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Abstract

Our goal in this paper is to give algorithms for minimizing generic regularizing func-
tionals under a [*°-constraint. We show that many classical models using total variation
can be stated under this formalism. Among others are the Rudin-Osher-Fatemi model, the
BV — 1! model, the BV — [® model and Meyer’s cartoon-texture decomposition model.
Then we describe a general convergent algorithm to solve such problems. This algorithm
is the projected subgradient descent. We finally give numerical results that show the qual-
ities and limits of our models, and we tackle the question of the use of the total variation
to treat bounded noises such as quantization noise.

Key-words: [°°-norm, total variation minimization, bounded noises, duality, quantiza-
tion noise, compression noise, projected subgradient descent.



1 Introduction

In this paper we are interested in a class of image restoration and decomposition models that
can be written under the general form :

Jg}f{ J(u) (1.1)
with K defined as :
K={ueZlu~fllx < a} (1.2)

Here f is a given observed data. Z can represent any of the two discrete spaces : X = R”
or Y = X x X. X is the discrete space of images (in which case n = n,n, is the number of
pixels). Y is a discrete space of 2 — D vector fields (typically gradients). Finally, J: Z — R is
a convex function.

In the vast litterature devoted to denoising techniques by optimization, few models incor-
porate [*°-norms. One of the reasons is that the [*-norm is not differentiable, and thus difficult
to handle both numerically and theoretically. We will show throughout this paper, that our
formulation actually covers a wide range of useful applications. Let us give a brief overview.

First, when dealing with noises of bounded amplitude, the Maximum a Posteriori (MAP)
principle naturally leads to optimization problems with [*°-constraints. Such noises frequently
appear after compression. For instance intensity or wavelet coefficient quantization lead to such
bounded noises. This will be the topic of section (7).

The model (1.1) includes another class of applications of great interest in image processing.
Many models use the total variation as a prior on the images. This quantity somehow measures
the oscillations of an image. It was introduced by Rudin, Osher and Fatemi (ROF) in [27] as
a regularizing criterion for image denoising. Its main interest lies in the fact that it regularizes
the images without blurring the edges. Using the theory of duality [13]|, we can show that
minimizing the total variation under a [P-constraint, can be reformulated under form (1.1).
This point is detailled in section (6).

Y. Meyer in [19] inspiring from the model of Rudin, Osher and Fatemi [27], proposed a new
model to decompose the images into piecewise smooth functions (the cartoon of the images)
and oscillating functions (the texture or noise). We will show in section (5) that this model
can also be reformulated under form (1.1).

Solving problem (1.1) numerically is not an easy task. The domain K has non smooth
boundary and we make no assumptions of differentiability on J. The projected subgradient
descent method [26] is a powerful tool to solve such generic problems. We review its properties
of convergence and optimality and show how to apply it to the above mentionned problems.

Many of the ideas proposed in this paper are not new. Though we claim that some original
contributions are present in this paper. Using a projected subgradient descent to optimize
nondifferentiable functionals of image processing was notably proposed in [17, 18, 2|. Our main
contribution here might be an easily implementable definition of the discrete subgradients, and
a realistic review of the qualities and limits of this method.

A. Chambolle in paper [7], solved the problem of ROF using duality. His numerical method
is shown to be convergent, and works in almost real time [8]. Since then some efforts were



made to use duality in more general problems. Among other works, let us cite the paper by J.
Bect and al. [6] where the authors generalize the algorithm of A. Chambolle for a wide class of
[*-problems including deconvolution, or best basis pursuit. Another generalization was given
by T.F. Chan et. al. in [9], were the authors use duality to solve some problems involving
second order regularizing functionals. In both works though, the authors are constrained to
use [2-data fidelity terms. Our contribution here, is that we show how to apply duality for any
[P-norm.

Recently some algorithms using total variation were proposed to reduce the artifacts re-
sulting from the compression algorithms. S. Tramini et. al. in [29, 30|, proposed to minimize
the total variation under a [*°-constraint to reduce the artifacts of JPEG2000 compression. F.
Alter et. al. in |2] proposed to minimize the total variation to reduce the distortions of the
JPEG compression. We question the use of the total variation, as a prior when dealing with
distortions of bounded amplitude, and show that easier differentiable priors sometimes lead to
better results.

It is not the first attempt to solve Y. Meyer’s decomposition problem. Acknowledged solu-
tions can be found in [25, 5, 14]. To our knowledge, our formulation of Y. Meyer’s decomposition
model is new, simple, and could lead to the design of fast algorithms.

Finally, and that might be the main contribution of this paper, we give a general framework
for the problems of type (1.1).

2 Notations and definitions

2.1 Specific notations

Let us describe the notations we use throughout this paper.

We first remind that X = R", Y = X x X and Z can be any of those two spaces.

All the theory developed in this paper applies to color images. To simplify the notations,
we focus on grayscale images.

f € Z is a given data, and J : Z — R is a convex, proper function.

For u € X, u; € R denotes the i-th component of w.

For g € Y, then g; € R? denotes the ¢ — th component of g, and g; = (gi 1, gi2)-

< -,- >x denotes the usual scalar product on X. For u,v € X we have :

<u,v >xi= Zuﬂh‘ (2.3)
i=1

< -, >y denotes the usual scalar product on Y. For g,h € Y :

n 2
< g,h>y:= Z Zgi,jhz’,j (2.4)

i=1 j=1

|- |p, p € [1,00[ is the [” norm on X :

n

Julp = () lul?)'? (2:5)

i=1



| - |oo is the [*°-norm on X :

o= (2:6)

| -], for p € [1,00[ is a norm on Y defined by :

lglly == (3 laifp)"” (2.7

And finally :

lg]] epnax |9i]2 (2.8)

K is a convex set (a ball in a certain metric). When Z = X, K is just an hypercube of
width 2a, centered on f.

Finally |a], is the integer part of a € R.

2.2 Recalls of convex analysis

Definition 2.1. [Proper function| A convex function J on Z is proper if and only if J is not
identically equal to +o00 and that it does not take the value —oco on Z.

Definition 2.2. [Coercivity] A function J: Z — R is said to be coercive if :
llulla — 00 = J(u) — oo (2.9)

Definition 2.3. |Indicator function| Let K € Z be a non empty closed convex subset of Z.
The indicator function of K, denoted x, is defined by:

0 ifzekK
oo otherwise

Xk () = {

if K is a compact set, then Y is coercive.

(2.10)

Definition 2.4. [Subdifferential and subgradient] The subdifferential of J at point u € Z, is
defined by :
OJ(u) ={ne Z,Ju)+ <n,(r—u) >z< J(z),Ve € Z} (2.11)

n € 0J(u) is called a subgradient.

The subdifferential can be thought of as the set of hyperplanes passing through point
which underestimate the function J. On points where J is differentiable, the subdifferential
reduces to a singleton : the classical gradient.

Definition 2.5. [Legendre-Fenchel Conjugate]
Let G be a convex proper application from Z to R U {oc}. The conjugate function of G is
defined by :

G*(u) = sup(< z,u >z —G(x)) (2.12)

€L
G™ is a convex proper function. Moreover, we have : G** = G.



2.3 Discretization of the differential operators

To simplify the notations, we denote (i, j) the value of u on pixel (i, 7).
To discretize the gradient we use the classical first order scheme borrowed from [7]. For
ue X:

(Vu)(i, j) = ((O1u)(i, §), (O2u)(i, 7)) (2.13)

Vu is an element of Y.
(D) (i, j) = { uli + 1"7()) ~u(@.g) ilfz - iy (2.14)
e A S (2.15)

This definition allows to define the divergence properly by duality, imposing :

<Vu,p>y=— <u,div(p) >x (2.16)

We will see that having such a relation is necessary to compute the exact subgradient of
the discrete functional. Simple algebra gives :

p(i,7)—plli—1,7) ifl<i<mn,

(div(p))(i,j) = < p'(i,]) ifi=1
—pt(i —1,7) if1=n,
(2.17)
+ < p(i,5) ifj=1
—p*(i,5 — 1) if j =n,
With this discretization, we can define the total variation as :
Ji(u) =) [(Vu)l (2.18)
i=1
Another quantity of interest in this paper is the discretized hypersurface of u :
Jo(u) =Y A/I(Vu)il3 +1 (2.19)
i=1

Those two functions are convex.

3 Existence and uniqueness of the solutions of problem
(1.1)

3.1 Existence of a solution

Rewriting problem (1.1) under the form :

inf {J(u) + xx (u)} (3.20)

uezZ



where xf is the indicator function of K, it is clear that problem (3.20) is convex, proper
and coercive on Z. Thus, we easily get the existence of a minimizer.

3.2 Non uniqueness of the solutions

When J is strictly convex, we have uniqueness of a minimizer, but in the general convex case,
we get a convex set of solutions. We illustrate it through an example in 1 — D that we study
later in 2 — D. We take Z = X, n, =n, n, = 1 and set :

n—1

J(w) = |uipr — ujl (3.21)
i=1
Take f; =i/(n—1), with i € {0,2,...,n — 1} and a < 0.5.
The interpretation of this model is the following : we are looking for the function of minimal

discrete total variation, contained in the red tube drawn on Figure (1).

Clearly, all monotonous increasing sequences satisfying the constraint, going from a and
arriving to 1 — o have the same total variation (1 — 2«a), and are solutions of problem (1.1).

Figure 1: Green : data term - Red : upper and lower constraints - Blue and black : two possible
solutions

4 Review of the projected subgradient descent

We go back to the general problem (1.1). J is a general proper convex function on Z, and K
is given by (1.2).

In the past few years, many efforts have been dedicated to the design of fast algorithms
to solve imaging problems. ROF problem for instance can now be solved in almost real time
8, 11, 12].

Unfortunately, we cannot hope solving (1.1) with a high rate of convergence as we made
no assumptions on J except convexity. Imagine that we have an algorithm that generates a
sequence {u"} that is supposed to approach a solution of (1.1).

A classical result of convex optimization [21] tells us that no iterative method - only using
the sequences J(u*) and 9J(u*) - can achieve a better rate than 05(21)’ for general convex
minimization problem (e is the desired precision).




If we note J the minimum of (1.1), and J* = min;c(; .43 (J(u')), it means that to get a
precision |J*¥ — J| < ¢, any algorithm will require k to be of order [%J (see [21] for a more
precise statement).

We propose in this paper to use the projected subgradient method for which the complexity
is shown to be 06(21). So that, no method can do better than it for our general problem, up
to a multiplicative factor. To use this technique we need to be able to compute a subgradient
and the Euclidean projector on K. In the next sections we show how to compute subgradients.
Moreover, the Euclidean projector on K can be computed easily. It can be shown that :

Ui if |u; — fila <
(HK(U))Z = { fz +a u; — fi otherwise (422)

|wi—fil2

This algorithm is well known in the optimization community (see for instance [26]). It was
proposed recently in image processing in some papers [2, 18, 17]. We describe it briefly below.

4.1 The principle of the algorithm
@ is a solution of (1.1), if it satisfies for any ¢ > 0 :
u=Tg(u—tn) (4.23)

[Tk (-) denotes the Euclidean projector on K, and 7 is any element of 0.J(@).

To compute @, we use the projected subgradient algorithm defined by :
we K 424

Here, t;, > 0 for any k and 7" is any element of 0.J(u").

4.2 How to chose the sequence {t;}?

The convergence of this iterative scheme depends on the behaviour of the sequence t;. Let U,
be the set of solutions of (1.1). The following theorem proves that for a well chosen sequence
tr, we have convergence [26] :

Theorem 4.1. Iflim, ..t =0 and > tx = 00, then
limy oo J(u”) = inf,ex J(u) and limy,_., d(u®, Uy) = 0

where d(-,-) is the Euclidean distance from a point to a set.

Many sequences satisfy the hypothesis of this theorem. For instance ¢, = m with
p €]0,1] or ty = m. This wide choice makes the theorem difficult to use for practical

computations : among all possible sequences, many could lead to very slow convergence. Some
ideas were proposed to tackle this problem and the theory is now well established (see [16, 18]
for some references).

If J is Lipschitz continous with Lipschitz constant L i.e. :

|/ (u) = J(v)| < Ll[u = vl|; (4.25)



we can find a parameterless optimal sequence (cf. [28]) :

Theorem 4.2.
The projected subgradient descent with step :

D
t, = — 4.26
e= (4.26)
ensures that :
- - LD
a=J"—J<0(1)~= (4.27)

S

where D is the Euclidean diameter of the set K.

This is an easy choice to ensure a good rate of convergence. More sophisticated techniques
can be designed based on iterative estimates of J (see [17] for instance). To our knowledge,
for these techniques to be efficient, one often needs extra informations about the solution, like
the approximate distance from u* to the set of solutions. It can thus become really difficult to
apply in practice.

Finally, we recall that if J is convex, differentiable, with Lipschitz gradient, then we do not
need to normalize the gradient, and a constant step size ensures convergence :

Theorem 4.3. If:
IV (u) = VI (0)ll2 < L'ffu — o], (4.28)

then the projected gradient descent :

u e K
{ W = T (b — £V.T () (4.29)

with constant step t = % ensures that :

d(u*,Uy) — 0 (4.30)

4.3 Programming aspects and computing time

If we proceed with care, the memory requirements of this algorithm are no more than twice
the size of the image and the lengths of our c-codes do not exceed 300 lines. One important
advantage of these algorithms is thus to allow fast implementation of a model. The big issue is
that computing times can be large.

We can see it when trying to find a stopping criterion. It would be nonsense to assess the
condition 0 € dJ(u"*). Indeed, J might be non-smooth so that the norm of the subgradient
might be large even very close to the solution (consider J(z) = ||z||2 for instance). Thus a
simple choice is to set the number of iterations.

We will see in the applications that the relation ¢, < O(1)£2 allows to find the number of

Vk
iterations needed to get a desired accuracy.

For instance we get 'perceptually stable’ solutions pretty fast for the BV — L> problem (45
seconds for Lena), but for the more complex problem of Y. Meyer, we need around 5 minutes
for Barbara image. We think that this generic algorithm should be used when willing to get a



quick overview of the abilities of a model. Then more refined techniques based on an analysis
of the structure of J should be thought of.

Among the concurrent algorithms, let us mention bundle methods [16], which are known to
converge faster, but are more difficult to implement in practice, require higher memory space,
and have the same theoretical convergence rate. Recently, Yurii Nesterov in [22] proposed a
new method with a complexity of @. This method applies to a smaller set of problems, but it
seems that it might be applied to the problems we present in this paper. It will be the purpose
of future investigations.

5 A new solution to Meyer’s cartoon + texture decompo-
sition problem

5.1 A brief presentation of the model

This paragraph and this paragraph only is presented in the continuous setting. {2 denotes a
bounded open set of R%. We recall that the space of functions of bounded variation (see [3] for
a complete reference) is defined by :

BV(Q) = {u € L'(Q), sup / u(z)div(é(x))dr < oo} (5.31)
{€€CL(UR?),[I€ll Loo () <1} /2

In [19], Y. Meyer studied theoretically the Rudin-Osher-Fatemi model, and figured out its
limitation to discriminate well a cartoon in a noise or a texture. He observed that this limitation
could be overpassed using a different data term than the rather uninformative L2-distance to
the data.

He defined a norm :

Jv]la = irglf{||gHoo, div(g) =v,9 = (g1, 92), lg] = \/ 9% + g3} (5.32)

a space : G = {v, ||[v||¢ < 0},

and proposed to decompose an image f into a cartoon u and a texture v using the following
model :

{ / Dl + AlJoll) (5.33)

inf
uweBV (Q),veG, f=utv

The G-norm of an oscillating function remains small, so that this model permits to better
extract oscillating patterns of the images. A good example to illustrate this property is the
following :

o ||sin(nz)||r2(o2-) =7 Yn €N

o ||sin(nz)||g(oz2x) = 1/n Vn €N



5.2 Current numerical approaches

Y. Meyer did not propose any numerical method to solve his model. The first authors who
tried to compute a solution were L. Vese and S. Osher in [25]. They approximate the L*°-norm
in the G-norm, by a LP-norm to preserve differentiability, and impose that f = u + v by a
penalization method. Such an approximation implies some numerical issues, and constrains to
use values of p around 2.

J.F. Aujol et. al. in [4] propose a better approximation of the model. They show that the
discrete GG-semi-norm is the dual of the 7'V functional and that it can be computed using A.
Chambolle algorithm [7]. Nevertheless they also impose that f = v+ v by penalization. Their
discrete approximation writes :

TV )+ Y| —u— ol + TV ()
| .

They propose a convergent algorithm to solve it [4] that was generalized by C. Chaux et al.
in [10].

A new approach has recently been developped by D. Goldfarb et. al. in [14]. To our
knowledge this is currently the best numerical approximation to Y. Meyer’s problem, as no
approximation is needed to impose f = u + v. The authors solve it using a Second Order
Cone Programming (SOCP) approach. This algorithm is also known to converge in polynomial
time. The main issue remaining might be the complexity of the codes (the authors use the
MOSEK library) and the computing time. In [14], they indicate that the PDE approach to
solve Rudin-Osher-Fatemi problem is around twice faster than the SOCP approach.

5.3 Principle and implementation of our method

In the approaches proposed in [25, 4] the user has to give an extra parameter, as f = u + v
is imposed by penalization. Taking it too large leads to high computing time, and taking it
too small does not ensure that the constraint is taken well into account. In the following, we
present a method that permits to avoid this penalization.

Y. Meyer’s discretized problem writes :

: . a4
nf{nw) A iE - Hlolle)}) (5.34)
Where J; is defined in (2.18). We have the following result :

Proposition 5.1.
Problem (5.34) can be reformulated as follows :

inf  {Ji(f —div(g))} (5.35)

9€Y|gllo<ax
Proof: The first idea is that we can use the change of variable :

u= f—div(g) (5.36)

to get an optimization problem that depends only of one variable g. This is possible because
the operator div is surjective from Y to X.

10



inf {/i(u)+A it {llgllc}t = Inf LN (F = div(g)) + Allglloo} (5.37)

ueXx g€Y,div(g)=f—u

This problem could be solved using a subgradient descent. Turning the lagrange multiplier
A into a constraint, we get the following minimization problem (we refer to the appendix for
the link between the two models) :

inf  {Ji(f —div(g))} (5.38)

9€Y|lglloo<ex

Notice that if we replace the L>-norm by a L?*-norm in (5.34), we get the model of Osher-
Solé-Vese [24].

5.4 Numerical implementation

We have shown that the problem of Y. Meyer can be stated as follows :

inf  {J(g9)} (5.39)

9€Y|lgl|oo<ex

With :

Z\ (f = div(g)))il (5.40)

To use the subgradient descent stated in (4.24) the main difficulty that remains is to compute
numerically a subgradient.

To do so, we use the following result on the subgradient of composed functions [31] :

Lemma 5.1. If¢:Y — R is conver and proper, A is a linear operator from X to Y, that
can be decomposed under the form Au = Agu + b then :

A(¢ 0 A)(u) = Aj(9¢(Au)) (5.41)
Choosing :
o(z) = l|z|lx (5.42)
We can write :
J(g) = o(V(f — div(g))) (5.43)

Moreover, V(f — div(g)) = Aog + b, with b = V f and :

Ao(-) = Ag(1) = —Vdiv(:) (5.44)
Note that this operator is self-adjoint. We can show easily that :

@oto) = { [

5.45
{n; € R%,|mila < 1} otherwise (5.45)

11



An element of the subgradient of J can thus be given by A§(¥), with ¥ € Y such that :

(D), = G i [(Agyl2 > 0 (5.46)
0 otherwise

On the pixels where |V(f — div(g™))|2 do not vanish, the gradient of the J functional is :

V([ — div(g"))
IV (f = div(g™))l2

v (div( ) (5.47)

which we do not need to regularize.

The last task remaining to use the projected subgradient descent method is to design the
sequence 1y, i.e. to find D and to show L < oo.

It is trivial to show that :

D =2ay/n (5.48)
It is the Euclidean diameter of the [*°-ball.
Finally, we can show that J is L-Lipschitz with :

L < 16vn (5.49)

Indeed, 0J(g) can be expressed as V(div(p)), for some p with |p;]s < 1 Vi. So that
|(div(p))i] = la+ b+ c+d| <4 for some a,b,c,d of norm less than 1. Using the same trick,
0J(u) = Vv, with |v;]s < 4 Vi ensures that [(0J(u));|2 < 16. So that finally |[0.J(u)||2 < 164/n.

Note that the overall complexity of this algorithm is :

0(1)16% (5.50)

The complexity increases linearly with the number of pixels and with «. This gives a good
hint on how to chose the number of iterations.

5.5 Results

Finally we present the numerical results on figure (3). The Barbara image is rescaled in [0, 1],
and we take a = 0.1.

After 4 seconds (100 iterations), we get the middle pictures. The model seems to achieve
well what it is supposed to do. The stripes in Barbara clothes are removed, the cartoon part is
not visible in the textured part. Moreover, this is done fast.

After 5 minutes (7500 iterations), we reach stability. The result is pretty deceiving. We
can see that not all stripes are removed in the cartoon part, and that some cartoon patterns
appear in the texture part (see BR (3)). Even worst : the top images represent the results with
Rudin-Osher-Fatemi model. The />norms of the residuals in the Top-Right (TR) image and
in the Bottom-Right (BR) image are the same. It seems that ROF model performs even better
than Y. Meyer’s model.

This result is different from the conclusions of JF. Aujol et. al. in [5], where the algorithm
gave less geometry in v. We think that the approach proposed in our paper approximates better

12



Y. Meyer’s model, as no extra parameter is needed, and that we computed explicitly the rate
of convergence. Moreover, the results we obtain are concordant with the conclusions of Wotao
Yin et. al. in [32]. The authors show that the Vese-Osher model and the simpler BV — L!
model both outperform Y. Meyer’s model for some tasks of image decomposition.

Y. Meyer’s discretized model does not seem as promizing as in the continuous setting. We
will lead further investigations to figure out the reason for that.

Figure 2: Original Barbara image

6 Using duality to solve [” problems

6.1 The BV — [P model

In this section, we look at a second application of our general framework. We are interested in
the following problem :

I}g{ AMu— fIF+ Ji(u) (6.51)
for p €]1, 00[. We minimize the total variation subject to a [P constraint. When p = 2 this
model is the ROF model [27]. We treat the case p = 1 separately.

Note that the solution of (6.51) is unique due to strict convexity and coercivity of the [P
norm.

We first recall some facts of convex analysis (see [13], for a complete reference).

A : X — Y denotes a linear differential operator. A* : Y — X is its dual operator. By
definition, for any u € X, ¢ € Y, we have :

< Au,q >y=<u,Nq>x (6.52)

Let F: X — Rand G : Y — R be two convex proper functions. Let P, be the primal
problem :

13



Figure 3: TL : Cartoon part for ROF model - TR : Texture part for ROF model - ML : Cartoon
part after 4 seconds - MR : Texture part after 4 seconds - BL : Cartoon part after 5 minutes -
BR : Texture part after 5 minutes

14



12){; G(Au) + F(u) (6.53)
The dual problem P* is then defined by :

inf G*(—q) + F*(A"q) (6.54)

qeY

Let u and ¢ be the solutions of P and P* respectively. Those solutions are related through
the extremality relations :

F(u)+ F*(A"q) =< A*q,u >x (6.55)

G(Au) + G*(—q) =< —q,Au >y (6.56)

In the following p’ is the conjuguate of p. When p €]1, 00|, p’ = z%' When p =1, p' = 0.

When p = o0, p = 1. B
Proposition 6.2.  The dual problem of (6.51) is defined by :
inf < —div(q), f >x —Bldiv(q)[} (6.57)

{g€Ylgllo<1}

where :

B =(\p) e — X(Ap) (6.58)

Proof: In our case A =V, A* = —div, F(u) = Mu — f[?, and G(q) = ||q|]1.

First, we recall that from Hélder inequality we have for p € [1, oo[U{oo} :

sup -7 = t||g|ly (6.59)
{rey|Ir|lp=t}
Thus,
G*(—q) = SU}I/) < —q,r >y —||rlh (6.60)
re
= sup sup < —q,r >y —t (6.61)
>0 ||r||1=t
= supt||q]le — t (6.62)
£>0
= xx(q) (6.63)

Where K, is the set {¢ € Y, ||¢|| < 1}.
Forl<p<oo:

15



F*(—div(q)) = sug < —div(q),u >x —Au — f[b (6.64)
= Zip < —div(q), (v+ f) >x —Alv[} (6.65)
= v<€X—dz'v(q), f>x +stl>1g) supt— < div(q),v >x —AtP (6.66)
= < —div(q), f >x +il>1g)t|;i_v(q)|p/ — AP (6.67)
= < —div(q), f >x +B|div(q)|" (6.68)

The last equation is obtained by canceling the derivative of the function ¢ — ¢|div(q)|,y — At*.
Doing so, we find 3 = (Ap)~/®=1 — \(\p)~7.

Proposition 6.3. The extremality relations allow to show :
i = f = Bp'|div(q)|"*div(q) (6.69)

Proof: First we recall that F**(u) = F(u).
So that F'(2) = sup,cx < @,v >x —F*(v).
The first extremality relation also gives F'(u) =< —div(q),u >x —F*(—div(q)).
Those two equations imply that —div(g) cancels the derivative of v —< u,v >x —F*(v).

So that :

(@~ f)+ Bp'|div(q)""2div(q) = 0 (6.70)
Which ends the proof.
[ |

The numerical interest of duality is pretty clear. We now have to solve a differentiable
problem under a convex constraint, instead of having a non differentiable problem. We can use
the constant step projected gradient descent to solve it. For p = 2, A. Chambolle in |7], proposed
a convergent algorithm to solve problem (6.57). In [8] he remarks that the performances of this
algorithm seem to be slightly inferior, to the projected gradient descent.

6.2 The BV — ! model
We now study the problem :

inf Ji(u 6.71
ueX |Ju—fl1<A l( ) ( )
This model was initially proposed to remove impulse noise. We refer to [1, 23, 11, 12| for
a good overview of the nice properties of this model. We just recall that it is a simply convex
function, so that there should not be uniqueness of the solution in general. In the following,
we show how we can apply duality to transform it into form (1.1).
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Proposition 6.4. The dual problem of (6.71) is defined by :

inf < —div(q), f >x +A|div(q)| (6.72)

{q€Y|lqllo<1}

We leave the proof for the reader, as it is very similar to the [? case.
The relations between the dual and the primal problem are more complicated than in the
differentiable case.

Proposition 6.5. If div(q) # 0, then the extremality relations lead to :

(=div(q))s
|(div(q)):]

With v = (71,72, -, Yn) € R™ such that :
v > 0 Vie{l,2,.n}

7[s 1 (6.74)
Vi 0 4f [(div(q))i] < |div(q)]o

Proof: Using the first extremality relation, and the fact that F™* = F', we get :

Fu) = < —div(q),u>x —F*(—div(q)) (6.75)
= sup < u,u >x —F"(u) (6.76)
ueX
This implies that :
0€u—O0F(—div(q)) (6.77)
Using lemma 11, chapter 5 in [26], we can show easily that if v # 0, then :
(OF"(v))i = fi + )\%% (6.78)

With ~; satistying :

v > 0 Vie{l,2,...n}
vh =1 (6.79)
vi = 0if |v;]2 < ||

This relation does not allow to retrieve u from ¢q. Nevertheless it gives some information on

We can notice that on pixels where |(div(q));| # |div(G)|co, u; = fi- This means that many
pixels will remain unchanged. This is in agreement with the fact that this model is adapted to
remove impulsive noise : just the noisy pixels should be changed.

We have not used the second extremality relation yet. It leads to the following result :

Proposition 6.6.

(V) = [(Vt)i|23 (6.80)
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Proof:

G(Vu) = G™(Va) (6.81)
= sup < Vi, q >y —G*(q) (6.82)

qey
= < —q,Vu>y -G (—u) (6.83)

Thus —¢ solves problem (6.82). This yields the existence (cf. [31]) of multipliers u; such
that :

With p; = 0 if |G| < 1, or p; > 0if |@;|2 = 1. In both cases we get p; = |(Vu)|s.

(6.80) tells us that g represents the orientation of the level lines of 4.

The numerical interest of duality for the BV — [! problem is not clear. Problem (6.72) can
be solved with our algorithm, but does not seem especially simpler than the primal problem.

7  Which prior for bounded noises?

The model we study here writes :

J(u) (7.85)

inf
{ueX,Ju—floo<a}
With X = R*. We will study this model with two different priors J. The first one is the

total variation :

TV (u) = Jy(u) := Z |Vl (7.86)

The second is the discretized hypersurface of w :

Jo(u) == Z /| Vul2 + 1 (7.87)

The problem with J = J; is denoted P!, and the one with J = .J, is denoted P2. They
have respective sets of solutions U' and U?.

7.1 Uniqueness of the solution

A difficulty that we encounter using 7'V as a prior is the non uniqueness of the solution.
Actually, there even is a huge set of solutions in 1 — D, as shown in the introductory example.
U, is thus a convex set, generally not reduced to a singleton.

On the contrary, the solutions of P? are generally unique except in non relevant cases.

Proposition 7.7. If
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amplitude(f) := max(f;) — min(f;) > 2« (7.88)

then the solution of P? is unique.

Proof : To prove this proposition, first remark that if amplitude(f) < 2« then the solutions
are the constants of the interval [min,(f;) + o, max;(f;) — «]. In the other cases uniqueness
results from the fact that .J; is stricly convex in all directions except the constants. Thus the
solution is unique up to a constant. When amplitude(f) > 2a it is easy to prove that the
minimum of the solution must be equal to min; f; + «, so that the constant is actually fixed.
This ends the proof.

Let us justify the interest of those models.

7.2 Uniform white noise : the Bayesian justification

We can justify properly these models by using the maximum a posteriori (MAP) formalism.

Suppose that f = u + b, where b is a uniform white noise on [—«, a]. Further suppose that
we have a probability P(u) over the images that is proportional to exp(—J(u)) '. Then it is
reasonable to recover u from f solving this problem :

sup{P(ul)} = sup{P(flu) 1)) (7.9
Which is equivalent to :
i {~log(P(71u) ~ log(P(u))} (7.0

Note that P(f;|u;) = i]l[ui_a,uﬁa]. As the noise is pixelwise independant, P(f|u) is given
by :

0  if |f —ulew >
P(flu) = { W otherwise (n is the number of pixels) (7.91)
so that the MAP solution is given by :
inf  {J(u)} (7.92)

This model is not new. S. Tramini and al. in [29, 30] introduced it for the removal of
the artifacts appearing in the JPEG2000 image compression. Those artifacts are bounded and
might be the principal application of this model.

! This is possible if we suppose that images have a bounded amplitude.
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Figure 4: TL : lena image on [0,1] - TR : lena image + U([—0.2,0.2]) BL : Denoised with
BV — L* BR : Denoised with MinSurface — L™

20



7.3 Quantization noise removal

All digital images are quantized, typically on 256 grey levels. It is not impeding for the percep-
tion of the images, but when computers try to evaluate precisely some image features, like the
orientation of the gradients, quantization induces large errors that prevent algorithms to work
properly (see [20] for instance). Pre-processings are then crucially needed.

Let ) be the quantization operator, defined as :

Q : R — 2aN

u; — 2al] +a

(7.93)

Given a prior J, a natural idea to restore the images is to look for the image which minimizes
this prior in the set of antecedents Q~'(f). It can be easily shown that :

Q' (f) ={u, f=Q)} = {u,Ju— fls < a} (7.94)

Thus, we are again looking for the solution of the following optimization problem :

inf J(u 7.95
u,\u—flooga{ (u)} (7.95)
In the following, we show through some simple examples, that using the total variation as
a prior is a bad idea for these kinds of distortions.

The main justification for the use of 7'V as a prior, is that it regularizes the images, without
blurring the edges. In the case of an [*°-constraint, this advantage is not clear anymore.

Indeed, imagine that f(i+1,7) — f(,5) > C > 2« then the set {u € X, |u— f|o < a} only
contains images which satisfy w(i + 1,j) — u(i,j) > C — 2. Thus the [*°-constraint ensures
that the jumps greater than 2« are preserved, with a maximal distortion of 2a.

Another remark of interest is that :
Proposition 7.8. In 1-D (i.e. whenn, =1), Uy C U;

This result is quite interesting, it shows that an easy way to pick a solution of U is to solve
P? which is supposed easier as J, is differentiable. We skip the proof as the 1-D problem is not
the topic of this paper.

The 2 — D case leads to new surprises. The non uniqueness is not as pronounced as in the
1 — D case, and proposition (7.8) do not hold.

We show it through a simple illustrated example. We chose f to be a truncated cone as
shown on the Top-Left (TL) figure (5). Then we quantize it (Top-Right figure). It gives a
superposition of cylinders. We note this function f. If we refer to the introductory example, we
naturally come to think that the solution of P! might be any radial increasing function going
from min(f) 4+ « to max(f) — o. Actually the numerical solution we get is a new superposition
of cylinders (cf. Bottom-left (BL) figure).

An intuitive explanation, is that in 2-D we try to minimize the integral of the length of the
level lines over all levels (this is known as Coarea formula cf. [3]). This integral is clearly less
for a cylinder than a truncated cone.

21



Dequantized cone vith model BV-Linfinity Dequantized cone vith model Min Surface-Linfinity

Figure 5: TL : Cone - TR : Quantized cone BL : 'Dequantized’ with BV — L>° BR : Dequantized
with MinSur face — L™
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This simple example shows that 7'V is unadapted for dequantization, as the result is a new
quantized image. The Bottom-Right (BR) picture in (5) is the solution of P?. This function
has the minimal surface in the set {u € X, |u — f|ooc < a}. It is much closer to the original
cone.

We come to the same conclusion with a natural image. See figure (6).

Figure 6: TL : original image - TR : Quantized Lena on 10 levels BL : 'Dequantized’ with
BV — L*° BR : Dequantized with MinSur face — L*

Finally, one can wonder why the MAP solution which is theoretically optimal for both
quantization noise and uniform white noise works so badly in one case, and so well in the other.
This becomes pretty clear when we picture the different noises (7).

Quantization noise has a small TV, while uniform noise has a large TV. In our MAP
approach, the [*°-norm is supposed to model the noise, and TV the images. Actually, the
reason why it works in the case of white noise, is that TV not only models the image but also
what is not noise.
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Figure 7: Left : Uniform white noise - Right : Quantization noise

7.4 Numerical details

To solve those problems, we used the projected subgradient approach described earlier.

The subgradient of the total variation is given by :

VU f |Vauly > 0
div(U) with O = { Vel ! 2
(W) wi 0 otherwise

And it can be shown that L, = ||0J1]]2 < 4y/n

Problem P? is differentiable. We can use a classical projected gradient descent with constant
step to solve it.

(7.96)

8 Conclusion

In this paper, we showed that many models of image processing can be stated under the same
formalism (1.1). We recalled the theory of the projected sugradient descent, and successfully
applied it to some problems. Those problems include Rudin-Osher-Fatemi model, Meyer’s
model, and some models for bounded noise denoising. We think that we could reduce substan-
tially the computing times using more advanced techniques of convex optimization. This will
be the topic of further investigations.

Acknowledgement: The first author would like to thank Alexis Baudour for useful mathe-
matical discussions.

9 Appendix

Theorem 9.4. If ' and G are two convex functionals of R" into R™, and X is a real of RT.
The problem :
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inf }{F(u) + AG(u)} (9.97)

{ueRn

has a set of solutions U
The problem :

inf F(u 9.98
- G(U)Sa}{ (u)} (9.98)
has a set of solutions U,
Then :
V\,Vu € Uy,Ja € RT,u € U, (9.99)
And conversely :
Va,Vu € Uy, 3N € R, u € Uy, (9.100)

Here Uy represents the set of solutions of problem (9.97), and U, represents the set of
solutions of problem (9.98).

We do not give the proof which is pretty long.
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