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Introduction

Image restoration problem : how to de-noise the image ? In order to prevent

the image becoming blurred, we must identify its contours in order to preserve

them.

To find an optimal shape (the set of contours) is equivalent to find its

characteristic function (0 − 1 optimization problem).

The goal of image classification is to find a partition of the image in subsets

with a constant color level in each subset.

Main problem in both cases : the non differentiability.
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ASYMPTOTIC ANALYSIS AND

TOPOLOGICAL GRADIENT
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Topological gradient

General formulation : Let Ω be a bounded open set, and let us consider a

PDE on this set. We denote by uΩ the solution of this PDE. We also consider

a cost function J(uΩ) :

Ω −→ uΩ −→ j(Ω) := J(uΩ).

The topological asymptotic measures the impact of creating a hole around a

point x in the domain Ω on the cost function :

j(Ω\εBx) − j(Ω) = f(ε)g(x) + o(f(ε))

where f(ε) > 0 and limε→0 f(ε) = 0.

g is called the topological gradient, and one should create holes where the

topological gradient is negative.
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Topological gradient computation

We consider the variational formulation of the PDE :

aε(uε, w) = lε(w), ∀w ∈ V .

We assume that V is a Hilbert space, aε and lε are continuous functions, and

that aε is coercive. Hypothesis :



























Jε(uε) − Jε(u0) = Lε(uε − u0) + f(ε)δJ1 + o(f(ε)),

Jε(u0) − J0(u0) = f(ε)δJ2 + o(f(ε)),

(aε − a0)(u0, vε) = f(ε)δa+ o(f(ε)),

(lε − l0)(vε) = f(ε)δl + o(f(ε)),

where vε is solution of the adjoint equation :

aε(w, vε) = −Lε(w),∀w ∈ V .

Then, the topological gradient is given by δa− δl + δJ1 + δJ2.
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IMAGE RESTORATION
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Image restoration

Problem : how to restore a noised image ?
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Fig. 1 – Original image (left) and noised image (right).
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Linear approach

We consider the following operator

K : H1(Ω) → L2(Ω),
u 7→ u

and we have to solve the following problem

Ku = v.

A necessary optimality condition is

K∗Ku = K∗v,

which is an ill-posed problem. The regularization of Tikhonov gives

K∗Ku+ cu = K∗v.

The weak formulation is

〈K∗Ku+ cu, w〉H1(Ω) = 〈K∗v, w〉H1(Ω), ∀w ∈ H1(Ω).
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Linear approach

By definition of K, the previous equation is equivalent to the following one :

〈u,w〉L2(Ω) + 〈cu, w〉H1(Ω) = 〈v,Kw〉L2(Ω), ∀w ∈ H1(Ω).

The classical variational formulation of image restoration is then the following :

Ω ⊂ R
2, v ∈ L2(Ω) is the noised image, and we have to find the solution

u ∈ H1(Ω) of






−div(c∇u) + u = v in Ω,

∂nu = 0 in Γ = ∂Ω.
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Nonlinear approach

E(u) =
1

2

∫

Ω

|v − u|2dx+ λ

∫

Ω

ψ(|∇u|)dx.

By choosing ψ(|∇u|) = |∇u|2, we obtain the linear approach. If E(u) has a

minimum u, u must satisfy the Euler-Lagrange equation :

−λ div

(

ψ′(|∇u|)
∇u

|∇u|

)

+ u = v.

Hypothesis on ψ :

– ψ′(0) = 0 and lim
t→0+

ψ′(t)

t
= ψ′′(0) > 0 : isotropic regularization where the

gradient is weak.

– lim
t→+∞

ψ′(t)

t
= lim

t→+∞
ψ′′(t) = 0 and lim

t→+∞

ψ′′(t)

ψ′(t)/t
= 0 : anisotropic regulari-

zation where the gradient is strong.

– lim
t→+∞

ψ(t) = +∞ : well posed problem.
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Topological gradient

We consider the classical restoration PDE :






−div(c∇u) + u = v in Ω,

∂nu = 0 in Γ = ∂Ω.

Let x0 ∈ Ω and ε > 0 small, we denote by Ωε = Ω\σ̄ε the perturbed domain

by the insertion of a crack σε = x0 + εσ(n), where n is a unit vector normal

to the crack.

The solution uε ∈ H1(Ωε) of the perturbed problem satisfies






−div(c∇uε) + uε = v in Ωε,

∂nuε = 0 in Γε = ∂Ωε.
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Topological gradient

Variational formulation :

aε(uε, w) = lε(w), ∀w ∈ H1(Ωε)

where aε(u,w) =

∫

Ωε

(c∇u∇w + uw)dx and lε(w) =

∫

Ωε

vw dx.

To find the contours of the image is equivalent to find a subset of Ω in which

the energy is weak ⇒ minimize the energy out of the contours :

j(ε) = Jε(uε) =

∫

Ωε

‖∇uε‖
2.
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Topological gradient

We have then the following asymptotic expansion :

j(ε) − j(0) = ε2G(x0, n) + o(ε2)

G(x0, n) = −π(∇u0(x0).n)(∇v0(x0).n) − π|∇u0(x0).n|
2

where v0 is solution of the adjoint problem






−div(c∇v0) + v0 = −∂uJ(u) in Ω,

∂nv0 = 0 in Γ = ∂Ω.
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Topological gradient

The topological gradient can be written as

G(x, n) = 〈M(x)n, n〉

where M(x) is the symmetric matrix defined by

M(x) = −π
∇u0(x)∇v0(x)

T + ∇v0(x)∇u0(x)
T

2
− π∇u0(x)∇u0(x)

T .

For a given x, G(x, n) takes its minimal value when n is the eigenvector asso-

ciated to the lowest eigenvalue λmin of M . This value will be considered as the

topological gradient associated to the optimal orientation of the crack σε(n).
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Topological gradient

Algorithm :

• Initialization : c = c0.

• Computation of u0 and v0, solutions of the direct and adjoint problems.

• Computation of the 2 × 2 matrix M and its lowest eigenvalue λmin at each

point of the domain.

• c1 =







εc if x ∈ Ω such that λmin < α < 0, εc > 0

c0 elsewhere.

• Calculation of u1 solution to the perturbed problem with c = c1.
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Image restoration
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Fig. 2 – Top : Original image (left) and noised image (SNR=17) (right) ; Bottom : restored

image by nonlinear diffusion (SNR=27) (left) and restored image by topological gradient (SNR=29)

(right).
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Color images
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Fig. 3 – Top : Original image (left) and noised image (SNR=10) (right) ; Bottom : restored

image by topological gradient (SNR=23).
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Color images
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Fig. 4 – Difference between the original and noised images (left) ; Error on the restored image

by topological gradient (right).
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DCT algorithm - c constant

Let us consider the Fourier basis

φm,n = δm,n cos(mπx) cos(nπy)

where δm,n are normalisation coefficients.

If c is constant,

−c ∆u+ u = v

is equivalent to
∑

m,n

(

1 + c(mπ)2 + c(nπ)2
)

um,nφm,n =
∑

m,n

vm,nφm,n.
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DCT algorithm

Dicrete Cosine Transform algorithm :

– calculate vm,n the DCT of v,

– the DCT of u is then

um,n =
vm,n

1 + c(mπ)2 + c(nπ)2

– u =
∑

m,n

um,nφm,n (inverse DCT).

Complexity : O (n log(n)) operations.
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DCT preconditioner

When c is close to a constant :

we have to solve the linear system

A(c)u = B.

We use the Preconditioned Conjugate Gradient method :

A(c0)
−1A(c)u = A(c0)

−1B.
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Image restoration

Nonlinear
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Fig. 5 – Computation time versus the size of the image for the topological gradient (GT)

and nonlinear diffusion (ND) approaches. GE : Gauss elimination method, PCG : preconditioned

conjugate gradient using a discrete cosine transform.
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IMAGE CLASSIFICATION
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Image classification

Data : Ω =]0, 1[×]0, 1[, w an image, (µi)i=1..K color (or grey level) classes.

Problem : find a partition of Ω in subsets (Ωi)i=1..K such that :

– w is close to µi in Ωi,

– the length of interfaces between the different subsets Ωi is minimum.

We first assume that the number and values of classes are known.
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Image classification
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Fig. 6 – Original image (left) and classified image (without regularization)

(right).
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Image classification

We have to minimize with respect to Ωi

J1 =

K
∑

i=1

∫

Ωi

(w − µi)
2dx

and

J2 =
∑

i 6=j

|Γij |.

The main difficulty comes from the fact that the unknowns are sets and not

variables =⇒ define a topological gradient for each class.

For each pixel, the most negative topological gradient gives the subset and

the class to which it should be reassigned in order to minimize the cost function.

Remark : in the present case, the asymptotic expansion is in fact an exact

variation.
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Image classification
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Fig. 7 – Classified images, without regularization (left) and with regularization

(right).
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Image classification

Another way to use the topological gradient : we consider the following

PDE






−div(c∇u) + u = w in Ω,

∂nu = 0 in Γ = ∂Ω,

where c = 1
εc

.χΩ1
+ εc.χΩε

.

– if the pixel is on a contour (c = εc), the PDE is nearly equivalent to u = w,

– if it is not on a contour (c =
1

εc

), the PDE is nearly equivalent to ∆u = 0

and we smooth the image.

We apply then the topological gradient method to this PDE.
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Image classification
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Fig. 8 – Original image (left) and smooth image (right).
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Image classification

If we assume that the color classes are given, we only have to apply the previous

unregularized classification method : each pixel is reassigned to its closest class.

If the classes are not given, it is possible to determine them in an optimal way,

still by using the topological gradient method. The idea is to study the impact

of changing a class µi := µi + 1 or µi − 1 on the cost function.

If the number of classes is not given, we can add a penalization term in the cost

function, measuring the number of classes and the previous algorithm provides

the optimal number of classes, and their optimal values.
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Image classification
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Fig. 9 – Smooth image (left) and classified image (right).
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Image classification
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Fig. 10 – Top : original image (left), unregularized classified image (right) ;

Bottom : regularized classified image (left), smooth and classified image (right).
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Image classification

Tab. 1 – Computational cost (time in seconds) and length of the interfaces for the different

algorithms and number of classes.

Number of classes n = 2 n = 3 n = 5

Algorithm C = {0; 255} C = {34; 112; 165} C = {29; 71; 117; 146; 184}

Closest class t = 0.02 t = 0.06 t = 0.05

(unregularized) |Γ| = 2358 |Γ| = 4513 |Γ| = 7913

Topological gradient t = 12.67 t = 45.63 t = 81.78

(regularized) |Γ| = 2069 |Γ| = 3872 |Γ| = 5770

Smothering - closest class t = 37.16 t = 37.17 t = 37.17

(+ topological gradient) |Γ| = 1566 |Γ| = 2870 |Γ| = 4839
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Image classification
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Fig. 11 – Square difference between the classified images and the original image versus the

length of the interfaces for the different algorithms, and for 2, 3 and 5 classes.
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Color image classification
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Fig. 12 – Top : original image (left), unregularized classified image (right) ; Bottom : regularized

and classified image.
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RESTORATION OF

3D-IMAGES, OR MOVIES
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Algorithm

• Initialization : c = c0 .

• Computation of u0 and v0, solutions of the direct and adjoint problems,

using a preconditioned conjugate gradient method (preconditioner = discrete

cosine transform).

• Computation of the 3 × 3 matrix M and its lowest eigenvalue λmin at each

point of the domain.

• c1 =







εc if x ∈ Ω such that λmin < α < 0, εc > 0

c0 elsewhere.

• Calculation of u1 solution to the perturbed problem with c = c1, still using

a PCG method (preconditioned by a DCT).

• u1 is the restored movie.
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Small resolution movies

• Original movie

• Noised movie

• Restored movie

• All together

Size of the movie : 180 × 72 pixels, 30 frames.

 388.000 points, 5 minutes.
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Small resolution movies

• Original movie

• Noised movie

• Restored movie

• All together

Size of the movie : 288 × 176 pixels, 52 frames.

 2.6 million points, 1 hour.
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Small resolution movies

• Original movie

• Noised movie

• Restored movie

• All together

Size of the movie : 320 × 144 pixels, 100 frames.

 4.5 million points, 2 hours.
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Large resolution movies

• Original movie

• Noised movie

• Restored movie

• All together

Size of the movie : 512 × 288 pixels, 110 frames (24 fps).

 more than 16 million points, 12 hours.
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Computation time
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Fig. 13 – Computation time versus the size of the movie ; Topological gradient :

O(n1.3).
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Conclusion

– The topological gradient is very efficient.

– The image restoration (and classification) is performed in only one iteration :

only 3 resolutions of a PDE are performed.

– The quality of the obtained images is good.

– Next step : color movies, restoration of a missing frame, ...
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One missing image

• Original movie

• Restored movie

• All together
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THANK YOU FOR YOUR ATTENTION
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