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Abstract 
We present a new mathematical formulation for 

curve and surface reconstruction algorithms by intro- 
duction of auxiliary variables. For deformable models 
and templates, two-step iterative algorithms have been 
often used where, at each iteration, the model is first 
locally deformed according to the potential data attrac- 
tion and then globally smoothed. 

We show how these approaches can be interpreted 
as the introduction of auxiliary variables and the min- 
imization of a two-variables energy. This permits to 
transform an implicit data constraint defined by a non 
convex potential into an explicit convex reconstruction 
problem. 

We show some mathematical properties and results 
on this new auxiliary problem, in particular when the 
potential is a function of the distance to the closest fea- 
ture point. We then illustrate our approach for some 
deformable models and templates and image restora- 
tion. 
Keywords: Deformable Models and Templates, Dis- 
tance Map, Energy Minimization, Image Restora- 
tion, Pattern Matching, Spline Functions, Surface and 
Curve Reconstruction. 

1 Introduction 
Many problems in Computer Vision are formulated 

by the minimization of an energy. Using deformable 
models and templates, the extraction of a shape is 
obtained through the minimization of an energy com- 
posed of an internal regularization term and an exter- 
nal attraction potential (data term), examples can be 
found (full references in [l]) for applications in seg- 
mentation, surface reconstruction, image restoration 
and feature extraction. 

The minimization is usually solved by gradient de- 
scent using an iterative scheme. Often, to make the 
task possible or easier, each iteration is divided in two 
stages which may be interpreted as a separation be- 
tween a global transform and a local one. It consists 
in minimizing separately the two terms of the energy. 
While each step may make one part of the energy de- 
crease, it may globally increase. Our work gives a good 
mathematical formulation to many of these data ex- 
traction and reconstruction algorithms by adding an 
auxiliary variable in the energy in a way similar to [2] 
but in a different context. 

The original contribution of this work is twofold. 
First we introduce auxiliary variables to define a two- 
variable energy for shape extraction and reconstruc- 

tion and show some mathematical results on its min- 
imization. This permits at each iteration to trans- 
form a problem with implicit data constraints defined 
through the minimization of a potential into a recon- 
struction with regularization of explicit data. 

We then apply these results to some already exist- 
ing two-step iterative algorithms for deformable tem- 
plates and deformable models to show how they can be 
interpreted as a minimization of a twovariable energy. 
We give by the way a uniform mathematical formula- 
tion of many computer vision problems. In general, 
the energy can be written: 

where 21 is the unknown shape, R is the regularization 
term and P is the potential. Usually R is the norm 
of a derivative of 21. In case the model is parametric, 
the internal energy is not necessary and the potential 
alone is minimized [3,4]. In [5]+, we introduced the def- 
inition of an attraction potential to already extracted 
edges. In [6], we give a survey of some reconstruction 
approaches. In particular, we make a distinction be- 
tween explicit and implicit attraction and give physical 
interpretations in terms of zero length springs. By ex- 
plicit attraction, we mean that there are explicit con- 
straints between known points of the space and the 
shape. By implicit, we mean that the constraint is de- 
fined through an attraction potential. This potential is 
designed in such a way that the low values of P corre- 
spond to points and features of interest although we do 
not know in advance their location. The more frequent 
examples of implicit attractions are P = -]]V1]]2 used 
in the “snake” model [7], and P = f(d), a function of 
the distance d to the closest data point (see [6]). 

The energy we introduce with the extra auxiliary 
variable w has this form: 

E.,,(v,~)=~R(v)+~~llv-wll~+~Pl(w) (2) 

For a given w, the minimization of this energy with 
respect to v is an explicit regularization convex prob- 
lem. For a given estimate of 2r, the minimization of 
E au2 with respect to w is a problem that can be made 
convex even if P and PI are not. We show how this 
minimization is solved in a straightforward way and 
that there is a way to choose PI relatively to P to 
make the w minimization convex and to have: 

inf Eaur(v, w) = E(v) 74 (3) 
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The consequence is that this auxiliary problem has the 
same solution in v as the original initial problem (1): 

arg, c$3T, E,,,(v, w) = arg i;f E(v) (4 

This proves that the alternate minimization of E,,, 
with respect to v and w solves the same initial problem 
with energy E. 

The use of auxiliary variables permits to trans- 
form a non convex problem in a two-step minimization 
where each step is easy to solve and convex. 

2 Introducing Auxiliary Variables 
We will be interested in the typical form of the aux- 

iliary energy (2) h w ere the influence of the data (de- 
fined implicitly by a potential PI) on the unknown v is 
indirect in the second term through the use of variable 
20. The introduction of auxiliary variables permits to 
solve the indetermination of the implicit constraint. 

We can see a geometric interpretation of the itera- 
tive alternate minimization of E,,, as a deformation 
of the current shape followed by a regularization. This 
corresponds to a separation between local deforma- 
tion and global processing. Recall we are looking for 
a shape v that fits best the data located at the lower 
values of the potential PI. Given a same initial esti- 
mate vc for v” and zoo, we iterate a two-stage process: 
Local deformation. Shape v” being fixed, the min- 
imization of E,,, with respect to w is a problem that 
is made convex even if PI is not. An auxiliary shape 
w is deformed to be attracted by small values of P, 
and at the same time has to remain close to v”. So v” 
being given, 20” solves a trade-off between localization 
of features and small deformation from 21”. 
Global processing. Auxiliary shape wn being fixed, 
the minimizer of E,,, with respect to v, v”+l is a reg- 
ularized reconstruction of w” taken as explicit data. 
This permits to transform the implicit problem (1) 
into an explicit classic problem (5). 

This geometric interpretation will be more precise 
in the examples given in Sections 5 to 9. In the discrete 
case, the shape is defined by parameters or nodes and 
the auxiliary variables wi locate the position of aux- 
iliary nodes. An illustration of the two-step approach 
is given in Fig. 1 where the potential P is a distance 
to the data set S. 
2.1 Two-step Iterative Algorithm 

Minimizing the energy in w is obtained pointwise by 
wmin(s) = @(V(S)) = ArgMinM(~(v(s),M)) where 
$(N, M) = i]]N - M]12 + PI(M). It turns out that 
when we minimize the global energy E,,,(v, w) with 
respect to w first and then v, the result in v is solution 
of the energy minimization EQ analogous to the one 
of Eqn. (1) with a potential Q(v) = 4(v, G(V)): 

inf( v,w) Kdv, w) = inf,(inf, Eouz(v, w)) 
= inf,,{J R(v) + inf, E~(v, w))} 
= inL{.f WV) + s Q(v(s>)l 
= inf,,{Eg(v)} 

So by solving the auxiliary problem (2), we have 
found a way to solve the initial problem (1) but with 

a different potential Q instead of P. Let us assume in 
this section that Q = P. We are then able to interpret 
two-step iterative schemes as the successive minimiza- 
tion of E,,, with respect to its two variables. Let us 
note: 

Ei(v,w)=JR(v)+~/llv-~ll~ (5) 

WV, w) = 5 l J 1121 - wl12 + / Pl(W> (6) 

Assume that after n iterations we have the pair 
(0” I w”), then the next iteration is: 

I 

Step 1. Local deformation. Minimizing E2 
E&v”, wn+’ 
W  

n+l = ~( 
V 

“) ) = inf, Eauz(v”, w) = WV”) 

Step 2. Global Smoothing. Minimizing El 
E,,,(v”+~, w “+*) = inf, E,,,(v, wnfl) 
vn+l = smooth(w”+‘) 

(7) 
It is obvious that E,,, is always decreasing from one 
half iteration to the next. From this we can see that 
E(9) is also decreasing. 

This works since the two steps can be interpreted 
as separate minimizations of the same energy E,,,. 
In the case P and PI do not satisfy the correct hy- 
pothesis and this formulation is not possible, there is 
no warranty for a descent in energy E after a single 
two-step iteration. Usually, in the minimization al- 
gorithms used, each half iteration makes one term of 
the energy E (the regularization term or the potential 
term) go down while the second part goes up. In gen- 
eral, there is no control on the balance of these two 
actions and if there is a negative balance, it will not 
converge. This corresponds to the same oscillations 
that were mentioned in [5] as instabilities due to image 
forces. When the potential satisfies the good hypothe- 
ses, there is always a descent in the global energy at 
each half iteration and this ensures convergence of the 
energy to a minimum. 

3 Resolution using conjugate functions 
Complete results and their proofs can be found in 

[l]. Let us recall the definition of the Conjugate func- 
tion (see [8]), 1 a so called Legendre transform. 

Definition 1 If cp is a function from a Euclidean 
space E to IR, the conjugate function of ‘p is 

v’(u) = ;p v> - P(V)) 

We show that 

(8) 

Theorem 1 If cp(N) = $llNll” -P(N) is convex, we 
have Q = P with PI defined by equality: 

$fl12+ PI(M) = P’(M) = 1$w- P(N))’ (9) 
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Actually, we now show that since to implement the 
descent algorithm in (7) only $ is needed, computation 
of PI is in fact not necessary once you know it exists 
and is regular. 

Theorem 2 Under the hypotheses of Theorem 1, if P 
is C2 and ~llMll” - P(M) is strictly convex, then the 
local deformation is $(N) = N - VP(N). 

This permits to interpret the step of usual gradient 
descent as a minimization of the auxiliary energy E,,, 
with respect to the added variable. Since the condition 
on P is not easy to check for a given potential, we 
now give a special case of potential for which we have 
found an expression of 9. Moreover, in this case the 
condition will be weaker and easier to check than that 
on P. 

4 Explicit resolution when P = f(d) 
In the case of a potential P defined as a function 

f 1 
d) of the distance to the closest data point, as in 

5 , we show that we can find PI = fi d). The results 
I do not depend on the dimension of t e space where 

we consider our objects (2-D or 3-D). Usually we have 
f(d) = CY$ or as explained in [6], it can be useful to 
define f with a returned bell shape like f(d) = -eSd’ 
or a threshold function f(d) = inf(ag,/?). This per- 
mits to avoid influence of outlyers by giving the same 
contribution in the energy to points which are far 
enough to the data. When the distance to closest data 
is large enough, it means that there is no match be- 
tween this point and data and it is meaningful to con- 
sider its contribution to the energy only as a penalty 
p which does not depend on the distance. This means 
that only the more likely reliable data is used. This is 
a different formulation for robust statistics. We have 
shown that in the case PI(M) = fl(ds(M)), theorem 
1 becomes: 

Theorem 3 If function ‘p = ($ - f(z)) is convex, 
defining fi by equality: 

(; + h(X)) = P*(x) = rfz2 - f(x))*(X) (10) 

we have Q(M) = P(M) = f(ds(M)). 

This has advantage on Theorem 1 that the com- 
putation of the conjugate in Eqn. 
function of one real variable instead 

(9 
o I 

is now for a 
two or three. 

We reduced the problem from any dimension to one 
dimension. Also for a given function f, fi does not 
depend on the data defined by ds(lkf). It has to be 
computed only once for all, and a precomputed pair 
(f, fi) can be used for all problems. Note also that f 
may satisfy this condition while P = f(ds) does not 
satisfy the condition of Theorem 1 since ds is not con- 
vex. This means that the condition here is a lot more 
general than the previous one. We give an explicit ex- 
pression of $(N) relatively to f which does not need 
computation of fi. 

Theorem 4 Under the hypotheses of Theorem 3, if 
function fx” - f(x) is strictly convex and C2, then 
$(N) = N - f’(&(N))V&(N>. 

Example 1 In the simple case where f(d) = cyg, 0 < 

a < 1, ($ - f(4) is convex and fi is also quadratic 
usingxZthe formula (crA2)* = 2 and we have fl(A) = 
Q- 
l-a 2. 

Example 2 If f(d) = Inf(P,a$),O < cr < 1, then 
($ - f(d)) is convex and we can show that we have a 
closed form formula for fr (X): 

5 Parametric Deformable Templates 
Deformable Templates can be used with various 

simple regular shapes defined by a small number of 
parameters like circles, ellipses and parabola arcs [3], 
superquadrics and hyperquadrics. Since the shape IS 
imposed and regular, the smoothing term is not neces- 
sary. The unknown A is now a small set of parameters 
defining the shape s-4 and the energy is of the follow- 
ing form: 

E(d) = E P(vi(d)) (11) 

where (vi(d))i is a set of nodes which discretize the 
shape sd. Beginning with initialization of either a 
model do or a set of points MO, we iterate the follow- 
ing two steps: 
Step 1: Model Fitting. A set Mk = (M/,)I<~<~ 
being given in this order, a criteria is minimizeato 
find the set of parameters A” to define the best fit: 
Et(d) = xi /[vi(d) - &fF iI2 The minimizing vector of 
parameters defines dk. 
Step 2: Deformation of the set of points. 
The vector AL being given, a new set Mk+l = 
(M/+t)i<i<,, is defined by moving each point vi(d”) 
in the direction of descent of P to minimize Es(M) = 
Ci P(Mi) The set of nodes M” is then replaced for 
the next step by the new set Mk+’ which is usually 
defined by: 

M!+’ = vi(d”) - T/VP(Vi(dk)) I (12) 

If ($jNll” - 7P(N)) is convex, or (ix” - rf(x)) 
is convex in the case P = f(ds , these two steps can 
be interpreted as the two varlab 1 es minimization of an 
auxiliary energy: 

&u&CM) = & c IIvi(d) - M112 + c PI(M) I i 
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where (rPr> is associated to (rP> by equality (9) or 
(10) of theorems 1 and 3. 
Successive minimization with respect to the two vari- 
ables ,4 and .A4 is as follows: .4 minimization corre- 
sponds to our first step of model fitting minimizing 
Et; M minimization corresponds to our second step 
of deformation. 

Remark that the auxiliary variable can be seen as 
the local deformation of the global model best fit. 
This is very close to the idea used in deformable su- 
perquadrics. So at convergence, A represents the best 
fit of the parametric model and M the local displace- 
ment between the model and the data. 

6 Pattern Matching 
The problem of pattern matching can be seen as 

a special case of deformable templates, where the pa- 
rameters of the model correspond to the nature of the 
deformation. Let us see first the case when the match 
between the model and data is done through an affine 
transform. We have a curve or surface model defined 
by a set of points S’ = (Xl)i and try to match this 
model to data. The data is a set of points S2 = (X!)j 
and we try to minimize the average distance to data 
after a rotation or an affine transform R followed by 
a translation t. The energy we are trying to minimize 
has the form: 

E(R,t) = xd(RX; +t,S2)2 (13) 
i 

where d(RXj + t, S2) = infj d(RX,’ + t, Xj”). This 
problem would be very simple if to each point of S’, 
we knew in advance the point in S2 which corresponds, 
but this is one of the unknowns of the problem. There- 
fore, an iterative algorithm composed of two steps is 
often used to find the minimizing transform (see ICP, 
Iterative Closest Point algorithm in [9]). 
Step 1: Matching. For a previous estimate of the 
transform (a, tn), find the matching between points 
of the transformed shape (&S1 + tn) and S2. This is 
done finding for each Xi in S’ the closest point Xfn(ij 
in S2 to (RnX! + t,,). The output is a list of couples 
Cx: 7 xj2n(i))i’ 
Step 2: Transform. For a given set of matches, 
(Xi, Xj2ncij)i, find the best transform (&,+I, t,+l) 
minimizing Ci]]&+iXj + tn+l - Xj2,(ij]]2. 

The necessity of these two steps comes from the 
fact that when matching the two sets of points, we 
do not know in advance which point of the first set 
corresponds to which point of the second set. The 
first step makes a tentative match and the second step 
solve the problem now made easier. 

As for deformable templates, we can understand 
these two steps as the minimization of an auxiliary 
energy with respect to two variables. 

Eauz((R,t),M)= ~CilRX:+t-M,lla+CP,(M,) 
1 i 

The case of a general non-rigid transform is similar to 
the snake case dealt in next section. 

7 Active Contour Models 
The snake model introduced in [7] is the minimiza- 

tion of the following energy: 

All we say here is also true in the general case of reg- 
ularization R(v) like in energy of and also in the 
case of 3D deformable surfaces 
We show in [5] h ow the solution of the associated evo- 
lution equation 

g - (wp’)’ + ( w221”)” = F(v) = -VP(v) (15) 

is discretized into a two-step iteration algorithm. The 
system to solve is 

(Z + ~A)v’+l = (v’ + d-(d)). (16) 

where A is the stiffness matrix obtained after dis- 
cretization of the derivative terms either by finite dif- 
ferences or finite elements. It is decomposed in two 
steps, first a deformation along attraction force, then 
regularization (see figure 2): 

Step 1: Local deformation. d++ = (w” + dqv’)) 
Step 2: Regularization. ,*+l = (z + TA)-l,t++ 

Equation (15) is called a reaction diffusion equation 
and our decomposition in two steps could be also seen 
as a separation between these two aspects: the first 
step represents only reaction while the second repre- 
sents only diffusion. 
Assuming good hypotheses on P, these two steps can 
be interpreted as the alternate minimization of an aux- 
iliary energy Efz”(vl, v,,,) with respect to its two 
variables: 

where vi is the feature curve, v,,, is an auxiliary curve 
and (rPi) is associated to (TP) by equality (9) or (10) 
of theorems 1 or 3. The vr mmimization corresponds 
to our second step of regularization. The v,,, mini- 
mization corresponds to our deformation step. 

Notice that in our snake algorithm [5], there is a 
resampling of the curve from time to time to avoid 
concentration of nodes in some areas and account for 
length variation. This may be interpreted as the use 
of a geometric model of the curve or close to a two step 
formulation of the shape reconstruction on a varying 
mesh. 
8 Image Restoration 

We saw in section 7 that the two steps came from 
the semi-explicit scheme of equation (16). Other al- 
gorithms have this same property of being explicit in 
the non linear part and implicit in the linear part. 
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In some restoration problems where there is in the 
energy E(u) a non linear function of the gradient of 
the image U, each iteration is replaced by two steps. 
The first minimizes the energy with the previous value 
of the gradient in this non linear term. The second is a 
new evaluation of the gradient from the new value of U. 
This may be seen as using an auxiliary linear problem 
at each time step. We give here two examples: 

Anisotropic Diffusion. To solve the evolution 
equation of anisotropic diffusion ([lo]) a kind of two- 
step algorithm was used by the author. we solve 

g - %(llv4l)v~) = 0 (17) 

with usually g(d) = &. This is discretized using 
finite differences: 

i 
;;z; f’ ff+t s(ly~“II) --u - 7V(GnVun+‘) = 0 (18) 

Non linear Total Variation. The same kind of 
equation with g(Vzl) = & also appears in a restora- 
tion algorithm based on non linear total variation [ll] 
minimizing J(u$ + ui)li2. This gives an evolution 
equation similar to (17) and (18). This could be in- 
terpreted as solving an auxiliary problem where the 
nonlinear term is not time dependent. 

Note that in these examples, the original prob- 
lem is modified by freezing a nonlinear part at each 
step. This can be also interpreted as smoothing al- 
gorithms with variable weights. A first step estimates 
the weights and a second solves the minimization with 
these constant weights. Those variable weights algo- 
rithms have been transformed using a different duality 
relation in two variables problems in [12]. This makes 
use of a function fi such that 

igf41V412 + fl(v) = f(llV4l> 

and defines an auxiliary energy such as: 

(19) 

This duality permits to give a closer relation between 
the anisotropic diffusion and the Blake and Zisserman 
algorithm. Indeed, the non linear term in the latter 
energy is: 

/ f(llV4l> = J l,vull f(llVUf)llVuj12 = ~g(~lvu~~)l~vul~2 

and for f(d) = Inf(P, a$), g(d) = Inf( 9, CX). This 
function is very close to the one used in anisotropic 
diffusion. 

9 B-Snakes 
We gave in [l] a more precise link between classic 

snakes and the B-snake model. We show that B-snakes 

or spline-snakes may be interpreted as the solution of 
a discretization of a snake energy. This means that 
the solution may be seen either as the minimum of a 
data energy among all cubic spline functions or a 
minimum of a classic snake energy among all func- 
tions. 

Leitner etal [4] introduced a simplified active con- 
tour model they called “Snline-Snakes.” This model 
was also used by many authors with the name of B- 
Snakes. The solution of their snake model is found 
by deformation of a set of node points submitted to 
an attraction force and then by curve reconstruction 
using B-Splines. 

Note that in [6], the snake problem is solved us- 
ing a finite element method. B-Splines can be seen as 
a special case of finite element, but the main differ- 
ence is that in the snake-spline model, the energy is 
only external. The main idea is that since the clas- 
sical snake energy contains a regularization part and 
cubic splines already minimize a regularization energy, 
it may be easier to limit the curve set to cubic spline 
curves and minimize only the potential energy. 
We formulate the method of resolution proposed in 
[4] as a two-step iterative algorithm beginning with 
an initial set of data points MO. 
Step 1: Spline Fitting. A set of points Mk = 
(Mi)r<j<m being given, the set of control points 
dk = (aF)r<i<n is determined to minimize the least 
square error-] 1% k - Bd ] ]2. 
Step 2: External Force. A set of control points A" 
being given, the external force is applied separately to 
each point of Bd = (uA~(tj))l<j<~ to define a new 
set of data points. 

-- 

Remark that an analogous algorithm was also used 
for 3-D splines solving the inverse problem of Free- 
Form Deformations in [13]. 

These two steps can be understood as the alternate 
minimization of the auxiliary energy E~:““(v, M): 

This formulation gives the link between the original 
snake like problems and the two-step algorithm mini- 
mizing P along all curves in the spline space. This is 
a further justification for finite element methods[b] or 
spline-snakes. 

10 Conclusion 
We have presented a new mathematical formula- 

tion to shape extraction and reconstruction problems. 
By introducing auxiliary variables we defined a two- 
variables energy and showed some mathematical re- 
sults on its successive minimization with respect to 
each variable. These variables represent an interme- 
diary reconstructed shape. This permits to trans- 
form a problem with implicit data constraints defined 
through the minimization of a non convex potential 
into an explicit reconstruction convex problem defined 
by regularization of known data. We showed a way to 
make this transformation easily in the case where the 
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potential is a function of the distance to the closest 
data. This kind of potential is more and more used in 
shape extraction work. 

This permits to give a better understanding of 
many already existing two-step algorithms used for 
deformable templates and deformable models. This 
permits also to give a more precise link between snakes 
and B-snakes. Our work can give a good mathematical 
formulation to many of these data extraction and re- 
construction algorithms to modify current algorithms 
and ensure that the initial energy is minimized and 
that the algorithm converges. 
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Figure 1: Illustration of one iteration of the w and v 
minimization. On the left is the data, on the right 
the current estimation of vi’s and in the middle the 
minimizing wi’s (black spots). The grey spots and 
the middle curve represent the new value of vi’s after 
regularization of the wi’s. 

Figure 2: On the top the initial snake followed by the 
two steps: local deformation and regularization. 
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