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Problem and motivation

• Segmentation – one of the fundamental problems in image
analysis.
◦ Tessellate the image into consistent regions, by some

measure
◦ Delineate objects of interest

• We want an accurate, versatile and efficient method for
segmentation.
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Illustration

Original Final
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Methods

• Contour-based
◦ Edge map linking, e.g. Canny (1986).
◦ Traditionnal active contours Kass et al. (1988)

• Region-based
◦ Watershed (Beucher and Lantuéjoul, 1979), region growing

(Adams and Bischof, 1994)
◦ Geodesic active contour (PDE) (Caselles et al., 1997a)

• Many, many others (over 1,000 different methods published in
the litterature), sorry if not cited.
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Quick Literature review

1. Snakes/active contours

2. Level sets methods

3. Geodesic active contours
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Geodesic active contours

• Proposed by Caselles et al. (1997b) ;
• Sensible model: the functional to minimize is simply:

E(C) =

∫

g(C(s))ds

where s is the Euclidean arc length.
• The LS formulation is:

φt = div

(

g
∇φ

|∇φ|

)

|∇φ| (1)

• This flow deforms an initial curve towards the path of minimal
weighted length, where the arc-length is measured by
g2ds2 = g2(x, y)(dx2 + dy2).

• Relatively fast implementation (Goldenberg et al., 2001).
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Metric

The metricg is derived from local features, it should be low on the
border of objects and high elsewhere.
Caselles et al. (1997a) proposed the following metric:

g =
1

1 + |∇Gσ ⋆ I|p
+ ǫ. (2)

Here|∇Gσ ⋆ I| represents the magnitude of the image derivatives at
scaleσ, p = 1 or 2 is the power to which the gradient is raised, andǫ
controls the regularity of the surface.
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Globally optimal geodesic active contour

• Really the above is a minimal path problem, already pointed out
in (Cohen and Kimmel, 1997).

• Idea: solve with a dynamic programming approach.
• Difficulties:

◦ number of contour candidates grows exponentially
◦ relatively easy to find shortest path between two fixed

points, but hard to find shortest closed contours.
◦ discretization problems.
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GAC about a point

• Find a closed contour of minimal energy containing an interior
pointpi

• That contour must pass through a parallel to positivex-axis
passing throughpi at some point

• Wecut the planeIR2 along this line from−∞ to pi so that the
two sides of the cut are disconnected (new manifold).

• We compute thesurface of minimal actionfrom an arbitrary
starting pointps on one side of the cut to anywhere on the new
manifold:

U(p) = inf{E(C)|C(0) = ps, C(L) = p}
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GAC about a point (cont.)

• We use the fast marching method (FMM) to solve the
corresponding Eikonal equation forU :

|∇U | = g, U(ps) = 0

• OnceU has been computed, we determine the minimal geodesic
C as follows:

∂C

∂s
= −

∇U

|∇U |
, C(L) = pe

• We constrainpe to be oppositeps (as in CSP)
• To obtain the minimal geodesic, we try for all possibleps.
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GAC about a point (cont.)

(a) (b)
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Cut-concave paths

• Path can only go through thex axis once
• To solve this we use an helicoidal manifold to computeU

• We halt the FMM when it reachesps the first time.
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Cut-concave paths (cont.)
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Cut-concave paths on helicoidal manifold
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Choice of metric

• The standardg GAC metric won’t work because the optimal
GAC is the null contour.

• Instead we useg′ = g/r, i.e:

g′ =
1

r

(

1

1 + |∇Gσ ∗ I|n

)

• With such a metric, a small closed contour around the central
point has positive energy:

E(C) = lim
r→0

∮

C

g′(C(s))ds = 2πg(pi)
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Choice of metric (cont.)

• this1/r term is related to the polar transform of the contour

E(C) =

∫

C

g(C(r, θ))dθ =

∫

C

g(C(s))

r
〈ds, ~θ〉

• It acts as a natural “balloon force”, that had to be added to the
standard GAC anyway.
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Example

diatom
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GOGAC vs. GAC
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GOGAC vs. GAC (cont.)

gac aos-gac

gogac gogac cut-convex

GDR MSPC – ENS 29/11/2005 – p.19/62



Speed

exact approx.

GAC 4.5s 2.0s

GOGAC 3.4s 0.48s

This is on a P-III 700MHz. Image subset is256 × 256
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Point-concavity: corpus callosum
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Current application: microarrays

gogac srg
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Properties of GOGAC

• GOGAC compares favourably to classic variational approaches ;
• GOGAC is constrained to single simple closed curves ;
• Constrained to 2D (classical GAC works very well in 3D) ;
• Optimal contours not necessarily meaningful.
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Optimal minimal surfaces

• We want to extend that approach to 3D
• The dual approach to minimal path in the graph framework is the

maximum flow algorithm (Ford and Fulkerson, 1962),
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Graph maximum flow algorithm

A partitioning of a graphG decomposes its vertex set into a collection
ΓG = {V1, V2, . . .} of disjoint subsets:

⋃

Vi∈ΓG

Vi = V, Vi ∩ Vj = ∅ for i 6= j.

To each partitionΓG we associate a costC(ΓG) which is the total cost
of the edges whose endpoints lie in different partitions,

C (ΓG) =
∑

e∈E∗

CE (e) .

Here thecut E∗ ⊆ E is the set of edges crossing the partition.
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Minimal cut

Thes-t minimal cut problem seeks the partitioning of minimal cost
such that the disjoint verticess, t ⊆ V lie in different partitions.
Although we do not give the construction here, it is simple toextend
these algorithms to the case of multiple sources and sinks (Sedgewick,
2002).
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Maximum flow

Let G be a graph with edge costsCE now reinterpreted ascapacities.
A flow F : E → IR from asources ∈ V to asinkt ∈ V has the
following properties:

• Conservation of flow: The total (signed) flow in and out of any
vertex is zero.

• Capacity constraint: The flow along any edge is less than or
equal to its capacity:

∀e ∈ E, F (e) ≤ CE(e).

An edge along which the flow is equal to the capacity is described as
saturated. Following Sedgewick (2002) we implicitly add a directed
edge connectingt → s of infinite capacity to conserve flow uniformly
throughoutG.
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Max flow = min cut

• A maximum flow in a weighted graphG maximises the flow
through thet → s edge, equivalently maximising the flow from
the source to the sink through the graph. Ford and Fulkerson
(1962) demonstrated that the maximums–t flow equals the
minimals–t cut, with the flow saturated uniformly on the cut.

• Note: this works for a binary partition, i.e. decomposing the
problem into 2 components. The multi-component mincut
problem is known to be NP-hard.
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Illustration maxflow/mincut

Figure 1: (a) A graph with sources and sinkt. Edge

capacities are depicted by their thickness. (b) Ans-t

maximum flow. Mincut edges are saturated.
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Classical maxflow algorithm

Ford and Fulkerson (1962) also proposed a general maxflow
computation algorithm. It builds a maximum flow froms to t by
repeatedly locating paths along which more flow may be pushed, under
the constraint that the flow be feasible (satisfying the conservation
constraint).
The flow is maximal once there are no more unsaturated paths between
the source and the sink.

Initialisation:
• SetF = 0 on each edge

Loop:
• Search for ans–t path along which more flow may be pushed
• If no such path exists, halt
• Otherwise, increase the flow uniformly along this path untilat

least one edge becomes saturated
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Notes on maxflow algorithms

• The max flow is not necessarily unique, and there exist other
alternative algorithms (e.g. pre-flow push by Goldberg and
Tarjan, etc).

• There exists (restricted) dualities between max-flow, distance
functions and minimal paths algorithms in 2D (if the graph is
planar, including thes-t edge).
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Minimal surfaces in continuous space

• In the augmenting path methods for graphs, at each step we
augment the flow along an unsaturated path between the source
and the sink, subject to capacity constraints. The flow is deemed
incompressible.

• In the preflow-push algorithm (Goldberg and Tarjan, 1988), this
constraint is relaxed, a new variable is introduced to ensure that
the flow converges to an incompressible solution.

• The preflow-push update method is local, it only depends on its
local neighbours.

• Using the notions of local pre-push flows, relaxing the
conservation constraint and adding an extra variable to theflow
system at each point, we can extend this approach to the
continuous case using a system of PDEs.
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Flow-surface duality

Strang (1983) and Iri (1979) have explored the extension of maximal
flow to continuous domains ; continuous flows have the following
properties:

• Conservation of flow:∇ · ~F = 0

• Capacity constraint:
∣

∣

∣

~F
∣

∣

∣
≤ g

Let ~F be any flow andS be any simple, closed and smooth surface

containing the sources. Let ~N denote the normal to the surfaceS and

∇ · ~Fs the net flow out of the sources. Then, combining the two
properties stated above, we obtain

∇ · ~Fs =

∮

S

~F · ~NdS ≤

∮

S

gdS. (3)
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Continuous maximal flow properties

From this we derive two properties:

• All flows are bounded from above by all smooth, simple and
closed surfaces separating the source and sink.

• All simple closed surfaces have weighted area bounded from
below by all flows from source to sink.

In fact, Iri showed that under very general continuity assumptions the
maximal flowFmax is strictly equal to the minimal surfaceSmin.
For such a flow and surface, the flow must uniformly saturate the
minimal surface:

∀x ∈ Smin, Fmax(x) = g (x) ~N (x) . (4)
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Interpretation

The duality between continuous maximal flows and minimal surfaces
has a simple interpretation:

• Any surface forms a bottleneck for a flow, limiting the flow to be
less than the capacity or weighted area of that surface.

• The maximal flow is limited by all possible surfaces, and
therefore must be less than or equal to the cost of the minimal
surface.

• This duality states that the maximal flow is indeed equal to the
minimal surface, and therefore that a maximal flow saturatesthe
minimal surface.

Neither Strang or Iri propose a solution to the general minimal surface
problem.
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A system of PDEs for maximal flow

∂P

∂t
= −div ~F , (5)

∂ ~F

∂t
= −∇P, (6)

subject to
∥

∥

∥

~F
∥

∥

∥

2
≤ g. (7)

For boundary conditions we fix the scalar fieldP at the sources and
sink t: Ps = 1 andPt = −1. These particular values are chosen
without loss of generality to maintain symmetry between thesource
and sink sets.
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Discussion on this system of PDEs

• We have relaxed the requirement that~F have zero divergence.
• The fieldP stores the excess flow at every point in the domain
• This may be interpreted as a linear model of the dynamics of an

idealised fluid with pressureP and velocity~F .
• Convection terms have been ignored in this interpretation.
• Because the magnitude constraint is harsh we can produce

non-differentiable fields, and so to regulate the equationsin the
continuous domain we may add a dissipative term:

∂ ~F

∂t
= −∇P + ǫ∆~F ,

where∆~F denotes the vector Laplacian of~F .
However in practical discrete implementations this does not
appear to be necessary.
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Properties: conservation of potential

Let PA =
∫

A
PdA denote the total integral ofP in a given regionA

not including the source and sink sets. Then, for differentiableP and
~F ,

∂PA

∂t
=

∫

A

∂P

∂t
dA

= −

∫

A

div ~FdA

= −

∮

∂A

~F · ~N∂Ad (∂A) .

SoP is conserved in the interior of any sourceless regionA, that is,
any region not including the sources or sinkt.

GDR MSPC – ENS 29/11/2005 – p.38/62



Properties: monotonic reduction of energy

Consider the time derivative of the total quantity of energy
1
2(P 2 + ‖~F‖2

2) in a sourceless regionA. For differentiableP and ~F ,

∂

∂t

Z

A

1

2

“

P 2 + ‖~F‖2

2

”

dA =

Z

A

∂

∂t

1

2

“

P 2 + ‖~F‖2

2

”

dA

=

Z

A

 

∂P

∂t
P +

∂ ~F

∂t
· ~F

!

dA

= −

Z

A

“

Pdiv ~F + (∇P ) · ~F
”

dA

= −

I

∂A

P ~F · ~N∂Ad (∂A) .

The time derivative of the total energy is negative. This suggests that
the system converges.
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Properties: correctness at convergence (I)

At convergence all temporal derivatives are zero. We may then restate
the system of PDEs as:

div ~F = 0,

∇P =

{

0 if‖~F‖2 < g

−λ~F where λ ≥ 0 if‖~F‖2 = g

• The first equation states that we obtain an incompressible flow,
as required.

• The second states that where~F is not saturated,P must have
zero derivative and therefore be constant.

• The second equation also states that where~F is not saturated, the

potential gradient∇P must be aligned so that~F can neither
change direction nor decrease in magnitude.
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Properties: correctness at convergence (II)

• From this we can derive the property

∇P · ~F ≤ 0.

This indicates thatP is a monotonic function along the flow lines

of ~F .
• In an incompressible fluid flow lines may only initiate at the

source or terminate at the sink, soP has no local extrema in the
interior of the domainΩ.

• Consider the closed regionAp obtained fromP by the
application of a threshold−1 < p < 1,
Ap = {x | P (x) ≥ p} . Due to the monotonicity ofP this must
be a connected region containing the sources. The boundary
S = ∂Ap of this region is the isosurface of valuep of the

potential field. On this surface we have∇P 6= ~0 by construction.
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Properties: correctness at convergence (III)

• Therefore the flow is uniformly saturated in the outward direction
on this surface. We may make use of the incompressibility of the
flow to evaluate the net outward flow through this surface,

div ~Fs =

∮

S

~F · ~NdS =

∮

S

gdS.

Hence~F andS satisfy with equality the optimality condition.
• At convergence any isosurface ofP is a globally minimal

surface. In the usual case of a unique minimal surface,Smin will
be the only isosurface at convergence and henceP will approach
an indicator function for the interior and exterior ofSmin.

• Without loss of generality we may select the zero level set ofP
to obtainSmin.
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Metric weighting function

• Similar to the 2D case we want to avoid bias towards small
volumes.

• We have a method for deriving the metric function depending on
the geometry ofs andt. There isn’t a systematicw = 1/r2

weighting, but it is similar in principle.

• We wish to derive an unbiased flow~F from which to obtain
w = ‖~F‖.

• This flow is produced by the source sets and absorbed by the
sink sett, defined by

∇ · ~F = ρ, (8)

whereρ is a distribution that is zero in the interior of the domain,
positive on the source sets and negative on the sink sett, with
total source weight

∫

s
ρdV = +1 and sink weight

∫

t
ρdV = −1.
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Weighting function (II)

• We select a flow that minimises a measure of the weighting
function

E[w] =

∫

V

1

2
w2dV,

=

∫

V

1

2
‖~F‖2

2dV.

In this way we will ensure that the weighting function is not
arbitrarily large.

• We find that∂
~F

∂t
is a conservative field, equivalently a potential

flow. So we set∂
~F

∂t
= ∇φt then, and replace the divergence of

the flow ~F in equation (9) by the Laplacian ofφ to obtain

∆φ = ρ. (9)
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Metric weighting (III)

• This latter equation is classical in electrostatics, can besolved by
convolvingφ with a known impulse responseφ⊙

• In 2D, φ⊙ = 1
2π

ln(r) and in 3D,φ⊙ = − 1
4πr

.

seeds convolution weight
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Implementation

• Equations (5) and (6) are discretised on a staggered grid using an
explicit first-order scheme in time and space. The scalar field P

is stored on grid points while the vector field~F is stored by
component on grid edges.

• This allows for the computation of derivatives without
interpolation

• The system of equations is iterated sequentially with the flow
magnitude constraint enforced after each timestep.
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Implementation (II)
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Implementation (III)

Conservation PDE:

Pn+1
i,j = Pn

i,j − ∆t
(

(Fn
i+ 1

2
,j,x − Fn

i− 1

2
,j,x) + (Fn

i,j+ 1

2
,y − Fn

i,j− 1

2
,y)

)

,

(10)
Driving PDE:

F ′n+1
i+ 1

2
,j,x

= Fn
i+ 1

2
,j,x − ∆t(Pn+1

i+1,j − Pn+1
i,j )

F ′n+1
i,j+ 1

2
,y

= Fn
i,j+ 1

2
,y − ∆t(Pn+1

i,j+1 − Pn+1
i,j ). (11)

The magnitude constraint is applied immediately followingthe update
of the flow field by the preceeding equation.
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Grids and convergence test

• The previous description works for rectangular n-D grids (finite
differences)

• A similar approach would work for arbitrary meshes (finite
elements) but is of limited interest in usual segmentation
problems.

• At convergence,P is an indicator function for the interior of the
surface. In practice, we deem the convergence is reached if the
sum of the relative areas of potential|AP≥(1−γ)| and|AP≤(γ−1)|

is greater thanµ%. For instance we may setγ = 0.03 and
µ = 99.
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Non-trivial minimal surface

• We take the source to be two identical parallel disks separated by
some distanceλ in the axis perpendicular to the planes of the
disk only.

• In a parallelipedic 3-D box, this source is situated in the first and
last planes (only).

• The drain is formed by the 4 sides of the box the sources are not
in.

• The metric is uniformly flat (g = 1)
• The theoretical continuous solution of this problem is a catenoid,

one of the few minimal surface that can be found analytically.
• Here we discretize the box and let our algorithm run until close

enough to convergence (e.g:# of voxels> 0.90 + # of voxels
< 0.1 > 0.9× total number of voxels)

• The solution is the0.5–isosurface.
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What the image result looks like

v h

In the parallepiped of data, the correct solution is highlighted in dark.GDR MSPC – ENS 29/11/2005 – p.51/62



Isosurface

True catenoid
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Isosurface

Computed catenoid
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2-D results

cells, metric ; discrete GC, GOGAC and CMF solutions.
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3-D results (I)

Figure 1: 3D slice of lung segmentation : slice, metric,

discrete GC, LS and CMF solutions
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3-D results (II)

Seeds
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3-D results (II)

Level-sets segmentation
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3-D results (II)

Discrete GC
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3-D results (II)

Continuous maxflow segmentation
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Brain segmentation

Corpus callosum interactive seed and boundary selections.
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Brain segmentation

3D segmentation, below.
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Brain segmentation

3D segmentation, rear.
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Brain segmentation

3D segmentation, side.
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Stereo

Figure 1: Stereo reconstruction, parcmeter scene ; dis-

crete GC and CMF solutions
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Speed

On the lung segmentation,200 × 160 × 90

• Level set GAC: 279s
• Graph cut: 128s
• Continuous maximal flow: 28.8s
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Conclusion

• Correct solution to the minimal surface problem in 3D (and
more)

• Better results than GAC or discrete maximal flow
• Surprisingly faster implementation.
• Limited to binary problems
• An optimal solution does not mean a pleasing solution.

Future work:

• Proof of convergence
• Texture and motion
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