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Introduction
The framework

Many image restoration or decomposition algorithms are
formulated as an optimization process :

ir;f{J(u) + AK(u, up)}
Where :

@ J is a convex regularization functional.
@ K is a convex data term functional.

@ The functionals are often a mixture of LP norms.

o |lull = (32; luil5)MP

o [|u]|L= = max;(]ui|2)
o TV(u) = h(u) =3 [(Vu)il2




Introduction

Some examples

@ Gaussian convolution :
inf{[|(IVul)lIZ2 + Allu — wol[Z2}
o Rudin-Osher-Fatemi or BV — [? model :
inf{ TV () + Allu — wol?2}

e BV — L! model (Alliney, Nikolova, Chan, Darbon,...) :

ir;f{TV(u) + Alju — wol|p2}
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Introduction

The L*°-norm appears naturally

@ Bounded noise.
@ Y. Meyer's decomposition.

@ Morel and al's axiomatic approach for image inpainting.

Though it is fewly used

@ Convex but not strictly convex functional — non uniqueness
of the solutions.

@ As the L' norm, more difficult to handle numerically than L2
or LP norms.

— Aim of our work : exploit this norm for some tasks of image
processing.
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Introduction

General problem

In this talk, we focus on the following problem :

inf 1
inf J(u) (1)

with K defined as :
K={uveZllu—fllox<a} (2)

Z = R" (space of images with n = nyn,) or Z = R" x R? (space
of vector fields).

— In general, the solution is not unique.
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Introduction

Outline of the talk
© A convergent algorithm : the projected subgradient descent.

@ Application to Y. Meyer's model.
© Application to BV — LP problems.

© Application to bounded noises denoising.
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Algorithmic considerations

Complexity of the problem

Objective find & such that :

u = arginfyexJ(u) (3)

@ J convex.

@ K compact, convex set.
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Algorithmic considerations

Complexity of the problem

Objective find & such that :

u = arginfyckJ(u) (3)

@ J convex.

@ K compact, convex set.

Recall : the subdifferential of J at point u is defined by :

0J(u) = {n, J(u)+ <, (x —u) >z< J(x)} (4)
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Algorithmic considerations
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Algorithmic considerations

Complexity of the problem

An algorithm generates :

o A sequence {u*} that is suppose to approach .

@ An associated sequence of subgradients 9J(u*) and of values
J(uk).

o At iteration k : JK = MiNje(1,... k} J(u¥)
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Algorithmic considerations

Complexity of the problem

An algorithm generates :

o A sequence {u*} that is suppose to approach .

@ An associated sequence of subgradients 9J(u*) and of values
J(uk).
o At iteration k : JK = MiNje(1,... k} J(u¥)

To have |JK — J| < € we need k > LG%J
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Algorithmic considerations

An optimal algorithm

The projected subgradient descent is the following process :

W e K (5)
k
Ut = N (0 =t )

Here, t, > 0 for any k, n* is any element of 9J(u¥).

Conditions of applicability

For efficiency of this method :

@ [Nk must be computable easily.

@ We need to be able to compute subgradients.
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Algorithmic considerations

An optimal algorithm

If J is Lipschitz continuous :

[J(u) = J(V)| < L|Ju = v]]2 (6)

we can find a parameterless optimal sequence.
The projected subgradient descent with step :

b= 2 )
vk
ensures that :
- = LD
e =Jk-J< O(l)ﬁ (8)

where D is the Euclidean diameter of the set K.
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Algorithmic considerations

An optimal algorithm

If VJ is Lipschitz continuous :

IVI(u) = VI(V)ll2 < LlJu = v]]2 (9)

then the projected gradient descent :

ek
{ W = M (uk — £V (k) (10)

with constant step t = % ensures that :

d(u¥, Up) — 0 (11)
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A new numerical solution to Y. Meyer's model

The idea of Y. Meyer

Decompose an image in two components f = u + v.

@ u contains the geometry

@ v contains texture and or noise
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A new numerical solution to Y. Meyer's model

The G norm and the model

Decomposition model :

inf {/|DU|+/\||V||G}
+v JQ

ueBV(Q),veG,f=u
With :

vl = igf{\lgHw div(g) = v,g = (g1, &), || = \/&2 + g2}
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A new numerical solution to Y. Meyer's model

The G norm and the model

Decomposition model :

inf {/|DU|+)\||V||G}
+v JQ

ueBV(Q),veG,f=u
With :

vl = igf{\lgHw div(g) = v,g = (g1, &), || = \/&2 + g2}

Definition and properties

If f, — 0 then ||f,||c — O

o Hsin(nx)|],_z([072,r]) =7 VneN
(] Hsin(nx)HG([OQ,T]) = 1/[7 VneN
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A new numerical solution to Y. Meyer's model

A new simple method

Use the change of variable u = f — div(g).

— Avoids the need of a penalty optimization method to impose
f=u+v.

inf{TV () + Ainf{ gl oo, div(g) = £ — u}}
— inf{TV(f — div(g)) + Mlglloe}

Y. Meyer's problem is thus reformulated as :

g,ngiﬂfoga{w(f — div(g))}
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A new numerical solution to Y. Meyer's model

Numerical details :

If J(g) = TV(f — div(g)), one element n of dJ(g) is given by :

= —Vdiv(V) (12)

with :

(W), = { wir—avene i [(V(F—div(g))ila >0 (13)
0 otherwise
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A new numerical solution to Y. Meyer's model

Numerical details :
The diameter of K is :

D =2a+/n (14)
J is L-Lipschitz with :
L <16+/n (15)
The complexity of the projected subgradient descent is thus :
16an
o(1 16
=7 (16)

It increases linearly with o and n.
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After 4 seconds (100 iterations)
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BV — [P models

The problem

We now focus on :
inf Aju — f|5 + TV(u) (17)
u

for p € [1, 00].
@ When p = 2, we get Rudin, Osher, Fatemi model.
@ When p = 1, we get BV — ! model.

This problem is difficult, due to the non differentiability of TV.
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BV — [P models

Results of duality

For p €]1, 00|, the dual problem is defined by :

inf < —div(q), f >x —0|div p: 18
{geY[lgllo<1} (@), £ >x —Bldiv(q)], (18)

The extremality relations lead to :

o = f — Bp/|div(q)|” div(q) (19)

— We can use a constant step projected gradient descent to solve
(18). In practice computation times decrease!
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BV — [P models

BV — L' model and duality
The dual problem of the BV — L! problem is given by :

inf < —div(q), f >x +Aldiv(q)| 20
{ge Y llallo<1} (q), f >x +Aldiv(q)] (20)

The first extremality relations leads to :

(V)i = [(V)i]2gi (21)

= g represents the orientation of the level lines of u.
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BV — [P models

BV — L' model and duality

The second extremality relation leads to :
_ (=div(q))i
U= fi+ Mi———= (22)
|(div(@))il
With v = (71,72, ---, 7n) € R" such that :
vi > 0 Vie {1,2, a00; n}
v = 1 _ _ (23)
Vi = 0if [(div(g))i] < |div(g)|e
=> Many pixels remain unchanged!
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BV — [P models

BV — L' model and duality

The second extremality relation leads to :
_ (=div(g))i
Ui =fi + M7= 22
= @) 2
With v = (71,72, ---, 7n) € R" such that :
vi > 0 Vie {1,2, a00; n}
v = 1 _ _ (23)
vi = 0if |[(div(g))i] < |div(g)|eo
=> Many pixels remain unchanged!
— But, numerical interest seems limited.
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BV — L*° and MinSurface — L™

The models studied

In this last part, we focus on two models. The first is :

inf TV(u 24
L (u) (24)

The second is the discretized hypersurface of v :
inf Jo(u) (25)

{u,lu=floo<a}

Jo(u) is the discretized hypersurface of u :

S(u) = 4/[Vuld+1 (26)
i=1
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BV — L*° and MinSurface — L™

Uniform white noise a first justification

If f =u+ b, with b~ U([—a,q]).

If we have a probability on the images P(u) = C exp(—J(u)).

Then the Maximum a posteriori (MAP) solution is given by :

inf  J(u 27
L e (27)

V.
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BV — L*° and MinSurface — L™

Quantization a second justification

If Q is the 2cx quantization operator :

Q : R — 2aN

ui — 20|2]+a (28)

Then :

QH(f) = {u, f = Q(u)} = {u,|u — flos < a} (29)

We can look for the solution of maximal probability in @1(f).
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BV — L* and MinSurface — L™

Uniqueness of the solution

The solution of J, — L™ is generally unique. The solution of
BV — [*° is not.

inf {/Q IV u|dx}

U,HUO—UHooSOé

An example : ug = x on [0, 1].
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BV — L*° and MinSurface — L* on a quantized cone
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BV — L*° and MinSurface — L* on a quantized image




BV — L*° and MinSurface — L* on a noisy image
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Conclusion

@ Proposed a general framework for /°° constraints.

@ Showed that the projected subgradient is a really efficient
scheme for :
@ Y. Meyer's problem.
@ BV — IP problems.
© Denoising of bounded noises.
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Conclusion

@ Proposed a general framework for /°° constraints.

@ Showed that the projected subgradient is a really efficient
scheme for :

@ Y. Meyer's problem.
@ BV — IP problems.
© Denoising of bounded noises.

@ Deeper analysis of Y. Meyer's model, to explain its witnessed
weaknesses.

o Faster algorithms, based on specific properties of the
functions used.

Thanks a lot for your attention!
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How does Meyer's model react to different frequencies?
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Figure: Top : initial function sin(yx?), Middle : geometrical part given
by Y. Meyer's model, bottom : oscillating part




Comparison of different norms

Experimental tests by J.F. Aujol

Norms / Image | Geometric | Textured Noise
TV 64 600 | 1 000 000 | 2 100 000
L2 9 500 9 500 9 500
G 2 000 360 120
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