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Blum's A-Morphologies: 2D
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FiG. 29. Equivalent objects in some simple A-morphologies. In the upper half, the
object sym-axes have the same topology. In the lower half, the object and ground have the
same directed graph.



Blum's A-Morphologies:

271

3D



Blum’s Grassfire Machine

"Figure 19 shows my first physical embodiment of the process. It uses

a movie projector and camera with high contrast film. These are symmetrically
driven apart from the lens in such a way as to keep a one to one magnification,
but to increase the circle of confusion (defocussing). Corner detection is done by a
separate process. I am presently building a closed loop electronic system to do both
the wave generation and corner detection.”

[A transformation for Extracting New Descriptors of Shape, 1967.]



Mathematics



The Rowboat Analogy

a. b.

Figure 1.7. Local medial geometry. a. Local geometric properties of a medial point
and its boundary pre-image. b. The rowboat analogy for medial points.



Contact Classification

Theorem 1 (Giblin and Kimia) The internal medial locus of a three-
dimensional object (2 generically consists of

1 sheets (manifolds with boundary) of A% medial points;

2 curves of A:l)’ points, along which these sheets join, three at a time;

3 curves of As points, which bound the free (unconnected) edges of
the sheets and for which the corresponding boundary points fall on

a crest,

4 points of type A‘ll, whaich occur when four A:f curves meet;

5 points of type A1As (i.e., A1 contact and A3 contact at a distinct
pair of points) which occur when an As curve meets an Aif curve.




Euclidean Distance Function




Gradient Vector Field

i e T T T P A G S
T e s e Tea e e tm e e (A R
Tma TR e Tea Tem Tea a e Mo e g Y e L e A R R R
ﬂﬂﬂﬂﬂﬂﬂﬂ e e e I,
ey =8 =8 m_m =3 = =.a =.a — " "-m a ..r.f-.r-..r..r-r-r Bem Bl Bl Bl Bl i B B B B
" e mm en ™" " " "ma "ma "ma e .ri.,,.-.,.ff-..r_.r..r..r Ben Bl B B Bl Bl Bl e e B
—— ey ey "ei ‘e e eE = m_m =.a =.a J.-J.-J.ﬂu.nnrunrunr aj.-nrunrunrunrunrunrl.rl.lunrr
e T T Y Y ey my ey ™= = -— e m e T R R e M R R Rl R e e l.-_._.
ﬂﬂﬂﬂﬂﬂﬂ " ma P T T e Ll L
LLLLLLLLL B AR L L
"Ll
SR Ut LA SN
B .V I T P
L B . e N T
"a Tna e Ta e e tmp e e v e T e e e gl N
ﬂﬂﬂﬂﬂﬂﬂ T e ey g T Tma Tma TRAN e o e ey
ﬂﬂﬂﬂﬂﬂﬂﬂﬂ s . T L Ll ] ey
llllllllll = e e e R o e LS - -
— — — — e e _m T AT e e e e e o e ..r.f--l-l
[ R R R R S e e e e e g L Wb - -
B R R (R — I._..1.51.1..._...1.._.h. __....._..._,,.._,.
o ea e —m e —a —a T e — LR §
lllllllllllllllll A ; i
LLLLLLLLLLLLLLLLL e m m m U e L IR
lllllllllllllllll B Ly T T
mm em mom em " o i et e el n e B R
Sma e Tmo, Tea Tma Tma Tes Tes e Tes Tegd T T Sem Sem Ses —en =l F— B B B B —_—e & LR
e . T VL N R |
"ma "ea "ma "ea "ea "ma 'ma "ea "ea "ma B T T T T T o P e e R R
ﬂﬂﬂﬂﬂﬂﬂ S N T S T A [ .
i —n i ey e —am —am e e em mem e e e LR L A
S L R I T T
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ R o R R R R
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ N L T e T T
lllllllllllllllllll -I-I-I._J__J__J._,,.._J_.
llllllll e e e e e e e )
lllllllllllll el ol T I A
R - S - P RN
LLLLLLLL I1l|1l|1l|1l|1lﬂ q ﬂlllllllllll-ll. ﬂ.-ll-ll-lll .-thh
|1-|1-|1-|1-|1-|1-.11.11.11.11.11.11\11...-ﬂ.—ﬂ..1111.1..1..1.. T R
. alt .11...1...1...1n.—ﬂ.._..__.1...1.1111 -y |4
e e e RO A oy
B s Waltaall A TN A S SRR TR 3
B I L T L -
o S 2 P LS e
R e a a AP \..\........1& R
R T Y P LIC N
E e O T A S S A B
B R .___.__.._. ), i LN
A R A A ......1..1. PP rs s
P S oo AR
EE R A N N N A B A A ....l..l.. ._..1...1“.3.
L A O O - [
R N R D DV N
x..u.x..xax..x..u.xax..x.x.u.u...-........\f.fh-x..a}u] e — o
a.-....u.-ﬁ-h-x...............m..m......ﬁ-{f-rdff.r..r_rn I, N [
Y N N S T e o CE
B R - ; S PR
B T ; ..-.f-._-.. ol
e [ T R R R R R R PN § L s
A e ot el B i i —a T T R R R e e e L .
= = = = A §p §F pF P

- R R R R R

d
e gy
11111 P
i R S
i R
B B S A
N I
PN I A
P T I
I S S R
P T
[ I A A
[ T S A o o
PP
J oF & e
o e e e

- o a— am me B
L
L
L
T T e
R L N N
LU T L
LR T
L
L A R L
L O . T T
L
(A AL R
L T U A
L
-nr-.rnnrnnrk.k.k.l.
Bl S I
F I B B
I B A
I I B
d o e
Lo e
R
I
oo mm e mm e o e
i

B B B e B B B B

- -

_— o = e B B

—_— e e e e B

B B B e B B B B

B B B e B B B B



Outward Flux
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Outward Flux



Outward Flux

Definition 1 77:e outward flux of q through OR is given by

/ (q, N ) ds
OR

Definition 2 77ie average outward flux of q through OR is
given by
faR < qﬁ J'\"f > dS

faR ds




[et S be a branch of the skeleton and let R = R{ U Rs
be a path connected region which intersects it. Let OR =
C, UCsand C3 = S N R. Let C,,, C5, be parallel curves
to C'3 which approach C'; ast — 0. Let Ry; and Ry, be the
regions obtained from R; and Ry by removing the region

!
k|

between the curves C,, and ', Finally, let ¢, denote ¢
above S and q_ denote q below S.



The outward flux of ¢ through OR is given by

/ < EI.*.J\"F } ds = / < Qﬁ-f\"f> ds + / { qg_ﬁ"\’f) ds.
OR 4 s

Applying the divergence theorem to Ry; and Ro;

/ div(q) dv :/ (q,N) ds +/ (q,N) ds,
Ry Cht C.

3t
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Adding the above two equations we have

/ div(q) d’U—{—/ div(q) dv =
th Rgf_

/ q J\ ds + / < (-lj..f"\-'f > ds +
I[:fli: Cfgt

/ q J\ ds ‘|‘/ <(-1_,J\-'f> ds.
(_— _C,,H

3t



It 1s a standard property that the tangent to the skeleton bi-
sects the the angle between q4 and q_ at a skeletal point
(see Figure 2). Thus, on C3 we have

< q—l—?*"\f—l— > — < (-I—f*"\"r— > ’ (2)

where N, N_ denote the normals to C'3 from above and
from below, respectively. Thus, one can take the limit as
t — 0O of both sides of the above equation to obtain the
following extension of the divergence theorem



(extended) Divergence Theorem

Theorem 1 For a path connected region R which contains
part of a skeletal curve S, the divergence of the vector field
q is related to its flux through OR by the following equation

f div(q) dv =
R=R,UR-

/ (qN) ds+2 f (q,Nc, ) ds.
JR Cs

Corollary. The OF for a region shrinking to a skeleton point
satisfies:

lim OFr —2((VD(P), N))length(Cs)



Circular Neighborhoods

1
(Dimitrov, Damon, Siddiqi, CVPR'03)
tP = & # # L]
.- The AOF for shrinking circular regions:
S5®) R—P AOFy — «
Q2
Regular Points —% sin o
End-Points —%[Eillr:l + )
Junetion Points —L3"  siney;

Non-Skeletal Points 0




Average Outward Flux




Damon: Skeletal Structures

FIGURE 2. A Skeletal Structure (M, U) defining a region 2 with
smooth boundary B

radial shape operator

. oU
Srad(v) — _prOJU(a—?}l)

radial curvature

K'rad — det(sfrad)



Damon: Radial Flow

=€ 3=4

FIGURE 3. a) Radial Flow and b) Grassfire Flow

® radial curvature condition + edge condition +
compatibility condition ensure smoothness of boundary

® complete characterization of local and relative
differential geometry of boundary in terms of radial
shape operator on skeletal structure



(Rigorous) Divergence Theorem

Theorem 9 (Modified Divergence Theorem). Let € be a region with smooth bound-
ary B defined by the skeletal structure. Also, let I' be a region in ) with reqular

piecewise smooth boundary. Suppose F' is a smooth vector field with discontinuities
across M, then

(71) /d’L’UFdV — / F-np dS — /CF dM
I or )
where T = M N7~ Y (M NT).

projras (F') = cp - Uy, where proj,,, denotes projection onto U along T'M



Boundary Integrals as Medial
Integrals

Theorem 1. Suppose (M,U) is a skeletal structure defining a region with smooth
boundary B and satisfying the partial Blum condition. Let g : B — R be Borel
measurable and integrable with respect to the Riemannian volume measure. Then,

(3.1) /ng — /~ g-det(I —rSyqq) dM
B M

where g = g o 1.



Algorithms



Algorithm

Algorithm 2: Topology Preserving Thinning.

Data : Object, Average Outward Flux Map.
Result : (2D or 3D) Skeleton.

for (each point x on the boundary of the object) do
if (x is simple) then

‘ insert(x, maxHeap) with AOF(x) as the sorting key for insertion;

while (maxHeap.size > () do

x = HeapExtractMax(maxHeap);

if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then

‘ mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do
if (y is simple) then
insert(y, maxHeap) with AOF(y) as the sorting key for in-

sertion;




Validation

To verity the theoretical results, boundary points
corresponding to regular skeletal points are reconstructed
according to: Q1o =P +rR(+a)tp

STEP 1. Start with a binary shape.

STEP 3. Compute skeleton with algorithm
presented in [3].

STEP 2. Compute AOF of shape using
circular regions.

- o

h

STEP 4. Using our results for shrinking
circular regions, reconstruct boundary
points from regular skeletal points.



Validation
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Reconstruction

The limiting average outward flux value determines the object angle, which in turn

is used to recover the associated bi-tangent points, shown as filled circles.



Brain Ventricles

Original Medial Surface



Venus de Milo

Circa 100 BC



Applications



Virtual Endoscopy

Colon

Arteries



3D Medial Graph Matching




Medial Graph Matching

e Edit Distance Based Approaches
(Sebastian, Kline, Kimia; Hancock, Torsello)

® motivated by string edit distances
® polynomial time algorithm for trees, (but need to define edit costs)

® Maximum Clique Approaches
(Pelillo et al.)

® subgraph isomorphism -> maximum clique in an association graph
® discrete combinatorial problem -> continuous optimization

® Graph Spectra-Based Approaches
(Shokoufandeh et al.)

® eigenvalue analysis of adjacency matrix for DAGs
® separation of “topology” and “geometry”

® extension to handle indexing



A Topological Signature Vector

o AV=IS, S, 8,0, 0]
S >8,>..>8,

a b ¢ d

SA a0 1 1 0
b|(-1 0 0 0

c|-1 0O O 1

d| 0 0 -1 O

S, Antisymmetric
Adjacency Matrix

S, =| 1)+ 1)+ |

e At node "a” compute the sum of the magnitudes of the “k” largest eigenvalues

N

of the adjacency matrix of the subgraph rooted at "a”.
® (Carry out this process recursively at all nodes.

® The sorted sums become the components of the "TSV” assigned to node V.



Matching Algorithm

e (a) Two DAGs to be matched.

® (b) A bi-partite graph is formed, spanning their nodes but excluding their
edges. The edge weights W(i,j) in the bi-partite graph encode node similarity
as well as TSV similarity. The two most similar nodes are found, and are
added to the solution set of correspondences.

® (c) This process is applied, recursively, to the subgraphs of the two most
similar nodes. This ensures that the search for corresponding nodes is focused
in corresponding subgraphs, in a fop-down manner.



Medial Surfaces to DAGs

(Malandain, Bertrand,
Ayache, IJCV'03)



3D Object Models:
The McGill Shape Benchmark

® 420 models reflecting 18 object classes

® Severe Articulation: hands, humans, teddy-bears,
eyeglasses, pliers, snakes, crabs, ants, spiders, octopuses

® Moderate or No Articulation: planes, birds, chairs,
tables, cups, dolphins, four-limbed animals, fish

® Precision Vs Recall Experiments: shape distributions

of Osada et al. (SD), harmonic spheres of Kazhdhan et al. (HS) and
medial surfaces (MS).
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Summary
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