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Motivation

Motivation

Diffusion Weighted MRI is an in vivo imaging modality that can
be used to study connectivity patterns (e.g., in cognitive
science) and changes in them due to pathology (e.g.,
Alzheimers Disease, Epilepsy etc)
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Motivation

Diagnosis of Injury and Disease

(a) (b) (c)
(a) Sham; (b) White matter fiber bundles in (a); (c) Injured brain.

Figure: Changes in connectivity due to injury
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Diffusion Imaging Techniques

Diffusion Process

Figure: Isotropic Diffusion

Diffusion is driven by random molecular
motion.
Diffusion may be (isotropic) or (anisotropic)

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Diffusion Imaging Techniques

Diffusion Process

Figure: Diffusion in
structured medium.

Diffusion is driven by random molecular
motion.
Diffusion may be (isotropic) or (anisotropic)
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Diffusion Imaging Techniques

Diffusion in Tissue

Tissue can restrict molecular motion resulting in anisotropy.
Can infer connectivity by analyzing diffusion properties.
Disease and injury change diffusion properties.

Cf. Virtual Hospital (http://www.vh.org/)
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Diffusion Imaging Techniques

Diffusion MRI

Diffusion gradients are introduced into a spin-echo pulse sequence. The
signal attenuates according to the Stejskal-Tanner formula:

S = S0 exp
(
−γ2δ2G2(∆− δ/3)D

)
γ : Gyromagnetic ratio
D : Apparent diffusion coefficient
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Diffusion Imaging Techniques

Diffusion MRI (Contd.)

Stanisz et al. Magn Reson Med 1997:103-111.

The signal and the diffusion coefficients are orientation dependent.
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Diffusion Imaging Techniques

Diffusion-Weighted Imaging

Stejskal-Tanner Equation
The relation between signal attenuation and diffusion
coefficient was formulated in 1965

S = S0 exp(−bd)

b is the diffusion weighting factor.
d is the apparent diffusion coefficient.
S0 is the image with no diffusion weighting.
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Diffusion Imaging Techniques

Diffusion Tensor Imaging

Stejskal-Tanner Equation
If we acquire multiple images, S, we may fit a tensor model to
the data

S = S0 exp(−bgT Dg) (1)

b is the diffusion weighting factor of G.
g is the diffusion encoding gradient direction
D is the apparent diffusion tensor.
S0 is the image with no diffusion weighting.
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Diffusion Imaging Techniques

DT-MRI Contd.

The diffusion tensor D is characterized by an SPD
(symmetric positive definite) matrix.

Isotropic Diffusion Tensor Anisotropic Diffusion Tensor
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Diffusion Imaging Techniques

DTI Examples of Ellipsoid Visualization

(a) Rat Brain (b) Human Brain

Figure: Ellipsoid Visualizations.
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Diffusion Imaging Techniques

Fiber Tract Visualizations

Ellipsoids, Stream lines, Stream tubes, LIC, Glyphs,
Flouroscent particles and others (see Laidlaw Vis’98,
Conturo et. al., PNAS’99, Parker ISMRM’00, IPMI’01,
Vemuri et al., VLSM01, McGraw et al.,
MICCAI’02,MedIA’04, Chefd’Hotel et al., ECCV’02,
Tschumperle ICCV’03, Zhang et al., TVCG’03 and many
others)
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Diffusion Imaging Techniques

Fiber Tract Mapping

Stream tubes.
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Diffusion Imaging Techniques

Fiber Tract Mapping from Restored DTI

Figure: Fiber tractography (stream tubes)
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Diffusion Imaging Techniques

Fiber Tract Mapping (Contd.)

Figure: Fiber tractography (Lit particles)
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Diffusion Imaging Techniques

Quantifying Anisotropy

Eigenvalue Decomposition of D

D =

 e1
T

e2
T

e3
T

 λ1 0 0
0 λ2 0
0 0 λ3

 [
e1 e2 e3

]
Fractional Anisotropy

FA =

√
3
2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

λ̄ = 1
3(λ1 + λ2 + λ3)

For isotropic diffusion (λ1 = λ2 = λ3) FA = 0
For anisotropic diffusion (λ1 � λ2 = λ3) FA → 1
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Diffusion Imaging Techniques

Fractional Anisotropy

Black: Water or cerebrospinal fluid (isotropic diffusion).
White: White matter (highly anisotropic).
Gray: Grey matter (less anisotropic).
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Diffusion Imaging Techniques

DTI Segmentation

Symmetrized KL (Wang & Vemuri CVPR’04, IEEE TMI’05)
Riemanian Metric (Leglet et al., MICCAI’04, IPMI’05 and
IEEE TMI’06)
L2-metric (component-wise processing) – (Feddern et al.,
VLSM’03)
Log-Euclidean Metric (Arsigny et. al., IPMI’05, MICCAI’05,
IJCV’06, ISBI’06: applications to restoration, and
registration. Segmentation, maybe coming soon?)
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Diffusion Imaging Techniques

3D DTI Segmentation of the Corpus Callosum (Using
KL-S)

Figure: Top: a 2D slice of the corresponding evolving 3D
segmentation superimposed on the Dxx component. Bottom: different
2D slices of the final segmentation superimposed on the Dxx
component.
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Diffusion Imaging Techniques

3D Segmented CC w/Mapped LIC

Figure: LIC Fiber Tracts on the CC
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Diffusion Imaging Techniques

What is the Problem with DTI?

Figure: The effect of fiber orientation heterogeneity on diffusion MR
measurements. (a) Iso-surfaces of the Gaussian probability maps
assumed by DTI overlaid on FA maps computed from the DTs. (b)
Probability profiles computed using the DOT from HARDI data
overlaid on GA maps.
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Diffusion Imaging Techniques

State of the Art

HARDI: High-angular-resolution diffusion imaging. (Tuch et
al. ISMRM’99)
DSI: Diffusion spectrum imaging. (Wedeen et al.
ISMRM’00)
PAS: Persistent angular structure reconstruction. (Jasons
and Alexander, IPMI’03)
QBI: Q-ball imaging. (Tuch, MRM04)
FORECAST: Fiber orientation estimated using continuous
axially symmetric tensors (Anderson, MRM05)
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Fundamental relationship

The MR signal measurement S(q) and the average particle
displacement density function P(r) are related by the Fourier
transform:

S(q) = S0

∫
R3

P(r) eiq·rdr , (2)

S0 : the signal in the absence of any diffusion gradient,

r: the displacement vector

q = γδGg,

γ is the gyromagnetic ratio,
δ is the diffusion gradient duration,
G and g are the magnitude and direction of the diffusion
sensitizing gradients
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The Diffusion tensor model

Assuming the oriented Gaussian model for P(r) leads to the
diffusion tensor model where the signal is expected to
attenuate according to a Stejskal-Tanner like equation

S(q) = S0 exp
(
−bgT Dg

)
, (3)

where, b = ||q||2t is the b-factor, t is the effective diffusion time
and D is the diffusion tensor.
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Stejskal-Tanner equation and ADC profiles

More generally, for diffusion imaging studies use apparent
diffusion coefficient (ADC) profiles which is governed by the
Stejskal-Tanner equation:

S(q) = S0exp(−bDapp) (4)

where b : is the diffusion weighting factor depending on the
strength as well as the effective time of the diffusion and Dapp is
the so called apparent diffusion coefficient.
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Approaches using ADC Profiles

Spherical harmonic expansion.
Frank MRM02
Alexander et al. MRM02
Chen et al. IPMI’05

Generalized higher-order Cartesian tensors.
Ozarslan and Mareci, MRM03
Liu et al. MRM04
Descoteaux et al. SPIE’06
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Approaches using probability profiles

Q-ball imaging: Funk-Radon transform. (Tuch MRM04)
FORECAST (Anderson MRM05)
MESD: Maximum Entropy Spherical Deconvolution
(Alexander IPMI05),
DOT: diffusion orientation transform. (Ozarslan et al. 2005)
Hess et al. MRM06, Descoteaux et al. ISBI’06
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Approaches using finite mixture model

Tuch et al. 2002 assumes that the diffusion-attenuated MR
signal is produced by a finite mixture of independent
systems

S(q) = S0

n∑
j

wj exp
(
−b gT Djg

)
,

where wj is the apparent volume fraction of the
compartment with diffusion tensor Dj .
Related work: A. RamÃrez-Manzanares et al.,
VLSM’03and others.
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Proposed work: a novel statistical model

Assume that at each voxel there is an underlying
probability measure associated with Pn, the manifold of
n × n SPD matrices.
An interesting observation: the resulting continuous
mixture model and MR signal attenuation are related via a
Laplace transform defined on Pn.
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Proposed work: Highlights

The Laplace transform can be evaluated in closed form for
the case when the mixing distribution is a Wishart
distribution.
The resulting closed form gives a Rigaut-type function
which has been used in the literature in the past to explain
the MR signal decay but never with a rigorous
mathematical derivation justifying it until now.
Moreover, in this case, the traditional DTI model is the
limiting case of the expected signal attenuation.
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Proposed work: Applications

Current work:
Leads to a new formula for diffusion tensor estimation
Multi-fiber reconstruction using deconvolution technique
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Our formulation

Let F be the underlying probability measure, then we can
model the diffusion signal by:

S(q) = S0

∫
Pn

exp[−tqT Dq] dF (D)

= S0

∫
Pn

f (D) exp[−tqT Dq] dD
(5)

where f (D) is the density function of F with respect to some
carrier measure dD on Pn.

f (D): the density function of F with respect to some carrier
measure dD on Pn.
A more general form of mixture model with f (D) being
mixing density over the variance of Gaussians.
Simplifies to the DTI model when the underlying probability
measure is the Dirac measure.Vemuri Tensor Distribution Model for DW-MRI
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The Laplace transform on Pn

Definition
The Laplace transform of f : Pn → C, denoted by L f , at the
symmetric matrix Z ∈ Cn×n is defined by

L f (Z) =

∫
Pn

f (Y) exp [−trace(YZ)] dY , (6)

where dY =
∏

dyij 1 ≤ i ≤ j ≤ n.

Above equation also defines the Laplace transform of the
probability measure F on Pn, which is denoted by L F , when
dF (Y) = f (Y)dY.
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The Statistical model

Fact: b gT Dg = trace(BD) where B = b ggT

Observation: The diffusion signal model presented in the
form of (5) can be exactly expressed as the Laplace
transform of the probability measure F on Pn, i.e.
S(q)/S0 = (L F )(B).

The Statistical model:

S(q) = S0

∫
Pn

exp
(
−qT Dq

)
dF (D) = S0(L (F ))(B) , (7)

where B = b g gT and g = q/|q| as before.
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Inverse problem

Goal: recover a distribution F (D) defined on Pn that best
explains the observed diffusion signal S(q).
An ill-posed problem and in general not solvable without
further assumptions.
Proposed approach: assume that F (D) belongs to some
parametric probability family on Pn, then estimate the
parameters
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Wishart distribution

Definition
(Letac and Massam, 1998)
For σ ∈ Pn and for p in Λ =

{1
2 ,1,

3
2 , . . . ,

n−1
2

}
∪

(n−1
2 ,∞

)
, the

Wishart distribution γp,σ with scale parameter σ and shape
parameter p is defined as

dγp,σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |σ|−p exp(−trace(σ−1Y)) dY,
(8)

where Γn denotes the multivariate gamma function∫
Pn

exp (−trace(Y)) |Y|p−(n+1)/2 dY and | · | denotes the
determinant of a matrix.
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A natural generalization of the gamma distribution

Remark
The expected value of a random variable(matrix) with a γp,σ

distribution is pσ.

Remark
The Laplace transform of the Wishart distribution γp,σ is∫

exp(−trace(θu)) γp,σ(du) = |In +θσ|−p where (θ+σ−1) ∈ Pn

Vemuri Tensor Distribution Model for DW-MRI
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Invariant measure

The expected value pσ does not correspond to the
maximum value of the density function defined with respect
to the Lebesgue measure induced from the space of
symmetric matrices..
Pn is a homogenous space under the action of the general
linear group and has a GL(n)−invariant measure
[Terras,1985] defined by dµ(Y ) = |Y |−(n+1)/2dY .
The density function w.r.t the above invariant measure is:

dγp,σ(Y ) = Γn(p)−1 |Y |p |σ|−p exp(−trace(σ−1Y )) dµ

=
|σ−1Y |p

Γn(p) |exp(σ−1Y )|
dµ,

(9)

And it can be shown that this function does reach its
maximum at the expected point pσ.
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Figure: Plots of density functions of gamma distribution γ4,1 w.r.t the
non-invariant and scale-invariant measures respec. Note that the
expected value 4 corresponds to the peak of the density function w.r.t.
invariant measure but not for the non-invariant measure.
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The Wishart distributed tensor model for DW-MRI

By substituting the general probability measure F with the
Wishart measure γp,σ and noting that B = b g gT , we have

S(q)

S0
= (L γp,σ)(B) = |In + Bσ|−p = (1 + (b gTσg))−p . (10)
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Salient properties of the Wishart distributed tensor
model

Leads to a rigorous derivation of the Rigaut-type
expression used to explain the MR signal behavior as a
function of b.
Mono-exponential model can be viewed as a limiting case
when p tends to infinity.
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Rigaut-type asymptotic fractal expression

Consider the family of Wishart distributions γp,σ with fixed
expected value D̂ = pσ. In this case, the above expression
takes the form:

S(q) = S0 (1 + (b gT D̂g)/p)−p.

This familiar Rigaut-type asymptotic fractal expression implies a
signal decay characterized by a power law in the large-b region
which is the expected asymptotic behavior for the MR signal
attenuation in porous media.

Vemuri Tensor Distribution Model for DW-MRI



Figure: Plots of very high signal-to-noise-ratio spectroscopy data
obtained from excised neural tissue samples.



Figure: Plots illustrating the Wishart distributed tensors lead to a
Rigaut-type signal decay.
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Mono-exponential model as a limiting case

Note further that when p −→∞, we have

S(q) = S0 (1 + (b gT D̂g)/p)−p

−→ S0 exp(−bgT D̂g) ,
(11)

which implies that the mono-exponential model can be viewed
as a limiting case of our model.
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New framework for DT estimation

Consider a set of diffusion measurements performed in a voxel
containing a single fiber bundle and use the Wishart distribution
γp,σ as the mixing distribution in eqn. (7), we obtain(

S0
S(q)

)1/p
− trace(Bσ) = 1, or in the matrix form:

(S1)
− 1

p Bxx · · · 2Bxz

(S2)
− 1

p Bxx · · · 2Bxz
. . . . . . . . . . . . . . . . . . . . . . . .

(SK )
− 1

p Bxx · · · 2Bxz




(S0)
1
p

σxx
· · ·
σxz

 =


1
1
· · ·
1

 , (12)

where K is the number of measurements at each voxel and Bij
and σij are the six components of the matrices B and σ,
respectively.
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Multi-fiber reconstruction

Motivation:
The single Wishart model can not resolve the IVOH due to
the single diffusion maximum per voxel.

Method:
Use a discrete mixture of Wishart distribution model where
the mixing distribution in eqn. (7) is expressed as a
weighted sum of Wishart distributions, dF =

∑N
i=1 widγpi ,σi .

Deconvolution technique

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Multi-fiber reconstruction

Motivation:
The single Wishart model can not resolve the IVOH due to
the single diffusion maximum per voxel.

Method:
Use a discrete mixture of Wishart distribution model where
the mixing distribution in eqn. (7) is expressed as a
weighted sum of Wishart distributions, dF =

∑N
i=1 widγpi ,σi .

Deconvolution technique

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Deconvolution technique

Model: Mixture of Wisharts

dF =
N∑

i=1

widγpi ,σi

Assumptions:
All the pi take the same value p
Fix the eigenvalues of σi to specified values
(λ1, λ2, λ3) = 1

p (1.5,0.4,0.4)µ2/ms according to
physiological considerations. (C.f. Tuch’s thesis 2002)
N unit vectors evenly distributed on the unit sphere are
chosen as the principal directions of σi .

Vemuri Tensor Distribution Model for DW-MRI
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Linear system again!

Equation:

S(q) = S0

N∑
i=1

wi(1 + trace(Bσi))
−p (13)

For a set of measurements with wave number qj , j = 1, . . . ,K ,
formulate a linear system

Aw = s,

where s = (S(qj)/S0) is the vector of normalized
measurements, w = (wi), is the vector of basis function weights
and A is the matrix with ji-th entry

Aji = (1 + trace(Bjσi))
−p.
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Fiber orientations: Diffusivity or Probability?

Figure: Diffusivity profile do not necessarily yield the orientations of
the distinct fiber orientations. (Ozarslan et al. 2005) .
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Fiber orientations: Diffusivity or Probability?

To resolve fiber orientations, one need to find the peaks of
the displacement probability surfaces.
Recall the Fourier transform relationship:

P(r) =

∫
E(q) exp(−iq · r) dq

where E(q) = S(q)/S0 is the MR signal attenuation.
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Our approach for resolving fiber orientations

Assuming a continuous diffusion tensor model with mixing
distribution F (D) =

∑N
i=1 widγpi ,σi , we get

P(r) =

∫
R3

∫
Pn

exp(−qT Dqt) dF (D) exp(−iq · r) dq

≈
N∑

i=1

wi√
(4πt)3|D̂i |

exp(−rT D̂i
−1

r/4t)
(14)

where D̂i = pσi are the expected values of γp,σi .
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Diffusion Tensor Estimation
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Simulated data

Figure: A synthetic data set representing single-fiber diffusion with
sinusoidally varying orientations. Left: the tensor field obtained from fitting
the linearized Stejskal-Tanner equation; Right: the tensor field using the
Wishart model with p = 2. ) .
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Diffusion Tensor Estimation

DTI model Our model
SNR mean std. dev. mean std. dev.

No noise 11.25 7.29 11.25 7.08
25dB 11.70 7.63 11.60 7.52
20dB 14.44 8.27 14.00 7.85
15dB 15.00 8.92 14.62 8.42

Table: Comparison of the accuracy of the estimated dominant
eigenvectors using different methods under different noise levels.
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Resolution of Fiber Orientation

Outline

1 Introduction
Motivation
Diffusion Imaging Techniques

2 Background

3 Theory

4 Results
Diffusion Tensor Estimation
Resolution of Fiber Orientation

5 Conclusions

Vemuri Tensor Distribution Model for DW-MRI



Probability surfaces from simulated data

Figure: Simulations of 1-, 2- and 3-fibers (b = 1500s/mm2). Orientations:
azimuthal angles φ1 = 30, φ2 = {20, 100}, φ3 = {20, 75, 135}; polar angles
were all 90◦. Top: Q-ball ODF surfaces computed using formula in
(Anderson’05); Bottom: Probability surfaces computed using proposed
method.



Resistance to noise (2-fibers, σ = 0.08)

(a) ODF from QBI (b) Proposed method



Resistance to noise (3-fibers, σ = 0.04)

(a) ODF from QBI (b) Proposed method
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Resolution of Fiber Orientation

Deviation angles

From proposed method
ψ(σ = 0) ψ(σ = .02) ψ(σ = .04) ψ(σ = .06) ψ(σ = .08)

1 fiber { 0.243} 0.65 ± 0.39 1.19 ± 0.65 1.66 ± 0.87 2.19 ± 1.27

2 fibers {0.74} 1.18 ± 0.66 2.55 ± 1.29 3.85 ± 2.12 4.91 ± 3.26
{0.69} 1.30 ± 0.66 2.76 ± 1.34 3.63 ± 1.91 5.11 ± 2.65

3 fibers
{1.02} 4.87 ± 3.23 8.59 ± 5.82 11.79 ± 6.86 13.84 ± 8.73
{0.97} 5.81 ± 3.61 7.70 ± 5.02 11.27 ± 6.36 12.54 ± 7.48
{1.72} 4.92 ± 3.32 7.94 ± 4.59 12.57 ± 7.09 14.27 ± 7.66

From DOT
ψ(σ = 0) ψ(σ = .02) ψ(σ = .04) ψ(σ = .06) ψ(σ = .08)

1 fiber {0.414} 0.71 ± 0.35 1.08 ± 0.58 1.84 ± 0.88 2.20 ± 1.28

2 fibers {1.55} 1.97 ± 0.96 3.37 ± 1.90 5.39 ± 2.99 7.00 ± 4.25
{1.10} 1.73 ± 1.00 3.28 ± 1.87 4.78 ± 2.37 6.29 ± 3.19

3 fibers
{4.11} 7.89 ± 5.71 10.82 ± 6.66 14.56 ± 8.74 16.68 ± 10.21
{3.46} 6.94 ± 3.70 11.28 ± 5.98 16.92 ± 10.36 17.02 ± 10.95
{1.68} 6.76 ± 5.21 10.90 ± 5.63 14.08 ± 9.05 13.99 ± 9.74

From QBI
ψ(σ = 0) ψ(σ = .02) ψ(σ = .04) ψ(σ = .06) ψ(σ = .08)

1 fiber {0.089} 1.28 ± 0.75 3.34 ± 1.97 5.94 ± 3.19 7.67 ± 4.16

2 fibers {0.45} 2.39 ± 1.26 4.82 ± 2.44 7.95 ± 4.45 8.91 ± 4.64
{0.42} 2.30 ± 1.10 4.94 ± 2.15 7.49 ± 3.88 9.34 ± 4.45

3 fibers
{0.90} 10.80 ± 5.59 12.15 ± 4.42 20.21 ± 11.10 18.78 ± 11.39
{0.90} 11.59 ± 5.44 13.07 ± 4.74 19.54 ± 11.80 20.79 ± 10.81
{0.19} 11.66 ± 5.18 12.25 ± 4.93 20.36 ± 11.50 19.10 ± 10.18

Table: Mean and standard deviation values for the deviation angles ψ
between the computed and true fiber orientations after adding Rician
noise of increasing noise levels σ. Note, in all cases, we discarded
very large deviation angles that are greater than 30◦ when σ = .02,
40◦ when σ = .04, 50◦ when σ = .06 or σ = .08 since these large
errors are mostly due to the failure of the numerical optimization
routine.
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Resolution of Fiber Orientation

Simulated data: two crossing fiber bundles

Figure: Probability maps from a simulated image of two crossing fiber
bundles computed using proposed method
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Resolution of Fiber Orientation

Real data: excised rat optic chiasm

Imaging parameters:

Acquired at 14.1 T using Bruker Advance imaging systems.
A diffusion-weighted spin echo pulse sequence was used
Diffusion-weighted images were acquired along 46
directions with a b-value of 1250s/mm2 along with a single
image acquired at b ≈ 0s/mm2

Resolution: 33.6× 33.6× 200µm3
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Real data: excised rat optic chiasm

Figure: S0 image (Left) and probability maps (Right) computed from
a rat optic chiasm data set overlaid on an axially oriented GA map
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Resolution of Fiber Orientation

Real data: excised rat brain

Imaging parameters:

Collected from an excised rat brain at 17.6T
Consists of 52 images with varying orientations of the
diffusion gradients.

6 : with a b ≈ 125s/mm2

46: with b ≈ 1250s/mm2

Resolution: 75× 75× 300µm3
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Resolution of Fiber Orientation

S0 maps of control rat brain data

Figure: S0 map of a control rat brain. The rectangular region contains
the hippocampus.
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Resolution of Fiber Orientation

Probability surfaces from control rat brain data

Figure: Probability surfaces computed from the hippocampus of a
control rat brain
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Resolution of Fiber Orientation

S0 map of epileptic rat brain data

Figure: S0 map of an epileptic rat brain. The rectangular region
contains the hippocampus.

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Resolution of Fiber Orientation

Probability surfaces from epileptic rat brain data

Figure: Probability surfaces computed from the hippocampus of an
epileptic rat brain
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Conclusions

A novel continuous tensor distribution model was
introduced.
Signal was shown to be the Laplace transform of this
distribution on Pn

For the Wishart and mixture of Wisharts, gave a closed
form expression for this Laplace transform. DTI is a special
case of this model.
This lead to a novel Linear System for estimating the
mixture of tensors from the signal measurements.

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Conclusions

A novel continuous tensor distribution model was
introduced.
Signal was shown to be the Laplace transform of this
distribution on Pn

For the Wishart and mixture of Wisharts, gave a closed
form expression for this Laplace transform. DTI is a special
case of this model.
This lead to a novel Linear System for estimating the
mixture of tensors from the signal measurements.

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Conclusions

A novel continuous tensor distribution model was
introduced.
Signal was shown to be the Laplace transform of this
distribution on Pn

For the Wishart and mixture of Wisharts, gave a closed
form expression for this Laplace transform. DTI is a special
case of this model.
This lead to a novel Linear System for estimating the
mixture of tensors from the signal measurements.

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Conclusions

A novel continuous tensor distribution model was
introduced.
Signal was shown to be the Laplace transform of this
distribution on Pn

For the Wishart and mixture of Wisharts, gave a closed
form expression for this Laplace transform. DTI is a special
case of this model.
This lead to a novel Linear System for estimating the
mixture of tensors from the signal measurements.

Vemuri Tensor Distribution Model for DW-MRI



Introduction Background Theory Results Conclusions

Conclusions (Contd.)

Showed expts. depicting better accuracy of reconstructed
fiber orientations compared to Q-ball ODF and DOT for 1-
2- and 3- fibers in a voxel under varying noise.
Advantage over discrete mixing model: No need to specify
the number of components in the mixing density.
Future work: Spatial regularization, fiber tracking (prior
work: Campbell et al., Miccai’05), segmentation (prior
work: McGraw et al., ECCV’06) etc.
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