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Outline

-

1. Variational Image Decomposition.

2. Motivation.
® Mumford-Shah and Rudin-Osher-Fatemi models.
# Meyer Models with the spaces

G =div(L™), F =div(BMO), E = B ..

#® \ese-Osher’s approximation of Meyer G-model.

® Osher-Sole-Vese model with H~1.
# Approximation to Meyer F-model.

3. Modeling oscillatory components with Besov spaces.
4. Numerical results.
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Variational Iimage decomposition

o N

Let f be periodic with the fundamental domain

() = [—3, ]2 C R2. For short notation, we write X for X ().

A variational method for decomposing f into « + v IS given
by an energy minimization problem

inf {K(u,v) = Fi(u) + A\l5(v) : f =u+ v}, where
(u,v)EX1 X X2

#® [, F, > 0 are functionals on spaces of functions or
distributions X, X5, respectively.

# )\ > (Is atuning parameter.

A good model for K is given by a choice of X; and X5 so that

|
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Fi(u) and Fy(v) are small.

.



Mumford-Shah (1989)
B -

. f v 2d Hl Ju 22’ _ |
(u,v)engpr{/Q\Ju ul*dz + oH (Ju) + Bllvlize, f U—|—U}

® fc L® c L?issplitinto v € SBV, a piecewise-smooth
function with its discontinuity set J,, composed of a

union of curves, and v = f — u € L? representing noise
or texture.

#® H! denotes the 1-dimensional Hausdorff measure,
#® o, > 0 are tuning parameters.

With the above notations, the first two terms in the above
Lenergy compose Fi(u), while the third term makes Fs(v). J

Modeling Oscillatory components with Besov Spaces — p.4/27



Rudin-Osher-Fatemi (1992)
B -

inf {/\Vu| de + N|v||5., f= u+v},

(u,v)EBV x L?
® [ |Vu| dz denotes |u|py,

® f e L?is splitinto v € BV, a piecewise-smooth function
and v = f — u € L? representing noise or texture.

# )\ > (Is atuning parameter.

With the above notation, Fi(u) = |u|gy, and Fy(v) = |[v|/%..
Replacing ||v||%, with |jv| . was proposed by Cheon, Paran-
jpye, Vese and Osher as a Summer project, and further anal-

Lysis by Chan and Esedoglu, Esedoglu and Vixie, and AIIardJ
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Meyer models (2001)
-

Remark: Oscillatory functions do not have small norms in L?.
In 2001, Y. Meyer proposed

inf {\U\Bv+)\|]v||x2, f:u+v}.
(u,v)EBV x X3

Here X, Is either G, F, or .
e The space G consists of distributions 7" which can be
written as

T = div(g), §=(g1,92) € (L>)?, with

itle =int {|lo? + @) 7= aiv@, g 12,

o |
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Meyer (cont.)

o N

e The space F' consists of distributions 7" which can be
written as

T =div(g), 7= (g1,¢2) € (BMO)?*, with

| Tl = inf {{lg1]Bro + g2l Bmo = T = div(g), § € (BMO)?*}.
We say that f belongs to BMO, if

1
Ifllssi0 = sup = /Q f — fol < oo,

QC)

where () C Q) Is a square (with sides parallel with the axis).

Here fo = Q]! fQ f(x,y) denotes the mean value of f over

Lthe square (). J
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Meyer (cont.)
B -

e WWe say a generalize function 7" belongs to the space FE if
It can be written as T = Ag, such that

sup lg(- +y) —29(.) + 9(. —y)|lL=

< 0
y[>0 Y

# Both G =div(L*®) and F' = div(BMO) (as defined
previously) consist of first order differences of vector
fields in L°° and BMO, respectively.

# [ (as defined above) consists of second order
differences of functions satisfying the Zygmund
condition.

o |
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Approximating Meyer’s (G-model
-

Vese-Osher (2003): model oscillatory components as first
order differences of vector fields in L?, for 1 < p < oc.
B

® e L?is decomposed into « + v + r, such that v € BV,
v =div(§) e div(L?),and r = f —u — v € L? is a residual
which is negligible numerically for large L.

inf {\u\Bv + pllf = u— Ozg1 — Bygall7s + A H\/g% + 95

® 1, A > 0 are tuning parameters.

# Other motivating work on the G space includes Aujol et
al, Aubert and Aujol, S. Osher and O. Scherzer, among
others.

|
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Osher-Sole-Vese (2003)
-

# From the standpoint of view of PDE, sometimes secondT
order differences are much more useful than first order
differences (a remark made by Zygmund).

# From the point of view of image processing in the
PDE/variational approach, S. Osher, A. Sole, and L.
Vese were among the first to consider second order
differences. They model oscillatory components as

v=Ag,where g c Hi. l.e.ve Hy"

inf {[ulpv + AIV(AT )L, f=u+v}.

# L. LinhandL. Vese (2005) recently considered
modeling oscillatory components as v € H5, s € R™.

o |
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Approximating Meyer’'s F-model

o N

e (Joint work with L. vese), we considered a strictly convex
variational problem (motivated from Vese-Osher):

%Lbflgi {ulpy + pllf —u—0z01 — Oyg2ll72 + M1l smo + g2l Bamo]}

e An equivalent isotropic problem by setting g =V - g, I.e.
v = Ag (motivated from Osher-Sole-Vese),

inf {lulpv + pllf — v — Agllz> + MllgzllBrro + llgyll Brro] }

e Here, f =u+v+r,whereu € BV, v =div(g) = Ag € F,
and r = f —u —v € L? is aresidual. As 1 — oo, These

Lmodels approach Meyer’s f-model. J
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v = AgIismorepreferable

v1+100 v2+100

1) R-O-F decomposition (u1,v1), 2) Meyer’'s F' decomposition
(u2,v2) With vo = div(g), g; € BMO, 3) Meyer's F' decompo-
\_sition (u3,v3) With v3 = Ag, Vg € (BMO)?. J
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Homogeneous Besov spaces

o N

Consider the Cauchy-Poisson semi-group
Pig(z) = (e 2"l 5())Y(2), t >0, and Py = I.

Leta €R, keNy 2k>al<p<oco. Wesayg e BY, if

1/q
o |[0F P Tt
Hg”B&q — t otk g . + < oo, for g < oo,
O~ P, }
.. =sup<thi < 00, for ¢ = oo,
lol g, = sup {1 | Gt

For -2 <a<Owechoosek=0,andk=2for0 < a < 2.

o |
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Homogeneous Besov space (cont.)

-

Denote I,v = (—A)%2(v) = ((2n]€])%6(€))", We have
Is: By, — B,/ isometrically (injectively).

Define 75 f(x) = f(dx), 6 > 0. We have
|7 £l porey = 6711 fll Lo ey, @nd
175/ 113y = 6771 g ey for @ll 1< pg < oo,
The following embedding holds,

Bo (R) C B2

p,q1 p,q2 (Rn)7

L If either 0 < oy < a7 < 2, Or @1 = a9 and 1SQ1§C]2§OO.J
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Besov spaces for oscillatory components
- -

e Meyer’'s E-model corresponds to modeling
uw€ BV, andv = Ay, g€ B, . l.e.ve B

e (Joint work with J. Garnett and L. Vese) we consider
decomposing f = u + v, such that

u € BV, andv:AgEBo‘_2,gEB]§ioo,O<a<2,1§p§oo,

P,
with the minimization problems

> infy g {Tu(u.9) = fuloy + S —u— Al + Mallg, )

® inf, {je(u) = Julgy + A f — uHB&OOQ}

o |
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Numerical computation of ,, p < oo

o N

2
Ja(u;9) = ulpy + pllf —u—=Aglze + Mgl g .

:/Q\vuw/Q\f—u_AgP+Asupqu*guLp,

t>0

V

where K¢ = 2~ &L — 42~ ((2w\§|)26—2m’5‘)

In practice, we consider only a discrete set

{t;=257": 7=09,i=1,..,N=150}.

These t;’s are chosen so that discretely P, (z) Is a constant

|
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and P, (x) approximates the Dirac delta function.



Algorithm
- -

# Given an initial guess (ug, go)-

» Compute tp = argmaX,ce;, o1 1K * goll 1o

® SUuppose (un, gn,ty) IS known. Compute (w11, gne1) Via

NS B B vun—l—l

0T
( g :> , 0= =2pA(f — un+1 — Agnt1)+

MK gol| 7P KE (\Kg L *gn)

#® Suppose ¢, = t;,. Compute
B tny1 = ArgMaX,cry, 4 iy 1K * o] o CONtINUE. ..

|
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Numerical computation of 7,, p = oc

o N

2
Ja(u,g) = |ulpy + pllf —u—Agllze + Mgl g .

K xq,h
:/\Vu\+u/\f—u—Ag\2+)\ sup K7 x g >
Q Q >0,hert IRl

e Algorithm: The steps are the same as in the previous case,
but now at each iteration we need to compute

) <Kf‘ ¥ g, h>
hy, = argmax ;.
12l

. Via

" _ Kfxg (Kpxgh) h

| 17| [l |
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Numerical computation of 7., p < oc

o N

Te(w) = [ul gy + Allf — ull gos

Vau| + Asup | H" * (f —u)llze,
Q t>0

V
where H® =t~ p, = 2= (6_27Tt|§|) .

Suppose (un,,t,) is known. Compute (uyy1,t,+1) Via

0Je B Un+1 — Un V41
.((%L _>’ AT =V (\Vun\>+

)‘HHL% ||1 pHO‘ ( c *(f—un)\p_th%*(f—un)).

L. t”“"l — argmaXtE{tk_l,tszn,tk_|_1} HHLEX * (f o un"—l)HLP : J
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Numerical results

|
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Numerical results (cont.)

-

F—u+100

A decomposition using J, with o« = 1.5, p =1, o = 1, and
A= le — 04.
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Numerical results (cont.)

-

F—u+100

A decomposition using J, with o« = 1.0, p = 1, . = 1, and
A = 3e — 03.
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Numerical results (cont.)

-

F—u+100

A decomposition using 7, with o« = 0.5, p = 1, u = 1, and

A = 0.5.
L |



Numerical results (cont.)

-

F—u+100

A decomposition using J, with o« = 0.1, p = 1, . = 1, and

A = 0.5.
L |



Numerical results (cont.)

-

F—u+100

A decomposition using J, with o = 1, p = o0, ¢ = 10, and
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Numerical results (cont.)

-

F—u+100

A decomposition using J, with o =1, p = 1, A = 1500.
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Thank You!
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