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Abstract

We present in this paper a new way for modeling and solving image restoration and classification
problems, the topological gradient method. This method is considered in the frame of variational
approaches and the minimization of potential energy with respect to conductivity. The numerical
experiments show the efficiency of the topological gradient approach. The image is most of the time
restored or classified at the first iteration of the optimization process. Moreover, the computational
cost of this iteration is reduced drastically using spectral methods. We also propose an algorithm
which provides the optimal classes (number and values) for the unsupervised regularized classification
problem.

1 Introduction

The goal of most image processing problems is to create a partition of a given domain (or set) Ω. In
such problems like edge detection, classification, and segmentation, the goal is indeed to split the image
in several parts. The common mathematical tools for solving these problems are level set approaches,
material properties optimization, variational methods,. . .

Level set approaches have been applied to image processing [8, 30, 26, 10] and it gave very promizing
results in shape optimization [33, 2, 36]. Diffusive methods in image restoration are based on the
optimization of conductive material properties [8, 39]. Like in topological optimization [1, 11], isotropic
and anisotropic material properties have been considered.

In this paper, we consider the topological gradient approach that has been introduced for shape
optimization purpose [34, 24, 20, 5, 6, 22, 21]. The basic idea is to adapt the topological gradient
approach used for crack detection [5]: an image can be viewed as a piecewise smooth function and edges
can be considered as a set of singularities. It has been applied to diffusive grey image restoration giving
very promizing results [23]. An optimal material distribution is obtained at the first iteration. Our
objective is to apply topological gradient approach to color images, and also to the image classification
problem. We show that it is possible to solve these image processing problems using topological
optimization tools for the detection of edges. Then the restoration or classification operations become
straightforward.

More precisely, let Ω be an open bounded domain of IR2 and j(Ω) = J(uΩ) be a cost function
to be minimized, where uΩ is the solution to a given Partial Differential Equations (PDE) problem
defined in Ω. For a small ρ ≥ 0, let Ωρ = Ω\ωρ be the perturbed domain by the insertion of a small
hole ωρ = x0 + ρω, where x0 ∈ Ω and ω is a fixed bounded domain of IR2 containing the origin. The
topological sensitivity theory provides an asymptotic expansion of j when ρ tends to zero. It takes
the general form

j(Ωρ) − j(Ω) = f(ρ)G(x0) + ◦(f(ρ)), (1)

where f(ρ) is an explicit positive function going to zero with ρ and G(x0) is called the topological
gradient at point x0. Then to minimize the criterion j, we have to insert small holes at points where
g is negative. Using this gradient type information, it is possible to build fast algorithms. In most
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applications, a satisfying approximation of the optimal solution is reached at the first iteration of the
optimization process. A topological sensitivity framework allowing to obtain such an expansion for
general cost functions has been proposed in the work of Masmoudi [24, 5].

We recall that a classical way to restore an image u from its noisy version v defined in a domain
Ω ⊂ IR2 is to solve the following PDE problem



−div (c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(2)

where c is a small positive constant, ∂n denotes the normal derivative and n is the outward unit normal
to ∂Ω. This method is well known to give poor results: it blurs important structures like edges. In
order to improve this method, nonlinear isotropic and anisotropic methods were introduced, we can
cite here the work of Perona and Malik [28], Catté et al. [15] and more recently Weickert [38, 37] and
Aubert [8].

In topological gradient approach, c takes only two values: c0 in the smooth part of the image and
a small value ǫ on edges. For this reason, classical nonlinear diffusive approaches, where c takes all
the values of the interval [ǫ, c0], could be seen as a relaxation of our method. By enlarging the set
of admissible solutions, relaxation increases the instability of the restoration process and this could
explain why our method is so efficient.

Then, this paper is concerned with the problem of classifying an image using n predefined (super-
vised classification) classes Ci, 1 ≤ i ≤ n, by choosing the grey or color level intensity as a classifier.
Let us first recall the general mathematical formulation of image classification problem, which consists
to find a regular and homogeneous partition of Ω. A partitionning of Ω consists in searching for a
family of open sets {Ωi}i=1,..,n

, such that Ωi ∩Ωj = ∅ if i 6= j, and Ω = ∪n
i=1Ωi ∪ Γ. Γ is the union of

all interfaces between two different subsets: Γ = ∪i6=jΓij where Γij represents the interface between Ωi

and Ωj . A regular partition means that Γ is of minimal length and an homogeneous partition implies
that each set Ωi is homogeneous with respect to the grey level intensity criterion.

Many classification models have been studied and tested on synthetic and real images in image
processing literature, and results are more or less comparative taking account of the complexity of
algorithms suggested and/or the cost of operations defined. We can cite here some models enough
used like the structural approach by regions growth [27], the stochastic approaches [13, 14] and the
variational approaches which are based on various strategies like level set formulations, the Mumford-
Shah functionnal, active contours and geodesic active contours methods or wavelet transforms[8, 25,
30, 31, 26, 10, 7, 39].

In section 2, we review the classical approaches for image restoration. The nonlinear diffusion
method according to Aubert et al. [8, 9] is in particular presented. The topological gradient method
[24] and its application to image restoration is developed in section 3 and then compared with the
nonlinear diffusion approach in section 4, in which several numerical experiments show the efficiency of
our method. In section 5, we remind the variational classification formulation when the grey or color
levels are given, and we present an application of the topological gradient to this problem. We present
then in section 6 a restoration-based preprocessing algorithm for the classification problem. Several
numerical experiments are given. We finally present in section 7 a way to solve the unsupervised
classification problem (i.e. when the levels are not given) by determining in an optimal way the
number of levels and their values. A conclusion ends this paper, recalling the main results of this work
and presenting developments under progress.

2 Classical approaches for image restoration

2.1 Linear approach

Let K be the canonical embedding operator defined by

K : H1(Ω) −→ L2(Ω),
u 7−→ Ku = u

(3)

For a given v ∈ L2(Ω), we consider the problem

Ku = v, (4)

which can be formulated as a minimization problem

inf
u∈H1(Ω)

Z

Ω

|v −Ku|2 dx. (5)
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A necessary optimality condition of (5) is given by

K∗Ku = K∗v, (6)

where K∗ is the adjoint of K. Solving (6) is in general an ill-posed problem. The classical idea is to
apply the Tikhonov regularization [18, 35]

K∗Ku+ cu = K∗v, (7)

where c is a small constant called the regularization coefficient. Problems (2) and (7) are equivalent.
The variational formulation associated to problem (7) is given by

(u,w)
L2(Ω) + c

Z

Ω

∇u∇wdx = (v, w)
L2(Ω) . (8)

2.2 Nonlinear diffusion method

In order to avoid the blurring drawback of linear diffusion approach, non linear approaches has been
considered. The basic idea is to reduce the diffusion coefficient around the edges of the image. In
other words, the diffusion coefficient is a decreasing function of |∇u|. The first non linear technique
due to Perona and Malik [28] is not suitable for very noisy images, the problem is that noise cannot be
removed along edges. In order to achieve this, other models using isotropic and anisotropic techniques
are proposed. In this section, we present a model proposed by Aubert and Vese [9, 8]. To study the
influence of the smoothing term, the authors consider the following energy

E(u) =
1

2

Z

Ω

|v − u|2 dx+ λ

Z

Ω

ψ(|∇u|) dx. (9)

The first term in E(u) measures the misfit to data and the second is a smoothing term. The parameter
λ is a positive constant. Note that if we choose ψ(|∇u|) = |∇u|2, we obtain the linear approach.

If E(u) has a minimizer u, then it satisfies the following Euler-Lagrange equation

−λ div(ψ′(|∇u|)
∇u

|∇u|
) + u = v. (10)

We summarize the assumptions imposed on the function ψ, as follows

• ψ′(0) = 0 and lim
t→0+

ψ′(t)

t
= ψ′′(0) > 0: isotropic smoothing condition at locations where the

variations of the intensity are weak (low gradients).

• lim
t→+∞

ψ′(t)

t
= lim

t→+∞
ψ′′(t) = 0 and lim

t→+∞

ψ′′(t)

ψ′(t)/t
= 0: anisotropic smoothing condition at

locations such as edges (high gradients).

• lim
t→+∞

ψ(t) = +∞: condition to prove that the model is well posed mathematically.

We refer the reader to Aubert and Vese [8, 9] for more details about these conditions imposed to
the function ψ and for the existence and uniqueness of the solution for the minimization problem (9).
However, we note that many functions ψ satisfying the preceding conditions can be found in literature.
For our numerical experiences, we considered the function

ψ(t) = 2
p

1 + t2 − 2 (11)

and λ = 10.
We present in Figure 2.2 numerical tests for both the linear diffusion and the non linear diffusion

methods, such that a gaussian noise (corresponding to a signal to noise ratio SNR=17) is added to
the original image. One may remark that for the non linear approach, convergence is achieved after
53 iterations.

3 A topological gradient approach for image restoration

In this section, we use the topological gradient as a tool for detecting edges for image restoration.
First, we recall the principle of the topological asymptotic expansion adapted to our case, according
to Masmoudi et al [24, 5].
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Figure 1: Top left: initial Lena image (512×512 pixels), top right: noisy image (SNR=17), down left:
restored image using the linear diffusion method (SNR=23), down right: restored image using the nonlinear
diffusion method (SNR=27).

Let Ω be an open bounded domain of IR2. For v a given function in L2(Ω), the initial problem is
defined on the safe domain and reads as follows: find u ∈ H1(Ω) such that



−div (c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(12)

where n denotes the outward unit normal to ∂Ω and c is a constant function.
For a given x0 ∈ Ω and a small ρ ≥ 0, let us now consider Ωρ = Ω\σρ the perturbed domain by the
insertion of a crack σρ = x0 + ρσ(n), where x0 ∈ Ω, σ(n) is a straight crack, and n a unit vector
normal to the crack. Then, the new solution uρ ∈ H1(Ωρ) satisfies



−div (c∇uρ) + uρ = v in Ωρ,
∂nuρ = 0 on ∂Ωρ,

(13)

The variation formulation of problem 13 is given by



Find uρ ∈ H1(Ωρ) such that
aρ(uρ, w) = lρ(w) ∀w ∈ H1(Ωρ),

(14)

where aρ is the following bilinear form, defined on H1(Ωρ)
2 by

aρ(u,w) =

Z

Ωρ

(c∇u∇w + uw) dx, (15)

and lρ is the linear form defined on L2(Ωρ) by

lρ(w) =

Z

Ωρ

vw dx. (16)

Edge detection is equivalent to look for a subdomain of Ω where the energy is small. So our goal
is to minimize the energy norm outside edges

j(ρ) = Jρ(uρ) =

Z

Ωρ

‖∇uρ‖
2. (17)
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To study the asymptotic behaviour when ρ tends to zero of the criterion j(ρ) = Jρ(uρ), and in
order to apply the topological asymptotic theory, we suppose that there exist a function f : IR+ → IR+

going to zero with ρ, a linear form Lρ, and four real numbers δJ1, δJ2, δa and δl such that the following
assumptions are satisfied:

1. Jρ (uρ) − Jρ(u0) = Lρ(uρ − u0) + f(ρ)δJ1 + ◦(f(ρ)),

2. Jρ (u0) − J0(u0) = f(ρ)δJ2 + ◦(f(ρ)).

3. (aρ − a0) (u0, vρ) = f(ρ)δa+ ◦(f(ρ)),

4. (lρ − l0) (vρ) = f(ρ)δl + ◦(f(ρ)),

where vρ is the solution to the adjoint problem

aρ(w, vρ) = −Lρ(w) ∀w ∈ H1(Ωρ). (18)

It is supposed that for all ρ ≥ 0, problem (18) has a unique solution. This expression is only used
for the theoretical analysis part, but numerically we just consider the function v0 the adjoint state,
for the case ρ = 0. Then, if the previous hypothesis are satisfied, the asymptotic expansion of j(ρ) is
given by

j(ρ) = j(0) + f(ρ)(δa− δl + δJ1 + δJ2) + ◦(f(ρ)). (19)

In our case, the cost function j has the following asymptotic expansion

j(ρ) − j(0) = ρ2G(x0, n) + ◦(ρ2), (20)

with
G(x0, n) = −π(∇u0(x0).n)(∇v0(x0).n) − π|∇u0(x0).n|

2. (21)

and where v0 is the solution to the adjoint problem



−div(c∇v0) + v0 = −∂uJ(u) in Ω,
∂nv0 = 0 on ∂Ω.

(22)

The topological gradient could be written as

G(x, n) =< M(x)n, n >, (23)

where M(x) is the 2 × 2 symmetric matrix defined by

M(x) = −π
∇u0(x)∇v0(x)

T + ∇v0(x)∇u0(x)
T

2
− π∇u0(x)∇u0(x)

T . (24)

For a given x, G(x, n) takes its minimal value when n is the eigenvector associated to the lowest
eigenvalue λmin of M . This value will be considered as the topological gradient associated to the
optimal orientation of the crack σρ(n).

4 Numerical applications

4.1 Grey level images

The goal of this section is to prove that the topological gradient method is able to denoise an image and
preserve features such as edges. In order to avoid blurring edges, non linear isotropic and anisotropic
methods are proposed [28, 15, 16, 8, 38]. Hence, due to this large number of approaches, it clearly
appears that it is important to compare our experimental results with techniques already proposed
in literature. Particularly, we compare our method with both the classical linear diffusion and the
nonlinear diffusion methods tested previously.

Our algorithm consists in inserting small heterogeneities in regions where the topological gradient
is smaller than a given threshold α < 0. These regions are the edges ωρ of the image. Our method
can be interpreted as a linear isotropic diffusion scheme. The algorithm is as follows

• Initialization : c = c0.

• Calculation of u0 and v0 : solutions of the direct (13) and adjoint (22) problems.

• Computation of the 2× 2 matrix M and its lowest eigenvalue λmin at each point of the domain.

• Set

c1 =



ε if x ∈ Ω such that λmin < α < 0, ε > 0
c0 elsewhere.

(25)
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Figure 2: Top left: initial Lena image (512×512 pixels), top right: noisy image (SNR=17), down left:
restored image using an homogeneous diffusion method (SNR=27), down right: restored image using
topological gradient method (SNR=29).
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Figure 3: Top: zoom of the original (left) and noisy (right) images, down: zoom of the restored images
using the non linear diffusion method (left) and the topological gradient method (right).
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Figure 4: Left: error on restored Lena image by linear diffusion method, middle: error on restored Lena
image by non linear diffusion method, right: error on restored Lena image by topological gradient method
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methods.

• Calculation of u1 solution to problem (13) using c1.

¿From the numerical point of view, it is more convenient to simulate the cracks by a small value of c.
Figure 2 shows the restored Lena image using topological gradient approach: the original image

(512× 512 pixels), the perturbed image which is still obtained with an additive gaussian noise (with a
SNR equal to 17), the restored image with an homogeneous diffusion method, and the restored image
using the topological gradient method.

Figure 3 shows a zoom of the previous images, i.e. Lena image restored by both the nonlinear
diffusion method and the topological gradient method.

In order to distinguish the differences obtained between the restored images using these different
approaches (linear diffusion, non linear diffusion and topological gradient), we highlight the comparison
by showing the error between the original image and the restored image for the three approaches. These
numerical results are given in Figure 4.

To allow a better comparison from numerical point of view between the topological gradient ap-
proach and the non linear diffusion approach, the graphs of computation times according to the size
of the image for both approaches using GE (Gauss Elimination) and PCG (Preconditioned Conjugate
Gradient) methods, are given in Figure 5. The DCT (Discrete Cosine Transform) is used as a pre-
conditioner for the conjugate gradient. These computation times are represented using a logarithmic
scale for both X and Y axis. Figure 5 illustrates the efficiency of the topological gradient approach
using the PCG method, in fact according to our algorithm, c is a constant in step 2 and c is equal to
a constant except on the edges, as given in step 4. This makes the preconditioning by the DCT very
efficient in our case and not suitable for the non linear diffusion approach.
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Figure 6: Original image (left), noised image (SNR=10) (center), and restored image by topological
gradient (SNR=23) (right).

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

Figure 7: Difference between the original and noised images (left) ; Error on the restored image by
topological gradient (right).

4.2 Color images

The restoration algorithm for color images is almost the same. We first decompose the color image v in
the HSV (Hue-Saturation-Value) color space, which provides 3 new images v1, v2 and v3 corresponding
to the three constituent components of the original image in this space. Each of these new images can
be seen as a grey level image as it represents only one scalar component of the image. We then simply
apply the previous restoration algorithm to each of these three grey level images, and we simply obtain
the restored color image by reassembling the three restored components.

Figure 6 presents this restoration algorithm for a color image. One can notice that the performance
is almost the same as for the grey level images. Figure 7 shows the reduction of the noise before and
after the restoration process (the scale is the same for the two images).

5 Variational supervised classification formulation and

topological gradient approach

5.1 Without regularization

Let u0 be the original image defined on an open set Ω of R
2. We want to classify the image u0 using

n predefined classes Ci, 1 ≤ i ≤ n, and we choose the grey level intensity as a classifier. The goal of
image classification is then to find a partition of Ω in subsets {Ωi}i=1,..,n

, such that u0 is close to Ci

in Ωi. The classified image u will then be defined by

u(x) = Ci ∀x ∈ Ωi, (26)

where {Ωi}i=1,..,n
are defined by

Ωi =
n

x ∈ Ω;x belongs to the ith class
o

. (27)

The variational approach consists in defining a cost function measuring the root mean square
difference between the original image and the classified image

J ((Ωi)i=1,..,n) =
n

X

i=1

Z

Ωi

(u0(x) − Ci)
2 dx. (28)

8



20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) (b)

Figure 8: Original image (a) and 2-classes (C = {0; 255}) classified image obtained using the closest class

algorithm (b).

The minimization of J is easy, because for each point x ∈ Ω, we only have to find ix = arg min{|u0(x)−
Ci|; i = 1, .., n} and add x to subset Ωix . This can be called the closest class algorithm because each
pixel of the original image is assigned in the classified image to its closest class.

Figure 8-a shows the original 151× 151 image u0, using 256 grey levels: the grey level of a pixel is
an integer u0(x) ∈ {0; 255}. We have chosen C1 = 0 (black) and C2 = 255 (white). Figure 8-b shows
the computed image using the closest class algorithm.

5.2 With regularization

In order to obtain a classified image with smoother contours, we may add a regularization term to the
cost function

J ((Ωi)i=1,..,n) =

n
X

i=1

Z

Ωi

(u0(x) − Ci)
2 dx+

X

i6=j

|Γij |, (29)

where |Γij | , i 6= j represents the one-dimensional Hausdorff measure of Γij [8].
In order to solve this problem, variational models were proposed [30, 31]. The minimization of

J is no more easy to compute, the main difficulty comes from the fact that the unknowns are sets
and not variables. It is then possible to use the topological gradient theory to solve the regularized
classification problem.

5.3 Topological gradient for the image classification

The classification model that we propose is based on the topological gradient method [29]. We prove
that we can solve the regularised classification problem using topological optimization tools. In fact,
to assign each pixel of the original image to one of the classes Ci, 1 ≤ i ≤ n, it sufficies to suppose
first that all pixels are assigned to the same class, and then to find subsets of pixels that should be
reassigned to the other classes.

The initial guess will be
u = Cn in Ω, (30)

and then, perturbing the domain with n− 1 small cracks, we will have to solve

u =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

C1 in ωρ1
,

...
Cn−1 in ωρn−1

,

Cn in Ω\(
n−1
[

i=1

ωρi
),

(31)

where ωρi
is the subset of pixels that should be reassigned to the class Ci.
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We first work with the unregularized cost function, measuring the root mean square difference
between the solution uρ of (30) and the original image u0

Jρ(u) =

Z

Ω

|u− u0|
2 dx, (32)

and we can then define a cost function depending only on each ρi

j(ρ) = Jρ(uρ) =

Z

Ω

|uρ − u0|
2 dx, (33)

where uρ is the solution of (31).

5.4 Variation of the cost function

In the present case, the topological expansion analysis gives no real improvement compared to a
classical minimization approach because it is possible to compute exactly the variation of the cost
function. It is indeed possible to study the variations of Jρ with respect to each ρi, and use these
variations to define a topological gradient for each ρi, 1 ≤ i ≤ n− 1. For each i, we have

gi(x) = (Cn − Ci)
2 − 2(Cn − Ci)(Cn − u0(x)), (34)

if x has never been reassigned (otherwise, gi(x) is set equal to 0).
The implementation of this method is quite easy, because we only have to compute each gi, which is

an affine function of the original image u0, and then find the pixels x where gi(x) < 0 (or gi(x) < −ε),
in order to minimize the cost function J , and reassign them to the corresponding class.

The algorithm is then the following

• for each 1 ≤ i ≤ n− 1, compute gi(x) for each pixel x,

• for each pixel x, find i0 so that gi0(x) ≤ gi(x) ∀i,

• if gi0(x) < 0 (or < −ε), reassign x to the class Ci0 .

It is easy to prove that, at the end of the algorithm, each pixel x will be assigned to its closest
class, i.e. to the class Ci0 with i0 = arg min{|Ci − u(x)|2}.

If we add a regularization term to the cost function, the variation of the cost function upon
reassigning the pixel x to the class Ci is

δJ̃i(x) =
R

ωρi

(Cn − Ci)(2u0(x) − Ci − Cn) dx (35)

+ α(|∂(Ωi ∪ ωρi
)| − |∂Ωi|),

and the pixel x is still reassigned to the class which minimizes mostly the cost function.
Let us remark that (35) is not an asymptotic expansion, because the first part of (35) is proportional

to ρ2 whereas the second one is proportional to ρ. Hence, if ρ→ 0, only the second term subsists. In
our problem, ρ will be set so that the hole ρB is one pixel, and then (35) is valid for this given value
of ρ.

Because of the regularization term, it is important to run again the algorithm with the classified
image as initial guess, because some pixels which had positive topological gradients may have negative
ones at next iteration. If for example all neighbours of x have been reassigned to class i but not x,
which is still assigned to the class Cn, at the next iteration, the regularization term in δJ̃i(x) may be
strongly negative, and then x may be reassigned to the class Ci. So, we have to iterate the algorithm
until all functional variations δJ̃i are everywhere non negative.

5.5 Numerical results

Figure 9-a shows the computed image using the topological gradient algorithm with the unregularized
cost function and n = 2 classes (C = {0; 255}). This obviously gives the same result as the closest
class algorithm because the asymptotic expansion of the unregularized cost function is indeed an exact
variation. Figure 9-b shows the result of the topological gradient algorithm with the regularized cost
function. We can clearly see that the resulting image has smoother contours and fewer isolated points.

Figure 10 shows the same results as in figure 9 for 3 and 5 classes. The conclusions are obviously
the same.
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Figure 9: Two-classes classified images obtained using the topological gradient algorithm: unregularized
(a) and regularized (b).
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Figure 10: n-classes classified images obtained using the topological gradient algorithm: n = 3 and
C = {34; 112; 165} (top) and n = 5 and C = {29; 71; 117; 146; 184} (bottom) ; unregularized (a) and
regularized (b).
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Figure 11: Two-classes classified image obtained using the topological gradient algorithm applied to the
new equation for smoothering (a) and then the closest class algorithm for classification (b).

6 A restoration-based preprocessing algorithm for image

classification

6.1 Presentation of the algorithm

Inspired by the work of Aubert et al. [31, 8] in which the authors propose a classification model
coupled with a restoration process, we propose in this section to use the topological gradient approach
applied to image restoration problem [23] for the regularized classificaton problem. It consists firstly
in an iteration of the topological asymptotic analysis for the image smoothering and secondly in the
closest class algorithm for its classification.

We consider the following equation



−div(c∇u) + u = u0 in Ω,
∂nu = 0 in Γ = ∂Ω,

(36)

but with c =
1

ε
in Ω1 and c = ε in Ωρ. Ωρ still represents the contours of the image. As ε is supposed

to be a small positive real number, if we are on a contour, c = ε and then u and u0 are almost the

same. But otherwise, c =
1

ε
and then the p.d.e. is nearly equivalent to ∆u = 0, which will provide a

really smooth image.

6.2 Numerical results for grey level images

Figure 11-a shows the computed image using the topological gradient algorithm applied to our new
equation. Figure 11-b shows the result of the closest class algorithm applied to figure 11-a with n = 2
classes (C = {0; 255}). Figure 11-b should be compared to figure 9-b. We can see that the smoothering
of contours is much more efficient in this case, and the computational cost of our latest algorithm is
exactly the same as the previous one (only one iteration of topological gradient computation).

Figure 12 allows one to compare the 5-classes (with C = {29; 71; 117; 146; 184}) classified images
computed with these different algorithms. This figure clearly shows that the last algorithm produces
much smoother contours than the previous one.

6.3 Color images

As in the restoration process, the last classification algorithm can be easily extended to color images.
We simply decompose the image in the HSV space, and deal separately with the three component
images. When these three images (which can be seen as grey level images) are classified, we obtain
the classified color image by recomposing the three classified component images.

Figure 13 shows the classification of a color image, using 40 color levels (whereas the original image
has 2563 different colors), without regularization and with regularization.
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Figure 12: Original image (a); 5-classes (C = {29; 71; 117; 146; 184}) classified images obtained using: the
closest class algorithm (no regularization) (b), the topological gradient method for the computation of the
exact variation of the cost function (with regularization) (c), and the topological method applied to the
improved restoration method (d).
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Figure 13: Original image (left), classified image without regularization (center), and regularized and
classified image (right).
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7 An extension to unsupervised classification

The unsupervised classification corresponds to a classification problem in which the classes are not
given. In this case, it is possible to determine them in an optimal way, still by using the topological
gradient method. The idea is to study the impact of changing the value of a class Ci := Ci + 1 or
Ci − 1 on the cost function. As in section 5, this variation can be exactly computed, and then, for
each class, if the variation is negative, we add (or substract, depending on which variation provides
the most negative variation) one to the value of the class. This algorithm has been applied in the
previous sections in order to determine the optimal value of the classes (for example, in figure 10, the
values of the 3 and 5 classes have been determined with this algorithm).

One may notice that this algorithm needs at least that the number of classes is known. But in
unsupervised classification, it is not the case. The idea is then to add another term in the cost function
defined in equation (28), measuring the number of classes. This can be seen as a regularization term,
because we usually don’t want to get too many classes. Without regularization, we have seen that the
subsets Ωi are uniquely defined, and then we can rewrite this cost function as a function of the (Ci):

J (n, (Ci)i=1...n) =
n

X

i=1

Z

Ωi

(u0 − Ci)
2 dx + α n, (37)

where the Ωi are defined as in subsection 5.1, and α is a positive regularization coefficient. It is then
possible to bound n as the two terms of the cost function are positive. We then propose an iterative
algorithm:

• we first assume that n = 1 and we determine the optimal value of the class (see previous
paragraph);

• while n is smaller than its upper bound, n := n+ 1 and we determine the optimal values of the
new n classes;

• if the value of the cost function at the optimum (with respect to (Ci)) is larger than the previous
optimal value (with n− 1 classes), stop.

This algorithm has been applied in figure 13 in order to find the optimal number of classes, and
their optimal values.

8 Conclusion

The topological gradient is a new method for image processing. It has been applied to image restoration
and the results obtained are very promising. The method is far more faster than classical variational
methods and the quality of the image is very good. We also presented a way to apply the topological
gradient to the optimal determining of the classes in unsupervised classification problem. The results
show that our method is still very efficient.

One of our main goals is now to extend these methods to videos, which can be considered as
three-dimensional images.
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