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Variational image decomposition

Let f be periodic with the fundamental domain
Ω = [−1

2 , 1
2 ]2 ⊂ R

2. For short notation, we write X for X(Ω).
A variational method for decomposing f into u + v is given
by an energy minimization problem

inf
(u,v)∈X1×X2

{K(u, v) = F1(u) + λF2(v) : f = u + v} , where

F1, F2 ≥ 0 are functionals on spaces of functions or
distributions X1, X2, respectively.

λ > 0 is a tuning parameter.

A good model for K is given by a choice of X1 and X2 so that

F1(u) and F2(v) are small.
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Mumford-Shah (1989)

inf
(u,v)∈SBV ×L2

{

∫

Ω\Ju

|∇u|2dx + αH1(Ju) + β‖v‖2
L2 , f = u + v

}

.

f ∈ L∞ ⊂ L2 is split into u ∈ SBV , a piecewise-smooth
function with its discontinuity set Ju composed of a
union of curves, and v = f − u ∈ L2 representing noise
or texture.

H1 denotes the 1-dimensional Hausdorff measure,

α, β > 0 are tuning parameters.

With the above notations, the first two terms in the above

energy compose F1(u), while the third term makes F2(v).
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Rudin-Osher-Fatemi (1992)

inf
(u,v)∈BV ×L2

{
∫

|∇u| dx + λ‖v‖2
L2 , f = u + v

}

,

∫

|∇u| dx denotes |u|BV ,

f ∈ L2 is split into u ∈ BV , a piecewise-smooth function
and v = f − u ∈ L2 representing noise or texture.

λ > 0 is a tuning parameter.

With the above notation, F1(u) = |u|BV , and F2(v) = ‖v‖2
L2 .

Replacing ‖v‖2
L2 with ‖v‖L1 was proposed by Cheon, Paran-

jpye, Vese and Osher as a Summer project, and further anal-

ysis by Chan and Esedoglu, Esedoglu and Vixie, and Allard.
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Meyer models (2001)

Remark: Oscillatory functions do not have small norms in L2.
In 2001, Y. Meyer proposed

inf
(u,v)∈BV ×X2

{

|u|BV + λ‖v‖X2
, f = u + v

}

.

Here X2 is either G, F , or E.
• The space G consists of distributions T which can be
written as

T = div(~g), ~g = (g1, g2) ∈ (L∞)2 , with

‖T‖G = inf

{∥

∥

∥

∥

√

(g1)2 + (g2)2
∥

∥

∥

∥

L∞

: T = div(~g), ~g ∈ (L∞)2
}

.
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Meyer (cont.)

• The space F consists of distributions T which can be
written as

T = div(~g), ~g = (g1, g2) ∈ (BMO)2 , with

‖T‖F = inf
{

‖g1‖BMO + ‖g2‖BMO : T = div(~g), ~g ∈ (BMO)2
}

.

We say that f belongs to BMO, if

‖f‖BMO = sup
Q⊂Ω

1

|Q|

∫

Q
|f − fQ| < ∞,

where Q ⊂ Ω is a square (with sides parallel with the axis).

Here fQ = |Q|−1
∫

Q f(x, y) denotes the mean value of f over

the square Q.
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Meyer (cont.)

• We say a generalize function T belongs to the space E if
it can be written as T = ∆g, such that

sup
|y|>0

‖g(. + y) − 2g(.) + g(. − y)‖L∞

|y|
< ∞.

Both G = div(L∞) and F = div(BMO) (as defined
previously) consist of first order differences of vector
fields in L∞ and BMO, respectively.

E (as defined above) consists of second order
differences of functions satisfying the Zygmund
condition.
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Approximating Meyer’s G-model

Vese-Osher (2003): model oscillatory components as first
order differences of vector fields in Lp, for 1 ≤ p < ∞.

inf
u,~g

{

|u|BV + µ‖f − u − ∂xg1 − ∂yg2‖
2
L2 + λ

∥

∥

∥

∥

√

g2
1 + g2

2

∥

∥

∥

∥

Lp

}

.

f ∈ L2 is decomposed into u + v + r, such that u ∈ BV ,
v = div(~g) ∈ div(Lp), and r = f − u − v ∈ L2 is a residual
which is negligible numerically for large µ.

µ, λ > 0 are tuning parameters.

Other motivating work on the G space includes Aujol et
al, Aubert and Aujol, S. Osher and O. Scherzer, among
others.
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Osher-Sole-Vese (2003)

From the standpoint of view of PDE, sometimes second
order differences are much more useful than first order
differences (a remark made by Zygmund).

From the point of view of image processing in the
PDE/variational approach, S. Osher, A. Sole, and L.
Vese were among the first to consider second order
differences. They model oscillatory components as
v = ∆g, where g ∈ Ḣ1

2 . I.e. v ∈ Ḣ−1
2 .

inf
u,v

{

|u|BV + λ‖∇(∆−1v)‖2
L2 , f = u + v

}

.

L. Linh and L. Vese (2005) recently considered
modeling oscillatory components as v ∈ Hs

2 , s ∈ R
−.
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Approximating Meyer’s F -model

• (Joint work with L. Vese), we considered a strictly convex
variational problem (motivated from Vese-Osher):

inf
u,~g

{

|u|BV + µ‖f − u − ∂xg1 − ∂yg2‖
2
L2 + λ [‖g1‖BMO + ‖g2‖BMO]

}

• An equivalent isotropic problem by setting ~g = ∇ · g, i.e.
v = ∆g (motivated from Osher-Sole-Vese),

inf
u,g

{

|u|BV + µ‖f − u − ∆g‖2
L2 + λ [‖gx‖BMO + ‖gy‖BMO]

}

• Here, f = u + v + r, where u ∈ BV , v = div(~g) = ∆g ∈ F ,

and r = f − u − v ∈ L2 is a residual. As µ → ∞, These

models approach Meyer’s F -model.
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v = ∆g is more preferable

f u1 u2 u3

v1+100 v2+100 v3+100

1) R-O-F decomposition (u1, v1), 2) Meyer’s F decomposition

(u2, v2) with v2 = div(~g), gi ∈ BMO, 3) Meyer’s F decompo-

sition (u3, v3) with v3 = ∆g, ∇g ∈ (BMO)2.
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Homogeneous Besov spaces

Consider the Cauchy-Poisson semi-group

Ptg(x) = (e−2πt|ξ|ĝ(ξ))∨(x), t > 0, and P0 = I.

Let α ∈ R, k ∈ N0 3 k > α 1 ≤ p ≤ ∞. We say g ∈ Ḃα
p,q if

‖g‖Ḃα
p,q

=

(

∫
∣

∣

∣

∣

tk−α

∥

∥

∥

∥

∂kPt

∂tk
g

∥

∥

∥

∥

Lp

∣

∣

∣

∣

q
dt

t

)1/q

< ∞, for q < ∞,

‖g‖Ḃα
p,∞

= sup
t≥0

{

tk−α

∥

∥

∥

∥

∂kPt

∂tk
g

∥

∥

∥

∥

Lp

}

< ∞, for q = ∞,

For −2 < α < 0 we choose k = 0, and k = 2 for 0 < α < 2.
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Homogeneous Besov space (cont.)

Denote Isv = (−∆)s/2(v) = ((2π|ξ|)sv̂(ξ))∨, We have

Is : Ḃα
p,q → Ḃα−s

p,q , isometrically (injectively).

Define τδf(x) = f(δx), δ > 0. We have

‖τδf‖Lp(Rn) = δ−
n

p ‖f‖Lp(Rn), and

‖τδf‖Ḃα
p,q(Rn) = δ−

n

p
+α‖f‖Ḃα

p,q(Rn), for all 1 ≤ p, q < ∞.

The following embedding holds,

Ḃα1

p,q1
(Rn) ⊂ Ḃα2

p,q2
(Rn),

if either 0 < α2 ≤ α1 < 2, or α1 = α2 and 1 ≤ q1 ≤ q2 ≤ ∞.
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Besov spaces for oscillatory components

• Meyer’s E-model corresponds to modeling

u ∈ BV, and v = ∆g, g ∈ Ḃ1
∞,∞. I.e. v ∈ Ḃ−1

∞,∞.

• (Joint work with J. Garnett and L. Vese) we consider
decomposing f = u + v, such that

u ∈ BV, and v = ∆g ∈ Ḃα−2
p,∞ , g ∈ Ḃα

p,∞, 0 < α < 2, 1 ≤ p ≤ ∞,

with the minimization problems

infu,g

{

Ja(u, g) = |u|BV + µ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

p,∞

}

infu

{

Je(u) = |u|BV + λ‖f − u‖Ḃα−2
p,∞

}
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Numerical computation of Ja, p < ∞

Ja(u, g) = |u|BV + µ ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

p,∞
,

=

∫

Ω
|∇u| + µ

∫

Ω
|f − u − ∆g|2 + λ sup

t>0
‖Kα

t ∗ g‖Lp ,

where Kα
t = t2−α ∂2Pt

∂t2 = t2−α
(

(2π|ξ|)2e−2πt|ξ|
)∨

.

In practice, we consider only a discrete set
{

ti = 2.5τ i : τ = 0.9, i = 1, ..., N = 150
}

.

These ti’s are chosen so that discretely Pt1(x) is a constant

and PtN
(x) approximates the Dirac delta function.
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Algorithm

Given an initial guess (u0, g0).

Compute t̄0 = argmaxt∈{t1,...,tN} ‖K
α
t ∗ g0‖Lp .

Suppose (un, gn, t̄n) is known. Compute (un+1, gn+1) via
(

∂Ja

∂u
=

)

, 0 = −∇ ·

(

∇un+1

|∇un|

)

− 2µ(f − un+1 − ∆gn)

(

∂Ja

∂g
=

)

, 0 = −2µ∆(f − un+1 − ∆gn+1)+

λ
∥

∥Kα
t̄n
∗ gn

∥

∥

1−p

Lp
Kα

t̄n
∗
(

∣

∣Kα
t̄n
∗ gn

∣

∣

p−2
Kα

t̄ ∗ gn

)

Suppose t̄n = tk. Compute
t̄n+1 = argmaxt∈{tk−1,tk,tk+1} ‖K

α
t ∗ gn+1‖Lp . Continue...
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Numerical computation of Ja, p = ∞

Ja(u, g) = |u|BV + µ ‖f − u − ∆g‖2
L2 + λ‖g‖Ḃα

∞,∞
,

=

∫

Ω
|∇u| + µ

∫

Ω
|f − u − ∆g|2 + λ sup

t>0,h∈L1

〈Kα
t ∗ g, h〉

‖h‖L1

.

• Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

h̄n = argmaxh∈L1

〈

Kα
t̄n
∗ gn, h

〉

‖h‖L1

, via

hτ =
Kα

t̄ ∗ g

‖h‖L1

−

〈

Kα
t̄ ∗ g, h

〉

‖h‖2
L1

h

|h|
.
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Numerical computation of Je, p < ∞

Je(u) = |u|BV + λ‖f − u‖Ḃα−2
p,∞

=

∫

Ω
|∇u| + λ sup

t>0
‖Hα

t ∗ (f − u)‖Lp ,

where Hα
t = t2−αPt = t2−α

(

e−2πt|ξ|
)∨

.

Suppose (un, t̄n) is known. Compute (un+1, tn+1) via

•

(

∂Je

∂u
=

)

,
un+1 − un

∆τ
= ∇ ·

(

∇un+1

|∇un|

)

+

λ
∥

∥Hα
t̄n
∗ (f − un)

∥

∥

1−p

Lp
Hα

t̄n
∗
(

|Hα
t̄n
∗ (f − un)|p−2Hα

t̄n
∗ (f − un)

)

.

• tn+1 = argmaxt∈{tk−1,tk=t̄n,tk+1} ‖H
α
t ∗ (f − un+1)‖Lp .
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Numerical results

f
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Numerical results (cont.)

u f−u+100

A decomposition using Ja with α = 1.5, p = 1, µ = 1, and

λ = 1e − 04.
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Numerical results (cont.)

u f−u+100

A decomposition using Ja with α = 1.0, p = 1, µ = 1, and

λ = 3e − 03.
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Numerical results (cont.)

u f−u+100

A decomposition using Ja with α = 0.5, p = 1, µ = 1, and

λ = 0.5.
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Numerical results (cont.)

u f−u+100

A decomposition using Ja with α = 0.1, p = 1, µ = 1, and

λ = 0.5.
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Numerical results (cont.)

u f−u+100

A decomposition using Ja with α = 1, p = ∞, µ = 10, and

λ = 1.
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Numerical results (cont.)

u f−u+100

A decomposition using Je with α = 1, p = 1, λ = 1500.
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Thank You!
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