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Deformable Models

A powerful, model-based medical image
analysis approach

* Proposed in computer vision and graphics
Actively explored in medical image analysis
Combine bottom-up and top-down analysis
Accommodate shape & motion constraints/variability
Incorporate a priori anatomical knowledge

Support intuitive interaction mechanisms




Computing Visible Surfaces from
Scattered Visual Data

[Terzopoulos, 1984]

Thin-plate spline under tension
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Discontinuity-Preserving Surface
Reconstruction

Make “rigidity” & “tension”
functions of (x,y)

*Tangent discontinuities:
7(x,y)=1

*Jump discontinuities:

p(x,y)=0




Snakes:
Active Contours

[Kass, Witkin, Terzopoulos, 1987]

Curve representation:
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Image Analysis Using Snakes

External forces come from an image
f =-VP(c)

- Image potential: P(x,y)




Motion Tracking in Video

Time-varying image potential

Ax, 1)

Snake-Based Tracking

(Blake & Isard, Oxford University)




Discretization

« Continuous equations of motion
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» Discrete equations of motion

Mc+ Dc¢+ Kc

Mass matrix/

Damping matrix

Stiffness \
matrix External forces

Snake Stiffness Matrix
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Stable, Implicit Euler
Time-Integration Method

Solve linear system at each time step
) o (140 r) .(z)

A0 _ gl g
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- Efficient skyline storage of A

- LU factorization of A"

" o (1+0 1)
* Forward / Back substitution solves for C

Deformable Surfaces

[Terzopoulos, 1986; Terzopoulos, Witkin, Kass, 1987]

» Surface representation:

x(u,v,t)
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« Surface deformation energy:
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Deformable Model Reconstruction

Reconstruction

3D to 2D projection
f =-VP(Is)

3D model




Vegetable Model
Animation







Reconstruction of Neuronal Dendrite

Cell interiors stacked in 3D

Visualization of Dendrite

Ray-traced interpolated volume




Family of Snakes

Many snakes variants

Snakes (Kass, Witkin, Terzopoulos, 1987)

Level-Set Snakes

L Fourier Descriptor Snakes

Kalman Snakes

d kes |
7 / | N
DP Optimal Boundary Tracking l | Wavelet Snakes N\
Finite Element Snakes \
4 / | \ Active Shape Models
| \
Hermite Snakes | \
| /4 | ‘

v \ Level Set Snakes
Livewire Condesention Snakes l
Topologically Adaptive Snakes

“Livewire” or “Intelligent Scissors”:
An interactive boundary tracing tool

Livewire Demo

VBC '96
William A Barrett
Enc N. Motensen

Brigham Young University




Limitations of Livewire

No control of trace between
seed points; only backtracking

Many seed points needed for
complex boundaries

Nearby strong edges can
capture trace (on-the-fly training)

Fundamentally image-based

— cannot bridge gaps
— smoothness not guaranteed

Combining Snakes and Livewire

“United Snakes”

 Livewire serves for quick initialization of snakes
— typically requires fewer seed points
Livewire-initialized snakes quickly lock on boundaries
Snakes enable adjustment of traces between seeds
— snake provides subpixel accuracy
Snake energy imposes smoothness and bridges gaps

Livewire seed points capture user’s knowledge
— can serve as hard or soft constraints on snake




Combining Snakes and Livewire

‘ Unlted Snakes” accrue beneflts of both

Dynamic Chest Image Analysis




Vessel Segmentation

Vessel Segmentation




Topologically Adaptive Snakes

(Mclnerney & Terzopoulos, 1996)

Segmenting Retinal Angiogram

T-snake flows and bifurcates

Initial Model Segmented Angiogram

Retinal Angiogram Segmentation




Affine Cell Image Decomposition

ACID makes snakes topologically flexible

* ACID grid continually reparameterizes snake

T-Snake Segmentation of
Brain Image




Shrink-Wrap Segmentation

Vertebra Reconstruction




Complex Structure Extraction

Cerebral Vasculature

T-Surface Segmentation of Cortex
[Mclnerney & Terzopoulos, 1997]




Tongue Tracking in Ultrasound

[Kambhamettu et al, 1999]
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LV Reconstruction

- Reconstructed LV

Deformable Balloon in Processed DSR Data




Cardiac LV Motion Tracking

Systolic/Diastolic LV

Computing ejection fraction




Functional Model of the Heart

[Peskin & McQueen]

Artificial Humans
Scanned Data =% Synthetic Faces

Cyberware
Data

Synthesized
Expressions




Fitting the Generic Mesh

Feature-based image matching algorithm
localizes facial
features in:
Processed range image

RGB texture image

Sampling Facial Shape

Fitted mesh nodes sample range data




Textured 3D Geometric Model

Texture map
coordinates
» Positions of fitted

mesh nodes in RGB
texture image

Auxiliary Geometric Models

Eyelid Texture Interpolation




Complete Geometric Model

Neutral expression
Is estimated

Facial
Anatomy
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Facial Muscle Model Structure

35 Muscles
Levator Oculii
Corrugators
Naso-Labial
Zygomatics
Obicularis Oris

plus

« Articulate Jaw
* Eyes/Eyelids

Synthetic Face Animation




Real-Time Facial Simulation

Incision on Facial Mesh




Retriangulation Around Incision

Maxillo Surgery

Anterior Open Bite




Craniofacial Surgery

[Gladalin, 2002]

Anatomical Structure of the Neck




Biomechanical Modeling

skeleton

What would Leonardo da Vinci Think of
This?




Demo:
Gaze Behavior

Demo: Autonomous Multi-Head
Interaction




Artificial Life Modeling

From physics to intelligence

Coni'on

Behavior

y /
Perception s,
Physics I

Geometry

Artificial Fishes




Deformable Organisms

Corpus Callosum Organism

upperfright

Memory and
prior knowledge > splenium

<—> Plan or schedule

“—— Interactions with
other creatures

—

medial based Shape

Deformable Organisms




Deformable Organisms

Conclusion

Deformable models

« Powerful technique for extracting geometric models
of anatomical structures
* Functional models

Deformable Models n
- Development continues MedicalImage fnalyss

“Deformable Models in Medical Image Analysis:

A Survey”, Medical Image Analysis, 1(2), 1997

See deformable.com




A Tensor Algebraic Framework for Image
Synthesis, Analysis & Recognition

M. Alex O. Vasilescu
MIT Media Laboratory

Demetri Terzopoulos
University of California, Los Angeles

Why is Face Recognition Difficult?

Viewpoint changes




Why is Face Recognition Difficult?

lllumination Changes

Appearance-Based Recognition

Recognition of 3D objects (faces) directly from
their appearance in ordinary images

« PCA / Eigenimages:

"Low Dimensional Procedure for the Characterization of Human
Faces"

"Face Recognition Using Eigenfaces"

"Visual learning and recognition of 3D objects from appearance”




Linear Algebra

The algebra of vectors and matrices

* Traditionally of great value in image science
— Fourier transform
— Karhunen-Loeve transform

* Linear methods (PCA, FLD, ICA) model:
— Linear operators over a vector space
— Single-factor variation in image formation
— The linear combination of multiple sources

Multilinear Algebra

The algebra of higher-order (>2) tensors

» Natural images result from the interaction of multiple factors
related to
— scene geometry
— lllumination
— Imaging

e Multilinear algebra can explicitly represent multifactor variation
— Multilinear operators over a set of vector spaces

* Multilinear algebra subsumes linear algebra as a special case

¢ A unifying mathematical framework




. . .- kix1 . .
Animage is a pointin R " dimensional space
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Eigenimages

Principal components (eigenvectors) of image
ensemble =
s i  Typically computed
2 et using the SVD
LR Algorithm




Linear Representation

Running Sum:

3 terms 9 terms 28 terms

Eigenfaces

+ Facial images

PIVVIIVHBVIVIDVIOVVIIIVOY I

¢ Eigenfaces basis vectors capture the variability in facial appearance

+ Eigenfaces have been successful in simple facial recognition problem
- i.e., frontal images with fixed illumination




The Problem with Linear (PCA)
Appearance-Based Recognition Methods

Eigenimages work best for recognition when only a single
factor — e.g., object identity — is allowed to vary

* However, natural images are the consequence of multiple factors (or modes)
related to scene structure, illumination and imaging

QW) 9(90\5 ) )uaw 9%

Our Approach

[ Vasilescu & Terzopoulos, ECCV 02, ICPR 02, CVPR 03, CVPR 05 ]

A nonlinear appearance-based technique

« Our appearance-based model explicitly accounts for each of the
multiple factors inherent in image formation

Multilinear algebra, the algebra of higher order tensors

Applied to facial images, we call our tensor technique
“TensorFaces”




Linear vs Multilinear Manifolds

Preliminary Recognition Results

[Vasilescu & Terzopoulos, ICPR'02]

PIE Recognition Experiment

Training: 23 people, 3 viewpoints (0,+34,-34),

4 illuminations

Testing: 23 people, 2 viewpoints (+17,-17), 61% 80%
4 illuminations (center,left,right,left+right)

Training: 23 people, 5 viewpoints (0,+17,

-17,+34,-34), 3 illuminations

Testing: 23 people, 5 viewpoints (0,+17, 27% 88%
-17,+34,-34), 4t illumination




PIE Database (Weizmann)
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299 99

illuminations

Data Organization

Linear/PCA: Data Matrix D 2[RIl e S I IOLOL ] .W
Rp els x images

+ a matrix of image vectors

Multilinear: Data Tensor O |adbetiatpe

° Rp ople x views x illums x express x pixels

¢ N-dimensional matrix
+ 28 people, 45 images/person

* 5 views, 3 illuminations,
3 expressions per person




Complete Dataset

Learning Stage

Background on Tensor Decomposition

* Factor Analysis:
— Psychometrics, Econometrics, Chemometrics,...

SVD:

- (Psychometrika)
“The approximation of one matrix by another of lower rank*

3-Way Factor Analysis:
= (Psychometrika)
“Some mathematical notes on three mode factor analysis*

N-Way Factor Analysis:
- — Parafac
— Candecomp




Matrix Decomposition - SVD

D Images
QVIDOIIDIVOISIID
+ A matrix Degnll)('z has a column and row space

+ SVD orthogonalizes these spaces and decomposes D

D = Uls U-IZ_ ( U, contains the eigenfaces )

* Rewrite in terms of mode-n products

D=S ><1U1 ><2U2

Tensor Decomposition

@Dis a N-dimensional “matrix”, with N spaces

* N-mode SVD is the natural generalization of SVD

« N-mode SVD orthogonalizes these spaces and decomposes @D as
the mode-n product of N-orthogonal spaces

- Core tensor Z governs interaction between mode matrices

* Mode-n matrix Un spans the column space of D(n)




Tensor Decomposition

D =ZxU, x U, xU

3

R, Rg
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=1 r,=1 ry=1

ved D) = (U;8U,8U,)ved Z)

N-Mode SVD Algorithm

Two steps:
1. Forn=1,...,N, compute matrix U_ by computing

the SVD of the flattened matrix D(n) and

setting U_ to be the left matrix of the SVD

2. Solve for the core tensor as follows

Z=D %, Uy x, Uy, U ooy Uy




Facial Data Tensor Decomposition

x, U

- x U x,U
views™ 3 Tillums.” 4 TEXPress’ s “pixels

e EGGUQ I T3
QAIIGIV IS I9H
1999930000000999
1900969099008 VH

* Djiumg) - flatten 2 along the illumination dimension
* U,;,ms — Orthogonalizes the column space of D

(illums)



Computing U, icus

)— fIatten ) anng the wewpomt dlmen3| n
* U, ews — Orthogonalize the column space of D,

Computing Uyl

D(pixels)

J00906009VHVHH

D — flatten 9 along the pixel dimension

(pixels)
U — orthogonal column space of D

— eigenimages

pixels (pixels)




Multilinear (Tensor) Algebra

Nth-order tensor A4 € R lixlxe-Iy
matrix (2"-ordertensory M e R <"

mode-n_product:

B :ﬂng where B(n)_MA )

Mode-n Product

+ The mode-n product is a generalization of the product of two matrices
* |tis the product of a tensor with a matrix

X . d X... 4
* Mode-n product of A €R* N and  M=RIX
Be 9{le...xInflx.\]nxlmlx..xlN

(ﬂXnM)__ s Zah'nl'nn+1 inin

'1-"n—n'n+1-'N

ﬂxl\/l




TensorFaces: B=2Z x, Ugyels

TensorFaces:
explicitly represent
covariance across
factors

TensorFaces Subsume Eigenfaces

Multilinear Analysis / TensorFaces:

people views

Linear Analysis / Eigenfaces:

D - U !

(pixels) pixels views ®Upeople )

Z(PiXE|S) (U ® Uillums. ®U
gV—J

H_J - . . . . .
datamatrix basis matrix coefficient matrix

express




Dimensionality Reduction

Iterative dimensionality reduction approach:
» Optimize mode per mode in an iterative way
* Alternating Least Squares (ALS) algorithm improves data fit

I

Strategic Data Compression =
Perceptual Quality

TensorFaces data reduction in illumination space
primarily degrades illumination effects (cast
shadows, highlights)

TensorFaces

TensorFaces PCA

Original _
6 illum + 11 people param. |3 illum + 11 people param. 33 parameters

176 basis vectors  gg pasis vectors 33 basis vectors 33 basis vectors

« PCA has lower mean square error but higher perceptual error
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_Face Recognition

W

Query Image

)
U'd, =Uc,

Projection Operator




Multliriéar,Represertation
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Response Tensor — Rank (1,...,1)

V§.1p1 V3i2 pl V3i3pl V3|4 pl

Vi, Py Vi V,is Py

Vi i3 Vil

Vi

VlilpA




Response Tensor — Rank (1,...,1)

VS i1p1 V3 izpl Va i3p1 V3 IA pl

Vai,p; Vaiy Vol Py

Vilpy vy iy VilyPy

ViiyP, vi,P, ViisP; Vi, P,

VyiyPs Vi, P3 VyisP; Vi, P

V1i1p4 Vlizpa V1i3 Py Vily Py

Multilinear Projection

1. Compute the Projection Tensor:

P..-T:

(mode) (mode)

2. Compute the Response Tensor:

R — QD ><mode dT

3. Extract the coefficient vectors by factorizing the
Response Tensor using the N-mode SVD algorithm




Perspective on
Multilinear Models

Linear Our Nonlinear
Models (Multilinear) Models

2nd -Order

Statistics PCA Multilinear PCA
: Eigenfaces TensorFaces
(covariance)

Higher-Order Multilinear ICA
Statistics Independent TensorFaces

x
o)
=
o
[Te}
0
N

° OwT W—ZFS
D=USV" D=USV'

—

_
= K
independent components | | coefficient matrix




N-Mode ICA

[Vasilescu & Terzopoulos, CVPR 2005]

For n=1,...,N, compute matrix U by computing
the SVD of the flattened matrix D, and setting U,
to be the left matrix of the SVD. Compute W!
using ICA. Our new mode matrix is K

D(n) = UnZ(n)VnT - (LJI’IWI-Wr )WH_TZ VnT
f—/
- K, W,Z,V]

Solve for the core tensor as foIIows

— -1 -1 -1 =il
S=D X, K7, KT xeox K P K

— =T =T =T =T
S =2 x, W, 5, W, T - W x5 W

=T W\

llluminations



Independent TensorFaces:

Multilinear ICA
 Multilinear decomposition
* Encodes higher order statisticS  |yuminations




75 people
* 9 viewpoints
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HEPDODDODODDOPDODOODOODOPOD
AP D
oD OODODOD
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Independent
TensorFaces

Multilinear Models

¢ 6 illuminations

e 75 people
* 6 viewpoints

NoppppDPPDPPRPDD
o222 DDED
Hopop2d 22222 DDBD
o222 D2DDDDDD
oL BBDBUD

Training Images - 2,700 | Test Images:

89%

- 16,875

« 15 viewpoints
¢ 15 illuminations

e 75 people

images

Data Set



Com IeteDataset _

Person Parameters

Viewpoint Parameters

Illumination Parameters . |mage Synthesis
TensorFaces

Data Decomposition
- Face Recognition

Query Image Recognized Person

Other Applications

* Human Motion Signatures




Multilinear Image-Based Rendering

IBR: Rendering based on sparse samples of
object appearance (images)
[Gortler et al. 1996, Levoy & Hanrahan 1996, ...]

« Surface appearance is determined by the complex
interaction of multiple factors:
— Scene geometry
— lllumination
— Imaging

Bidirectional Texture Function

Captures the appearance of extended
textured surfaces with

— Spatially varying reflectance

—Surface mesostructure (3D texture)

—Subsurface scattering

—Etc.

* Generalization of , which accounts L&
only for surface microstructure at a point




BTF

Reflectance as a function of position on surface,
view direction, and illumination direction

fBTF (M"Hv'¢v’%)

position view illumination
on surface direction direction

(texel) ~—

photometric angles

» The BTF captures shading and mesostructural self-shadowing,
self-occlusion, interreflection, subsurface scattering

BTF Texture Mapping

[Dana et al. 1999]

Standard
Texture Mapping

BTF
Texture Mapping




Image Acquisition,
Pre-processing
&
Organization

Geometry
Viewpoint

lllumination

. T - s
Tensor Decomposition =) .
) & _ Levs Rendering
Dimensionality Reduction Algorithm

TensorTextures:
Multilinear Image-Based Rendering

Tensorlextures




Rendered Texture for a Planar Surface

Conclusion

Multilinear algebraic framework for computer vision and computer
graphics
* Tensor approach to the analysis and synthesis of image ensembles
— TensorFaces and TensorTextures
— Multilinear PCA and ICA
* Potentially of interest in all multifactor problems in vision and graphics to which
PCA has been applied; e.g:

— Deformable models — Active appearance models

— Morphable face models
— Precomputed dynamics

* Applications in many other fields of science




Facial Signatures and Caricatures

: 5 TensorTextures - IBR
Human Motion Signatures ... ensor Texiure

Tensor Algebra Foundation
Multilinear PCA/ICA Machine Learning

Bioinformatics

Econometrics

People Space :

llumination Space

Ulllum&

Viewpoint Space |

Uviews

pivel 1




Additional Information

www.media.mit.edu/~maov

terzopoulos.com
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