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Blum’s A-Morphologies: 2D



Blum’s A-Morphologies: 3D



Blum’s Grassfire Machine

“Figure 19 shows my first physical embodiment of the process. It uses
a movie projector and camera with high contrast film. These are symmetrically
driven apart from the lens in such a way as to keep a one to one magnification,
but to increase the circle of confusion (defocussing). Corner detection is done by a 
separate process. I am presently building a closed loop electronic system to do both 
the wave generation and corner detection.”

 [A transformation for Extracting New Descriptors of Shape, 1967.]
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The Rowboat Analogy
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a. b.

Figure 1.7. Local medial geometry. a. Local geometric properties of a medial point
and its boundary pre-image. b. The rowboat analogy for medial points.

The quantities p,b±1, r,U±1,T, and θ appear frequently in this book.
To better remember these quantities, consider an analogy between a
medial point and a one-person rowboat, illustrated in Fig 1.7b. The
position of the rower in the boat corresponds to p, and the length of the
oars corresponds to r. The vector T represents the direction in which
the boat is moving and θ is the angle that each oar makes with T. The
points b−1 and b+1 correspond to the tips of the oars, and the directions
of the oars are given by the vectors U+1 and U−1. The movement of
a point along the medial locus is analogous to the rowboat navigating
down the middle of a stream, with the rower adjusting his oars in such a
way that their tips always just touch the banks of the stream (of course,
the oars are made of a stretchable material, and as the boat moves,
their length changes). A similar analogy to a wheel, corresponding to
the bitangent disk, is made in m-rep literature, and the term spoke is
used instead of the term oar. In this book we have adopted the term
spoke for this vector between the medial locus and the boundary.

The values of p, r, and their derivatives can be used to qualitatively
describe the local bending and thickness of an object, as first shown by
Blum and Nagel (1978). The measurements p and T along with the
curvature of the medial curve describe the local shape of the medial
locus, and subsequently describe how a figure bends at p. A figure that
has a line for its medial curve is symmetrical under reflection across
that line. The measurement r describes how thick the figure is locally,
while cos θ describes how quickly the object is narrowing with respect
to movement along the medial curve. A figure with a constant value of
r has the shape of a worm.

Free ends of medial curves, where the maximal inscribed disk and the
boundary osculate and the boundary pre-image contains a single point,
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Contact Classification
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points that are called shocks. The medial locus is defined as the set
of all the shocks, along with associated values of time t at which each
shock is formed. This analytic definition of the medial locus is equiva-
lent to the geometric definition given previously; a proof was given by
Calabi (1965a) and Calabi (1965b); Calabi and Hartnett (1968). Kimia
et al. (1995) combine the grassfire flow with an additional additive term
based on the Euclidean curvature of the evolving front to yield a reaction-
diffusion space for shape analysis. In a closely related construction an
edge strength functional is computed by a linear diffusion equation lead-
ing to an approximation of this space (Tari et al., 1997). This formula-
tion can be applied to analyse greyscale images as well as curves with
triple point junctions, where skeletal points are associated with points
of maximum local curvature, as developed in Chapter 5 [Shah].

2.2. STRUCTURAL GEOMETRY OF
MEDIAL LOCI

Giblin and Kimia (2000) and chapter 3 [Damon] give a rigorous
description of the structural composition and local geometric properties
of Blum medial loci of three-dimensional objects. The classification of
types of points on the medial locus was also given in (Yomdin, 1981) and
in (Mather, 1983) . Their description classifies medial points based on
the multiplicity and order of contact that occurs between the boundary
of an object and the maximal inscribed ball centered at a medial point.

Each medial point P = {p, r} in the object Ω is assigned a label of
form Am

k . The superscript m indicates the number of distinct points at
which a ball of radius r centered at p has contact with the boundary
∂Ω. The subscript k indicates the order of contact between the ball and
the boundary. The order of tangent contact is a number that indicates
how tightly a ball B is fitted to a surface S at a point of contact P .

The following theorem specifies all the possible types of contact that
can generically occur between the boundary of a three-dimensional ob-
ject and the maximal inscribed balls that form its medial locus. The
theorem also specifies how medial points with different associated type
of contact are organized to form surfaces and curves in the medial locus.

Theorem 1 (Giblin and Kimia) The internal medial locus of a three-
dimensional object Ω generically consists of

1 sheets (manifolds with boundary) of A2
1 medial points;

2 curves of A3
1 points, along which these sheets join, three at a time;
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a. b.

Figure 1.4. a. Different classes of points that compose the medial locus of a three-
dimensional object, as categorized by Giblin and Kimia. b. Three possible ways in
which maximal inscribed disks can be tangent to the boundary of a two-dimensional
object.

3 curves of A3 points, which bound the free (unconnected) edges of
the sheets and for which the corresponding boundary points fall on
a crest;

4 points of type A4
1, which occur when four A3

1 curves meet;

5 points of type A1A3 (i.e., A1 contact and A3 contact at a distinct
pair of points) which occur when an A3 curve meets an A3

1 curve.

Proof 1 See (Giblin and Kimia, 2000) for a rigorous proof.

In two dimensions, a similar classification of medial points is possible.
The internal medial locus of a two-dimensional object generically consists
of (i) curves of bitangent A2

1 points, (ii) points of type A3
1 at which these

curves meet, three at a time, and (iii) points of type A3 which form the
free ends of the curves. The three classes of contact are illustrated in
Fig. 1.4a. In two dimensions, A3 contact means that the inscribed disk
and the boundary osculate at a local maximum of boundary curvature.

The geometric properties of the external medial locus are similar to
those of the internal locus, with the exception that the sheets and curves
are no longer completely bounded and may stretch out to infinity. Less
effort has been devoted in the literature to the study of external medial
loci.

Theorem 1 states that each surface composing the internal medial lo-
cus of an object joins another two such surfaces or terminates at a point
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DefinitionsDefinitions

A 2D shape X  is the closure of an open path-connected set. 
The boundary          of a shape is piece-wise smooth.

The distance function,                            ,   is

The skeleton               of a shape is the set of points where         
  is not defined.

The outward flux (OF) through a region                 with 
boundary            and normal to the boundary       ,  is

The average outward flux (AOF) is

∂X

D : R2 → R

S(X) ∇D

R ⊂ R2

∂R

D(P ) = infQ∈∂X d(P,Q)

ContributionsContributions
Consider a path connected region intersected by a skeletal 
curve

Theorem.  A path connected region intersected by a skeletal     
                      curve satisfies:

Corollary. The OF for a region shrinking to a skeleton point    
                      satisfies:

For R being a circle of radius r: 

The AOF for shrinking circular regions:

ExperimentsExperiments
To verify the theoretical results, boundary points 
corresponding to regular skeletal points are reconstructed 
according to:
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STEP 4. Using our results for shrinking
     circular regions, reconstruct boundary 
     points from regular skeletal points.

STEP 2. Compute AOF of shape using 
      circular regions.

Q1,2 = P + rR(±α)tP

OFR =
∫

∂R
〈∇D,N 〉 ds

AOFR =

∫

∂R
〈∇D,N 〉 ds
∫

∂R
ds

R → P AOFR → x

Regular Points − 2
π sinα

End-Points − 1
π (sinα + α)

Junction Points − 1
π

∑n
i=1 sinαi

Non-Skeletal Points 0

STEP 1. Start with a binary shape.              

STEP 3. Compute skeleton with algorithm
      presented in [3].

Reconstruction

lim
r→0

length(C3)
2r

= 1
Ground Truth   

lim
R→P

OFR → 2 (〈∇D(P ), N 〉) length(C3)

∫

R=R1∪R2

div(∇D)dv = OFR + 2
∫

C3

〈∇D, N 〉ds
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Circular Neighborhoods

(Dimitrov, Damon, Siddiqi, CVPR’03)

αP

α

S(t)

tP

Q2

Q1

Figure 2. The object angle α = α(P ) at a simple skeletal
point P . Here S(t) is a parameterization of the skeleton
curve. Hence, tP = S

′(t0) is the tangent at t0, i.e. where
P = S(t0).

α
α S(t)P0P1 P

CP
ε

Figure 3. The distance function gradient vector field in the

ε-neighborhood of P is given by a step function – one value

for the “top” semi-circle and another for the “bottom” one.

Both these vectors form an angle of α = α(P ) with tP ,

since the skeleton is assumed to cut C
P
ε in half at P0 and

P1.

Now, let CP
ε be the circle with radius ε centered at P .

Let CP
ε : [0, 2π] → R2 be given by

CP
ε (s) = ε(cos(s + θ(tP ), sin(s + θ(tP )) + P, (3)

where CP
ε (0) = P + εtP and CP

ε (π) = P − εtP . Now

consider Figure 3. Here, it is assumed that the gradient field

has one value along CP
ε (s) for s ∈ (0,π) and another for

s ∈ (π, 2π). Also, both CP
ε (0) = P0 and CP

ε (π) = P1 are

on the skeleton. Let the outward normal of this circle at s
be N (s). Hence, the outward flux of ∇D though CP

ε (s) is

Fε(P ) =

∫ 2πε

0

〈

∇D(CP
ε (s)),N (s)

〉

ds

= −ε

∫ π

0
cos(α − s) ds − ε

∫ 2π

π

cos(−α − s) ds

= −4ε sin(α)

Notice that this calculation holds regardless of the orienta-

tion of tP . However, it makes very strict assumptions that

do not hold in most situations. Fortunately, the general case

is similar to this one.

There are only two differences: (1) CP
ε (0) and CP

ε (π)
may not be on the skeleton, and (2) the distance func-

tion gradient field may take on more than two values along

CP
ε (s) for s ∈ [0, 2π]. For small enough ε, the circle will
intersect the skeleton at precisely two points, which we la-

bel P0 = CP
ε (δ0) and P1 = CP

ε (π + δ1). Thus, the dis-
tance function gradient field is continuous on CP

ε (s) for
s ∈ I0 = (δ0,π+δ1) and also for s ∈ I1 = (π+δ1, 2π−δ0)
1. However, it may take on more than one value in the in-

tervals I0 and I1. Define β0(s) and β1(s) on I0 and I1

respectively, to account for such eventualities:

tP · θ(CP
ε (s)) = cos (α(P ) + β0(s)) , s ∈ I0

tP · θ(CP
ε (s)) = cos (−α(P ) + β1(s)), s ∈ I1.

Therefore, the outward flux calculation for regular skele-

tal points becomes

Fε(P ) =

∫ 2πε

0

〈

∇D(CP
ε (s)),N (s)

〉

ds

= −ε

∫ π+δ1

δ0

cos(α + β0(s) − s) ds

−ε

∫ 2π−δ0

π+δ1

cos(−α + β1(s) − s) ds.

The continuity of the distance function gradient field

along the circle implies that both β0(s) and β1(s) are con-
tinuous functions. Further, as ε → 0, necessarily

lim
ε→0

sup
s∈[δ0,π+δ1]

|β0(s)| = 0

lim
ε→0

sup
s∈[π+δ1,2π−δ0]

|β1(s)| = 0.

Also, since the skeletal curve has continuous tangents, we

must have that lim
ε→0

δi = 0 for i = 0, 1. Therefore the av-

erage outward flux through a shrinking circular region is

given by

lim
ε→0

Fε(P )

2πε
= −

2

π
sinα.

3.2. Skeletal End-Points

Let P be a skeletal end-point. Let the point Qε be on

the branch which is at distance ε from P . Choose ε small
enough so that Qε is a regular skeletal point. Thus, the ob-

ject angle is well defined for Qε. Now, let

αP = lim
ε→0

α(Qε).

This limit makes sense, because the circle2 CP
ε intersects

the skeleton at a single point. Also, the object angle varies

continuously along a skeletal branch.

1However, it is not necessarily continuous on the closure of I0 ∪ I1.
2Here CP

ε is as defined in Eq. (3) but tP = limε→0 tQε
.
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2αP
P

ε
S(t)

CP
ε

Figure 4. A circular neighborhood of radius ε around the

end-point P . Along the arc of angle 2αP the gradient vec-

tors agree (in orientation) with the normals to C
P
ε . Along

the arc “above” S(t) the gradient vectors all form an angle
of αP with S

′(0) = tP . Similarly, for the arc “below,” this

angle is −αP .

Now consider Figure 4. Along the arc arcαP
opposite

to the skeleton curve, the distance function gradient field

must coincide with the inner normals of the circle. This is

because the end-point results from the collapse of a circu-

lar arc (possibly a point if αP = 0) on the boundary. On
the rest of the circle, the distance function gradient field be-

haves as if P were a regular skeletal point. Thus,

Fε(P ) = − ε

∫ αP

−αP

ds

− ε

∫ π+δ

αP ε

cos(αP + β0(s) − s) ds

− ε

∫ 2π−αP

π+δ

cos(−αP + β1(s) − s) ds

where δ and βi(s) account for the circle not intersecting the
skeleton midway and the distance function gradient field not

being strictly a step function on CP
ε − arcαP

. Therefore,

lim
ε→0

Fε(P )

2πε
= − 1

π
(αP + sin αP )

since, as ε → 0, δ, β0(s) and β1(s) vanish. Notice, how-
ever, that αP = 0 if the end-point is generated from a con-
tour segment where the curvature is continuous.

3.3. Skeletal Junction Points

Let P be a skeletal junction point; that is where n skele-
tal curves meet. Let these curves be given by parameteriza-

tions Si(t) so that Si(0) = P . Consider a circle of radius ε
centered at P . Denote it CP

ε . For small enough ε, CP
ε in-

tersects the skeleton at precisely n regular points. Refer to
them as Qi

ε = Si(ε). Hence, to each there is a correspond-
ing object angle. Define αi as

αi = lim
ε→0

αQi
ε
.

S1(t)
α1

α1
α2

α3

α3

S
2
(t

)

CP
ε

α2

S
3 (t)

Figure 5. A circular neighborhood of radius ε around the

junction point P . There are three skeletal curves denoted

by S1(t), S2(t) and S3(t) respectively. The dashed lines
link P and its closest points on the boundary (i.e. points in

PC ). Note that α1 + α2 + α3 = π.

Now consider Figure 5. It suggests that
∑

i 2αi = 2π.
Indeed, αi is the angle between S′

i(0) 3 and the line join-

ing P to some point in PC . To compute the outward flux

through CP
ε , we can divide the circle into n arcs, each cor-

responding to a skeletal curve. In particular, for Si(t) this
would be the arc of angle 2αi. For example, in Figure 5,

the arc corresponding to S1(t) is the union of the two arcs
of angle α1. Notice that the distance function gradient field

along that arc behaves like that of a regular skeletal point

with object angle αi. Hence, the outward flux through it is

Fε(arci) = − ε

∫ αi

δi

cos(αi + β0,i(s) − s) ds

− ε

∫ δi

−αi

cos(−αi + β1,i(s) − s) ds

where δi, β0,i(s) and β0,i(s) all vanish as ε → 0. Thus,
the total outward flux is Fε(P ) =

∑n
i=1 Fε(arci) and the

average outward flux becomes

lim
ε→0

Fε(P )

2πε
= −

1

π

n
∑

i=1

sinαi.

3.4. Non-Skeletal Points

Now, let P be a non-skeletal point. In particular, there

exists an ε small enough, so that CP
ε contains no skeletal

points. Hence, the distance function gradient field along the

circle is continuous. Thus, we can write

Fε(P ) = ε

∫ 2π

0
cos(α + β(s) − s) ds,

3Here S′

i(0) = limt→0+
S′

i(t).
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6 JAMES DAMON

1. Skeletal Structures, Shape Operators, and Radial Flow

Skeletal Structures. We begin by recalling the definition of a skeletal structure
(M, U) in Rn+1. Here M is a skeletal set which is a special type of Whitney
stratified set. Hence, it which may be represented as a union of disjoint smooth
strata Mα satisying the axiom of the frontier: if Mβ ∩M̄α "= ∅, then Mβ ⊂ M̄α; and
Whitney’s conditions a) and b) (which involve limiting properties of tangent planes
and secant lines). For example, for generic boundaries,the Blum medial axis is a
Whitney stratified set (by results of Mather [M2] on the distance to the boundary
function together with basic properties of Whitney stratified sets, see e. g. [M1]
or[Gi]). Additionally M may be locally decomposed into a union of n–dimensional
manifolds Mj with boundaries and corners which only intersect on boundary faces.

We let Mreg denote the points in the top dimensional strata (this is the dimension
n of M and these points are the “smooth points”of M). Also, we let Msing denote
the union of the remaining strata. On M is defined a multivalued vector field U ,
which is called the radial vector field. For a regular point x ∈ M , there are two
values of U . For each value of U at x, there are choices of values at neighboring
points which form a smooth vector field on a neighborhood of x. Moreover, U
satisfies additional conditions at edge points of M and singular points of M , see
[D1, §1] for more details.

!

M

B
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For a radial vector field U , we may represent U = r·U1, for a positive multivalued
function r, and a multivalued unit vector field U1 on M . These satisfy analogous
properties to U .

Radial Shape Operator. For the full understanding of the geometry of the
boundary, two shape operators are needed, the radial and edge shape operators.
However, because edge shape operators are only needed on a set of measure zero,
we will be able to ignore them when considering integrals. For a regular point x0

of M and each smooth value of U defined in a neighborhood of x0, with associated
unit vector field U1, the radial shape operator

Srad(v) = −projU (
∂U1

∂v
)

for v ∈ Tx0M . Here projU denotes projection onto Tx0M along U (which in general
is not orthogonal to Tx0M). Because U1 is not necessarily normal and the projection
is not orthogonal, it does not follow that Srad is self–adjoint as is the case for the
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usual differential geometric shape operator. We let Krad = det(Srad) and refer to
it as the radial curvature.

For a point x0 and a given smooth value of U , we call the eigenvalues of the
associated operator Srad the principal radial curvatures at x0, and denote them by
κr i. As U is multivalued, so are Srad and κr i.

Compatibility 1-forms. To identify the partial Blum condition for the boundary we
use the compatibility 1-form. Given a smooth value for U , (possibly at a point of
Msing), with U = r ·U1 for a unit vector field U1, we define the compatibility 1-form
ηU (v) def= v · U1 + dr(v). This is a multivalued 1– form. The vanishing of ηU at x0

implies that U(x0) is orthogonal to the tangent space of the associated boundary
B at the corresponding point (see [D1, Lemma 6.1]).

In [D1, Theorem 1] we give three conditions: radial curvature condition, edge
condition, and compatibility condition, which together ensure that the associated
boundary of the skeletal structure is smooth. These conditions are satisfied by the
Blum medial axis in the generic case. We assume throughout the rest of this paper
that these conditions are satisfied. Then, integrals are defined on B. we will relate
them to integrals on the Skeletal set M .

Radial Flow and Tubular Neighborhood for a Skeletal Structure. We
stated in the introduction that in the partial Blum case we relate the geometry
of boundary to the radial geometry of the skeletal set via the radial flow. One
way to view the formation of the medial axis is as the shock set resulting from the
Grassfire/level-set flow from the boundary, Kimia et al [KTZ] (see e.g. b) of Fig.
3); also see Siddiqi et al [SBTZ] and [P] for further discussion. This flow is from
points on the boundary along the normals until shocks are encountered.

Figure 3. a) Radial Flow and b) Grassfire Flow

We would like to define the radial flow as essentially a “backward flow”along U
to relate the skeletal set M with the boundary B. Locally if we choose a smooth
value of U defined on a neighborhood W of x0 ∈ M , we can define a local radial
flow ψ(x, t) = x + t · U(x) on W × I. We cannot use such local radial flows to
define a global one on M because the radial vector field U is multivalued on M .
We overcome this problem by introducing “double”M̃ of M on which is defined a
“normal bundle”N for (M, U).

The Double and the Normal Bundle of M and the Global Radial Flow. Points of
M̃ consist of pairs (x, U ′) with x ∈ M and v a value of U at x. It is possible to
put the structure of a stratified set on M̃ so the natural projection p : M̃ → M
sending (x, U ′) $→ x is continuous and smooth on strata. Moreover, on M̃ we have
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• radial curvature condition + edge condition + 
compatibility condition ensure smoothness of boundary

• complete characterization of local and relative 
differential geometry of boundary in terms of radial 
shape operator on skeletal structure
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the divergence theorem, we define a multivalued function cF on M as follows. Let
projTM (F ) = cF ·U1, where projTM denotes projection onto U along TM . As both
the extension of F to M and U are continuous and multivalued, so is cF . Then,
the modified divergence Theorem takes the following form.

Theorem 9 (Modified Divergence Theorem). Let Ω be a region with smooth bound-
ary B defined by the skeletal structure. Also, let Γ be a region in Ω with regular
piecewise smooth boundary. Suppose F is a smooth vector field with discontinuities
across M , then

(7.1)
∫

Γ
div F dV =

∫

∂Γ
F · nΓ dS −

∫

Γ̃
cF dM

where Γ̃ = M̃ ∩ π−1(M ∩ Γ).

Remark . We note that at the edge of M , U becomes tangent, so as we approach
the edge cF becomes infinite. However, the integral is still well–defined because
locally dM = ρdS and ρ approaches 0. In fact, as seen in the proof of the theorem
the product cF · ρ represents F · n, for the unit normal vector field n on M , and
this remains bounded.

Before proving Theorem 9, we derive a consequence for the grassfire flow. We
let G denote the unit vector field which generates the grassfire flow. As observed
in Example 7.2, G is smooth with discontinuities across M . Thus we can apply
Theorem 9. In this case, projTM (−U1) = −U1 so cG = −1. Thus, we obtain as a
corollary.

Theorem 10. If G denotes the unit vector field generating the grassfire flow for
the region Ω with Blum medial axis M , then for a piecewise smooth region Γ ⊂ Ω

(7.2)
∫

Γ
div GdV =

∫

∂Γ
G · nΓ dS +

∫

Γ̃
dM.

Remark . Thus, the flux of the grassfire flow across ∂Γ differs from the divergence
integral of G over Γ by the “medial volume of Γ̃”.

Example 7.3. In the case of Ω in R2, M is a branched curve and Γ̃ is a union of
curve segments in M̃ which represent both sides of the curve segments in Γ ∩ M .
The medial measure of Γ̃ is twice the integral of U1 · n over Γ ∩ M with respect to
the usual Riemannian length.

Proof of Theorem 9. For the proof we follow the classical proof of replacing the
integrals by a sum of local integrals for which the classical divergence theorem is
valid. Summing these integrals leads to the modified form in the theorem.

By the properties of skeletal sets we may cover M by the interiors of a finite num-
ber of paved neighborhoods {Wi}. The associated abstact neighborhoods {W̃ij} are
a finite covering of M̃ . For each Wi, we let Vi denote the union of the radial traces
of the W̃ij associated to Wi. Also, the union of the radial traces of the interiors of
the W̃ij associated to Wi form the interior of Vi relative to Ω. The unions of the
interiors again cover Ω. We let {ϕi} be a partition of unity {ϕi} subordinate to
{int(Vi)}.

We may compute the integral by

(7.3)
∫

Γ
div F dV =

∑

i

∫

Γi

ϕi · div F dV
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Definition 2.3. A closed subset R ∈ M̃ is a region with piecewise smooth boundary
if we can decompose R = ∪!

i=1Ri where : i) the Ri only intersect at boundary points;
ii) each Ri ⊂ Wij where Wij is a paved neighborhood in M̃ ; iii) we may represent
Wij as a finite union of manifolds with boundaries and corners Mα in M so that
π(Ri) ∩ Mα is a region with piecewise smooth boundary

Heuristically we view a region of M̃ as associating a region of a smooth stratum of
M to each side of M . For example, consider in Fig. 5 the region of M̃ consisting of
points where at the corresponding points on B, the Gaussian curvature is positive.
It consists of the bottom side of M and part of the top side as indicated in Fig. 5.

-
+

Figure 5. Region in M where B has positive Gauss curvature

Also, integrable functions include for example piecewise continuous functions

Definition 2.4. Let g be a multivalued function on M . We say that g is piecewise
continuous if for g′ = g ◦ π, supp (g′) = ∪Sj , where: the Si only intersect at
boundary points; each Sj is a region with piecewise smooth boundary; and g̃|int(Sj)
has a continuous extension to Sj .

If g : B → R is a piecewise continuous function on B, then the composition g ◦ψ1

need not define a piecewise continuous function on M̃ , but it does define a Borel
measurable one.

3. Boundary Integrals as Medial Integrals

We now suppose that (M, U) is a skeletal structure which defines a region with
smooth boundary and satisfies: the partial Blum condition. We know that B is
smooth off the image ψ1(Msing) of the singular set of M , where we only know it is
weakly C1. The images of the strata of Msing are still smooth submanifolds of B,
and using the radial map we see that points in ψ1(Msing) have paved neighborhoods.
Then, B is piecewise smooth and so has a Riemannian volume form, denoted by
dV , hence , the same argument used for M allows us to define the integral

∫
B g dV

for a continuous function g. Then, even if B is not smooth we can still use the Riesz
Representation Theorem to extend the integral for Borel measurable functions and
regions on B.

Theorem 1. Suppose (M, U) is a skeletal structure defining a region with smooth
boundary B and satisfying the partial Blum condition. Let g : B → R be Borel
measurable and integrable with respect to the Riemannian volume measure. Then,

(3.1)
∫

B
g dV =

∫

M̃
g̃ · det(I − rSrad) dM

where g̃ = g ◦ ψ1.
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immediate neighbor cannot be removed, since this would create a hole or a

cavity. Therefore, the only potentially removable points are on the border of

the object. This suggests the implementation of the thinning process using a

heap data structure. A full description of the procedure is given in Algorithm

2. The approach is computationally very efficient. With n the total number of

digital points within the original volume and k the number of points within

the object, the worst case complexity can be shown to be O(n) +O(k log(k))

(Siddiqi et al., 2002).

Algorithm 2: Topology Preserving Thinning.

Data : Object, Average Outward Flux Map.

Result : (2D or 3D) Skeleton.

for (each point x on the boundary of the object) do

if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for insertion;

while (maxHeap.size > 0) do

x = HeapExtractMax(maxHeap);

if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then

mark x as a medial surface (end) point;

else

Remove x;

for (all neighbors y of x) do

if (y is simple) then

insert(y, maxHeap) with AOF(y) as the sorting key for in-

sertion;

42

Algorithm



Validation



 
Validation

Ground
Truth

Reconstruction

The limiting average outward flux value determines the object angle, which in turn 
is used to recover the associated bi-tangent points, shown as filled circles.
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Abstract

Medial surfaces are popular representations of 3D objects

in vision, graphics and geometric modeling. They capture

relevant symmetries and part hierachies while also allowing

for detailed differential geometric information to be recov-

ered. However, exact algorithms for their computation must

solve high-order polynomial equations and approximation

algorithms rarely can guarantee soundness and complete-

ness. In this article we develop a technique for computing

medial surfaces for an object with a mesh boundary, which

is based on an analysis of the average outward flux of the

gradient of its Euclidean Distance function. This analysis

leads to a coarse-to-fine algorithm implemented on a cubic

lattice that reveals at each iteration the salient manifolds of

the medial surface. We provide comparative results against

state-of-the-art methods in the literature.

1. Introduction

Consider a region Ω in R3, with boundary B. Blum sug-

gested the idea that an intuitive representation of this region

is one which makes its reflective symmetries explicit [3].

A formal definition that we adopt from him in this paper is

the following:

Definition 1.0.1. Themedial surfaceMS of Ω is the locus

of centres of maximal spheres in Ω tangent to B at two or

more points.

In other words,MS is the set of points that are equidis-
tant from at least two points of B. Figure 1 presents an

example. The process of extracting a medial surface of Ω is
reversible given that for each point of M one can note the

radius of its maximal sphere. We are interested in devising

an algorithm that given B locates its medial surfaceMS.
In 3D, the medial surface is composed of 2D sheets

meeting along 1D seams and 0D junctions. When Ω is a

polyhedron, the sheets are quadric surfaces, non-degenerate

seams are intersections of 3 quadric surfaces, and non-

degenerate junctions are intersections of 4 such surfaces.

Exact computation of medial surfaces even in the simple

Figure 1: The mesh surface of “Venus” and its medial sur-

face: back and front

case of a polyhedron requires solution of equations of high

algebraic degree. For this reason, it is reasonable to seek to

approximate the medial surface.

Definition 1.0.2. For a particular point p on a sheet of

MS, called a smooth point, the object angle α is the angle

made by the vector from p to any of its two closest points on
B and the tangent plane toMS at p. Refer to Figure 2.

Note that this angle is the same regardless of which clos-

est point onB we consider. The idea that sections of medial

medial surface with high object angle represent the most

perceptually salient parts of an object’s boundary is the ba-

sis of many techniques in the literature for removing “un-

wanted” sheets [1, 9].

1.1. Previous Work

The problem of computing the medial surface of a 3D

solid with a mesh boundary accurately has been the sub-

ject of extensive study. In 3 dimensions, existing research

may be divided into the following categories – tracing al-

gorithms, Voronoi methods for points distributed on the

shape’s boundary, and approaches based on spatial subdi-
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3D Medial Graph Matching 
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Indexing and Matching 3-D Models Using Medial Surfaces and their Graph
Spectra

Category: Research

Abstract

We consider the use of medial surfaces to represent symmetries of
3-D objects. This allows for a qualitative abstraction based on a di-
rected acyclic graph of components and also a degree of invariance
to a variety of transformations including the articulation and defor-
mation of parts. We demonstrate the use of this representation for
both indexing and matching 3-D object models. Our formulation
uses the geometric information associated with each node along
with an eigenvalue labeling of the adjacency matrix of the subgraph
rooted at that node. The results demonstrate the significant poten-
tial of medial surface-based representations and their graph spectra
in the context of 3-D model retrieval in computer graphics.

CR Categories: I.5.3 [Computing Methodologies]: Pattern
Recognition—Clustering - Similarity Measures; I.5.5 [Comput-
ing Methodologies]: Pattern Recognition—Applications - Com-
puter Vision; I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Shape

Keywords: shape matching, indexing, medial surfaces, graph
spectra

1 Introduction

With an explosive growth in the number of 3-D object models
stored in web repositories and other databases, the graphics com-
munity has begun to address the important and challenging problem
of 3-D object retrieval and matching, a problem which traditionally
falls in the domain of computer vision research. Recent advances
include query-based search engines [Funkhouser et al. 2003] which
employ promising measures including spherical harmonic descrip-
tors and shape distributions [Osada et al. 2002]. Such systems can
yield impressive results on databases including hundreds of 3-D
models, in a matter of a few seconds.

Thus far the emphasis in the computer graphics community has
broadly been on the use of qualitative measures of shape that are
typically global. Such measures are robust in the sense that they
can deal with noisy and imperfect models, and at the same time are
simple enough so that efficient algorithmic implementations can be
sought. However, an inevitable cost is that such measures are inher-
ently coarse, and are sensitive to deformations of objects or their
parts. As a motivating example, consider the 3-D models in Fig.
1. These four exemplars of an object class were created by articu-
lations of parts and changes of pose. For such examples, the very
notion of a center of mass or an origin, which is crucial for the
computation of descriptions such as shape histograms (sectors or
shells) [Ankerst et al. 1999] or spherical extent functions [Vranic
and Saupe 2001], can be nonintuitive and arbitrary. In fact, the cen-
troid of such models may actually lie in the background. To compli-
cate matters, it is unclear how to obtain a global alignment of such
models, and hence signatures based on a Euclidean distance trans-
form [Borgefors 1984; Funkhouser et al. 2003] have limited power
in this setting. As well, measures based on reflective symmetries
[Kazhdan et al. 2003], and signatures based on 3-D moments [Elad

Figure 1: Exemplars of the object class “human” created by
changes in pose and articulations of parts (top row). The medial
surface (or 3-D skeleton) of each is computed using the algorithm
of [Siddiqi et al. 2002] (bottom row). The medial surface is auto-
matically partitioned into distinct parts, each shown in a different
color.

et al. 2001] or chord histograms [Osada et al. 2002] are not invariant
under such transformations.

The computer vision community has grappled with the problem of
generic or category-level object recognition by suggesting repre-
sentations based on volumetric parts, including generalized cylin-
ders and geons [Binford 1971; Marr and Nishihara 1978; Bieder-
man 1987]. Such approaches build a degree of robustness to defor-
mations and movement of parts, but their representational power is
limited by the vocabulary of geometric primitives that are selected.
An alternative approach is to use 3-D medial loci (3-D skeletons),
obtained by considering the locus of centers of maximal inscribed
spheres along with their radii [Blum 1973]. As pointed out by
Blum, this offers the advantage that a graph of parts can be inferred
from the underlying local mirror symmetries of the object. To mo-
tivate this idea, consider once again the human forms of Fig. 1. A
medial surface-based representation (bottom row) provides a natu-
ral decomposition, which is largely invariant to the articulation and
bending of parts.

In this article, we build on a recent technique to compute medial
surfaces [Siddiqi et al. 2002] by proposing an interpretation of its
output as a directed acylic graph (DAG) of parts. We then sug-
gest refinements of algorithms based on graph spectra to tackle the
problems of indexing and matching 3-D object models. These al-
gorithms have already shown promise in the computer vision com-
munity for category-level view-based object indexing and matching
using 2-D skeletal graphs [Siddiqi et al. 1999; Shokoufandeh et al.
1999]. We demonstrate their significant potential for 3-D object
retrieval with experimental results on a database of models repre-
senting 11 object classes, including exemplars of both rigid objects
and ones with significant deformation and articulation of parts.

2 Medial Surfaces and DAGs

Recent approaches for computing 3-D skeletons with proven ro-
bustness properties include the power crust algorithm [Amenta

1



Medial Graph Matching 
• Edit Distance Based Approaches                                            

(Sebastian, Kline, Kimia; Hancock, Torsello)

• motivated by string edit distances

• polynomial time algorithm for trees, (but need to define edit costs)

• Maximum Clique Approaches                                                  
(Pelillo et al.)

• subgraph isomorphism -> maximum clique in an association graph

• discrete combinatorial problem -> continuous optimization

• Graph Spectra-Based Approaches                                              
(Shokoufandeh et al.) 

• eigenvalue analysis of adjacency matrix for DAGs

• separation of “topology” and “geometry”

• extension to handle indexing



A Topological Signature Vector 

• At node “a” compute the sum of the magnitudes of the “k” largest eigenvalues 
of the adjacency matrix of the subgraph rooted at “a”.

• Carry out this process recursively at all nodes.

• The sorted sums become the components of the “TSV” assigned to node V.
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2. Use junction points to separate these manifolds, but allow
junction points to belong to all manifolds that they connect.

3. Form connected components with the remaining curve points,
and consider these as parts as well.

This process of automatic skeletonization and segmentation is il-
lustrated for two object classes, a chair and a human form, in Fig.
2.

We now propose an interpretation of the segmented medial surface
as a directed acyclic graph (DAG). We begin by introducing a no-
tion of saliencywhich captures the relative importance of each com-
ponent. Consider that the envelope of maximal inscribed spheres of
appropriate radii placed at all skeletal points reconstructs the orig-
inal object’s volume [Blum 1973]. The contribution of each com-
ponent to the overall volume can thus be used as a measure of its
significance. Since the spheres associated with adjacent compo-
nents can overlap, an objective measure of component j’s saliency
is given by:

Saliency j =
Voxels j

!Ni=1Voxelsi
.

Here we assume that there are N components and Voxelsi is the
number of voxels uniquely reconstructed by component i. We pro-
pose the following construction of a DAG, using each component’s
saliency. Consider the most salient component as the root node
(level 0), and place components to which it is connected as nodes at
level 1. Components to which these nodes are connected are placed
at level 2, and this process is repeated in a recursive fashion until
all nodes are accounted for. The graph is completed by drawing
edges between all pairs of connected nodes, in the direction of in-
creasing levels. However, to allow for 3-D models comprised of
disconnected parts we introduce a single dummy node as the parent
of all DAGs for a 3-D model.

This process is illustrated in Fig. 2 (bottom row) for the human
and chair models, with the saliency values shown within the nodes.
Note how this representation captures the intuitive sense that the
human is a torso with attached limbs and a head, a chair is a seat
with attached legs and a back, etc. Our DAG representation of the
medial surface is quite different than the graph structure that fol-
lows from a direct use of the taxonomy of 3-D skeletal points in the
continuum [Giblin and Kimia 2004]. The latter is more complex
and does not naturally lend itself to hierarchical structure indexing
and matching algorithms, which we describe next.

3 Indexing

A linear search of the 3-Dmodel database, i.e., comparing the query
3-D object model to each 3-D model and selecting the closest one,
is inefficient for large databases. An indexing mechanism is there-
fore essential to select a small set of candidate models to which
the matching procedure is applied. When working with hierarchi-
cal structures, in the form of DAGs, indexing is a challenging task,
and can be formulated as the fast selection of a small set of candi-
date model graphs that share a subgraph with the query. But how
do we test a given candidate without resorting to subgraph isomor-
phism and its intractability? The problem is further compounded
by the fact that due to perturbation and noise, no significant iso-
morphisms may exist between the query and the (correct) model.
Yet, at some level of abstraction, the two structures (or two of their
substructures) may be quite similar. Thus, our indexing problem
can be reformulated as finding model (sub)graphs whose structure
is similar to the query (sub)graph.

Figure 3: Forming a Low-Dimensional Vector Description of Graph
Structure. At node a, we compute the sum of the magnitudes of the
k1 largest eigenvalues of the adjacency sub-matrix defined by the
subgraph rooted at a. The sorted sums Si become the components
of χ(V ), the topological signature vector (or TSV) assigned to V .

Choosing the appropriate level of abstraction with which to char-
acterize a DAG is a challenging problem. We seek a description
that, on the one hand, provides the low dimensionality essential
for efficient indexing, while on the other hand, is rich enough to
prune the database down to a tractable number of candidates. We
adopt the approach of [Siddiqi et al. 1999], which draws on the
eigenspace of a graph to characterize the topology of a DAG with
a low-dimensional vector that will facilitate an efficient nearest-
neighbor search in a database. The approach begins by noting that
any graph can be represented as an antisymmetric {0,1,−1} node-
adjacency matrix (which we will subsequently refer to as an adja-
cency matrix), with 1’s (-1’s) indicating a forward (backward) edge
between adjacent nodes in the graph (and 0’s on the diagonal). The
eigenvalues of a graph’s adjacency matrix encode important struc-
tural properties of the graph, characterizing the degree distribution
of its nodes. Moreover, it has been shown that the magnitudes of
the eigenvalues (and hence their topological characterization) are
stable with respect to minor perturbations of graph structure due
to, for example, noise, segmentation error, or minor within-class
structural variation.

One simple structural abstraction would be a vector of the sorted
magnitudes of the eigenvalues of a DAG’s adjacency matrix1. How-
ever, for large DAGs, the dimensionality of the index would be pro-
hibitively large (for efficient nearest-neighbor search), and the de-
scriptor would be global (prohibiting effective indexing of query
graphs with added or missing parts). This problem can be ad-
dressed by exploiting eigenvalue sums rather than the eigenvalues
themselves, and by computing both global and local structural ab-
stractions [Siddiqi et al. 1999]. Let V be the root of a DAG whose
maximum branching factor is ", as shown in Fig. 3. Consider the
subgraph rooted at node a, the first child of V , and let the out-
degree of a be k1. We compute the sum S1 of the magnitudes of
the k1 largest eigenvalues of the adjacency sub-matrix defined by
the subgraph rooted at node a, with the process repeated for the re-
maining children of V . The sorted Si’s become the components of
a "-dimensional vector χ(V ), called a topological signature vector
(TSV), assigned to V . If the number of Si’s is less than ", the vec-
tor is padded with zeroes. We can recursively repeat this procedure,
assigning a vector to each nonterminal node in the DAG, computed
over the subgraph rooted at that node.

In summing the magnitudes of the eigenvalues, some uniqueness
has been lost in an effort to reduce dimensionality. The ki largest
eigenvalues are chosen for two reasons: 1) the largest eigenvalues

1Since the eigenvalues of an antisymmetric matrix are complex we uti-

lize the magnitude of an eigenvalue.

3



Matching Algorithm 

• (a) Two DAGs to be matched.

• (b) A bi-partite graph is formed, spanning their nodes but excluding their 
edges. The edge weights W(i,j) in the bi-partite graph encode node similarity 
as well as TSV similarity. The two most similar nodes are found, and are 
added to the solution set of correspondences.

•  (c) This process is applied, recursively, to the subgraphs of the two most 
similar nodes. This ensures that the search for corresponding nodes is focused 
in corresponding subgraphs, in a top-down manner.
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Figure 4: Indexing Mechanism. Each non-trivial node (whose
TSV encodes a topological abstraction of the subgraph rooted at
the node) votes for models sharing a structurally similar subgraph.
Models receiving strong support are candidates for a more compre-
hensive matching process.

are more informative of subgraph structure, and 2) by summing ki
elements, the sums are effectively normalized according to the local
complexity of the subgraph root, thereby distinguishing subgraphs
that have richer part structure at coarser levels. The dimensionality
of the TSV, χ , is bounded by the maximum branching factor in the
graph, which is typically small, and not by the size of the graph,
which can be large for complex 3-D models.

Indexing now amounts to a nearest-neighbor search in a model
database, as shown in Fig. 4. The TSV of each non-leaf node in
each model DAG defines a vector location in a low-dimensional Eu-
clidean space (the model database) at which a pointer to the model
containing the subgraph rooted at the node is stored. At indexing
time, a TSV is computed for each non-leaf node, and a nearest-
neighbor search is performed using each “query” TSV. Each TSV
“votes” for nearby “model” TSVs, thereby accumulating evidence
for models that share the substructure defined by the query TSV.
Indexing could, in fact, be accomplished by indexing solely with
the root of the entire query graph. However, in an effort to accom-
modate large-scale perturbation (which corrupts all ancestor TSVs
of a perturbed subgraph), indexing is performed locally (using all
non-trivial subgraphs, or “parts”) and evidence combined. The re-
sult is a small set of ranked model candidates which are verified
more extensively using the matching procedure described next.

4 Matching

Each of the top-ranking candidates emerging from the indexing pro-
cess must be verified to determine which is most similar to the
query. If there were no noise our problem could be formulated
as a graph isomorphism problem for vertex-labeled graphs. With
limited noise, we would search for the largest isomorphic subgraph
between query and model. Unfortunately, with the presence of sig-
nificant noise, in the form of the addition and/or deletion of graph
structure, large isomorphic subgraphs may simply not exist. This
problem can be overcome by using the same eigen-characterization
of graph structure used for indexing [Siddiqi et al. 1999].

As we know, each node in a graph (query or model) is assigned a
TSV, which reflects the underlying structure in the subgraph rooted
at that node. If we simply discarded all the edges in our two graphs,
we would be faced with the problem of finding the best corre-
spondence between the nodes in the query and the nodes in the
model; two nodes could be said to be in close correspondence if
the distance between their TSVs (and the distance between their
domain-dependent node labels) was small. In fact, such a formula-
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Figure 5: Matching Algorithm. Given two graphs to be matched
(a), form a bipartite graph (b) spanning their nodes but excluding
their edges. Edge weights (W (i, j)) not only encode node content
similarity (see Section 4), but the structural similarity of their un-
derlying subgraphs, as encoded by the difference in their respective
TSV’s. The best matching pair is identified, the two nodes are re-
moved from their respective graphs and added to the solution set of
correspondences, and the process applied recursively to their sub-
graphs (c).

tion amounts to finding the maximum cardinality, minimum weight
matching in a bipartite graph spanning the two sets of nodes. At first
glance, such a formulation might seem like a bad idea (by throw-
ing away important graph structure) until one recalls that the graph
structure is effectively encoded in the node’s TSV. Is it then possi-
ble to reformulate a noisy, largest isomorphic subgraph problem as
a simple bipartite matching problem?

Unfortunately, in discarding all the graph structure, the underlying
hierarchical structure has also been discarded. There is nothing in
the bipartite graph matching formulation that ensures that hierar-
chical constraints among corresponding nodes are obeyed, i.e., that
parent/child nodes in one graph don’t match child/parent nodes in
the other. This reformulation, although softening the overly strict
constraints imposed by the largest isomorphic subgraph formula-
tion, is perhaps too weak. Since no polynomial-time solution is
known to exist for enforcing the hierarchical constraints in the bi-
partite matching formulation, an approximate solution to finding
corresponding nodes between two noisy, occluded DAGs, subject
to hierarchical constraints, is sought [Siddiqi et al. 1999; Shoko-
ufandeh et al. 2002].

The key idea is to use a modification of Reyner’s algorithm [Reyner
1977], that combines the above bipartite matching formulation with
a greedy, best-first search in a recursive procedure to compute the
corresponding nodes in two rooted DAGs, as shown in Fig. 5. As in
the above bipartite matching formulation, the maximum cardinal-
ity, minimum weight matching in the bipartite graph spanning the
two sets of nodes from the query and model graphs, is computed,
as shown in Fig. 5(a). Edge weight encodes a function of both
topological similarity as well as domain-dependent node similarity,
described in the following paragraph. The result will be a selec-
tion of edges yielding a mapping between query and model nodes.
As mentioned above, the computed mapping may not obey hier-
archical constraints. They therefore greedily choose only the best
edge (the two most similar nodes in the two graphs, representing in
some sense the two most similar subgraphs), as shown in Fig. 5(b),
add it to the solution set, and recursively apply the procedure to
the subgraphs defined by these two nodes, as shown in Fig. 5(c).
Unlike a traditional depth-first search, which backtracks to the next
statically-determined branch, this algorithm effectively recomputes
the branches at each node, always choosing the next branch to de-
scend in a best-first manner. In this way, the search for correspond-
ing nodes is focused in corresponding subgraphs (rooted DAGs) in
a top-down manner, thereby ensuring that hierarchical constraints
are obeyed. The structural abstraction offered by the TSV effec-
tively unifies the indexing and matching procedures, providing an
efficient model retrieval mechanism.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
1

26

26

"
i=1

< N̂i,!D(xi) >;

(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
1

26

26

"
i=1

< N̂i,!D(xi) >;

(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
1

26

26

"
i=1

< N̂i,!D(xi) >;

(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
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(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
1
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(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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Figure 2: A voxelized human form and chair (top row), their seg-
mented medial surfaces (middle row). A hierarchical interpretation
of the medial surface, using a notion of part saliency, leads to a di-
rected acyclic graph DAG (bottom row). The nodes in the DAGs
have labels corresponding to those on the medial surface, and the
saliency of each node is also shown.

et al. 2001] and average outward flux-based skeletons [Siddiqi et al.
2002]. The first method has the advantage that it can be employed
on input data in the form of points sampled from an object’s sur-
face, and theoretical guarantees on the quality of the results can
be provided [Amenta et al. 2001]. Unfortunately, automatic seg-
mentation of the resulting skeletons remains a challenge. The sec-
ond method assumes that objects have first been voxelized, and this
adds a computational burden. However, once this is done the limit-
ing behavior of the average outward flux of the Euclidean distance
function gradient vector field can be used to characterize 3-D skele-
tal points. We choose to employ this latter method since it has the
advantage that the digital classification of [Malandain et al. 1993]
allows for the taxonomy of generic 3-D skeletal points [Giblin and
Kimia 2004] to be interpreted on a rectangular lattice, leading to a
graph of parts.

Under the assumption that the initial model is given in triangulated
form, we begin by scaling all the vertices so that they fall within
a rectangular lattice of fixed dimension and resolution. We then
sub-divide each triangle to generate a dense intersection with this
lattice, resulting in a binary (voxelized) 3-D model. The average
outward flux of the Euclidean distance function’s gradient vector
field is computed through unit spheres centered at each rectangu-
lar lattice point, using Algorithm 1. This quantity has the property
that it approaches a negative number at skeletal points and goes to
zero elsewhere [Siddiqi et al. 2002], and thus can be used to drive
a digital thinning process, for which an efficient implementation is
described in Algorithm 2. This thinning process has to be imple-
mented with some care, so that the topology of the object is not
changed. This is done by identifying each simple or removable
point x, for which a characterization based on the 26-neighborhood
of each lattice point x is provided in [Malandain et al. 1993]. With
O being the set of points in the interior of the voxelized object and
N∗26 being the 26-neighborhood of x, not including x itself, this
characterization is based on two numbers: 1)C∗: the number of 26-

connected components 26-adjacent to x in O∩N∗26, and 2) C̄: the
number of 6-connected components 6-adjacent to x in Ō∩N18.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field !D;
Compute the average outward flux of !D:

For (each point x) AOF(x) =
1
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(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal
at xi of the unit sphere centered at x)

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for in-
sertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sort-
ing key for insertion;

The taxonomy of generic 3-D skeletal points in the continuum, i.e.,
those which are stable under small perturbations of the object, is

provided in [Giblin and Kimia 2004]. Using the notation Akn, where
n denotes the number of points of contact of the maximal inscribed
sphere with the surface and k the order of these contacts, the taxon-
omy includes: 1) A21 points which form a smooth medial manifold,
2) A3 points which correspond to the rim of a medial manifold, 3)
A31 points which represent the intersection curve of three medial

manifolds, 4) an A41 point at the intersection of four A
3
1 curves, and

5) an A1A3 point at the intersection between an A3 curve and an A
3
1

curve.

It is clear from this classification that 3-D skeletons are essentially
comprised of medial manifolds, their rims and intersection curves,
and this is why we refer to this as a medial surface representation.
As shown in [Malandain et al. 1993], the numbersC∗ and C̄ can also
be used to classify surface points, rim points, junction points and
curve points on a rectangular lattice. This suggests the following
3-step approach for segmenting the (voxelized) medial surface into
a set of connected parts:

1. Identify all manifolds comprised of 26-connected surface
points and border points.
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