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@ Many computer vision/image proccessing problem can be
expressed as an energy minimization problem

e restoration
@ segmentation

E(ulv) = /D(u,v) +5 /R(u)
& &
Data fidelity = Régularisation

@ High dimensional problem
@ Generally non-convex

@ Fast algorithms

@ Exact solution
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@ Optimization: continuous approaches
e Gradient descent, Euler-Lagrange, [Rudin, Osher, Fatemi Phisica D. 199
e Duality [Chambolle 2004 JMIV]
e "Graduated Non Convexity” (GNC) [Blake et Zisserman 1987]
@ Optimization: Discrete approaches, Markov Random Fields (MRFs)
Dynamic programming (global minimizer) [Amini et al PAMI 1990]
Simulated Annealing (global optimizer) [Geman et Geman PAMI 1984]
Iterated Conditional Mode (local minimizer) [Besag JRSC 1986]
Graph cuts:
@ global optimum for some binary MRFs binaires [Greig et al. JRSC 1989]
@ Approximate solution [Boykov et al. PAMI 2001]
@ Exact solution [Ishikiwa PAMI 2003]
@ Exact solution for Convex MRFs[Kolmogorov TR 2005]

@ Our approach:

e Reformulate energies as one (or many) binary MRF(s)
e Get global minimizer
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«) Notations
A) Total Variation minimization with convex fidelity
B) Levelable energies
C) Markov Random Fields with Convex Priors
)

D) L! + TV on the FLST-tree
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@ Discretization

s € S finite discrete grid

Us € [0,L—1] finite number of gray-levels

s~t — (s,t) neighbors — cliques (C-connectivity)
@ Level sets

u?r={seSly}

@ We consider level sets as variables
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Total variation minimization

A) Total Variation minimisation with convex fidelity

Convex problem

Image restoration

Reformulation through level sets
Polynomial algorithm

Results
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TV: Reformulation through level sets

@ Total Variation

L-2 L-2
[v0l= [P =3P = 3w 2
Q R _ A=0 A=0 (s t)

Co-area formula N
Rt (ud,u?)

@ Data fidelity

L—2
D (us, Vs) = Y (D(A+1,Vs) — D(X,vs)) (1 — ud) +D(0, vs)
A=0 DA(u )
L-2 L-2
E(ulv) = (Rst ug, u —|—DA(us,vs)) +C => EMutv)
A=0"™ A=0
binary MRF
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TV: Independent minimization and reconstruction

@ Minimize (MAP) independently each binary MRF
o E(ulv) — E({u}*v)
o Family of minimizers: {G*}\_o. (L-2)

@ Reconstruction: Us = inf{A|13, = 1} provided that

ud <uf YA<pu Vs (monotony)

monotone lemma

L-2

IfE(Us | {Uthtms, Vs) = > (Ags(N) ud + xs())) where
A=0

Ags(N) / of X and xs()) is independent of ug,

= Then monotony is preserved.

"convex+TV” models satisfies lemma’s conditions
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TV : MAP of a binary MRF

@ How to minimize a binary Markovian energy
@ Build a graph such that its minimum cost cut yields an optimal labelling

s0urce

s0ource

e construction of the graph: [Kolmogorov and Zabih, PAMI 2004]
@ minimum cost cut algorithm: [Boykov and Kolmogorov, PAMI 2004]
@ in practice quasi-linear (w.r.t number of pixels)
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TV: Graph construction conditions

@ Regularity conditions described in [Kolmogorov and Zabih, PAMI 2004]
@ Binary Markovian energy with pairwise interaction

E(Xg,...,%n) = ZEi(Xi)+ZEi’j(Xi,Xj)

i<j

@ E'(x) : always regular
@ E'J(x;,x) : regular iff submodular, i.e.

E"(0,0) +E'(1,1) < EM(1,0) + E'(0,1)
@ TV case: Y g Wst|Us — Ui

0<wg ok
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TV: Minimization algorithm

@ Decomposition through level sets (recall)

L-2

E(ulv) =Y E*u*v)

A=0

@ Direct approach = (L — 1) minimum cost cuts per pixel
@ A divide-and-conquer algorithm with dichotomy

e decompose into independent subproblems
@ solve each subproblem
e recompose the solution
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TV: Minimization algorithm

@ Decomposition : Solve for a level A ; connected components

—\\\x

@ Solving sub-problems and recomposition
\\\\\\\\\\\

N\

PR S

Ty
O Ter At
bofstetetatetitetotoots

7/

@ Thresholding : dichotomy on [0, L — 1] = log,(L) minimum cost cuts
per pixel
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TV: Results
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TV: Results, additive Gaussian noise

restored image (6 = 23,5)
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TV: Results, additive Gaussian noise

uw=0,0=20 restored image (6 = 44,5)
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Results, time
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TV: Results, time

@ size (512 x 512) ; L?; time in seconds

Image fB=2 B=5 B=10 B=20 B=230 [=40
Lena 2,07 224 253 304 340 3,75
Aerien 213 224 245 275  3.06  3.28
Barbara 2.07 226 251 287 322 350

@ size (256 x 256) ; L?; time in seconds

Image fB=2 B=5 B=10 B=20 B=230 [=40
Lena 051 054 060 0,72 0,8 0,87
Aerien 055 057 061 067 074 0,78
Barbara 0,53 055 0,60 069 0,75 0,80
Girl 052 055 064 075 085 0,92

Experiments performed on a Pentium 4 3 GHz
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TV: Partial conclusion

@ Exact solution for "convex+TV” models
@ Reformulation through level sets

@ Polynomial algorithm

@ Complexity log,(L) - T(n,(C + 2)n)

@ Similar algorithm proposed by

e Chambolle [Chambolle CMAP 2005]
e Hochbaum [Hochbaum ACM 2001]

where T (n, m) is the time required to performed a minimum cost cut
on a graph of n nodes and m edges.
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Energies nivelées

A) Total Variation minimization with convex fidelity
B) Generalization to levelable energies (includes "convex+TV")

e Definition and caracterization
@ Results
e Links with mathematical morphology
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Levelable energies: Definition and caracterization

@ Idea: Generalization of the decomposition on levels ets
@ Goal: caracterize the class of energies such that

A function is levelable iff

L-1

fix,y...)= ZM)\; Ty, Iy ..)

A=0
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Levelable energies: Definition et caracterization

@ every function of a single variable is levelable.
@ global criteria / local criteria

Proposition

The total energy is levelable
&

Every energy associated to a clique is a levelable function

Proposition
U(x,y) = U(y,x), is levelable iff
U(x,y) = S(max(x, y)) —S(min(x, y)) + D(x) + D(y)
= f(max(x, y)) —g(min(x, y)) ,
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Levelable energies: Definition et caracterization

Assumptions:

@ U(x, y)=U(y, x) levelable

Q vy €[0,L — 1], U(x,y) reaches its minimum for x =y.
Then U(x, y) =[S(x) = S(y)[ + D(x) + D(y)
withS,S+D,S—-D

@ Goal reached

L-2
E(uv)=>" ZRSt Jug —ud [+ (A vs) (1-ud) p +C
A=0 | (s,t) s

EX(ur,v)
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Levelable energies: Exact minimisation

@ New equivalent energy (i.e, same solutions)

L—
E({ultv) = (W) +Y aH(ul —ult
Z 2 oHs — )

monotony

where H(-) is the Heaviside function
@ Graph representation (submodularity)

H(0,0) — H(1,1) <H(1,0)+H(0,1)

0<1 ok
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Levelable energies: impulsive noise restoration, TV

20%
corrupted
pixels
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Levelable energies: impulsive noise restoration, TV

40%
corrupted
pixels
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Levelable energies: impulsive noise restoration, T

70%
corrupted
pixels

GDR MSPC  Exact optimization for MRFs: TV, levelable and convex cases



levelable energies: Time complexity

@ Complexity is pseudo-polynomial
T(nL,nCL)

@ To be polynomial L — log,(L)
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Levelable energies: time computation and comparison

@ Other available minimization algorithm [Ishikawa, PAMI 2003]
@ size of images 256 x 256 ; time in seconds (Pentium 4 3GHz)

Image p Levelable Ishikawa ratio
Lena 0,20 114,78 425,14 3,70
Lena 0,40 159,14 633,09 3.98
Lena 0,70 252,67 1203.22 4.76
Girl 0,20 114,09 469,44 4.11
Girl 0,40 171,68 648,72 3.78
Girl 0,70 272,72  1553,66 5.70
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Links with mathematical morphology

LY + TV is invariant with change of contrast

Definition and lemma

e A continuous and non-decreasing function h: R — R , is called a

continuous change of contrast.
oA filter 7 is invariant w.r.t. a change of contrast iff it satisfies:

h(7(u)) = T(h(u)) ,
where u is an image and h a change of contrast.
IF G minimizer for EL' 4TV (-|v)

then h({1) minimizer for EX+TV (-|h(v))
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Levelable energies: Mathematical morphology

original
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Levelable energies: Mathematical morphology
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Levelable energies: Partial conclusion

@ Exact minimization for "any + levelable”

@ Includes non-convex energies

@ Pseudo-polynomial complexity : T (nL,CnL)
@ However U(x,y) = (x —y)? is not levelable
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MRFs: Convex priors

A) Total Variation minimization with convex fidelity
B) Generalization to levelable energies

C) Generalization to Markovian energies with convex priors

e Convex priors
e Convex MRFs
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MRF with convex priors

@ Convex priors
E(ulv) = Zfs(Ust) + ngt(|us — W)
s t~s

@ Reformulation

L-2L-2
g(k,1) = Ghpu)  (1—KM@-1") +...

<0 since g convex
@ Regularity

G\ pu)=29(A—p) —g(A—p+1)—g(A—p—-1) <0 ok
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Convex MRFs: Proximity theorem

@ Fidelity and priors are convex
@ Norm L on images

Let u be an image such that
E(ulv) > muin E(ulv) .

There exists @ a global minimizer for E(-Jv) and § € {—1,0,1}'S! such

that
E(ulv) > E(u+4dlv) .

Besides we have

I(u+6) = Glloc = [lu = 0lloo =1 .
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Convex MRFs: Discrete steepest descent

(*] VSHUSZUS‘i‘bsd
bs binary variable
d = moving direction

E({bs}|v) Zfs (Us + bsd), vs) + > gst(us — Ut + bsd — brd)
t~s
— submodular

@ How computing a discrete steepest descent with only one
direction ?
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Convex MRFs: Discrete steepest descent

@ Use two minimum cost cuts

X
:
. -
1 2
I /T 1|
*_7T i ~
. - -
3 4
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Convex MRFs: Discrete steepest descent

@ Requires 5 steepest descents
@ Pseudo polynomial complexity: L - T (n, (C + 2)n)
@ Similar to the approach of

@ Bioucas Dias et al. [Bioucas 05 ibpria]
e Murota [Murota SIAM book 2003]

@ This is Primal algorithm of Kolmogorov [Kolmogorov 05 TR]
Only proofs are different

@ How to speedup ?
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Convex MRFs: Discrete steepest descent (Scaling)

@ Scaling of a function (with a non negative integer)
f(x) = f(nx) .
@ Scaled convex MRFs remains convex

EM(uv) =) f(ug,vs) + g (ud —uf)
S

@ Heuristics:
e Minimize once with geometrically decreasing steps: d = 2%, 2k-1,
20
e Then minimize with step 1 until convergence
@ In practice quasi log,L steepest descents for image restoration
models
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Convex MRFs: Results
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Convex MRFs: Results

uw=0,0=20 f=30,|V-|+?
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Convex MRFs: Results

TV V[
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Convex MRFs: Time results

Experiments performed on a Pentium 4 3 GHz

Image (256%) 3=5 /=10 B=20 B=30 B=40 [B=50
girl (h) 161 1,86 226 257 282 2,98
lena (h) 1,62 1,88 224 249 271 2,90
barbara (h) 1,58 1,80 2,12 2,38 258 275

Image (512°) 3=5 p3=10 =20 (B=30 p3=40 (=50
lena (h) 6,22 7,34 8,94 10,14 11,21 12,19
aérien (h) 5,93 6,84 8,10 9,02 9,77 10,46
barbara (h) 6,05 7,01 8,54 9,62 10,63 11,43

Image (5122) B3=5 (=10 B=20 3=30 (B=40 B=50
lena (h) 6,22 7,34 894 10,14 11,21 1219
lena (1) 101,59 121,00 14521 163,01 177,0 189,67

(1) — algorithm with a step of 1
(h) — algorithm with heuristic
For L = 256 — ratio ~ 15
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Convex MRFs: Partial conclusion

@ "any+ convex” models
@ Includes non-convex energies
e Exact minimization
e Pseudo polynomial complexity : T (nL, CnL?)
@ "convex + convex” models
e Exact minimization
e Pseudo polynomial complexity : L - T (n, (C + 2)n)
e With scaling heuristic: tends to be quasi
2log, L - T(n,(C + 2)n) in practice for image restoration
models
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L' + TV on the FLST-tree

A) Total Variation minimization with convex fidelity
B) Levelable energies

) Markov Random Fields with Convex Priors

)

Ll + TV on the FLST-tree

C
D
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L4 + TV, contrast and contours

@ Loss of contrast — use L1
@ How to preserve contours ?
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Fast Level Set Transform tree

@ Level Sets
LAMu) = {x € Qu(x) < A} ,UMu) = {x € QJu(x) > \}
@ Inclusion property

UMNu) c UX(U) YA > 1

LMu) € LA(u) VA < p

@ Induce a tree [Salembier et al. ITIP 98] :

@ conected components of lower sets
e L* — "Min-Tree” — dark objects on light background
e U* — "Max-Tree” — light object on dark background

@ "Fast Level Set Transform” (FLST) [Monasse et al ITIP 2000]

e Merge the 2 trees into a single one
o Need of a criteria : Holes
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Fast Level Set Transform Tree

@ Shapes = connected components of level sets
whose holes have been filed.
@ Definition of the tree

@ 1 node = 1 shape
@ Parent = smallest form which contains it

e children = included forms 1
@ Decomposition of the image into forms S; ... /
Sn |2 sUp | 3 sup
|[] inl | 4 sup
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Fast Level Set Transform Tree

@ L' + TV onthe FLST tree
equivalent to
L' + TV + edge preservation
@ Attributes associated to each node
e gray level y;
o area for data fidelity — |Dj|
e perimeter for TV (co-aire formula) — P;

@ Data fidelity:
N

> IDillui — vil

i=1
@ Total Variation:

N-—-1
Z Pi|Ui — Uip
i=1
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L' + TV sur l'arbre de la FLST

@ Finally
N N—-1
1
EX Y (uv) =) IDillui —vil + 8> Pilu; —uf
i=1 i=1

@ Sites: nodes the tree
@ Neighborhoods — parents et children
@ pairwise interactions

@ MAP of the Markovian energyL! + TV
— L1 + TV algorithm of the first part
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Résultats

:

Original image
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Résultats

.

g =15 borders of the resul
5 regions
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Résultats

Original image

Pertinent contours ?
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Résultats

borders of the result (6 = 10) superimposed on the original image

2 regions
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Résultats, temps de calcul

Image FLST Minimization
Lena (256x256) 0.18 0.11
Lena (512x512) 1.09 1.04
Woman (522x232)  0.39 0.06
Squirrel (209x288) 0.24 0.19

FLST tree computed with the implementation available in Megawave
(ENS de Cachan)

GDR MSPC
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Partial conclusion

@ Contrast preservation (since it is morphological)
@ Edge preservation

@ Fast

@ Good simplification for future segmentaion
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Conclusion

@ Exact optimization for
e Convex + TV (polynomial)
e Convex + Convex (pseudo-polynomial)
e Any + Levelable (pseudo-polynomial)
e Any + Convex (pseudo-polynomial)

@ L' + TV is invariant with respect to changes of contrast
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