
Some applications of L∞ constraints in image
processing

Pierre WEISS

Advisors : Laure Blanc-Féraud, Gilles Aubert
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Introduction

The framework

Many image restoration or decomposition algorithms are
formulated as an optimization process :

inf
u
{J(u) + λK (u, u0)}

Where :

J is a convex regularization functional.

K is a convex data term functional.

The functionals are often a mixture of Lp norms.

Notations

||u||lp = (
∑

i |ui |p2)1/p

||u||L∞ = maxi (|ui |2)
TV (u) = J1(u) =

∑
i |(∇u)i |2
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Introduction

Some examples

Gaussian convolution :

inf
u
{||(|∇u|)||2L2 + λ||u − u0||2L2}

Rudin-Osher-Fatemi or BV − L2 model :

inf
u
{TV (u) + λ||u − u0||2L2}

BV − L1 model (Alliney, Nikolova, Chan, Darbon,...) :

inf
u
{TV (u) + λ||u − u0||L1}
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Introduction

The L∞-norm appears naturally

Bounded noise.

Y. Meyer’s decomposition.

Morel and al’s axiomatic approach for image inpainting.

Though it is fewly used

Convex but not strictly convex functional → non uniqueness
of the solutions.

As the L1 norm, more difficult to handle numerically than L2

or Lp norms.

→ Aim of our work : exploit this norm for some tasks of image
processing.
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Introduction

General problem

In this talk, we focus on the following problem :

inf
u∈K

J(u) (1)

with K defined as :

K = {u ∈ Z , ||u − f ||∞ ≤ α} (2)

Z = Rn (space of images with n = nxny ) or Z = Rn × R2 (space
of vector fields).

→ In general, the solution is not unique.
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Introduction

Outline of the talk

1 A convergent algorithm : the projected subgradient descent.

2 Application to Y. Meyer’s model.

3 Application to BV − Lp problems.

4 Application to bounded noises denoising.
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Algorithmic considerations

Complexity of the problem

Objective find ū such that :

ū = arginfu∈KJ(u) (3)

J convex.

K compact, convex set.

Recall : the subdifferential of J at point u is defined by :

∂J(u) = {η, J(u)+ < η, (x − u) >Z≤ J(x)} (4)
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Algorithmic considerations
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Algorithmic considerations

Complexity of the problem

An algorithm generates :

A sequence {uk} that is suppose to approach ū.

An associated sequence of subgradients ∂J(uk) and of values
J(uk).

At iteration k : J̄k = mini∈{1,...,k} J(uk)

To have |J̄k − J̄| ≤ ε we need k ≥ bC
ε2 c
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Algorithmic considerations

An optimal algorithm

The projected subgradient descent is the following process :{
u0 ∈ K

uk+1 = ΠK (uk − tk
ηk

||ηk ||2
)

(5)

Here, tk > 0 for any k, ηk is any element of ∂J(uk).

Conditions of applicability

For efficiency of this method :

ΠK must be computable easily.

We need to be able to compute subgradients.
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Algorithmic considerations

An optimal algorithm

If J is Lipschitz continuous :

|J(u)− J(v)| ≤ L||u − v ||2 (6)

we can find a parameterless optimal sequence.
The projected subgradient descent with step :

tk =
D√
k

(7)

ensures that :

εk = J̄k − J̄ ≤ O(1)
LD√

k
(8)

where D is the Euclidean diameter of the set K .
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Algorithmic considerations

An optimal algorithm

If ∇J is Lipschitz continuous :

||∇J(u)−∇J(v)||2 ≤ L′||u − v ||2 (9)

then the projected gradient descent :{
u0 ∈ K
uk+1 = ΠK (uk − t∇J(uk))

(10)

with constant step t = 2
L′ ensures that :

d(uk ,U0) → 0 (11)
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A new numerical solution to Y. Meyer’s model

The idea of Y. Meyer

Decompose an image in two components f = u + v .

u contains the geometry

v contains texture and or noise
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A new numerical solution to Y. Meyer’s model

The G norm and the model

Decomposition model :

inf
u∈BV (Ω),v∈G ,f =u+v

{
∫

Ω
|Du|+ λ||v ||G}

With :

||v ||G = inf
g
{||g ||∞, div(g) = v , g = (g1, g2), |g | =

√
g2
1 + g2

2 }

Definition and properties

If fn ⇀ 0 then ||fn||G → 0

||sin(nx)||L2([0,2π]) = π ∀n ∈ N
||sin(nx)||G([0,2π]) = 1/n ∀n ∈ N
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A new numerical solution to Y. Meyer’s model

A new simple method

Use the change of variable u = f − div(g).

→ Avoids the need of a penalty optimization method to impose
f = u + v .

inf
u
{TV (u) + λ inf

g
{||g ||∞, div(g) = f − u}}

= inf
g
{TV (f − div(g)) + λ||g ||∞}

Y. Meyer’s problem is thus reformulated as :

inf
g ,||g ||∞≤α

{TV (f − div(g))}
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A new numerical solution to Y. Meyer’s model

Numerical details :

If J(g) = TV (f − div(g)), one element η of ∂J(g) is given by :

η = −∇div(Ψ) (12)

with :

(Ψ)i =

{
(∇(f−div(g))i
|(∇(f−div(g))i |2 if |(∇(f − div(g))i |2 > 0

0 otherwise
(13)
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A new numerical solution to Y. Meyer’s model

Numerical details :

The diameter of K is :

D = 2α
√

n (14)

J is L-Lipschitz with :

L ≤ 16
√

n (15)

The complexity of the projected subgradient descent is thus :

O(1)
16αn√

k
(16)

It increases linearly with α and n.
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After 4 seconds (100 iterations)
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After 5 minutes (7500 iterations)
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BV − lp models

The problem

We now focus on :

inf
u

λ|u − f |pp + TV (u) (17)

for p ∈ [1,∞[.

When p = 2, we get Rudin, Osher, Fatemi model.

When p = 1, we get BV − L1 model.

This problem is difficult, due to the non differentiability of TV .
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BV − lp models

Results of duality

For p ∈]1,∞[, the dual problem is defined by :

inf
{q∈Y ,||q||∞≤1}

< −div(q), f >X −β|div(q)|p
′

p′ (18)

The extremality relations lead to :

ū = f − βp′|div(q)|p′−2div(q̄) (19)

→ We can use a constant step projected gradient descent to solve
(18). In practice computation times decrease!
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BV − lp models

BV − L1 model and duality

The dual problem of the BV − L1 problem is given by :

inf
{q∈Y ,||q||∞≤1}

< −div(q), f >X +λ|div(q)|∞ (20)

The first extremality relations leads to :

(∇ū)i = |(∇ū)i |2q̄i (21)

⇒ q̄ represents the orientation of the level lines of ū.
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BV − lp models

BV − L1 model and duality

The second extremality relation leads to :

ūi = fi + λγi
(−div(q̄))i
|(div(q̄))i |

(22)

With γ = (γ1, γ2, ..., γn) ∈ Rn such that :


γi ≥ 0 ∀i ∈ {1, 2, ..., n}
|γ|1 = 1
γi = 0 if |(div(q̄))i | < |div(q̄)|∞

(23)

⇒ Many pixels remain unchanged!

→ But, numerical interest seems limited.
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BV − L∞ and MinSurface − L∞

The models studied

In this last part, we focus on two models. The first is :

inf
{u,|u−f |∞≤α}

TV (u) (24)

The second is the discretized hypersurface of u :

inf
{u,|u−f |∞≤α}

J2(u) (25)

J2(u) is the discretized hypersurface of u :

J2(u) :=
n∑

i=1

√
|∇u|22 + 1 (26)
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BV − L∞ and MinSurface − L∞

Uniform white noise a first justification

If f = u + b, with b ∼ U([−α, α]).

If we have a probability on the images P(u) = C exp(−J(u)).

Then the Maximum a posteriori (MAP) solution is given by :

inf
{u,|u−f |∞≤α}

J(u) (27)
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BV − L∞ and MinSurface − L∞

Quantization a second justification

If Q is the 2α quantization operator :

Q : R → 2αN
ui → 2αb u

2αc+ α
(28)

Then :

Q−1(f ) = {u, f = Q(u)} = {u, |u − f |∞ ≤ α} (29)

We can look for the solution of maximal probability in Q−1(f ).
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BV − L∞ and MinSurface − L∞

Uniqueness of the solution

The solution of J2 − L∞ is generally unique. The solution of
BV − L∞ is not.

inf
u,||u0−u||∞≤α

{
∫

Ω
|∇u|dx}

An example : u0 = x on [0, 1].
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BV − L∞ and MinSurface − L∞ on a quantized cone
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BV − L∞ and MinSurface − L∞ on a quantized image
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BV − L∞ and MinSurface − L∞ on a noisy image
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Conclusion

Summary

Proposed a general framework for l∞ constraints.

Showed that the projected subgradient is a really efficient
scheme for :

1 Y. Meyer’s problem.
2 BV − lp problems.
3 Denoising of bounded noises.

Future...

Deeper analysis of Y. Meyer’s model, to explain its witnessed
weaknesses.

Faster algorithms, based on specific properties of the
functions used.

Thanks a lot for your attention!
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How does Meyer’s model react to different frequencies?

Figure: Top : initial function sin(γx2), Middle : geometrical part given
by Y. Meyer’s model, bottom : oscillating part
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Comparison of different norms

Experimental tests by J.F. Aujol

Norms / Image Geometric Textured Noise

TV 64 600 1 000 000 2 100 000

L2 9 500 9 500 9 500

G 2 000 360 120
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