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Problem and motivation

* Segmentation — one of the fundamental problems in image
analysis.
© Tessellate the image into consistent regions, by some
measure

° Delineate objects of interest

* We want an accurate, versatile and efficient method for
segmentation.
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lllustration

Original
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Methods

* Contour-based
° Edge map linking, e.g. Canny (1986).
o Traditionnal active contours Kass et al. (1988)
* Region-based
© Watershed (Beucher and Lantuejoul, 1979), region growing
(Adams and Bischof, 1994)
o Geodesic active contour (PDE) (Caselles et al., 1997a)

* Many, many others (over 1,000 different methods published i
the litterature), sorry if not cited.
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Quick Literature review

1. Snakes/active contours
2. Level sets methods
3. Geodesic active contours
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Geodesic active contours

* Proposed by Caselles et al. (1997b) ;

* Sensible model: the functional to minimize is simply:

where s is the Euclidean arc length.
* The LS formulation is:

b — div( ;j;) Vel (1)

* This flow deforms an initial curve towards the path of minimal
weighted length, where the arc-length is measured by

gds® = g*(z,y)(dz? + dy?).
* Relatively fast implementation (Goldenberg et al., 2001).
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Metric

The metricg is derived from local features, it should be low on the
border of objects and high elsewhere.
Caselles et al: (1997a) proposed the following metric:

1
14 |VG, x TP e

g (2)
Here|VG, % I| represents the magnitude of the image derivatives at
scaleos, p = 1 or 2 Is the power to which the gradient is raised, and
controls the regularity of the surface.
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Globally optimal geodesic active contour

* Really the above is a minimal path problem, already pointdd o
In (Cohen and Kimmel, 1997).

* |dea: solve with a dynamic programming approach.
* Difficulties:
° number of contour candidates grows exponentially

o relatively easy to find shortest path between two fixed
points, but hard to find shortest closed contours.

© discretization problems.
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GAC about a point

* Find a closed contour of minimal energy containing an ioteri
point p;

* That contour must pass through a parallel to posithaxis
passing througl; at some point

* We cutthe planelR? along this line from—oc to p; so that the
two sides of the cut are disconnected (new manifold).

* We compute thasurface of minimal actiofrom an arbitrary
starting poinip, on one side of the cut to anywhere on the new

manifold:

U(p) = InfLE(C)|C(0) = ps, C(L) = p}
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GAC about a point (cont.)

* We use the fast marching method (FMM) to solve the
corresponding Eikonal equation for.

IVU| =g,U(ps) =0

* OnceU has been computed, we determine the minimal geodesi

C as follows:
oC VU
_— = — — L p— e
= ik C(L) =p
* \We constrairp, to be opposite, (as in CSP)

* To obtain the minimal geodesic, we try for all possiple
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GAC about a point (cont.)

Sf

(@)

(b)
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Cut-concave paths

* Path can only go through theaxis once
* To solve this we use an helicoidal manifold to complite
* \We halt the FMM when it reaches the first time.
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Cut-concave paths (cont.)
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Choice of metric

* The standarg GAC metric won't work because the optimal
GAC is the null contour.

* Instead we us¢’ = g/r, i.e:

, 1 1
T 1+ VG x I|?

* With such a metric, a small closed contour around the central
point has positive energy:

IO =T 1 GCEN)eR =)
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Choice of metric (cont.)

* this1/r term is related to the polar transform of the contour

g(C(S)) <d8, 6_)’>

E(C)Z/CQ(C(T,H))CZ@:/

C T

* |t acts as a natural “balloon force”, that had to be addeddo th
standard GAC anyway.
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Example
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GOGAC vs. GAC
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GOGAC vs. GAC (cont.)

aos-gac

gogac cut-convex
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Speed

exact| approx.
GAC 455 | 2.0s
GOGAC || 3.4s | 0.48s

This is on a P-Ill 700MHz. Image subset236 x 256
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Point-concavity: corpus callosum
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Current application: microarrays
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Properties of GOGAC

GOGAC compares favourably to classic variational appreach

GOGAC is constrained to single simple closed curves ;
* Constrained to 2D (classical GAC works very well in 3D) ;
* Optimal contours not necessarily meaningful.
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Optimal minimal surfaces

* We want to extend that approach to 3D

* The dual approach to minimal path in the graph frameworkas th
maximum flow algorithm (Ford and Fulkerson, 1962),
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Graph maximum flow algorithm

A partitioning of a grapliG decomposes its vertex set into a collection
I'q ={V1, Va,...} of disjoint subsets:

U Vi=V, VinV;=0 for i#j
Viel'a

To each partitiod’; we associate a co6t(I'y) which is the total cost
of the edges whose endpoints lie in different partitions,

C(Te)= ) Cgle).

ec B+

Here thecut E* C E'Is the set of edges crossing the partition.
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Minimal cut

The s-t minimal cut problem seeks the partitioning of minimal cost
such that the disjoint vertices ¢t C V lie in different partitions.
Although we do not give the construction here, it is simplextend
these algorithms to the case of multiple sources and sirecgg&wick,
2002).
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Maximum flow

Let G be a graph with edge cost; now reinterpreted asapacities
Aflow F : E — IR from asources € V to asinkt € V has the
following properties:

* Conservation of flow: The total (signed) flow in and out of any
vertex is zero.

* Capacity constraint: The flow along any edge is less than or
equal to its capacity:

Vee E, F(e) < Cgle).

An edge along which the flow is equal to the capacity is deedrds
saturated Following Sedgewick (2002) we implicitly add a directed
edge connecting — s of infinite capacity to conserve flow uniformly
throughout’.
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Max flow = min cut

* A maximum flow in a weighted grap&@ maximises the flow
through the — s edge, equivalently maximising the flow from

the source to the sink through the graph. Ford and Fulkerson
(1962) demonstrated that the maximusnt flow equals the

minimal s— cut, with the flow saturated uniformly on the cut.

* Note: this works for a binary partition, i.e. decomposing th

problem into 2 components. The multi-component mincut
problem is known to be NP-hard.
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lllustration maxflow/mincut

Figure 1: (a) A graph with sourceand sink:. Edge
capacities are depicted by their thickness. (b)sAn
maximum flow. Mincut edges are saturated.
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Classical maxflow algorithm

Ford and Fulkerson (1962) also proposed a general maxflow
computation algorithm. It builds a maximum flow frosro ¢ by
repeatedly locating paths along which more flow may be pusineikr
the constraint that the flow be feasible (satisfying the eoretion
constraint).

The flow is maximal once there are no more unsaturated path&ebée
the source and the sink.

Initialisation:
* SetF' = 0oneach edge

Loop:
* Search for ans—t path along which more flow may be pushed
* |f no such path exists, halt

* Otherwise, increase the flow uniformly along this path usitil
least one edge becomes saturated
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Notes on maxflow algorithms

* The max flow is not necessarily unique, and there exist other
alternative algorithms (e.g. pre-flow push by Goldberg and
Tarjan, etc).

* There exists (restricted) dualities between max-flowatisé
functions and minimal paths algorithms in 2D (if the graph is
planar, including the-t edge).
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Minimal surfaces in continuous space

* In the augmenting path methods for graphs, at each step we
augment the flow along an unsaturated path between the sourct
and the sink, subject to capacity constraints. The flow isrbee
Incompressible.

* |n the preflow-push algorithm (Goldberg and Tarjan, 1988} t

constraint is relaxed, a new variable is introduced to enthat
the flow converges to an incompressible solution.

* The preflow-push update method is local, it only dependson it
local neighbours.

* Using the notions of local pre-push flows, relaxing the
conservation constraint and adding an extra variable t@idiae
system at each point, we can extend this approach to the
continuous case using a system of PDEs.
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Flow-surface duality

Strang (1983) and Iri (1979) have explored the extensiona{imal
flow to continuous domains ; continuous flows have the folhayvi

properties:

e Conservation of flowV - F = 0
<g

* Capacity constraint‘:ﬁ

Let F' be any flow andS be any simple, closed and smooth surface
containing the source Let N denote the normal to the surfaSeand

V - F, the net flow out of the source Then, combining the two
properties stated above, we obtain

v-ﬁs:j{ﬁ-ﬁngj{gds. (3)
S 5
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Continuous maximal flow properties

From this we derive two properties:

* All flows are bounded from above by all smooth, simple and
closed surfaces separating the source and sink.

* All simple closed surfaces have weighted area bounded from
below by all flows from source to sink.

In fact, Iri showed that under very general continuity asgtioms the
maximal flow Fmaxls strictly equal to the minimal surfacgyin.

For such a flow and surface, the flow must uniformly saturage th
minimal surface:

Vx € Smin,  Fmax(x) = g (x) N (x). (4)
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Interpretation

The duality between continuous maximal flows and minimaflesas
has a simple interpretation:

* Any surface forms a bottleneck for a flow, limiting the flow te b
less than the capacity or weighted area of that surface.

* The maximal flow is limited by all possible surfaces, and

therefore must be less than or equal to the cost of the minimal
surface.

* This duality states that the maximal flow Iis indeed equal & th

minimal surface, and therefore that a maximal flow saturies
minimal surface.

Neither Strang or Iri propose a solution to the general mahisurface
problem.

GDR MSPC — ENS 29/11/2005 — p.3¢



A system of PDEs for maximal flow

oP -
— = —divF 5
5 divF, (5)
OF

—_— — _VP

ey VP, (6)

subject to
F LS9 (7)

For boundary conditions we fix the scalar figtdat the source and
sinkt: P, =1 andP;, = —1. These particular values are chosen
without loss of generality to maintain symmetry betweendberce

and sink sets.
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Discussion on this system of PDEs

* \We have relaxed the requirement tikahave zero divergence.
* The field P stores the excess flow at every point in the domain

* This may be interpreted as a linear model of the dynamics of an
idealised fluid with pressur® and velocityF'.

* Convection terms have been ignored in this interpretation.

* Because the magnitude constraint is harsh we can produce
non-differentiable fields, and so to regulate the equatiotise
continuous domain we may add a dissipative term:

OF ;

— = —VP + eAF,

o + €

whereAF' denotes the vector Laplacian bf

However in practical discrete implementations this dods no

appear to be necessary.
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Properties: conservation of potential

Let P4 = [, PdA denote the total integral d? in a given regiom4
not including the source and sink sets. Then, for diffeedni@ P and

F,

0Py 0P
— = —dA
ot 4 Ot
= — / divFdA
A

_ —f F. Noud (94).
0A

So P Is conserved in the interior of any sourceless regigthat is,
any region not including the soureeor sinkt.
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Properties: monotonic reduction of energy

Consider the time derivative of the total quantity of energy
L(P? + ||F|)3) in a sourceless regiaA. For differentiableP and F,

— gy iy o2 F2dA=/——P2 FlI2)dA
8t/AQ( FIIF3) 55 (PR IFE)

I
|
N
N\
7
el
z.
! ﬁjl
+
<
=
S
N—
Q.
AN

The time derivative of the total energy is negative. Thisgasgs that
the system converges.
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Properties: correctness at convergence ()

At convergence all temporal derivatives are zero. \We may tastate
the system of PDEs as:

divF = 0,

vp_J 0 if]| Fll2 < g
—AF where A > 0 if|Flla =g

* The first equation states that we obtain an incompressihie flo
as required.

e The second states that wherds not saturated?” must have
zero derivative and therefore be constant.

* The second equation also states that wheéis not saturated, the

potential gradien¥’ P must be aligned so thdt can neither
change direction nor decrease in magnitude.
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Properties: correctness at convergence (ll)

* From this we can derive the property
VP.F <.

This indicates thaP is a monotonic function along the flow lines
of F.
* In an incompressible fluid flow lines may only initiate at the

source or terminate at the sink, sohas no local extrema in the
Interior of the domain).

* Consider the closed regiof, obtained fromP by the
application of a threshold1 < p < 1,
A, ={x | P(x) > p}. Due to the monotonicity of this must
be a connected region containing the soutcéhe boundary
S = 0A, of this region is the isosurface of valpef the

potential field. On this surface we haveP # 0 by construction.
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Properties: correctness at convergence (lll)

* Therefore the flow is uniformly saturated in the outward clien
on this surface. We may make use of the incompressibilithef t
flow to evaluate the net outward flow through this surface,

divF, = j'{ F-NdS = j'{ gdsS.
S S

HenceF andS satisfy with equality the optimality condition.

* At convergence any isosurface Bfis a globally minimal
surface. In the usual case of a uniqgue minimal surfaggp, will
be the only isosurface at convergence and héheell approach
an indicator function for the interior and exterior 8f,in.

* Without loss of generality we may select the zero level s&? of
to obtainSmin.
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Metric weighting function

Similar to the 2D case we want to avoid bias towards small
volumes.

We have a method for deriving the metric function dependimg o

the geometry of andt. There isn’t a systematio = 1/r?
weighting, but it is similar in principle.

We WiS_)h to derive an unbiased flakvfrom which to obtain
w = ||F|.

This flow Is produced by the source sednd absorbed by the
sink sett, defined by

—

wherep Is a distribution that is zero in the interior of the domain,
positive on the source setand negative on the sink sgtwith

total source weigh{, pdV = +1 and sink weight/, pdV' = —1.
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Weighting function (I1)

* \We select a flow that minimises a measure of the weighting
function

1 -
— [ SIFI3av.
:

In this way we will ensure that the weighting function is not
arbitrarily large.

* We find that%—lf IS a conservative field, equivalently a potential

flow. So we sel%—f = V¢, then, and replace the divergence of
the flow F' in equation (9) by the Laplacian afto obtain

A¢p = p. (9)
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Metric weighting (Il

* This latter equation is classical in electrostatics, casddeed by
convolving¢ with a known impulse response,

°* In2D, ¢ = 5= In(r) and in 3D,pe = — 1

-~ Axr”

k i

seeds convolution weight
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Implementation

* Equations (5) and (6) are discretised on a staggered gind asi
explicit first-order scheme in time and space. The scalat frel

is stored on grid points while the vector fieftlis stored by
component on grid edges.

* This allows for the computation of derivatives without
Interpolation

* The system of equations is iterated sequentially with the flo
magnitude constraint enforced after each timestep.
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Implementation (I1)

T Pi—l,j—l Pi,j—l Pi+1,j—] .
E,j—l/Z,y
. Pi—l,j E—l/z,i,x Pi,j 1:i:+1/2,i,x Pi+1,j R
E,j+1/2,y
7 Pi—:l,j+1 I)IJ+1 P1+1_]+1 [
v V v
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Implementation (l11)

Conservation PDE:

+1 _
By =P — At ((Fﬁg,j,x = SR = Fi?j—g,ﬂ) ’
(10)
Driving PDE:
m—+1 N n+1 n+1
Fitige = Yittgm At — B )
m—+1 ™ n+1 n+1
ity =~ Ligtiy T At(F 7 — B ) (11)

The magnitude constraint is applied immediately followthg update
of the flow field by the preceeding equation.

GDR MSPC — ENS 29/11/2005 — p.4¢



Grids and convergence test

* The previous description works for rectangular n-D griasitg
differences)

* A similar approach would work for arbitrary meshes (finite
elements) but is of limited interest in usual segmentation
problems.

* At convergenceP is an indicator function for the interior of the
surface. In practice, we deem the convergence is reachiegl if t
sum of the relative areas of potentjdlp> ;)| and|Ap<(y_1)]|

IS greater tham%. For instance we may sat— 0.03 and
=99
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Non-trivial minimal surface

We take the source to be two identical parallel disks sepdiiay
some distance in the axis perpendicular to the planes of the
disk only.

In a parallelipedic 3-D box, this source is situated in thst fand
last planes (only).

The drain is formed by the 4 sides of the box the sources are nc
In.

The metric is uniformly flat4 = 1)

The theoretical continuous solution of this problem is &gaid,
one of the few minimal surface that can be found analytically

Here we discretize the box and let our algorithm run untiselo
enough to convergence (e #: of voxels> 0.90 + # of voxels
< 0.1 > 0.9x total number of voxels)

The solution is th®.5—Isosurface.
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What the image result looks like
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Isosurface

True catenoid
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Isosurface

Computed catenoid
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2-D results

cells, metricdiscrete GC.-GOGAC-and CMF-solutions:
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3-D results (1)

Figure 1: 3D slice of lung segmentation : slice, metric
discrete GC, LS and CMF solutions
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3-D results (I1)

Seeds
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3-D results (I1)

Level-sets segmentation

GDR MSPC — ENS 29/11/2005 — p.5!



3-D results (I1)

Discrete GC
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3-D results (I1)

Continuous maxflow segmentation
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Brain segmentation

oo

(117, 1, 128) I=6

Corpus callosum interactive seed and boundary selections.
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Brain segmentation

3D segmentation, below.
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Brain segmentation

3D segmentation, reatr.
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Brain segmentation

3D segmentation, side.
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Stereo

Figure 1: Stereo reconstruction, parcmeter scene ; d
crete GC and CMF solutions
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Speed

On the lung segmentatiof)0 x 160 x 90
* Level set GAC: 279s
* Graph cut: 128s
* Continuous maximal flow: 28.8s
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Conclusion

* Correct solution to the minimal surface problem in 3D (and
more)

* Better results than GAC or discrete maximal flow

* Surprisingly faster implementation.

* Limited to binary problems

* An optimal solution does not mean a pleasing solution.

Future work:

* Proof of convergence
* Texture and motion
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