
De�nition of anisotropic de-noising operators through

sectional curvature
Wide range of applications from gray-level images to high resolution Doppler

spectrum

Stanley Durrleman
stanley.durrleman@polytechnique.org

Frederic Barbaresco
frederic.barbaresco@fr.thalesgroup.com

Thales Air Defence, 7/9 rue des Mathurins
92221 Bagneux Cedex - France

Abstract
Removing noise in measured physical data is a task of great importance in a wide range

of scienti�c �elds : satellite imaging, medical imaging, radar signal processing... The known
de-noising methods in the literature are often de�ned only for a particular application and,
as far as we know, none are able to de�ne a de-noising process that does not make any
assumptions about the type of data. That's why we aim at de�ning di�erential operators
that could be de�ned for data of any dimension in the real and complex spaces. These
operators will be anisotropic in order to preserve the geometrical information contained in
the data like edges or discontinuities. Moreover, there is rarely a canonical way to represent
the data and since scientists are used to writing data in several coordinate systems, the
operators will be invariant under a change of data parametrization as well.

Our approach is based on a geometrical model of noise resting on the sectional curvature.
This geometrical growth enables us to distinguish points of noise from points of edges or
discontinuities. Our method consists then in minimizing the total squared sectional cur-
vature in the images. We �rst apply our ideas in the case of gray-level images for which
the sectional curvature is the Gaussian curvature and have therefore well-known geometri-
cal interpretations. We apply afterwards the method to de-noise radar Doppler spectrum,
proving how generic it is.
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1 Introduction

1.1 The de-noising problem

Let us consider a gray-valued image as a sub-
sampling of a real valued function u de�ned on
Ω ⊂ R2. Ω is typically a rectangle. By ex-
tension u(x, y) ∈ [0, 1] denotes the gray level
at the point (x, y). The main variations of the
signal u are due to the edges in the image. In
case of noisy data, in addition to the natural
variations of u, noise induces some unexpected
transitions. The problem, well known in the
image processing community, is to remove the
variations due to the noise while preserving the
edges.

There are two main ways to deal with this
problem : in one hand, we can characterize the
noise thanks to its statistical properties. We
make then some Bayesian estimations of the
value of each pixel. These methods rely on a
geometrical prior model (such as Ising or Potts
models for example) to preserve the "image ge-
ometry" that is a certain spatial correlation in
the image. In the other hand, we can charac-
terize the noise through its geometrical prop-
erties. The state of the art in this approach
takes advantage of the family of curvature mo-
tion algorithm de�ned in [2]. Roughly speak-
ing, a point of noise is characterized by level
sets of small area. This method is based on a
contrast invariant hypothesis. If this hypothe-
sis is relevant in the case of gray-level images,
it cannot be applied to data of higher dimen-
sion such as color images or images of complex
data given by a radar. The median �lter, for
example, is not applicable to data of higher di-
mension. For such general data it is more rele-
vant to consider a geometrical invariance : a de-
noising method should be independent of data
parametrization. Several authors in [1], [4], [5]
de�ned algorithms using the geometrical prop-
erties of the sub-manifold de�ned by the data.
We used this approach to introduce the sec-
tional curvature as a geometrical growth which
can distinguish between noise and edges, which
can be de�ned for data of any dimension and
which does not depend on the parametrization
of these data. At that time, it seems the geo-

metrical growth which has the best properties
for de-noising data.

1.2 A geometrical idea

We explain our main idea in the particular case
of gray-level images.

Consider the graph of the function u, seen
as a surface (i.e. a manifold of dimension 2) em-
bedded in R3. Consider a point of the surface
and look how its gray-level varies in its neigh-
borhood : outside noise and edges the gray-
level varies smoothly. In a point of edge, the
gray-level varies smoothly in one direction, the
edge one, and dramatically in another direc-
tion, the gradient one. In a point of noise the
gray-level varies dramatically in every direction
(in the case of a local extremum or a horse sad-
dle for example) : in one sense, there is no spa-
tial coherence. This discussion leads us to con-
sider the principal curvatures 1 of the surface at
a given point, and in particular the product of
the two principal curvatures called the Gaus-
sian curvature. In fact, at a standard point,
both principal curvatures are small in absolute
value, by comparison to the other cases. In-
deed, at a point of an edge, one absolute curva-
ture is big (in the direction of the gradient) and
the other null (in case of a rectilinear edge with
linear variation of its gray-level) or at least very
small : the product is small in absolute value
in comparison to the product of two big ab-
solute principal curvatures at a point of noise.
At a standard point, both curvatures are small
and its absolute product is also small. The ab-
solute Gaussian curvature appears therefore to
be a measure that enables to distinguish be-
tween points of noise and points of edge. As
we will see in the next section, this measure
satis�es our constraint : it can be extended to
data of any dimension and independently of the
parametrization of these data.

Taking advantage of this intuitive discus-
sion, we will de�ne our model of unnoisy image
as an image for which the interpolating function

1We denote by principal curvatures at a point p the
maximum and the minimum of the curvatures of all
curves drawn on the surface and passing by the point
p.
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u has a null Gaussian curvature at each point.
We will thus de-noise an image by changing its
pixel values in a way that minimize the total
absolute Gaussian curvature of the graph of u.

Remark 1.1 Obviously this de�nition depends
on the way we interpolate the image. This is
the main drawback of methods based on a con-
tinuous model. However, from an experimental
point of view, the results we will obtain do not
rely much on the interpolation since only the
relative rough value of the Gaussian curvature
is taken into account.

Remark 1.2 Such image model allows images
with edges. It will not be necessary, thus, to
introduce a data �tting criteria during the de-
noise process. This makes a great di�erence
with many other algorithms that deal with such
an additional arbitrary parameter that prevent
the image from tending to a constant one.

Remark 1.3 In [8] the authors use the mean
curvature H (the mean of the two principal cur-
vatures) instead of the gaussian curvature. So
they de�ne de-noise algorithm called �ow of Bel-
trami that makes the surface move with a speed
proportional to H. Although this method gives
better results than a standard isotropic de-noising,
we can still observe slightly blurring e�ect at the
edges. Indeed, at an edge, the mean curvature
is not equal to 0 and the di�usion is not com-
pletely blocked.

In the following, we �rst de�ne the gener-
alization of Gaussian curvature called sectional
curvature for data of any dimension. Then we
de�ne a functional which measure the total sec-
tional curvature and �nd two ways to minimize
it :

• a gradient-descent scheme

• a stochastic relaxation algorithm

2 A geometrical model of noise

2.1 Data space, measure space and

induced metric

From now, we will consider images of data of
any dimension. We consider a function u :

Ω −→ D where Ω ⊂ R2 is the measure space,
typically a rectangle or a circular sector, and
D ⊂ Rd, d ≥ 1, is the data space. (In the
case of gray-level value images, d = 1 and D =
[0, 1]). Since we want to de�ne a metric growth
that extends the Gaussian curvature we need to
de�ne a proper metric on Ω. For that purpose,
we will �rst de�ne a metric in the �ber bundle
Ω × D and then de�ne a metric on the "data
manifold" thanks to a pullback procedure.

In Ω, we basically measure the distance be-
tween two points (two pixels) thanks to the Eu-
clidean distance. Hence, we provide Ω with the
Euclidean metric :

e = dx2 + dy2

In D, we much choose a metric that enables
to measure the distance between two measures.
At that time, let us just suppose that we can
provide D with such a metric h. h will be prop-
erly de�ned for each cases.

Given these two metrics e and h, we can
now aggregate them into an induced metric g
in Ω de�ned by the following canonical way :

g = gijdx
idyj (2.1)

with

gij = e× h (∂iP (x, y), ∂jP (x, y)) (2.2)

for all (x, y) ∈ Ω and (i, j) ∈ {0, 1}. e × h
denotes the metric on the cartesian product Ω×
D, P (x, y) = (x, y, u(x, y))t and ∂i holds to be
∂/∂xi, x0 = x and x1 = y. This de�nition is
justi�ed by the following example.

Suppose that the data space is the space
of gray-levels : [0, 1] (d = 1) provided by the
Euclidean metric : h = dz2. We compute the
induced metric g and we �nd :

g =
(
1 + (∂xu)

2
)
dx2 +

(
1 + (∂yu)

2
)
dy2

+2 (∂xu) (∂yu) dxdy
(2.3)

This is the standard metric on the surface
de�ned by the graph of u considered as em-
bedded in R3. In particular it enables to com-
pute classical geometrical growths of the sur-
face such as its area for example.
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Remark 2.1 Both e and h do not depend on
the choice of a coordinate system neither in
the acquisition space nor in the data space. In
that sense, we say that the method depends only
'weakly' on the way data are parametrized. Nev-
ertheless, the induced metric g do depend on the
choice of coordinates.

2.2 Sectional curvature

Let Ω be an open subset of R2 and g a metric
de�ned on Ω. In the Riemannian framework,
it exists only one torsion free derivation which
preserves the metric : the Levi-Civita connec-
tion D (See [7] and the references therein for
further details on Riemannian geometry). The
Riemannian curvature tensor R is then de�ned
for all vector �elds X,Y and Z in Ω by :

R(X,Y )Z = DX(DY Z)−DY (DXZ)−D[X,Y ]Z

where [, ] denotes the Lie brackets of two vec-
tor �elds. In two dimension the completely co-
variant tensor R (de�ned by R(X,Y, Z, T ) =
g(R(X,Y )Z, T ) for all vector �elds X,Y, Z, T )
has only one independent component, let say
Rxyxy in a given coordinate system (∂/∂x, ∂/∂y).
The sectional curvature K is then de�ned by :

K = − Rxyxy
gxxgyy − g2

xy

(2.4)

and it depends only on the metric g. In par-
ticular it does not depend on the choice of the
coordinate system (x, y).

Coming back to our example (D = [0, 1]),
we can calculate the sectional curvature given
the metric g de�ned by equation 2.3. We obtain
:

K(u) =
∂xxu∂yyu− (∂xyu)

2(
1 + (∂xu)

2 + (∂yu)
2
)2 (2.5)

which is the expression of the Gaussian curva-
ture of the surface at the current point (x, y).
We thus achieve our goal : K is a geomet-
ric generalization of the Gaussian curvature for
any kind of data.

2.3 The optimization problem

Taking advantage of our introductory discus-
sion, we de�ne the following functional that is
independant of the coordinate system :

E(u) =
∫

Ω

f(K(u))
√

det(g)dxdy (2.6)

where f is a positive convex function. For the
applications, we choose f : x −→ x2, which is
also smooth.

Our goal is to �nd a way to minimize E
given an original noisy image u0.

2.3.1 Gradient descent scheme

We calculate the gradient of E at u by calculat-
ing the unique function L(u) : Ω −→ Rd which
satis�es for all t small enough and all smooth
functions v : Ω −→ Rd, equal to 0 at the border
of Ω :

E(u+ tv) = E(u) + t < L(u), v > +o(t)

where for all u and v : Ω −→ Rd, < u, v >=∫
Ω
u(x, y)tv(x, y)dxdy.
Then we de�ne ut as the solution at time t of

the gradient descent scheme for a given original
image u0 : {

ut=0 = u0

∂tut = −L(ut)
(2.7)

Practically we are able to calculate the gra-
dient L(u) only in the particular case of gray-
level images (D = [0, 1]) provided by the Eu-
clidean metric (h = dz2). In that case, we have
the following evolution equation :

∂tu =
1
2
div
(
K2∇u
√
g

)
+div

((
D2u(∇K)⊥

)⊥
(det g)3/2

)
(2.8)

whereD2u = (∂xxu)dx2+(∂yyu)dy2+2(∂xyu)dxdy
is the hessian matrix of u,∇u denotes the gradi-
ent of the function u and n⊥ the normal vector
of vector n.

Interpreting this equation is a di�cult task.
However, we can see what happen in two par-
ticular cases, a paraboloid of revolution (u =
α(x2 + y2)/2) or a hyperbolic paraboloid (u =
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α(x2 − y2)/2). In the case of a paraboloid of
revolution, we have :

∂tu =
7α5

2(det g)11/2
(
2− 7α2(x2 + y2)

)
The paraboloid tends to evolves towards a mean
value : the speed at the point (0, 0) as the same
sign of α (a maximum goes down and a mini-
mum goes up) and is proportional to the value
of the Gaussian curvature at this point. In the
case of an hyperbolic paraboloid, we have :

∂tu = − 63α7

2 (det g)11/2
(
x2 − y2

)
The hyperbolic paraboloid tends to evolve to-
wards the plane z = 0, the speed at one point
being of the opposite sign of u.

2.3.2 Stochastic relaxation

For almost all cases, we are not able to compute
the gradient descent scheme. To overcome this
di�culty, we de�ne an iterative stochastic re-
laxation algorithm. Let initialize the current
image u with the original data u0. Then re-
peat the following steps until no changes occur
anymore :

1. Choose randomly a pixel p in u.

2. Change the value u(p) by u(p)+ v, where
v ∈ Rd is chosen thanks to a centered
Gaussian law of variance σ2. Let us call
the image obtained u′.

3. If E(u′) < E(u), go to step 1. If not,
recover u from u′ and go to step 1.

Here the value of σ plays a similar role of
a data �tting criteria. In a general manner,
we look for the local minimum of E which is
the closest to the original data u0. That's why
we will choose σ not too small to increase the
convergence speed and not too big to evolve
towards the closest local minimum.

3 Applications

We write and run our algorithm with the free-
ware Megawave developed at CMLA Cachan2
by J.Froment and L.Moisan. All algorithms
presented here run in about 1 minute on a stan-
dard PC. (1 minute for each measure in the
case of radar signal, which means 7 minutes for
the whole signal). We used centered discrete
scheme to estimate derivatives.

3.1 Gray-level valued images

This is the application for which we developed
all our examples. Let us recall that in this case
D = [0, 1], d = 1. If we provide D with the
Euclidean metric h = dz2, all results were given
above.

We applied our two algorithms to a syn-
thetic image (a white ellipse in a black back-
ground) noised additively by Z = X2 + Y 2

where X and Y are two independent centered
Gaussian variables of same standard deviation
σ = 0.1. (see left image of �g 1) This is classical
noise model in radar.

Figure 1 shows the application of the gra-
dient descent scheme at three di�erent times.
∆W and ∆B denotes respectively the variance
reduction of the noise in the white and black
area.

Figure 2-1 shows the application of the stochas-
tic relaxation algorithm. It tends to gather
noise peaks into little constant plateau. In or-
der to avoid this e�ect, we accept a change not
only if E but also the total variation of the im-
age is decreasing. The result is now shown �g-
ure 2-2.

As we can see in these previous �gures, the
edges are perfectly preserved, whereas it re-
mains a relatively high variance of noise in ho-
mogeneous areas. To deal with it, we choose
to modify the metric h to create a distorsion in
the space of gray levels ( D = [0, 1]). Prac-
tically, we choose the metric : h = g(z)dz2

where g : D −→]0,∞[ is equal to g(z) = 1 −
exp (−10 ∗ (x− x̄)), and x̄ is calculated at each

2CMLA, Ecole Normale Superieure de Cachan, 61
Avenue du President Wilson, 94235 Cachan cedex,
France
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pixel as the mean of a 3×3 window centered at
the pixel weighted by the inverse Gaussian cur-
vature. With this new adaptative metric, we
penalized in homogeneous areas pixels which
are far from the weighted mean at this point.
The calculus of the sectional curvature with this
adaptative metric gives :

K = g(u) ∂xxu∂yyu−(∂xyu)2

(1+g(u)(∂xu)2+g(u)(∂yu)2)2

+ 1
2g

′(u) (∂yu)2∂xxu+(∂xu)2∂yyu−2∂xu∂yu∂xyu

(1+g(u)(∂xu)2+g(u)(∂yu)2)2

The application of this new algorithm combined
with the previous one gives better results as we
can see �gure 3. In both area, we achieve a
variance reduction of about 95%.

As shown �gure 4, we compare our method
with well-known methods : an iterated median
�lter (see [9] or [10] for further details on me-
dian �lter or morphological �lters) and a "de-
speckle" algorithm as computed in the freeware
The Gimp. This last method underestimates
the gray-level in the white area whereas the
median �lter enables to reach greater results.
However, the median �lter relies on an order
relation in the space of gray-levels that can not
be applicable in dimension greater than 1 (color
images, radar signals,...).

Finally, we compare our algorithm using and
adaptative metric and the median �lter for an
original RSO image. Results are shown �gure
5 and 6.

3.2 Images of radar Doppler spec-

trum

We got a radar signal made of a burst of 8
complex pulses at each pixel of the measure
space, a rectangle range-azimuth. (There are
120 measures along the distance axis and 31
azimuths.) These data are records of turbulent
atmospheric clutter. We carried out a complex
auto-regressive analysis with a regularized Burg
algorithm. We thus obtained at each pixel a
vector of 7 coe�cients in the complex unit disk
from which we can recover the whole Doppler
spectrum. (see [3], [4] and [5] for further de-
tails on Burg algorithm and Doppler analysis).
At one azimuth, we show �gure 8 the 7 coef-
�cient re�exion return by the Burg algorithm

on the top, and the Doppler spectrum along
the distance axis at the bottom. We see a ma-
jor frequency which corresponds to the mean
velocity of the cloud noised by parasite peaks
of frequency. We would like to reconstruct the
main real frequencies and remove the parasite
frequencies from the spectrum.

In order to apply our algorithm, we need to
de�ne a metric on the data space, the complex
unit disk. We would like to use the Poincare's
metric but the singularity at the unit circle in-
duces numerical instabilities. That's why we
introduce two parameters λ and γ and de�ne
the metric :

h = λ
dα2 + dβ2

(1− γ2 (α2 + β2))

where µ = α + iβ is a complex number in the
unit disk. For the measure space we keep the
euclidean metric. We obtain therefore the fol-
lowing induced metric:

g =
(
1 + (∂xψ)2 + f(ψ)2 (∂xθ)

2
)
dx2+(

1 + (∂yψ)2 + f(ψ)2 (∂yθ)
2
)
dy2+

2
(
∂xψ∂yψ + f(ψ)2∂xθ∂yθ

)
dxdy

where f , ψ and θ are three functions de�ned
by:

f(ψ) = λ
2γ sinh

(
2γψ
λ

)
ψ = λ

γ atanh(γρ)
ρ =

√
α2 + β2

θ = atan
(
β
α

)
± π

We can now compute the sectional curva-
ture K and run a stochastic algorithm which
minimizes the squared sectional curvature for
each of the 7 complex pulses images.

As we need for the images to avoid some
plateaux, we add to this minimization a new
constraint : the total variation of the data must
decrease as well during the minimization pro-
cess.

We �rst apply the so de�ned algorithm to
synthetic data : we synthesized an auto regres-
sive signal of order one noised by a white noise.
The data volume is de�ned along a given az-
imuth by two frequencies: one for the pixels
of range lower than 75; another for the further
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pixels. We then calculate at each pixel the 7 co-
e�cients thanks to the Burg algorithm. These
original data are shown �gures 7-1 (blue points)
for the coe�cients and �gure 7-2 (left) for the
spectrum. With λ = 1.0 and γ = 0.7 we achieve
a reduction of 96% of the variance of the sig-
nal, as shown in the same �gures. The two
frequencies are well restaured and all the peaks
of noise are removed. The discontinuities are
perfecty preserved.

For the data records of atmospheric clutter,
results are shown �gure 8 for the azimuth 1, and
�gure 9 for the azimuth 19. In all cases, we set
λ = 0.1 and γ = 0.7. The main frequency that
corresponds to the main velocity of the cloud is
well restaured. The peaks of noise are removed
except along a curve that experts know as an
clipping e�ect of the wind. These so small sec-
ondaries frequencies are not remove thanks to
their spatial correlation taken into account by
the algorithm.

4 Conclusion

We provide here a generic method to de-noise
any kind of data. We illustrate it with two ex-
amples : the classical case of gray-level images
and another case of high industrial importance
: radar Doppler spectrum.

The results obtained, in comparison of the
recent state-of-the-art, encourage us to explore
new kind of applications such as colored images
for which we can de�ne a proper metric that
could be de-noise taken into account 3 inde-
pendent components at the same time. Metric
are de�ned in this case in [8] for example.
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5 Figures

temps t = 0
Original Noisy Image

temps t = 1
∆B = 46% ∆N = 49%

temps t = 10
∆B = 65% ∆N = 67%

temps t = 100
∆B = 71% ∆N = 77%

Figure 1: Evolution of the image during the denoising process at 3 time steps

1- Stochastic algo. (100 iter) 2- Stoch. algo. with regularisation (100 iter)
∆B = 51% ∆N = 52% ∆B = 99.2% ∆N = 90%

Figure 2: Results of stochastic de-noising algorithms
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Figure 3: Results for the de-noising algorithm with use of an adaptative metric ∆B = 94.5%
∆N = 95%

1- Median �lter 2- Despeckle with The Gimp

∆B = 94.8% ∆N = 96% ∆B = 95% ∆N = 85%

Figure 4: De-noising with two classical methods

1- Original RSO image 2- median �lter 3- adaptative metric

Figure 5: RSO Image : comparison between adpatative metric and median �lter
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1- Original RSO detail 2- amss (voir [2]) 3- adaptative metric

Figure 6: RSO Image : comparison of methods - details

1- The 7 re�exion coe�cients for all measures along one azimuth on the complex unit disk
Blue: original coe�cients. Red: de-noised coe�cients.

2- Power spectral density in the plane range-frequency for one azimuth. Left: original, Right: de-noised
x-axis: range, y-axis: frequency f = −0.5 . . . 0.5

Figure 7: Denoising of simulated data for λ = 1.0 and γ = 0.7. Variance reduction : ∆V ar = 96%
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1-Re�exion coe�cients, original (blue) and de-noised (red)

2-Power spectral density, original (left) and de-noised (right)

Figure 8: Results of the de-noising algorithm with regularisation for azimuth 1. λ = 0.1, γ = 0.7

1-Re�exion coe�cients, original (blue) and de-noised (red)

2-Power spectral density, original (left) and de-noised (right)

Figure 9: Results of the de-noising algorithm with regularisation for azimuth 19. λ = 0.1, γ = 0.7
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