestion).

The intensity of traffic associted to Q ∈ Q(µ0, µ1) is by definition the
measure iQ ∈M(Ω), defined by∫

ϕdiQ :=

∫
C([0,1],Ω)

(∫ 1

0

ϕ(γ(t))|γ̇(t)|dt
)
dQ(γ) =

∫
C

Lϕ(σ)dQ(σ).

for all ϕ ∈ C(Ω,R+). This definition is a generalization of the notion of
transport density and the interpretation is the following: for a subregion A,
iQ(A) represents the total cumulated traffic in A induced by Q, it is indeed
the average over all paths of the length of this path intersected with A.

The congestion effect is then captured by the metric associated to Q:

ξQ(x) := g(x, iQ(x)), for iQ � L2 (+∞ otherwise).

for a given increasing function g(x, .) : R+ → R+. The fact that there exists
at least one Q ∈ Q(µ0, µ1) such that iQ � L2 is not always true and depends
on µ0 and µ1 but again we do not wish to enter the details, let us only
indicate that this condition is satisfied when µ0 and µ1 are ”well behaved”.
Let us now describe, what a reasonable definition of an equilbrium should
look like. If the overall transport pattern is Q, an agent commuting from x
to y choosing a path σ ∈ Cx,y (i.e. an absolutely continuous curve σ such
that σ(0) = x and σ(1) = y) spends time

LξQ(σ) =

∫ 1

0

g(σ(t), iQ(σ(t))|σ̇(t)|dt

she will of try to minimize this time i.e. to achieve the corresponding geodesic
distance

cξQ(x, y) := inf
σ∈Cx,y

LξQ(σ)

paths in Cx,y such that cξQ(x, y) = LξQ(σ) are called geodesics (for the metric
induced by the congestion effect generated by Q). A first requirement, in the
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definition of an equilibrium therefore is that Q-a.e. path σ is a geodesic
between its endpoints σ(0) and σ(1). The transportation pattern may be
disintegrated with respect to γQ := (e0, e1)#Q:

Q = γQ ⊗ (px,y)

i.e. ∫
C

Φ(σ)dQ(σ) =

∫
Ω×Ω

(∫
Cx,y

Φ(σ)dpx,y(σ)
)
dγQ(x, y), ∀Φ.

In other words, γQ(A×B) is the probability that a path has starting point in
A and a terminal point in B (so that γQ ∈ Π(µ0, µ1) because Q ∈ Q(µ0, µ1))
and given starting and terminal points (x, y), px,y is a probability on Cx,y
that represents the probability over paths conditional on (x, y). The require-
ment that Q gives full mass to geodesics says that for γQ-a.e. (x, y), px,y is
supported on the set of geodesics between x and y but this does require any
particular property on the coupling γQ. We thus supplement the definition of
an equilbrium by the additional requirement that γQ should solve the optimal
transportation problem:

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξQ(x, y)dγ(x, y). (4.6)

This yields:

Definition 4.2 A Wardrop equilbrium (for the long-term problem) is a Q ∈
Q(µ0, µ1) such that

Q({σ : LξQ(σ) = cξQ(σ(0), σ(1)) = 1 (4.7)

and γQ := (e0, e1)#Q solves the optimal transport problem (4.6).

Of course in the short-term case, γQ is fixed equal to γ so that Wardrop
equilibria are defined by condition (4.7) only.

Let us then consider the (convex) variational problem

inf
Q∈Q(µ0,µ1)

∫
Ω

H(x, iQ(x))dx (4.8)

where H ′(x, .) = g(x, .), H(x, 0) = 0. We shall refer to (4.8) as the congested
optimal mass transportation problem for reasons that will be clarified later.
Under some technical assumptions that we do not reproduce here, the main
results of [29] can be summarized by
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Theorem 4.2 Problem 4.8 admits at least one minimizer. Moreover Q ∈
Q(µ0, µ1) solves (4.8) if and only if it is a Wardrop equilibrium. In particular
there exists Wardrop equilibria.

The full proof is quite involved since it involves to take care of some regu-
larity issues in details. But the intuition of why solutions of (4.8) are Wardrop
equilibria can be understood easily from the following formal manipulations.
By convexity arguments, it is easily seen that Q = γ⊗px,y ∈ Q(µ0, µ1) solves
(4.8) if and only if it satifies the variational inequalities∫

Ω

ξiQ = inf

{∫
Ω

ξiQ : Q ∈ Q(µ0, µ1)

}
with ξ := H ′(., iQ(.)) = g(., iQ(.)).

(4.9)
which we may rewrite as∫

Ω

ξiQ =

∫
C

Lξ(σ)dQ(σ)

=

∫
Ω×Ω

(∫
Cx,y

Lξ(σ)dpx,y(σ)

)
dγ(x, y)

= inf
(γ,p)

∫
Ω×Ω

(∫
Cx,y

Lξ(σ)dpx,y(σ)

)
dγ(x, y)

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

(
inf

p∈M1
+(Cx,y)

∫
Cx,y

Lξ(σ)dp(σ)

)
dγ(x, y)

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

(
inf

σ∈Cx,y
Lξ(σ)

)
dγ(x, y)

Let us then define cξ = cξQ i.e.

cξ(x, y) := inf
σ∈Cx,y

Lξ(σ),

we firstly get ∫
Ω×Ω

cξ(x, y)dγ(x, y) ≤
∫
C

LξdQ

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξ(x, y)dγ(x, y)

so that γ solves the Monge-Kantorovich problem:

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξ(x, y)dγ(x, y).
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Secondly, we obtain∫
C

Lξ(σ)dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y)

=

∫
C

cξ(σ(0), σ(1))dQ(σ)

and since Lξ(σ) ≥ cξ(σ(0), σ(1)), we get

Lξ(σ) = cξ(σ(0), σ(1)) for Q-a.e. σ.

or, in an equivalent way, for γ-a.e. (x, y) one has:

Lξ(σ) = cξ(x, y) for px,y-a.e. σ

which exactly proves that Q is a Wardrop equilibrium.

Remark 5. It would be very tempting to deduce from the previous result
that equilibria are efficient since they are minimizers in (4.8). One has to be
cautious with this quick interpretation since the quantity

∫
Ω
H(x, iQ(x))dx

does not represent the natural total social cost measured by the total time
lost in commuting which reads as∫

Ω

g(x, iQ(x))iQ(x)dx. (4.10)

The efficient transport patterns are minimizers of (4.10) and thus are different
from equilibria in general. This difference between efficiency and equilibrium
is very well-documented in the finite-dimensional network setting where it is
frequently associated to the literature on the so-called cost of anarchy. Inter-
estingly, one can restore efficiency of equilibria by a well-chosen toll system,
which, from a public economics prespective, justifies public intervention in
the management of road traffic.

Remark 6. For the short-term problem, a similar variational characteriza-
tion holds, namely that Q ∈ Q(γ) is a (short-term) Wardrop equilibrium if
and only if it solves

inf
Q∈Q(γ)

∫
Ω

H(x, iQ(x))dx. (4.11)

We have proved that, as in the finite-dimensional network case, Wardrop
equilibria have a variational characterization which is in principle easier to
deal with than the definition. Unfortunately, the convex problems (4.8) and
(4.11) may be difficult to solve since they involve measures on sets of curves
that is two layers of infinite dimensions! The next two paragraphs are pre-
cisely intended to consider different formulations that turn out to be much
more tractable:

57



• for the short-term problem (4.11), we will see that the equilibrium
metrics solve a kind of dual problem that can be solved numerically,

• for the long-term problem (4.8), we will deduce optimal Q’s from a
minimal flow problem à la Beckmann and a construction à la Moser, in
other words, the problem will amount to solve a certain nonlinear ellip-
tic PDE (which turns out to be quite degenerate in realistic congestion
models).

4.3 Duality for the short-term problem

The purpose of this paragraph, is to give a dual and tractable formulation of
the variational problem for the short-term problem (4.11). For every x ∈ Ω
and ξ ≥ 0, let us define

H∗(x, ξ) := sup{ξi−H(x, i), i ≥ 0}, ξ0(x) := g(x, 0).

By our assumptions on g, one has H∗(x, ξ) = 0 for every x ∈ Ω and ξ ≤ ξ0(x);
let us recall Young’s inequality:

H(x, i) +H∗(x, ξ) ≥ ξi, ∀i ≥ 0,∀ξ ≥ ξ0(x) (4.12)

and that inequality (4.12) is strict unless ξ = g(x, i) ≥ ξ0(x). In particular,
for Q ∈ Q(γ), we have the identity

H(x, iQ(x)) +H∗(x, ξQ(x)) = ξQ(x)iQ(x) (4.13)

and

H(x, iQ(x)) +H∗(x, ξ) > ξiQ(x), ∀ξ ≥ ξ0(x), ξ 6= ξQ(x). (4.14)

Let us now define the functional

J(ξ) =

∫
Ω

H∗(x, ξ(x))dx−
∫

Ω×Ω

cξ(x, y)dγ(x, y) (4.15)

where as usual cξ is the geodesic distance associated to the metric ξ i.e.

cξ(x, y) := inf
σ∈Cx,y

Lξ(σ).

and consider:
sup {−J(ξ) : ξ ≥ ξ0} (4.16)
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Theorem 4.3 The following duality formula holds

min(4.11) = max(4.16) (4.17)

and ξ solves (4.16) if and only if ξ = ξQ for some Q ∈ Q(γ) solving (4.11).

Proof:
Let Q ∈ Q(γ) (so that ξQ ≥ ξ0) and let ξ ≥ ξ0, from (4.12) and∫

Ω

ξ(x)iQ(x) dx =

∫
C

Lξ(σ) dQ(σ). (4.18)

we first get: ∫
Ω

H(x, iQ(x))dx ≥
∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=

∫
C

Lξ(σ)dQ(σ)−
∫

Ω

H∗(x, ξ(x))dx.

Using the fact that
Lξ(σ) ≥ cξ(σ(0), σ(1)) (4.19)

and Q ∈ Q(γ) we then have∫
C

Lξ(σ)dQ(σ) ≥
∫
C

cξ(σ(0), σ(1))dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y).

Since Q ∈ Q(γ) and ξ ≥ ξ0 are arbitrary and since we already know that the
infimum of (4.11) is attained we thus deduce

min(4.11) ≥ sup(4.16). (4.20)

Now let Q ∈ Q(γ) solve (4.11) and let ξ := ξQ (recall that ξQ does not depend
on the choice of the minimizer Q), from the equivalence between Wardrop
equilibria and solutions of (4.11), we know that

Lξ(σ) = cξ(σ(0), σ(1)) for Q-a.e. σ ∈ C

with (4.18), integrating the previous identity and using Q ∈ Q(γ) we then
get: ∫

Ω

ξiQ =

∫
C

Lξ(σ)dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y).

Using (4.13), (4.20) and the fact that Q ∈ Q(γ) solves (4.11) yields:

sup(4.16) ≤ min(4.11) =

∫
Ω

H(x, iQ(x))dx =

∫
Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=

∫
Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

59



so that ξ solves (4.16) and (4.17) is satisfied. Finally if ξ solves (4.16) and
Q ∈ Q(γ) solves (4.11), then with (4.18) and (4.19), one has∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx ≥
∫

Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

= max(4.16) = min(4.11) =

∫
Ω

H(x, iQ(x))dx

and thus we deduce from (4.12) and (4.14) that ξ = ξQ.
2

Remark 7. Under reasonable continuity and strict monotonicity assump-
tions on the congestion function g, the dual problem (4.16) has a unique
solution so that the equilibrium metric ξQ and the equilibrium intensity of
traffic iQ are unique although Wardrop equilibria Q might not be unique.

In [11], [12], we designed a consistent numerical scheme to approximate
the equilibrium metric ξQ by a descent method on the dual which can be
done in an efficient way by the Fast Marching Algorithm. One can recover
the corresponding equilibrium intensity iQ by inverting the relation ξ(x) =
g(x, iQ(x)). An example is given in the following figure:

In a symmetric configuration of two sources S1 and S2, and two targets
T1 and T2; we consider a river where there is no traffic and a bridge linking
the two sides of the river (see figure 4.3 (a)). We chose the traffic weights
such that γ1,1 + γ1,2 = 2(γ2,1 + γ2,2) and γ2,2

γ2,1
= γ1,1

γ1,2
= 2. The traffic intensity

going out from S1 is twice S2’s. One can note the two hollows on each side of
the river appearing because of the inter-sides and intra-sides crossed traffics.
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4.4 Beckmann-like reformulation of the long-

term problem

In the long-term problem (4.8), we have one more degree of freedom since the
transport plan is not fixed. This will enable us to reformulate the problem as
a variational divergence constrained problem à la Beckmann and ultimately
to reduce the equilibrium problem to solving some nonlinear PDE. For Q ∈
Q(µ0, µ1), let us define the vector-field σQ by, ∀X ∈ C(Ω,Rd):∫

Ω

X(x)σQ(x)dx :=

∫
C([0,1],Ω)

(∫ 1

0

X(γ(t)) · γ̇(t)dt

)
dQ(γ)

which is a kind of vectorial traffic intensity. Taking a gradient field X = ∇u
in the previous definition yields∫

Ω

∇uσQ =

∫
C([0,1],Ω)

[u(σ(1))− u(σ(0))]dQ(γ) =

∫
Ω

u(µ1 − µ0)

which means that
div(σQ) = µ0 − µ1,

moreover it is easy to check that

|σQ| ≤ iQ.

Since H is increasing, it proves that the value of the scalar problem (4.8)
is larger than that of the minimal flow problem à la Beckmann:

inf
σ : div(σ)=µ0−µ1

∫
Ω

H(σ(x))dx (4.21)

where H(σ) = H(|σ|) and H is taken independent of x for simplicity. Con-
versely, if σ is a minimizer of (4.21) and Q ∈ Q(µ0, µ1) is such that iQ = |σ|
then Q solves the scalar problem (4.8) (i.e. is an equilibrium).

To build such a Q, we can formally use the following construction à la
Moser (assuming σ smooth, µ0, µ1 have nice densities bounded away from
0). Consider the ODE

Ẋ(t, x) =
σ(X(t, x))

(1− t)µ0(X(t, x)) + tµ1(X(t, x))
, X(0, x) = x.

and define Q by
Q = δX(.,x) ⊗ µ0
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Set µt = (1− t)µ0 + tµ1 and

v(t, x) =
σ(x)

µt(x)

then by construction µt solves the continuity equation:

∂tµt + div(µtv) = 0

By construction e0#Q = µ0 and because of the continuity equation,
X(t, .)#µ0 = µt = (1− t)µ0 + tµ1. In particular the image of µ0 by the flow
at time 1, X(1, .) is µ1, which proves that e1#Q = µ1 hence Q ∈ Q(µ0, µ1).
Moreover for every test-function ϕ:∫

Ω

ϕdiQ =

∫
Ω

∫ 1

0

ϕ(X(t, x))|v(t,X(t, x))|dtdµ0(x)

=

∫ 1

0

∫
Ω

ϕ(x)|v(t, x)|µt(x)dxdt

=

∫
Ω

ϕ(x)|σ(x)|dx

so that iQ = |σ| and then Q is optimal.
The previous argument works as soon as σ is regular enough. By duality,

the solution of (4.21) is σ = ∇H∗(∇u) where H∗ is the Legendre transform
of H and u solves the PDE:{

div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(4.22)

Let us recall that H ′ = g where g is the congestion function, so it is natural
to have g(0) > 0 : the metric is positive even if there is no traffic, so that
the radial function H is not differentiable at 0 and then its subdifferential at
0 contains a ball. By duality, this implies ∇H∗ = 0 on this ball which makes
(4.22) very degenerate. A reasonable model of congestion is g(t) = 1 + tp−1

for t ≥ 0, with p > 1, so that

H(σ) =
1

p
|σ|p + |σ|, H∗(z) =

1

q
(|z| − 1)q+, with q =

p

p− 1
(4.23)

so that the optimal σ is

σ =
(
|∇u| − 1

)q−1

+

∇u
|∇u|
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where u solves the very degenerate PDE:

div
((
|∇u| − 1

)q−1

+

∇u
|∇u|

)
= µ0 − µ1, (4.24)

with Neumann boundary condition(
|∇u| − 1

)q−1

+

∇u
|∇u|

· ν = 0.

Note that there is no uniqueness for u but there is for σ. Sobolev regularity of
σ and Lipschitz regularity results for solutions of this PDE (more degenerate
than the p-laplacian since the diffusion coefficient identically vanishes in the
zone where |∇u| ≤ 1) can be found in [15]. This enables one to build a flow
à la DiPerna-Lions and then to justify rigorously the construction above

4.5 Dynamic setting : perspectives from mean-

field games theory

The situation described of the previous paragraphs, is purely stationary (and
this is reminiscent from Beckmann’s formulation). It is not clear to us how to
extend the previous analysis to the dynamic setting in a satisfactory way from
the modeling point. Looking at learning dynamics might give some hints but
we think that the most relevant answers come from mean-field games (MFG)
theory introduced by Jean-Michel Lasry and Pierre-Louis Lions (see [53],
[54], [55] and the inspiring lectures by Lions [56]). Concluding these notes is
a good occasion, to say a few words on MFG theory that is, in our opinion,
likely to become a new paradigm for analyzing rational expectations-like
equilibria in the presence of general externalities and undoubtedly deserved
to be called New Mathematical Models in Economics Finance.

Consider a certain time period [0, T ] and a population of players ini-
tially distributed according to a certain spatial density ρ0, denote by ρt the
(unknown) players spatial distribution at time t. A generic player initially
located at x, will typically minimize some cost that may depend on the repar-
tition of the other players (for instance because of congestion) that in a first
analysis stage, she takes as given, which leads to an individual program (for
instance) of the form

inf
X(0,x)=x

∫ T

0

L(ρ(s,X(s, x)), X(s, x), Ẋ(s, x))ds+ φ(X(T, x))
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ignoring regularity issues, an optimal feedback velocity may be find by the
dynamic programming approach i.e.

v = ∇H(ρ, x,∇u) (4.25)

where H is the usual Hamiltonian and u is the value function, that is char-
acterized by the Hamilton-Jacobi equation:

∂tu+H(ρ, x,∇u) = 0, u|t=T = φ. (4.26)

This captures how players optimally move given ρt. At equilibrium, this
should be consistent with the evolution of ρt induced by the velocity field
(4.25) i.e. the continuity equation:

∂tρ+ div(ρ∇H(ρ, x,∇u)) = 0, ρ|t=0 = ρ0. (4.27)

An equilibrium is a situation where

• agents choose cost minimizing paths, given what they expect ρt will be

• this leads to an evolution which is indeed consistent with the previous
expectations

it is therefore fully captured by the system (4.26)-(4.27). This system is a
special case of MFG, note that it is nonlinear and it has the unusual fea-
ture that one has a terminal condition for the first equation and an initial
condition for the second one. This forward-backward nature of the MFG
system makes it mathematically very rich and captures the concept of ratio-
nal expectation (in nature, a fixed-point problem) in a synthetic and elegant
way.
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Chapter 5

Appendix

5.1 Convex duality

Let E and F be two normed spaces, Λ ∈ L(E,F ), f and g be two lsc convex
functions, f : E → R ∪ {+∞} and g : F → R ∪ {+∞} further assumed to
be proper i.e. not identically +∞. The Legendre Transform of f denoted f ∗

is the function defined on E ′ by

f ∗(q) := sup
x∈E
{〈q, x〉 − f(x)}, ∀q ∈ E ′

similarly, the Legendre Transform of g is defined by

g∗(p) := sup
y∈F
{〈p, y〉 − g(y)}, ∀p ∈ F ′.

Let us then consider the convex optimization problem:

inf
x∈E
{f(x) + g(Λx)} (5.1)

and let us define its dual as :

sup
p∈F ′
{−f ∗(−Λ∗p)− g∗(p)}. (5.2)

Before going further and proving the Fenchel-Rockafellar theorem, we
shall need a few preliminary observatuions. Given f : E → R ∪ {+∞} a
proprer lsc and convex function and denoting by f ∗ its Legendre transform,
we have by definition Young’s inequality:

f(x) + f ∗(q) ≥ 〈q, x〉 , ∀(q, x) ∈ E ′ × E, (5.3)

so that for every x ∈ E:

f(x) ≥ f ∗∗(x) := sup
q∈E′
{〈q, x〉 − f ∗(q)}. (5.4)
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Lemme 5.1 Let f : E → R ∪ {+∞} be a proper, lsc and convex function,
then f ∗ is proper, lsc and convex onE∗.

Proof:
The fact that f ∗ is lsc convex follows directly from the fact that by definition
it is a supremum of affine and continuous functions. It remains to prove
that f ∗ is not everywhere +∞. Let x0 ∈ E be such that f(x0) < +∞ and
λ0 < f(x0), we then have (λ0, x0) /∈ Epi(f) := {(λ, x) ∈ R×E : λ ≥ f(x)}.
Si f is lsc and convex, Epi(f) is closed and convex, one can therefore separate
strictly (λ0, x0) from Epi(f) : there exists (k, p) ∈ R × E ′ and ε > 0 such
that

kλ0 − 〈p, x0〉 ≤ kλ− 〈p, x〉 − ε, ∀(λ, x) ∈ Epi(f) (5.5)

which implies that k > 0; by homogeneity we may then as well assume k = 1.
This yields in particular

f ∗(p) = sup
x∈E
{〈p, x〉 − f(x)} ≤ 〈p, x0〉 − λ0 − ε < +∞.

2

The previous lemma exactly says that f possesses an affine continuous
minorantn (x 7→ 〈p, x〉 − f ∗(p) avec f ∗(p) < +∞).

Remark 8. As an exercise, we let the reader verify the following fact. Let
f : E → R∪{+∞}, f 6=∞, f ∗∗ is the largest lsc convex function everywhere
below f . In particular, f is lsc and convex if and only if f = f ∗∗.

Theorem 5.1 (Fenchel-Rockafellar duality theorem) If there exists x0 ∈ E
such that f(x0) < +∞ and g is continuous at Λ(x0) and the infimum of (5.1)
is finite, then :

inf
x∈E
{f(x) + g(Λx)} = max

p∈F ′
{−f ∗(−Λ∗p)− g∗(p)}.

(In particular, the supremum is attained in (5.2)).

Proof:
Let α and β be respectively the infimum in (5.1) and the supremum in (5.2).
It follows from Young’s inequalities that, for every (x, p) ∈ E × F ′ one has:

f(x) ≥ 〈−Λ∗p, x〉 − f ∗(−Λ∗p), g(Λx) ≥ 〈p,Λx〉 − g∗(p)

summing these inequalities and optimizing exactly yields α ≥ β.

Set
C := {(λ, x, y) ∈ R× E × Y : λ ≥ g(Λx− y)}
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and let A be the interior of C (A is nonempty since g is continuous at Λx0).
One can easily check that C is convex and dense in A. Also define:

B := {(µ, z, 0) : µ ∈ R, z ∈ E, α− µ ≥ f(z)},

B is nonempty, convex and by definition of α, A∩B = ∅. One can therefore
separate (in the large sense) B from A (and thus also from C by density):
there exists (k, q, p) ∈ R× E ′ × F ′ \ {(0, 0, 0)} and a ∈ R such that

kλ+ 〈q, x〉+ 〈p, y〉 ≥ a ≥ kµ+ 〈q, z〉 , ∀(λ, x, y) ∈ C, ∀(µ, z, 0) ∈ B. (5.6)

We deduce from the previous that k ≥ 0 (otherwise, the left hand side of (5.6)
would not be bounded from below). Now, if k = 0, thanks to the continuity
of g at Λx0, u ∈ E and v ∈ F small enough, one would have

〈q, u〉+ 〈p, v〉 ≥ 0

which would imply p = 0 and q = 0, which is the desired contradiction. We
thus have k > 0 and may as well assume k = 1. We can therefore rewrite
(5.6) as

inf
(x,y)∈E×F

{g(Λx−y)+〈q, x〉+〈p, y〉} ≥ a ≥ α+sup
z∈E
{〈q, z〉−f(z)} = α+f ∗(q).

(5.7)
In particular, for every u ∈ E

〈q, u〉+ 〈p,Λu〉 ≥ a− g(Λx0)

so that q = −Λ∗p, and the left hand side of (5.7) can be rewritten as

inf
(x,y)∈E×F

{g(Λx− y)− 〈p,Λx− y〉} = −g∗(p)

together with (5.7) this yields

−g∗(p)− f ∗(−Λ∗p) ≥ α ≥ β

which finally implies that α = β and that p solves (5.2).
2

5.2 A rigorous proof of the Kantorovich du-

ality
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Let us now come back to our Monge-Kantorovich problem (1.2) and let us
prove that it may naturally be written as the dual of a certain convex mini-
mization on C(X)×C(Y ). Of course, thanks to Riesz’s theorem, we identify,
M(X), M(Y ) and M(X × Y ) to the topologigal dual of C(X), C(Y ) and
C(X × Y ). Let Λ : C(X)× C(Y ) be defined by Λ(ϕ, ψ) := ϕ⊕ ψ for every
(ϕ, ψ) ∈ C(X)× C(Y ) with

(ϕ⊕ ψ)(x, y) := ϕ(x) + ψ(y), ∀(x, y) ∈ X × Y.

The adjoint of Λ, Λ∗ is then the linear and continuous operatorM(X×Y )→
M(X)×M(Y ) given by : for every γ ∈M(X×Y ), Λ∗γ = (πXγ, πY γ) where
for every (ϕ, ψ) ∈ C(X)× C(Y ):∫

X×Y
ϕ(x)dγ(x, y) =

∫
X

ϕ(x)d(πXγ)(x),∫
X×Y

ψ(y)dγ(x, y) =

∫
X

ψ(y)d(πY γ)(y)

.

This means that πXγ and πY γ are the marginals of the (signed) measure γ.

Let us now consider:

inf
(ϕ,ψ)∈C(X)×C(Y )

f(Λ(ϕ, ψ)) + g(ϕ, ψ) (5.8)

where, for every θ ∈ C(X × Y )

g(θ) :=

{
0 if θ ≤ c
+∞ otherwise

and

f(ϕ, ψ) := −
∫
X

ϕdµ−
∫
Y

ψdν.

By direct computation, we get

f ∗(−Λ∗γ) =

{
0 if (πXγ, πY γ) = (µ, ν)
+∞ otherwise

and

g∗(γ) =

{ ∫
X×Y cdγ si γ ≥ 0

+∞ sinon

so that the dual (in the sense of paragraph 5.1) of (5.8) is

sup
γ∈Π(µ,ν)

−
∫
X×Y

cdγ = − inf
γ∈Π(µ,ν)

∫
X×Y

cdγ
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by a direct application of the Fenchel-Rockafellar theorem, we obtain the
existence of solutions to (1.2) (which we already knew!) and the Kantorovich
duality formula:

Theorem 5.2 (Kantorovich duality formula)

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) = sup
(ϕ,ψ)∈C(X)×C(Y ) : ϕ⊕ψ≤c

∫
X

ϕdµ+

∫
Y

ψdν.

5.3 The Disintegration Theorem

A very useful consequence of the Radon-Nikodym theorem is the so-called
disintegration theorem, a special case of which reads as:

Theorem 5.3 (Disintegration of a probability measure on a product with
respect to one of its marginals) Let X1 and X2 be two compact metric spaces
equipped with their Borel σ-algebras, BX1 and BX2, let γ be a Borel probability
measure on X1 ×X2 and µ := πX1γ be its first marginal, then there exists a
family of probability measures on X2, (γx1)x1∈X1 measurable in the sense that
x1 7→ γx1(A2) is µ-measurable for every A2 ∈ B2 and such that γ = γx1 ⊗ µ
i.e.

γ(A1 × A2) =

∫
A1

γx1(A2)dµ(x1)

for every A1 ∈ B1 and A2 ∈ B2.

With the same notations as in the theorem, note that∫
X1×X2

ϕ(x1, x2)dγ(x1, x2) =

∫
X1

(∫
X2

ϕ(x1, x2)dγx1(x2)
)
dµ1(x1)

for every ϕ ∈ C(X1×X2). The complete proof of the disintegration theorem
is quite long and subtle at some points, we therefore do not reproduce it here
and rather refer the interested reader to [36] or [75] for a proof. Of course,
the notion of disintegration of a measure is tightly related to the notion of
conditional law in probability. Let us now prove an easy consequence of the
disintegration (which is useful, among other things, to prove the triangle
inequality for Wasserstein distances)
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Lemme 5.2 (Dudley’s gluing Lemma) Let Xi, i = 1, 2, 3 be compact metric
spaces, equipped with their Borel σ-algebrasde. Let γ12 (resp. γ23) be aBorel
probability measure on X1×X2 (resp. X2×X3) with marginals µ1, µ2 (resp.
µ2, µ3), then there exists a Borel probability measure γ on X1×X2×X3 such
that π12γ = γ12 and π23γ = γ23 (where obvious notations are used for the
projections and corresponding marginals).

Proof:
Disintegrate γ12 and γ13 with respect to their common marginal µ2:

γ12 = ηx2 ⊗ µ2, γ23 = θx2 ⊗ µ2

and define γ by

γ(A1 × A2 × A3) :=

∫
A2

ηx2(A1)θx2(A3)dµ2(x2)

for every Borel sets A1, A2, A3. One easily verifies that γ satisfies the desired
properties.

2

5.4 The continuity equation

Let v be a smooth vector-field R+ × Rd → Rd such that there is a constant
C such that

|v(t, x)| ≤ C(1 + |x|), |v(t, x)− v(t, y)| ≤ C|x− y|, ∀(t, x, y).

Then, given x ∈ Rd, let us define the flow map t 7→ Xt(x) as the value at
time t of the solution of the nonautonomous ODE

ẏ(s) = v(s, y(s)), y(0) = x.

In other words, Xt is characterized by

∂tXt(x) = v(t,Xt(x)), X0(x) = x, (t, x) ∈ R+ × Rd.

Our assumptions guarantee that the flow map is globally in time well
defined and that for every t > 0, Xt is a diffeomorphism. Assume now,
that we are given a probability measure ρ0 on Rd, that captures a certain
initial spatial distribution of particles that follow the flow of v, a natural
question is : how does this spatial distribution of particles evolve with time?
In other words, how is the initial distribution ρ0 transported by the flow of
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v? In transport terms, this amounts to characterize the curve of measures
t 7→ Xt#ρ0. We shall see that Xt#ρ0 is characterized by the following PDE
called the continuity equation:

∂tρ+ div(ρv) = 0 (5.9)

together, of course, with the initial condition:

ρ|t=0 = ρ0. (5.10)

Since we haven’t made any regularity assumption on ρ0 (ρ0 could be a Dirac
mass and then Xt#ρ0 would remain a Dirac mass for every t > 0), one has
to understand the continuity equation in some appropriate weak sense i.e.
in the sense of Distributions. We shall say that the family of probability
measures t 7→ ρt is a measure-valued solution of (5.9)-(5.10) if :

• it is continuous in the sense that for every φ ∈ Cc(Rd), the map

Mφ : t 7→
∫

Rd

φdρt is continuous on [0,∞) and Mφ(0) =

∫
Rd

φdρ0,

(5.11)

• for every T > 0, every r > 0 and every ϕ ∈ C1([0, T ] × Rd) such that
ϕ(T, .) = 0 and ϕ(t, .) is supported by Br for every t ∈ [0, T ] one has

∫ T

0

(∫
Rd

(∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x))dρt(x)
)
dt = −

∫
Rd

ϕ(0, x)dρ0(x).

Theorem 5.4 The measure-valued curve t 7→ Xt#ρ0 is the only measure-
valued solution of (5.9)-(5.10).

Proof:
First, it is clear that t 7→ ρt := Xt#ρ0 satisfies the continuity requirement
(5.11). Let us then check that t 7→ ρt := Xt#ρ0 satisfies the continuity
equation. Let ϕ be a test-function as above, then using the definition ρt :=
Xt#ρ0, Fubini’s theorem and ϕ(T, .) = 0, we have∫ T

0

(∫
Rd

(∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x)dρt(x)
)
dt

=

∫
Rd

(∫ T

0

[∂tϕ(t,Xt(x)) + v(t,Xt(x)) · ∇ϕ(t,Xt(x))]dt
)
dρ0(x)

=

∫
Rd

(∫ T

0

d

dt
[ϕ(t,Xt(x)]

)
dρ0(x) = −

∫
Rd

ϕ(0, x)dρ0(x).
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so that Xt#ρ0 is a measure-valued solution of of (5.9)-(5.10).Now, let us
prove uniqueness, assume that t 7→ ρt and t 7→ νt are two solutions and set
µt := ρt − νt, then for every test-function ϕ as above, one has∫ T

0

(∫
Rd

(∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x))dµt(x)
)
dt = 0. (5.12)

Let ψ ∈ Cc((0,+∞) × Rd) and let us consider the linear transport PDE
(adjoint to the continuity equation, in some sense):

∂tϕ+ v · ∇ϕ = ψ on (0, T )× Rd, ϕ(T, .) = 0 (5.13)

to solve this equation, we use the classical method of characteristics. Here it
consists in rewriting the equation as

d

dt

[
ϕ(t,Xt(x))] = ψ(t,Xt(x)), ϕ(T, .) = 0

which can be integrated directly as

ϕ(t,Xt(x)) = −
∫ T

t

ψ(s,Xs(x))ds

which gives that the unique solution of (5.13) is given by

ϕ(t, x) = −
∫ T

t

ψ(s,Xs ◦X−1
t (s))ds.

This function is compactly supported in space uniformly in time t ∈ [0, T ],
we can therefore use it as a test-function in (5.12), which gives that∫ T

0

∫
Rd

ψ(t, x)dµt(x)dt = 0

since ψ is arbitrary this gives µt = 0 for a.e. t and we conclude by continuity.
2

Remark 9. If, in addition Ω is some smooth bounded subset of Rd, and v
further satisfies the tangential condition

v(t, x) · n(x) = 0, ∀t > 0, ∀x ∈ ∂Ω (5.14)

where n(x) denotes the exterior normal vector to Ω at x ∈ ∂Ω, then Ω is
invariant by the flow (trajectories starting in Ω stay in Ω forever).

Remark 10. The fact that the velocity field v is smooth and Lipschitz plays
a crucial role through the regularity properties of the flow in the argument
above. Understanding what happens precisely in the case of a nonsmooth v
has been the subject of an intensive line of resarch that originated with the
fundamental work of DiPerna and Lions [38].
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5.5 Moser’s deformation argument

We now aim to explain Moser’s deformation argument (see [64], [34]) that
is in fact direct and does not use the continuity equation. We are given
smooth densities ρ0 and ρ1 on Ω, and we also assume that they are bounded
away from zero. We then define the linear homotopy between ρ0 and ρ1 (or
”teletransport deformation”):

µt := (1− t)ρ0 + tρ1.

Now assume that σ is a smooth vector field that satisfies

div(σ) = ρ0 − ρ1, in Ω, σ · n = 0 on ∂Ω. (5.15)

For instance one can take σ = ∇u where u solves the Laplace equation with
Neumann boundary condition. Then define the nonautonomous vector field
v by

v(t, x) :=
σ(x)

µt(x)

this vector field is smooth and we can defined its flow Xt as well as the image
of ρ0 by the flow i.e. the measure

ρt := Xt#ρ0.

Our aim is to prove directly that ρt = µt (we already know that it is true
since both µt and ρt solve the continuity equation with the same smooth
velocity field and coincide at t = 0, one can then invoke the uniqueness
result proved above). We then have to prove that Xt

−1
# µt = ρ0 i.e. that for

every test-function ϕ, one has∫
ϕ(X−1

t (y))µt(y)dy =

∫
ϕρ0

or equivalently, by the change of variables formula:∫
ϕ(x)µt(Xt(x))| detDxXt(x))|dx =

∫
ϕρ0

this is obvious for t = 0, so that if we prove that

d

dt

(
det(DxXt(x))((1− t)ρ0(Xt(x)) + tρ1(Xt(x))

)
= 0 (5.16)

then the desired result will follow. We first remark that DxXt(x) solves

∂tDxXt(x) = Dxv(t,Xt(x))DxXt(x)
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so that
DxXt+h(x) = (I + hDxv(t,Xt(x)))DxXt(x) + o(h)

and thus

det(DxXt+h(x)) = det(I + hDxv(t, x)) det(DxXt(x)) + o(h)

= det(DxXt(x))(1 + htr(Dxv(t,Xt(x))) + o(h)

so that
d

dt

(
det(DxXt(x)

)
= det(DxXt(x)) div(v(t,Xt(x)))

we thus have

d

dt

(
det(DxXt(x))((1− t)ρ0(Xt(x)) + tρ1(Xt(x))

)
= det(DxXt(x))×(

div(v(t,Xt(x)))µt(Xt(x)) + (ρ1 − ρ0)(Xt(x)) +∇µt(Xt(x)) · v(t,Xt(x))
)

= det(DxXt(x))
(
ρ1 − ρ0 + div(µt(Xt(x))v(t,Xt(x))

)
= det(DxXt(x))

(
ρ1 − ρ0 + div(σ(Xt(x))

)
= 0

In particular we have ρ1 = X1#ρ0 so that we have built a smooth and
invertible transport from ρ0 to ρ1.

5.6 Wasserstein distances

We end these notes, by introducing a class of distances on the space of
probabilty measures on X, that are induced by some optimal transportation
problems : the so-called Wasserstein distances. Again we assume that X is a
compact metric space and denote by d its distance. Let us denote byM+

1 (X)
the set of Borel probabilty measures on X. For p ∈ [1,∞), and given µ and
ν in M+

1 (X) the p-Wasserstein distance between µ and ν is by definition

Wp(µ, ν) :=
(

inf
γ∈Π(µ,ν)

∫
X×X

d(x, y)pdγ(x, y)
)1/p

(5.17)

The fact that Wp is indeed a distance which metrizes the weak ∗ conver-
gence is given by the following:

Théorème 5.1 Let (X, d) be a compact metric space. For every p ≥ 1, Wp

is a distance on M+
1 (X). Moreover, if (µn)n and µ belong to M+

1 (X), then
(µn) converges weakly ∗ to µ if and only if Wp(µn, µ)→ 0 quand n→∞.
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Proof:
To prove that Wp is a distance, the only thing which really requires a proof
is the triangle inequality. Let µ1, µ2 and µ3 be M+

1 (X), let γ12 ∈ Π(µ1, µ2)
and γ23 ∈ Π(µ2, µ3) be such that

Wp(µ1, µ2)p =

∫
X2

d(x1, x2)pdγ12(x1, x2),

Wp(µ2, µ3)p =

∫
X2

d(x2, x3)pdγ23(x2, x3).

One deduces from lemma 5.2 the existence of a γ ∈ M+
1 (X3) such that

π12γ = γ12 and π23γ = γ13 so that γ13 := π13γ ∈ Π(µ1, µ3). Using the
triangle and Minkowski’s inequality, we thus get

Wp(µ1, µ3) ≤
(∫

X×X
d(x1, x3)pdγ13(x1, x3)

)1/p

=
(∫

X3

d(x1, x3)pdγ(x1, x2, x3)
)1/p

≤
(∫

X3

(d(x1, x2) + d(x2, x3))pdγ(x1, x2, x3)
)1/p

≤
(∫

X3

d(x1, x2)pdγ(x1, x2, x3)
)1/p

+
(∫

X3

d(x2, x3))pdγ(x1, x2, x3)
)1/p

=
(∫

X2

d(x1, x2)pdγ12(x1, x2)
)1/p

+
(∫

X2

d(x2, x3))pdγ23(x2, x3)
)1/p

=Wp(µ1, µ2) +Wp(µ2, µ3).

Now assume that Wp(µn, µ) tends to 0 and let γn ∈ Π(µn, µ) be such that

Wp(µn, µ)p =

∫
X×X

d(x, y)pdγn.

Let ϕ ∈ C(X) and let ω be the modulus of continuity of ϕ, we thus have∣∣∣ ∫
X

ϕd(µn − µ)
∣∣∣ =

∣∣∣ ∫
X

(ϕ(x)− ϕ(y))dγn(x, y)
∣∣∣

≤
∫
X×X

ω(d(x, y))dγn(x, y)
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and thus

lim sup
∣∣∣ ∫

X

ϕd(µn − µ)
∣∣∣ ≤ lim sup

∫
X×X

ω(d(x, y))dγn(x, y)

up to an extraction, we may assume that γn weakly ∗ converges to some γ,
and that the limsup in the right hand side is in fact a limit. We then get∫

X×X
d(x, y)pdγ(x, y) = 0

and thus also

lim sup

∫
X×X

ω(d(x, y))dγn(x, y) =

∫
X×X

ω(d(x, y))dγ(x, y) = 0

so that (µn) weakly ∗ converges to µ. Conversely, assume now that (µn)
weakly -∗ converges to µ and let us prove that Wp(µn, µ) → 0. First, up to
dividing d by diam(X), we can assume that d ≤ 1 so that W p

p ≤ W1. It is
therefore enough to show that W1(µn, µ)→ 0. Recalling the dual expression
forW1 given in (1.8), we easily deduce from Ascoli-Arzelà theorem (or directly
from theorem 1.3) that there exists ϕn 1-Lipschitz such that

W1(µn, ν) =

∫
X

ϕnd(µn − µ)

we may also assume that ϕn(x0) = 0 where x0 is a given point in X so that
(ϕn) is bounded and equilipschitz. Using En appliquant Ascoli-Arzelà once
again, up to a subsequence, we may therefore assume that (ϕn) converges uni-
formly to some ϕ and that W1(µn, µ) converges to lim supW1(µn, µ). Thanks
to the weak ∗ convergence of (µn) to (µ), we get

lim supW1(µn, µ) = lim

∫
X

ϕnd(µn − µ) = 0

which completes the proof.
2
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with Respect to Metrics and Applications: Subgradient Marching Al-
gorithm, to appear in Numerische. Mathematik.

[13] M. Berliant, S-K Peng, P. Wang, Production externalities and urban
configuration, J.Econ. Theory 104, 2002.

[14] Y. Brenier, Polar factorization and monotone rearrangement of vector-
valued functions, Communications on Pure and Applied Mathematics
44, 375-417, 1991.

[15] L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics,
weak flows and very degenerate elliptic equations, Journal de Math.
Pures et Appliquées, 2010.

[16] A. Brancolini, G. Buttazzo, Optimal Networks For Mass Transporta-
tion Problems, ESAIM Control Optim. Calc. Var., 2005.

[17] G. Buttazzo, G. Carlier, Optimal spatial pricing strategies with trans-
portation costs, Proceedings subseries of the American Mathematical
Society Contemporary Mathematics series, 2010 .

[18] G. Buttazzo, A. Pratelli, S. Solimini, E. Stepanov, Optimal urban net-
works via mass transportation, Lecture Notes in Math. 2009.

[19] G. Buttazzo, A. Pratelli, E. Stepanov, Optimal pricing policies for
public transportation networks, SIAM J. Opt, 2006.

[20] G. Buttazzo, F. Santambrogio, A model for the optimal planning of an
urban region, SIAM J. Marh. Anal., 2005.

[21] L.A. Caffarelli, R. J. McCann, M. Feldman, Constructing optimal maps
in Monge’s transport problem as a limit of strictly convex costs, J.
Amer. Math. Soc. 15, 2002.

[22] L.A. Caffarelli, The regularity of mappings with a convex potential. J.
Amer. Math. Soc., 1992.

[23] L.A. Caffarelli, Boundary regularity of maps with convex potentials.
Comm. Pure Appl. Math. 45, 1992.

78



[24] L.A. Caffarelli, Boundary regularity of maps with convex potentials II.
Ann. of Math. (2) 144, 1996.

[25] G. Carlier, Duality and existence for a class of mass transportation
problems and economic applications, Adv. in Math. Econ., vol. 5 (2003),
pp. 1–21.

[26] G. Carlier, A general existence result for the principal-agent problem
with adverse selection, J. Math. Econom. 35, 2001.

[27] G. Carlier, I. Ekeland, matching for teams, Economic Theory, 2010.

[28] G. Carlier, I. Ekeland, Equilibrium structure of a bidimensional asym-
metric city, Nonlinear Analysis, Series B, Real World Applications,
Volume 8, Issue 3, 725-748 (2007).

[29] G. Carlier, C. Jimenez, F. Santambrogio, Optimal transportation with
traffic congestion and Wardrop equilibria, SIAM J. Control Optim. 47
(2008), 1330-1350.

[30] G. Carlier, F. Santambrogio, A variational model for urban planning
with traffic congestion, ESAIM Control Optim. Calc. Var. 11 (2007),
595-613.

[31] T. Champion, L. De Pascale, The Monge problem for strictly convex
norms in Rd, to appear in J. Eur. Math. Soc.

[32] T. Champion, L. De Pascale, The Monge problem in Rd, to appear in
Duke Math. J.

[33] P.-A. Chiappori, R. J. McCann, L. Nesheim, Hedonic price equilib-
ria, stable matching and optimal transport: equivalence, topology and
uniqueness, Economic Theory, 2010.

[34] B. Dacorogna, J. Moser, On a partial differential equation involving
the Jacobian determinant, Annales del’I.H.P. 7 (1990), 1-26.

[35] C.F. Daganzo, Multinomial Probit: The theory and its application to
demand forecasting, Academic Press, New York, 1979.

[36] C. Dellacherie, P.-A. Meyer, Probabilities and Potential, Mathematical
Studies 29, North-Holland (1978).

[37] L. De Pascale and A. Pratelli, Regularity properties for Monge trans-
port density and for solutions of some shape optimization problem.
Calc. Var. Partial Differential Equations 14, no. 3, 249–274, 2002.

79



[38] R. J. DiPerna, P.-L. Lions, Ordinary differential equations, transport
theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547.

[39] I. Ekeland, R. Temam, Convex analysis and variational problems. Clas-
sics in Mathematics, 28. SIAM, Philadelphia, PA, 1999.

[40] I. Ekeland, An optimal matching problem, ESAIM Contrôle Optimal
et Calcul des Variations, 11, 1, 57-71 (2005).

[41] I. Ekeland, Existence, uniqueness and efficiency of equilibrium in he-
donic markets with multidimensional types, Economic Theory, 2010.

[42] L.C. Evans, Partial Differential Equations and MongeKantorovich
Mass Transfer, Current Developments in Mathematics, 1997.

[43] L. C. Evans, W. Gangbo, Differential equations methods for the Monge-
Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137, 653
(1999).

[44] A. Figalli, Y. Kim, R. J. McCann, When is multidimensional screening
a convex program? preprint 2009.

[45] Gangbo, W., An elementary proof of the polar factorization of vector-
valued functions, Arch. Rational Mech. Anal., 128, pp. 381–399, 1994.

[46] M. Fujita, Urban economic theory, Cambridge University Press, 1989.

[47] M. Fujita, P. Krugman, A.J. Venables, The Spatial Economics, MIT
Press (1999).

[48] M. Fujita and M. Ogawa, Equilibrium land use patterns in a monocen-
tric city” Journal of Regional Science vol 20, 1980.

[49] M. Fujita and M. Ogawa, Multiple equilibria and structural transition
of non-monocentric urban configuration, Regional Science and Urban
Economics vol 12, 1982.

[50] M. Fujita and J. Thisse, Economics of Agglomeration, Cambridge Uni-
versity Press (2002).

[51] Gangbo, W., McCann, R. J., The geometry of optimal transportation,
Acta Math., 177 (1996), 113–161.

[52] H. Knothe, Contributions to the theory of convex bodies, Michigan
Mathematical Journal 4, pp. 39–52, 1957.

80



[53] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas station-
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