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Abstract. We present a new mathematical formulation of some curve and surface reconstmctien algorithms by 
the introduction of auxiliary variables. For deformable models and templates, the extraction of a shape is obtained 
through the minimization of an energy composed of an internal regularization term (not necessary in the case of 
parametric models) and an external attraction potential. Two-step iterative algorithms have been often used where, 
at each iteration, the model is first locally deformed according to the potential data attraction and then globally 
smoothed (or fitted in the parametric case). 

We show how these approaches can be interpreted as the introduction of auxiliary variables and the minimization 
of a two-variables energy. The first variable corresponds to the original model we are looking for, while the second 
variable represents an auxiliary shape close to the first one. This permits to transform an implicit data constraint 
defined by a non convex potential into an explicit convex reconstruction problem. This approach is much simpler 
since each iteration is composed of two simple to solve steps. Our formulation permits a more precise setting of 
parameters in the iterative scheme to ensure convergence to a minimum. 

We show some mathematical properties and results on this new auxiliary problem, in particular when the potential 
is a function of the distance to the closest feature point. We then illustrate our approach for some deformable models 
and templates. 

Keywords: deformable models and templates, distance map, energy minimization, feature extraction, pattern 
matching, shape extraction and regularization, spline functions, surface and curve reconstruction 

1. Introduction 

Many problems in Computer Vision are formulated by 
the minimization of an energy. Using deformable mod- 
els and templates, the extraction of a shape is obtained 
through the minimization of an energy composed of an 
internal regularization term and an external attraction 
potential (data term), examples can be found in [1-8] 
for applications in segmentatio n , surface reconstruc- 
tion, image restoration and feature extraction. 

The minimization is usually solved by gradient de- 
scent using an iterative scheme. Often, to make the 
task possible or easier, each iteration is divided in two 
stages which may be interpreted as a separation be- 
tween a global transform and a local one. It consists 

in minimizing separately the two terms of the energy. 
While each step may make one part of the energy de- 
crease, it may globally increase. Also, it may happen 
after this change, that while the method converges to 
sensible results, the problem solved differs from the 
initial one. Our work gives a good mathematical for- 
mulation to many of these data extraction and recon- 
struction algorithms by adding an auxiliary variable in 
the energy. 

The original contribution of this work is twofold. 
First we introduce auxiliary variables to define a two- 
variable energy for shape extraction and reconstruction 
and show some mathematical results on its minimiza- 
tion. This permits at each iteration to transform a prob- 
lem with implicit data constraints defined through the 
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minimization of a potential into a reconstruction with 
regularization of explicit data. 

We then apply these results to some already existing 
two-step iterative algorithms for deformable templates 
and deformable models to show how they can be inter- 
preted as a minimization of a two-variable energy. We 
give by the way a uniform mathematical formulation of 
many computer vision problems. Using our formula- 
tion has the advantage to be sure we minimize, in these 
two steps, the good initial energy with one variable. 

In general, the energy can be written: 

E(v)=fR(o)+fP(v) (1) 

where v is the unknown shape, R is the regulariza- 
tion term and P is the potential. In case the model is 
parametric, the internal energy is not necessary and the 
potential alone is minimized. 

The energy we introduce with the extra auxiliary 
variable w has this form: 

f Eaux(V, W) = R(v(s))ds + -~ Ilo(s) - w(s)fds 

+ f P1 (w(s))ds (2) 

For a given w, the minimization of this energy with 
respect to v is an explicit regularization convex prob- 
lem. For a given estimate of v, the minimization of 
E~ux with respect to w is a problem that can be made 
convex even if P and P1 are not. We show how this 
minimization is solved in a straightforward way and 
that there is a way to choose PI relatively to P to make 
the w minimization convex and to have: 

infEaux(V, w) = E(v) (3) 
to 

The hypothesis to obtain this result is either that 
i[lN[[Z - P(N)  is convex, or, in the case P = f ( d )  
2 

x 2 
(d is a distance map to data points), that ('T - f ( x ) )  
is convex. The consequence is that this auxiliary prob- 
lem has the same solution in v as the original initial 
problem (1): 

arg inf Ea, x(V, w) = arginofE(v ) (4) 
v (v,w) 

This proves that the alternate minimization of Eaux with 
respect to v and w converges to a minimum of the initial 
energy E. 

The use of auxiliary variables permits to transform a 
non convex problem in a two-step minimization where 
each step is easy to solve and convex. Our formulation 
permits a more precise setting of parameters in the it- 
erative scheme to obtain the good hypothesis on P to 
ensure a good minimization. 

The paper is organized as follows. We begin by 
a mathematical formulation of many data reconstruc- 
tion problems (Section 2) and then introduce our two- 
variable energy minimization (Section 3). In Sections 
4 and 5, we give the main mathematical study and re- 
sults. We then apply this approach to give a new for- 
mulation for deformable templates, pattern matching, 
snakes and "spline-snakes" (Sections 6 to 9). 

2. Curve and Surface Reconstruction 

2.1. General Formulation of Regularization 

A general formulation of the curve or surface recon- 
struction problem, as presented in [9] uses Tikhonov 
regularization [10] to approximate data u by a smooth 
function v minimizing the following type of energy: 

E(v,u)= f R(v(s))ds + f (5) 

where R(v) measures the smoothness of the reconstruc- 
tion v, and V is a measure of the distance between the 
function v and the data u. Usually R is the norm of a 
derivative of v or a combination of norms of different 
derivatives. The minimization is made on the space 
of functions for which f R(v) is well defined adding 
some constraints on the domain boundary (see [11] for 
a definition of Sobolev spaces). The first term is void if 
we impose the smoothness through a restriction on the 
shape. This is the case for deformable templates [8] 
(see Section 6) or spline-snakes [5] (see Section 9). 

2.2. Attraction Potential. Examples 

In [4], we give a survey of some reconstruction ap- 
proaches. In particular, we make a distinction between 
explicit and implicit attraction and give physical inter- 
pretations in terms of zero length springs. 

By explicit attraction, we mean that the second term 
V(v, u) gives an explicit constraint on v through data 
u. For example, if V(v, u) = 1Iv - ull 2, each point of 
the curve v(s) is linked explicitly to a data point u(s). 
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The minimization of the energy: 

E,,(v)= f R(v(s))as + f l{v(s)-u(s)ll2as (6) 

corresponds to a "classic" least-square reconstruction 
with explicit constraints of data u [12, 1, 2], this is a 
convex problem if R is quadratic. The minimum of Eu 
is a smoothed version of u. This is a simple problem 
since we already know in which order the unknown 
curve v has to pass by the data points u. 

Also, in this case, all the data is relevant and repre- 
sents a same shape, while in the implicit case, two 
tasks are solved simultaneously. At the same time 
the shape is reconstructed, a segmentation is applied 
on the data set to choose which points of the data be- 
long to this shape and also to determine the order in 
which the curve has to match the data points. This is 
done through the use of implicit constraints. By im- 
plicit, we mean that V is defined through an attraction 
potential: V (v, u) = Pu (v). This potential is designed 
in such a way that the low values of P correspond to 
points and features of interest. The more frequent ex- 
amples of implicit attractions are 

• P = -II  V I II 2 used in the "snake" model [3], where 
even the data points are not explicitly known and the 
constraint on v is imposed through the minimization 
of the potential P. 

• P = f ( d )  is a function of the distance d to the clos- 
est data point (see [4]), where a set of data points is 
known, as a binary image resulting from edge detec- 
tion. The constraint is implicit since a point of v is 
linked to the closest data point. For a given point on 
v, this data point changes along iterations through 
the minimization process. Hence only part of the 
data is used and this can be seen as a simultaneous 
segmentation of the data at each iteration. 

The energy to minimize is then: 

f R.v(.)),,+ f (7) 

The data term of the energy f v(v, u) or f P(v)  is 
either an integral of functions defined for a continu- 
ous variable as in (5) or a finite sum Y~4 V(v(si), ui)' 
~ i  l Iv(s i )-  ui I12 o r  ~-~i P(U(Si)) by discretization ofs. 
In practical implementation, a discrete version of the 
energy is usually used. 

Also, the data and its reconstruction represent ei- 
ther a curve or a 3D surface. We usually give exam- 
ples with curves since they have a shorter formulation 
but we often use the word shape to mean either a 
curve or a surface since all our results are valid in any 
dimension. 

We will detail currently used two-step iterative al- 
gorithms and their interpretation as a minimization 
of an auxiliary variable problem in Sections 6 to 9. 
The reader interested in one of these precise problems 
or their two-stage algorithms may immediately refer 
to these sections before reading our general presenta- 
tion and mathematical results on the introduction of an 
auxiliary variable. We first define and study the two- 
variable energy minimization. 

3. Introducing Auxiliary Variables 

3.1. Mogva~on 

For many shape reconstruction problems, two-stage it- 
erative algorithms have been proposed (see for exam- 
ple [13, 5, 14, 15]), but without a precise link to the 
original energy minimization problem. In these al- 
gorithms, each iteration is composed of a small local 
deformation followed by some global regularization or 
best fit. This permits to separate the two problems of 
data segmentation and data fitting as explained in [4]. 
This is useful when all the data is not significant and at 
the same time the fit is done, some segmentation task 
operates to choose only part of the given data. The 
introduction of auxiliary variables is a mathematical 
justification of these algorithms. 

To give a better mathematical formulation to these 
two-stage algorithms, we modify the energy by intro- 
ducing an auxiliary variable in a way similar to [7] 
(described in the next section). The two stages are 
then interpreted as an alternate minimization to each 
of the two variables, the variable of the initial energy 
and the auxiliary variable. However, in our case we in- 
troduce an auxiliary variable in the data term instead of 
the regularization term. The difference comes from the 
fact that in our energy the data potential is not convex 
while the smoothing term is convex since we are inter- 
ested in smooth shapes and do not need to introduce 
discontinuities. 

This permits to transform an implicit data constraint 
defined by a non convex potential in an explicit re- 
construction convex problem. This approach is much 
simpler since each iteration is composed of two simple 
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to solve steps. The added variable is in most cases a 
current estimate of the shape to find, 

3.2. Half-Quadratic Regularization [7] 

In a different context, where the regularization term is 
not convex and in order to make the energy minimiza- 
tion more efficient, some authors [7, 161 have intro- 
duced an auxiliary variable in the smoothing term R. 
In [7], the energy used is like Blake and Zisserman's 
one [17] to solve an image restoration problem where 
H is the point spread function, u is the blurred image 
and v the restored image: 

..z(., = (.II) 'x 

+ f [IHv(x) - u(x)ll2dx (8) 

It contains a non convex bounded function of the deriva- 
tives R(v) = f ~i / ([I ~(x)ll)dx to permit the intro- 
duction of discontinuities. Instead of using Graduated 
Non Convexity as in [17], the energy is transformed to 
solve a convex minimization. The auxiliary variable w 
is introduced as an estimate of the derivative Vv. The 
new regularization term writes: 

w) = f A(llwe(x)ll)dx 

' f  +~ IlVv(x)- w(x)ll2dx (9) 

where f and f l  form a Legendre pair (this means that 
they satisfy Eq. (62)). The variables wi(x) are the 
components of w(x). The advantage of this formula- 
tion is that the energy becomes convex (and quadratic) 
in Vv and minimization is solved analytically in w, for 
a given v. This gives a two-stage simpler algorithm by 
successive minimization of E with respect to v and w. 

In our approach, the goal is opposite to the previ- 
ous one. Indeed in [7], the auxiliary variable comes 
to present a new simpler algorithm to the problem of 
image restoration using stochastic minimization, while 
our work gives a better mathematical formulation and 
parameters setting to many two-stage deterministic al- 
gorithms that have already been used for solving recon- 
struction problems but without justification. A conse- 
quence of our present work is that even the formulation 
in [7] can be simplified since we show in Section 5.3.1 
that in fact function f~ does not need to be computed 

once f satisfies the convexity hypothesis. Note that 
a different kind of duality was also used to transform 
an energy for image restoration and regularization in 
[18, 191. 

3.3. Energy with an Auxiliary Variable 

A general formulation of the energy Eaux with the extra 
auxiliary variable w has this form: 

Eaux(1), to, g )  = f +f 
+ f Vl(w(s), u(s))ds (10) 

where u is the data, v is the reconstructed shape as be- 
fore and the middle term is added. Remark that the 
data term f Vl(w, u) relates the data u only to the aux- 
iliary variable w and this variable in turn determines 
the shape v. This means that the auxiliary variable 
acts as a an intermediary between data u and shape 
v. (In Section 3.4, we will see that we have to use 
a different potential 111 instead of V). The introduc- 
tion of w is particularly useful when V is a potential 
defining an implicit constraint (see Section 2.2). This 
approach transforms the implicit constraints in an ex- 
plicit problem through the use of an "explicit" potential 
Vaux(1), tO), for example Vaux(1), w)  = fill) - wll 2. In 
the following, we will be interested in the typical form 
of this energy for most examples: 

f lj Eaux(V, w) = R(v(s))ds + ~ Ilv(s) - w(s)H2ds 

+ f P1 (w(s))ds (11) 

where the influence of the data u (defined implicitly 
by a potential P1) on the unknown v is indirect in the 
second term through the use of variable w. The intro- 
duction of auxiliary variables permits to solve the inde- 
termination of the implicit constraint. We will keep the 

I in the following for sim- auxiliary term coefficient 7 
plicity but of course it could be replaced by ~ and we 
will mention how results are changed with the energy: 

Eaux(V, w)--- f R(v(s))ds+ l f[ io(s)_w(s) l l?ds  

+ f P1 (w(s))ds (12) 
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We can see a geometric interpretation of the iterative 
alternate minimization of Eaux as a deformation of the 
current shape followed by a regularization. This corre- 
sponds to a separation between local deformation and 
global processing. Recall we are looking for a shape v 
that fits best the data u which is located at the smaller 
values of the potential P1. Given a same initial estimate 
Vo for v ° and w °, we iterate a two-stage process: 

• Shape v n being fixed, the minimization of Eaux with 
respect to w is a problem that is made convex even 
if/°1 is not. An auxiliary shape w is deformed to be 
attracted by small values of P,  and at the same time 
has to remain close to v n. So v n being given, w n 
solves a trade-off between localization of features 
and small deformation from v n. This corresponds to 
iocal deformation. 

• Auxiliary shape w n being fixed, the minimizer of  
Eaux with respect to v, v n+l is a regularized recon- 
struction of w n taken as explicit data. This is a global 
processing. This permits to transform the second 
kind of  implicit problem (7) into an explicit classic 
problem (6). 

This geometric interpretation will be more precise 
in the examples given in Sections 6 to 9. In the discrete 
case, the shape is defined by parameters or nodes and 
the auxiliary variables wi locate the position of auxil- 
iary nodes. An illustration of the two-step approach is 
given in Fig. 1 where the potential P is a distance to 
the data set S. 

3.4. Solving the w Minimization 

Let us give a closer look at the minimization of Eaux in 
(11) with respect to w, with a chosen v. The first term 
of the energy f R(v) is then constant and we have to 
minimize only the second part of  the energy: 

if f E2(v, w) = ~ [Iv(s) - w(s)ll2ds + Pl(W(s))ds 

= f+(v(,)w(s))ds (13) 

where 

1 
O ( N , M )  = = [ I N -  M[I2 + PI(M).  (14) 

z 

M and N each represent a point of the 2D or 3D space 
and at the same time, for sake of brevity, the vector 

x'• ~,.+~ v i 
Ar l . . . . . . .  :w~+l 

. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  

( .......... " i : 1  .... 
~b i 

,.i.o ................ i 

N 

Figure 1. Illustration of one iteration of the w and v minimization. 
On the left is the data, on the right the current estimation of vi's 
and in the middle the minimizing wi's (black spots). The large grey 
spots and the middle curve represent the new value of vl's after 
regularization of the wi 's. 

joining the origin to this point. In all that follows, N 
usually represents a point on the first curve v and M a 
point on the auxiliary curve w. 

In the discrete case, this energy becomes: 

1 II v(si) - wi I[ 2 + S P1 (wi) E2(v, w) = ~ i:1 i:1 

n 

= ~ " ~ ) ( l l ( S i ) ,  Wi).  (15)  
i=1 

We see that we have to minimize ~b (N, M) with re- 
spect to M for every N. I f  for given N, q~ (N, M) is 
convex in MI there is only one minimum and the min- 
imization of E2 can be done independently for each 
point of the shape. As will be shown later, this hy- 
pothesis will be assumed on P1. This simplifies the 
resolution of the implicit constraints since each w(s) 
or wi can be obtained as a function of v(s) or vi: 

Wmin(S) = ~ ( / ) ( S ) )  = A r g M i n ( ~ b ( v ( s ) ,  M ) )  (16)  
M 
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and the minimum of ¢ is: 

O(v(s)) = ¢(v(s), 71(v(s))). (17) 

The minimum of the energy becomes: 

E2(v, w) = E2(v, gr(v)) = f Q(v(s))ds. (18) min 
to d 

3.5. Successive Minimization of Eaux and 
Two-Step Algorithms 

From Eq. (18), it turns out that when we minimize 
the global energy E~ux(V, w) with respect to w first 
and then v, the result in v is solution of the energy 
minimization EQ analogous to the one of Eq. (7) with 
a potential Q: 

inf Eaux(V, w ) =  invf (infEaux(V, w)) 
(v.w) 

=inf{f R(,)+infE2(o,w))} 

=inf{f R(o)+f Q(,(s))} 
= inf{EQ(V)} (19) 

p 

So by solving the auxiliary problem (11), we have 
found a way to solve the initial problem (7) but with a 
different potential Q instead of P. In the next sections, 
we find a condition on P which ensures the existence 
of a potential P1 in Eaux such that the corresponding Q 
is equal to the initial potential P defining the interest- 
ing features, then by solving the minimization of Eau× 
we find exactly a solution of the initial problem of (7) 
minimizing E e . 

Although this alternate minimization does not en- 
sure convergence to the global minimum, it likely con- 
verges to a local minimum. This is due to the fact that 
at each step, minimization in either v or w ensures a de- 
scent in energy. The use of stochastic minimization as 
used in [7] permits to obtain convergence to the global 
minimum. 

Let us assume in this section that Q = P. We are 
then able to interpret two-step iterative schemes as the 
successive minimization of Eaux with respect to its two 
variables. Recall that: 

E(v)= f R(v(s))ds+ f P(v(s))ds (20) 

f 
Gux(V, to) = j 

+ 

E,(v, w) = f 

+ 

1 
E2(v, w) = 

+ 

if R(v(s))ds + ~ [Iv(s)- w(s)ll2ds 

f P1 (w(s))ds (21) 

R(v(s))ds 

l/ 
Uv(s) - w(s)ll2ds (22) 

f l[v(s) - w(s)llads 

f Pl (w(s))ds (23) 

Assume that after n iterations you have the pair 
(v n, wn), then the next iteration is: 

Step 1. Potential. Minimizing E2 
Eaux(V ", w ~+~) = infwEaux(V ~, w) = E(v ~) 
w "+1 = ~(v") 
Local deformation 

Step 2. Smoothing. Minimizing E1 
Eaux(V n+l , w n+a) = inf, Eaux(V, w n+a) 
v n+l = smooth(w n+l) 
Global regularization 

(24) 
It is obvious that Eaux is always decreasing from one 
half iteration to the next. From this we see that E(v ~) 
is also decreasing since: 

E(v n+l) = Eaux(V n+l , w n+2) < Eaux(V n+l , w n+l) 

< Eaux(V n, w n+l) = E(v n) (25) 

This works since the two steps can be interpreted as 
separate minimizations of the same energy Eaux. In the 
case P and P1 do not satisfy the correct hypothesis and 
this formulation is not possible, there is no warranty for 
a descent in energy E after a single two-step iteration. 
Usually, in the minimization algorithms used, each half 
iteration makes one term of the energy E (the regular- 
ization term or the potential term) go down while the 
second part goes up. In general, there is no control on 
the balance of these two actions and if there is a neg- 
ative balance, it will not converge. This corresponds 
to the same oscillations that were mentioned in [13] as 
instabilities due to image forces. When the potential 
satisfies the good hypotheses, there is always a descent 
in the global energy at each half iteration and this en- 
sures convergence to a minimum. This is illustrated in 
Section 8 in Figs. 5 and 6. 
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Remark 1. In the case the potential P is separated 
in n terms P = ~i"=1 pi, then n auxiliary variables 
are introduced and the algorithm is made with n + 1 
steps. This may be the case for data fusion or for 
including various kinds of  constraints on the recon- 
struction. Each term pi (v) is replaced in the energy 
by ½11 v - wi l[ 2 '~  P[ (Wi). Minimizing in each wi gives 
n steps of local deformation according to the different 
features p i. Minimizing in v operates a global smooth- 
ing on all the different estimates wi. All the results 
in the following remain true providing all pi satisfy 
the demanded hypotheses. Of  course, these terms can 
have different weights as mentioned in Eq. (12) and 
Remark 6. 

Remark 2. Although in the examples we only use 
quadratic regularization terms, we can generalize our 
approach in the case when both regularization and po- 
tential are not convex by introducing two auxiliary vari- 
ables. This corresponds to reconstruction with discon- 
tinuities in the case of non convex attraction potential 
mixing energies of (7) and (8): 

Edis~(v)= f ~i f(  ~-~Vxi(X) )dx + f P(v(x))dx 
(26) 

This energy is then replaced by a combination of (9) 
and (11). 

G.x(V, w, ~v) = f • f l  (11 w~ (x)it)dx 

+ ~  IIVv(x)- w(x)[12dx 

+ ~ }}V(S) -- ff~(s)llZds 

+ f P1 (ff~(s))ds (27) 

Minimization in t~ gives a local deformation of the 
shape according to the potential. Minimization in w is 
a local deformation of the gradient estimate to detect 
discontinuities. Minimization in v is a global quadratic 
regularization taking into account a least square en'or 
with given shape t~ and given gradient w. If  both f l  
and P~ satisfy the required hypotheses, alternate mini- 
mization of (27) will give a simple algorithm for min- 
imization of (26). 

4. Resolution Using Conjugate Functions 

Under some assumptions on a given P, we find a po- 
tential P1 to obtain Q = P. For this we recall the 
definition of the Conjugate function (see [ 11, 20, 21]), 
also called Legendre transform. 

4.1. Conjugate Functions 

Definition 1. If  9 is a function from a Euclidean space 
g to N, the conjugate function of ~p is 

~o*(u) = sup((u, v) - 9(v))  (28) 
vEg 

Remark 3. Here 9 and ~p* may take infinite values but 
if we assume ~0 is not infinite everywhere, then so is 
rp*. In the case 9 is finite and l i m l M l ~  ii_~_ = cxD,~0(v) ~p. 
is finite everywhere. Function 9* is always convex. 

We have the following properties: 

Theorem 1. / f9  is convex 

~o** = (p (29) 

Moreover, i f9  is strictly convex and C 2, then so is ~o* 
and we have equivalence of the following properties: 

(a) The value ~o*(u) is reached in (28)for u*: 9*(u) = 
(u, u*) - ~o(u*), 

(b) u = Dg(u*), 
(c) u* -= Dq)*(u), 
(d) The value (9*)*(u*) is reached in (28) for u: 

(~o*)*(u*) = (u*,  u)  - ~o*(u). 

Remark 4. By definition of cp*, we have for all u and 
v: (u, v) _< ~o(v) + 9*(u) and if there is equality then 
v reaches the maximum value rp*(u) in (28). Note that 
(b) and (c) mean that D~0 and D~o* are inverse. 

Proof: Different proofs for ~o** = ~o can be found in 
[11, 20, 21] when £ is not assumed Euclidian. 

It is simple to see that (a) implies (b) since (b) says 
that the differential of (u, . ) -  ~0 (.) is zero at a maximum 
u*. Since ~o is convex, (u, .) - ~o(.) is concave, so if we 
have (b), u* reaches the maximum, that is (a). 

Assuming (a), 9*(u) = (u, u*) - ~o(u*), we have 
~o**(u*) = ~o(u*) = (u,  u * ) - ~ o * ( u )  = (u*,  u)-~o*(u) .  
This means that we have (d). The same way, (d) im- 
plies (a). 
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Since there is strict convexity, the maximum is 
unique and, assuming finite dimension for £ (~2 or 
~ 3  in our case), D2~o is positive definite and thus in- 
vertible everywhere. By inversion theorem on (b), we 
deduce that u*(u) = D~o*(u) is C l and thus ~o* is also 
C 2 where it is reached. In fact, we use these hypotheses 
for simplicity but a more general proof is also valid in 
the case ~o is only C 1 . 

Now that ~o* is C 1, (c) and (d) are equivalent the 
same way as (a) and (b) for ~o*. 

We showed that (a) to (d) are equivalent, if~o* was not 
strictly convex, there would be a value u* for which the 
conjugate value (~0")* (u*) is reached for at least ul and 
U2, which implies using (b) that U 1 ~- U 2 = D(p(u*). 

[] 

4.2. Finding P1 

We now give a relation between P1 and Q using the 
definitions of ¢ and ~p (Eqs. (14) and ft.): 

1 
¢ ( g ,  M) = ~IIN - MII z + PI(M) 

1 1 
= ~llNll 2 - (N, M) + ~IIMII 2 + PI(M) 

(30) 

A point N being given, we have: 

Q(N) = inf¢(N,M M) = ~IINI[ 2 

-- sup { (N' M) -- (~IIMII2 + pI(M)) 

(31) 

Q(N) = ~IINII 2 -  P~(N) (32) 

where 
Pz(M) = IlIMII2 + PI(M). (33) 

Z 

For Q and P to be equal, we must have 

P~(N) = ~IINII 2 - P(N). (34) 

It follows from these properties that 

Theorem 2. If ~o(N) = ½[INII 2 - P(N) is convex, 
we have Q = P with P1 defined by equality: 

1 {1 }, 
-~[IM[[2+pI(M) = q)*(M) = ~[[NII2-p(N) (M) 

(35) 

Remark 5. Moreover, under these assumptions, since 
a conjugate function is convex, it follows from Eqs. 
(30) and (35) that ¢ is convex with respect to M and 
that the minimization has a unique solution. Since P 
is not convex in general, this shows a way to define 
an auxiliary problem which is convex. In fact both 
steps of the minimization are convex since E1 and E2 
of Eqs. (22) and (23) are then convex with respect to 
both variables. 

Remark 6. Although the hypothesis that (½11Nil 2 - 
P (N)) is convex may be false, we may find more easily 
a constant oe such that ~ Ilgll 2 - P(N) = et(½ IINI[ z - 

P (N)) is convex. In this case we use the auxiliary 
I problem (12) with 1: = ~ and in all hypothesis P has 

to be replaced by v P and P1 by ~ P1. 

Remark that the solution 7t of the minimization defined 
by (16): 

Q(N) = infq~(N, M) = ~b(N, ~ (N) ) .  (36) 

corresponds to the argument M obtained for calculation 
of P~ (N) in (28). 

Usually, the determination of the corresponding P1, 
for a given P satisfying the hypothesis of convexity, 
is not analytic and may be found through numerical 
computation. However, to implement the algorithm, 
we only need the argument of the minimization 7t. We 
show in the next sections how to calculate this function. 

4.3. Approximation by Look-Up Table 

A point N being given, let us see how we can determine 
a minimum M of function ¢ (N, M) as a zero of its M- 
differential: 

(N - M) - VP1 (M) --- 0 (37) 

The first term is a zero length spring attraction force to- 
wards N applied at M. The second is the force derived 
from the potential P1, this is the steepest descent direc- 
tion in P1. When M is solution of the minimization, it 
reaches an equilibrium of these forces. 

We have a simple estimate of the inverse of 7z by 
defining: 

/z(M) = M + VPI (M)  (38) 
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We are looking for a point M such tha t /z (M)  = N. 
We can simply make a table of  these values once for all 
and obtain a good candidate for gt(N) by interpolation 
between the closest reached values or global interpo- 
lation of data obtained. When many M give the same 
/z(M), we have to choose the one that has the lowest 
value of Q or the greatest norm of V P ,  this is also the 
one that gives the greatest displacement. 

In fact, we show in the next section that we can 
usually invert (38). 

4A. Explicit Resolution 

Actually, we now show that since to implement the de- 
scent algorithm in (24) only 7t is needed, computation 
of P1 is in fact not necessary once you know it ex- 
ists and is regular. Since in general P is known only 
on a discrete grid, we may assume that we work with 
a smooth interpolation of these discrete values unless 
there is a reason to have discontinuities in P. 

Theorem 3. Under the hypotheses of Theorem 2, /f 
1 P is C 2 and g[[M[I 2 - P(M) is strictly convex, then 

the local deformation is ~p(N) = N - V P ( N ) .  

Remark 7. In the case of energy (12) the hypothesis 
is with r P  and ~ ( N )  = N - r V P ( N ) .  The reason 
we called it r now appears since it is similar to a time 
step. 

Remark 8. This shows that the new potential P1 is 
chosen such that the minimization with respect to the 
auxiliary variable gives the same result as the gradient 
descent in P with time step 1. This is related to the 
fact that when P satisfies our hypothesis, the second 
differential is such that [[D2P II -< 1 and the time step 
in the Jacobi descent algorithm for P is 1 (as explained 
in [20] or [17, Section 7.5]). However, in our case, 
the descent is ensured for the sum of terms and not 
only for the potential one. This permits to interpret 
the step of usual gradient descent as a minimization 
of the auxiliary energy Eaux with respect to the added 
variable. 

Proof: Denoting Pz(M) = ½IlM[[ 2 + PI(M), we 
first apply Theorem 1 to ~o (N) = ½ [[ N [12 _ p (N) prov- 
ing that P2 is strictly convex and C 2 from our hypoth- 
esis and Theorem 2 since P2 = ~o*. 

I Recall that ~ ( N )  minimizes qS(N, M) = gllN - 
MII 2 + PI(M) with respect to M. From Eq. (31), we 

see that N* = ~ ( N )  is the argument which reaches the 
value of the conjugate P2* (N). It is unique since there is 
strict convexity. Applying the last part of  Theorem 1 to 
/'2, we deduce that the point N* which reaches the value 
of the conjugate P~(N) is such that DP2(N*) = N 
which is equivalent to N* = DP~(N).  Then since 
we have P~(N) = ½ ]IN[[ 2 - P(N),  we conclude that 
N* = N - D P(N)  which gives the result ( V P  is the 
vector notation for DP). [] 

Since the condition on P is not easy to check for 
a given potential, we now give a special case of po- 
tential for which we have found an expression of P1. 
Moreover, in this case the condition will be weaker and 
easier to check than that on P. 

5. Explicit Resolution when P = f ( d )  

In the case of a potential P defined as a function f ( d )  
of the distance to the closest data point, we show that 
we can find PI = f l  (d) of  the same kind to retrieve the 
same energy by the two-stage algorithm. The results 
do not depend on the dimension of the space where 
we consider our objects (2-D or 3-D). This kind of 
potential is used more and more often in shape recon- 
struction problems. One reason is the easy way to 
compute the Chamfer distance that approximates the 
Euclidian distance to the closest point in a set [22, 23]. 
We show in Fig. 2 an example of edge data and distance 
map. 

5.1. Defining the Distance Potential 

We now assume that P = f ( d )  is an attraction po- 
tential as defined in [13]. The force deriving from the 
potential attracts the curve towards already detected 
contour pixels (edgels). The potential is an increasing 
continuous function of the distance to the closest con- 
tour in the set S of contour points. For a point M and 
a set S in the image space, we define the distance to 
S by: 

ds(M) = d (M,  S) = inf d(M,  N)  (39) 
N c S  

and the potential is 

P(M)  = f (ds (M))  (40) 

Usually we have f ( d )  = of@ or as explained in 
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Figure 2. A noisy edge image of two squares and its distance map (black for ds = 0). 

[4], it can be useful to define f with a returned bell 
shape like f (d )  = - e  -d2 or a threshold function 
f (d )  = inf(~@,/5).  This permits to avoid influ- 
ence of outlyers by giving the same contribution in 
the energy to points which are far enough to the data. 
When the distance to closest data is large enough, 
it means that there is no match between this point 
and data and it is meaningful to consider its contri- 
bution to the energy only as a penalty fl which does 
not depend on the distance. This means that only 
the more likely reliable data is used. This is a dif- 
ferent formulation for robust statistics (see for exam- 
ple [24]) as can also be seen from the end of [25] or 
in [26]. 

In the auxiliary energy we use a different poten- 
tial P1 of the same kind with an increasing continuous 
function fa: 

PI(M) = fl (ds(M)) (41) 

Since the f and f l  are useful only at positive values, 
we can assume they are both even continuous functions 
that are increasing on ~,+. 

Since for practical implementation, S is a finite set 
of segments, we can assume that S is a closed set. This 
ensures that for M in the image space, there is at least 
one point Ms in S which reaches the minimal distance 
to S. We will call such a point a project ion point. A 
point of S is its own projection point. This projection 
point Ms is uniquely defined almost everywhere. The 
set of  points for which Ms is not unique is called the 
skeleton of S. 

5.2. Properties. Preparatory Lemmas 

L e m m a  1. For N in the image space, if M minimizes 

¢ ( N ,  M) = -12 IIN - MJ[ 2 + f l (ds(M)) (42) 

and if Ms is a projection point of M, then N, M and 
Ms are aligned. 

Proof:  This is illustrated by Fig. 3. To simplify the 
proof, we assume fi  (0) = 0, but this is not necessary, 
only the fact that f is increasing is used. Suppose M 
is a minimum of ¢ ( N ,  .) and Ms, Ns are projection 

l s 

".':::;:;; ............ iM .............. 

N~ ) ........................ ::::::::::::::::::::::::::::::::::: ........... i.;; ............. ~, 

Figure 3. Illustration for Lemmas 1 and 2. 
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points of M, N respectively, then by definition of 4~: 

l l iN  - Mll 2 < $(N,  M) < (a(N, Ns) 

1 lds (N)2  (43) = ~ [ I N - N s l l  2 =  z 

and 

f l (ds (M))  < ¢(N,  M) < ¢(N,  N) = f l (ds(N))  

(44) 

and since f l  is increasing, 

ds(M) < ds(N) (45) 

We have also from (43): 

IIN - mll ~ < ds(N) z < d(N, Ms) z (46) 

Now, if M1 is the orthogonal projection of M on the 
line (N, Ms), then M1 is between N and Ms and 

ds(M1) < d(M1, Ms) < d(M, Ms) = ds(M) (47) 

and we deduce 

1 
qS(N, M1) = ~IIN - M~II z + f l (ds(Ml))  

1 
< -IIN - MII 2 + fa(ds(M)) = 49(N, M) 
- 2  

(48) 

Since M is a minimum, this last inequality is an equal- 
ity. This is possible only if M = MI. So M is on the 
line (N, Ms). [] 

Remark 9. We see by the way that if M is different 
from N, Ms is unique. 

Remark 10. We could also use Eq. (37) to prove 
the Lemma, but preferred a geometric proof to avoid 
the fact that VP1 is not defined everywhere. Indeed, 
we have VPI = f ( (ds)Vds and Vds is defined every- 
where except on the skeleton of S. At a point M outside 
the skeleton, there is only one closest point Ms in S and 
Vds is the unit vector in the direction of (MsM) so that 
the force F = - V P  is an attraction force to the closest 
data point (see Fig. 1). 

L e m m a  2. With the same notations, Ms is also a 
projection point for N, ds ( N) = d ( N, Ms) and on the 

other side, there is a minimizer Mz of g)(N, .) on the 
line (NNs). 

Remark 11. If N is not on the skeleton, its projection 
point is unique and we have Ns = Ms. 

Proof: Using Eq. (43), we can define the point M2 
(see Fig. 3) on the segment IN, Ns] such that 

d(M2, N) = d(M, N) (49) 

We then have using Lemma 1: 

d(Ns, M2) + d(M2, N) = d(Ns, N) 

< d(Ms, N) = d(Ms, M) + d(M, N) 

and 

(50) 

We now see that since M is a minimum of q~ (N, .), M2 
is also a solution: 

1 
qS(N, M2) = ~IIN - M2H 2 + f i(ds(M2)) 

1 
_< ~[IN - MI] 2 + f l (ds(M))  = q~(N, M) 

(52) 

Thus, this is an equality and we have: 

ds(M2) = d(Ns, M2) = d(Ms, M) (53) 

and 

ds(N) = d(Ns, N) = d(Ms, N) (54) 

and Ms is also a projection point for N. n 

L 2 
Lemma  3. Defining f2(~.) = T + f l(L),  for N in 
the image space we have 

= 2ds(N) 2 - f~(ds(N))  (55) 

Proof: The point N being given, since the quantity 
q~(N, M) = ½IIN - MII 2 + f l (ds (M))  is minored by 
fl  (0) and tends to infinity at infinity, there is a value M 

ds(M2) < d(Ns, M2) < d(Ms, M) = ds(M) (51) 
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which reaches the minimum. Lemmas 1 and 2 show 
that there is a projection point Ns (such that ds(N)  = 
d (Ns ,  N) )  for which M is in the segment INs, N]. 
Thus the minimum of ¢ is the same as the minimum 
on this segment: 

inf¢(N,  M) = inf + f l ( d s ( N )  - L) 
M L~[O,ds(N)] T 

(56) 

Let us define 

1 d g(d,  )0 = ~( - )~)2 + fl@). (57) 

This is in fact the real variable version of ¢. The prob- 
lem has thus been transferred to one dimension. We 
remark that 

g(d,O) = l d 2 + f l ( 0 )  = inf g(d,Z) (58) 
2; )~e(-ee,O] 

and 

g(d ,d)  = f~(d)  = inf  g(d,)v) (59) 
;v~Id,oo) 

We then have similar to Eqs. (31) and (32) in Section 4: 

inf g(d, )0 = inf g(d, )0 
z~[O,d] ~ B  

= l d 2  - f~ (d )  (60) 
2 

which proves the lemma using d = ds(N) .  [] 

Remark 12. We deduce from these last two lemmas 
that we can always find a minimizer of ¢(N,  .) on the 
segment linking N and a projection point Ns, we can 
thus define a solution 7t(N) (16) by: 

~ ( N )  = N - I ( d s ( N ) ) V d s ( N )  (61) 

where 0 < l(d) <_ d, since, as noted in Remark 10, 
Vd(N) is the unit vector in the direction (NsN) .  Re- 
mark that function l depends only on f and not on the 
data. We have l(d) = d - )~*(d) where )~*(d) is the 

value reaching the minimum in L of g (d, L) in Eq. (57). 
Hence the determination of function 1 can be done once 
for all and gives the way to calculate the second step 
of the algorithm. 

5.3. Main Theorem. Examples 

Using the previous lemmas and the notations of 
Section 3.4, we have now shown that in the case 
P1 (M) = f l  (ds(M)) ,  Theorem 2 becomes: 

T h e o r e m  4. If function ~o(x) = (~  - f (x))  is 
convex, defining f l  by equality: 

+ f l()O = q)*()O = x 2 - f ( x )  @) (62) 

we have Q(M)  = P ( M )  = f ( d s ( M ) ) .  

Remark 13. In case we have the hypothesis (@ - 
vf(x))  convex, f l  in problem (12) is then defined by 

( ~  + Vfl(~)) = {lx2 -- vf(x)}*. 

Proof: The only thing to check is that this defini- 
tion of fl  gives an even function increasing on R +. 
From (62), we have f l (L )  = s u p x ( f ( x )  - ( ~ )  = 

supx(f(x) - ( ~ )  = fl  ( - ) 0  since f was assumed 
even from the beginning. We also have f l  (0) = 0 
using the convexity hypothesis. If )~ > 0, it can 
be seen since f is increasing and even that f100 = 
SUpx >o ( f  (x + L) - @ )  which is an increasing expres- 
sion of ;~ for all x > 0. This can also be seen from the 
sign of f~ in Eq. (66). [] 

This has advantage on Theorem 2 that the compu- 
tation of the conjugate in Eq. (35) is now for a func- 
tion of one real variable instead of two or three. We 
reduced the problem from any dimension to one di- 
mension. Also for a given function f ,  f l  does not 
depend on the data defined by ds (M) .  It has to be 
computed only once for all, and a precomputed pair 
( f ,  f l )  can be used for all problems. As for Theorem 

2, it follows from Eq. (62) that function ('5- + fl  (L)) 
is convex and g (d , )0  is coffvex with respect to )~. It 
follows from the lemma that the minimizer 7r(N) of 
¢ (N, M) is obtained as the argument in the conjugate 
calculation. Note also that f may satisfy this condi- 
tion while P = f ( d s )  does not satisfy the condition of 
Theorem 2 since ds is not convex. This means that the 
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condition here is a lot more general than the previous 
one. 

5.3.1. Explicit Resolution for  ~(N).  In a way sim- 
ilar to Section 4.4, we give an explicit expression of 
~ ( N )  relatively to f which does not need computa- 
tion of f l .  

T h e o r e m  5. Under the hypotheses of  Theorem 4, if 
function 1 2 gx - f ( x )  is strictly convex and C 2, then 
7;(N) = N - f ' ( d s ( N ) ) V d s ( N ) .  

Note that Remark 8 still applies here. 

Remark 14. With the hypothesis of Remark (13) 
we replace f by lrf  and have O(N)  = N - 

r f ' ( d s ( N ) ) V d s ( N ) .  

Remark 15. At points where Vds (N)  is not defined, 

it is replaced by equality d s ( N ) V d s ( N )  = N s N  with 
a choice of  a closest point Ns. This case of potential 
is much simpler since our results apply directly to the 
function f which is independent of the data defined by 

ds. 

Proof:  This proof is simpler in the case P = f (ds ) ,  
since we deal with real variable functions and deriva- 
tives instead of differentials. Also, the proof depends 
only on f and not on data defined by ds. This is im- 
portant since it is clear that on points of  the skele- 
ton, P cannot be assumed C 2 (see Remark 10) to 
apply the proof  of Section 4.4, while f may be as- 
sumed even C ~ without loss of generality. If  )d (d) 
minimizes g(d, )~) = ½(d - ,~)2 + f l ( )0  with re- 
spect to )~, we see from Eq. (60) that ~.*(d) is 
the argument which reaches the conjugate value of 
f~(d) .  Denoting now qg(x) = i 2 gx - f ( x ) ,  we de- 
duce from our hypotheses and Theorem 1 that f2 
is strictly convex and C 2 since f2 = q)*. Us- 
ing now Theorem 1 for f2, we see that since )~*(d) 
reaches the value f~(d) ,  we have f~O~*(d)) = d 
and )~*(d) = ( f~) ' (d)  = ~o'(d) = d - f ' (d ) .  Now 
from Remark 12, we have a minimizer gr(N) = 
N - l ( d s (N) )Vds (N) ,  with I (ds(N))  = ds(N)  - 
)~*(ds(N)) = f ' ( d s ( N ) )  which is the result of the 
theorem. 

We can find the same result directly without using 
the end of Theorem 1, reminding that: 

f ( d )  = infz g(d,  )~) = g(d, )~*) = ½(d - ~ , ) 2  @ fl()~*) 

(63) 

From the fact that the minimum is reached at L*, we 
have 

0~* - d )  + f[()~*) = 0 (64 )  

and deriving the equality with respect to d ()~* is C 1 in 
d from our hypotheses and using inversion theorem on 
the previous equation) we find: 

f ' ( d ) =  ( d -  L * ) ( 1 - Z * ' ( d ) ) + f [ ( L * ) ~ * ' ( d )  (65) 

now replacing f;0~*) = - ( ~ *  - d) from Eq. (64), we 
obtain the good value of L* for every d: 

f ' ( d )  = (d - )~*) = f(0~*) (66) 
[] 

5.3.2. Example 1. In the simple case where f (d)  = 
d 2 d 2 

a T ,  0 < a < 1, ( T  - f ( d ) )  is convex and f l  is also 
quadratic using the formula: 

d 2 
( ~ 2 ) *  = _ _  (67) 

4oe 

and we have f~(X) - ~ z2 1-~ 2 '  We can see that the 
function l(d) = o~d, and we verify that we have l(d) = 
i f (d) .  Equation (61) becomes 

~p(N) = (1 - o~)N + o~Ns (68) 

since d s ( N ) V d s ( N )  = N ~ .  Hence instead of replac- 
ing N by the closest data point Ns, a point on the seg- 
ment linking N and Ns is taken. Although this seems 
less precise than taking Ns, it is more stable and en- 
sures better convergence and should avoid oscillations 
around the data. 

However, we can also take Ns in the limit case oe = 1. 
The function ( 4  - f ( d ) )  = 0 is still convex and 
f 1 0 0  = oo everywhere except f l  (0) = 0. Theorem 4 
still applies. In this case the new value is exactly the 
closest point. Although it is more precise in the data 
fitting it may be more sensitive to spurious data points 
and discrete computation of ds. The greater o~, the 
faster the curve progression in the very first iterations. 
However when ~ is close to 1, the numerical discretiza- 
tion may cause oscillations while smaller values will 
converge monotonously as expected. 

d 2 
5.3.3. Example2.  If  f (d) = Inf(fl, c~T), 0 < ce < 

d 2 2 2 . 
1, then ( T  - - f ( d ) )  --- Sup(-~ - f i ,  (1 - a ) ~ )  is convex 
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Figure 4. Functions f and fl  in Example 2. 

and we can show that we have a closed form formula 
for f l :  

f~(z) = 

i f0  <)~ < (1 - o  0 
1 - o r 2  

I(X - V ~ ) 2  / ~ - ~  

if (1 - o t ) V ~  < x < V / ~  

fl if~. > V/~  
(69) 

Functions f and fl  are represented in Fig. 4. 

Remark 16. We see how the threshold function usu- 
ally used in robust estimation is transformed by this 
approach in a function of the kind of Blake and 
Zisserman's functions used for GNC gO/2) in [17, 

~0/2) this Fig. 7.1]. Since f l  = g~/__~_~, means that if we 
'%/2(1-a) 

add an auxiliary term to their energy: 

N N 
Egnc(U) = E (dij - uij)2 "JV 2 f l  (Uij -- Ui-l , j)  

i,j=l i,j=l 

N 

"~- E f l(Uij  -- Ui'j-1) 
i,j=l 

(70) 

it becomes 

N 

i,j=l 

+ :1%) 
i,j=l 

+ E :1(bY) 
i,j=l 

"}- 2 lgij -- g i - l , j )  2 )  

1 ) 
~- "~(Uij -- bti,j_l) 2 (71) 

and minimization in b x , bY gives back the original en- 
ergy before use of GNC: 

N N 

Ef(u) = E (dij - uij) 2 + E f (ui j  - Ui-l,j) 
i,j=l i , j=l  

N 

q- E f (u iJ  -- Ui'j-1) (72) 
i,j=l 

Remark that the example given in [7] corresponds to 
the limit case of convexity when o~ = 1 and the first 
expression in Eq. (69) is void. 

5.3.4. Other Examples. We can find other exam- 
ples of pairs (f,  f l )  similar to those in [7]. An example 
of such a function which has the same "returned bell" 
shape as the one used in [4] is 

d 2 1 
f (d )  - - 1 (73) 

(1 + d 2) (1 -b d 2) 

In such a case, f l  has no closed-form expression but a 
numerical representation of f l  can be found. 

The approach in [7] is that since in fact fx is the 
function that is used in their algorithm, fi is chosen 

that (fl (L) + @) is convex and then f and I are such 
found (numerically or by a closed form expression) 
using Eq. (62). For example, the function equivalent 
to that used in [7] is 

f l ()0 = _, .  (74) 
(1 + 

The correspondent f also have a bell shape, but is 
known only numerically. From what we showed in 
Section 5.3.1, it turns out that such an approach is 
not necessary since once f satisfies the hypothesis of 
Theorem 4, you need only f to implement the iterative 
algorithm. 
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6. Deformable Templates 

We give here a result with a general formulation of 
parametric deformable templates. 

6.I. Definition 

Deformable Templates can be used with various sim- 
ple regular shapes defined by a small number of pa- 
rameters like circles, ellipses and parabola arcs [8], 
superquadrics [27] and hyperquadrics [28, 14]. Since 
the shape is imposed and regular, the smoothing term 
is not necessary. The data term is often an attraction 
potential summed either on the nodes of a parameteri- 
zation or using the implicit equation of the shape. The 
unknown ..4 is now a small set of parameters defining 
the shape ,-.cA and the energy is of the following form: 

f 
E(.A) = Js~ P 

We are interested in the discrete form: 

(75) 

E(.4) = ~ P(v~ (.4)) (76) 
i 

where (vi(.4))i is a set of nodes which discretize the 
shape S~t. 

6.2. General Two-Step Algorithm 

A two-step approach is defined by a global model fitting 
followed by a local deformation of the set of nodes. 
Beginning with initialization of either a model .4 0 or a 
set of points Ad O , we iterate the following two steps: 

Step 1: Model fitting. A set 34 k = (mik)l<i<n being 
given in this order, a criteria is minimized to find 
the set of parameters .4k to define the best fit. This 
criteria can be either an evaluation of an implicit 
equation at each of the Mf or a distance between 
each point M/k and the model. In this last case, it 
can be written 

El(.4) = I lv i (A)-  M II 2 (77) 
i 

The minimizing vector of parameters defines .4 k. 
Step 2: Deformation of the set of points. The vector 

.4k being given, a new set 3.4 k+l r ~k+l ~ is klvl i )l<i<n 

defined by moving each point vi (.4k) in the direc- 
tion of descent of P to minimize 

E2('A'~) = S P ( M i )  (78)  
i 

To avoid instability of the global shape (see [13] 
about time step), this displacement cannot be too 
large. The set of nodes .Ad k is then replaced for 
the next step by the new set 3,4 k+l which is usually 
defined by: 

M/k+l = vi(M k) - rfVP(vi(,4k)) (79) 

The separation in two steps makes possible the min- 
imization of the energy and avoids calculation of com- 
plex derivatives. This was not possible directly since 
we do not always have a simple description of the shape 
when it is implicit. 

6.3. Auxiliary Variable Formulation 

If (½[[NI[ 2 - TP(N) ) i s  convex, or  (½x 2 - r f (x ) )  is 
convex in the case P = f (ds) ,  these two steps can 
be interpreted as the two variables minimization of an 
auxiliary energy: 

1 
Eaux(A, .A.4) = ~ ~ Ilvi(A) - Mell 2 + ~ P1 ( i / )  

i i 
(80) 

where (vP1) is associated to (vP) by equality (35) or 

(62) of Theorems 2 and 4. 
Successive minimization with respect to the two vari- 
ables ~4 and .M is as follows: 

.,4 minimization corresponds to our first step of 
model fitting minimizing Eq. (77). 
Ad minimization corresponds to our second step of 
deformation. The minimizing 3/ / i s  a trade-off be- 
tween the minimization of P1 (M/) and the closeness 
to vi (,4). This gives the good direction of displace- 
ment and avoids a too large deformation of the set of 
nodes. 

This has the advantage that the interaction between 
the shape ,9~t and the data P is indirect through the 
Mi 's. Also the two partial problems are easier to solve 
since we have a direct formulation for its resolution. 
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Using the results of Sections 3.4 to 5, we have 

inf Eaux(,A, 34) 
3,t 

= ~ ~ .  infM,. 2 [[1)i(A)-MiN2-4-~:PI(Mi) 

= 2 P(vi(A)) (81) 
i 

i~f { infEaux(A, A d ) } : i ~ f ~  " ( v i ( A ) ) :  i~fE(A) 

(82) 

So the minimization of the two variables problem leads 
to the solution of the energy minimization of the initial 
problem (76). This shows that the usual second step 
(79) where potential P is minimized is the same as 
the minimization of (81) when f f  = z. This follows 
from Theorem 3. However, the hypothesis on P may be 
difficult to check. As shown in Section 5, if P = f (d), 
the hypothesis on P depends only on f and not on the 
data defined by d. 

Remark that the auxiliary variable can be seen as the 
local deformation of the global model best fit. This is 
very close to the idea used by Terzopoulos and Metaxas 
to locally deform superquadrics. So at convergence, A 
represents the best fit of the parametric model and A4 
the local displacement between the model and the data. 

The main difference between the usual two-step ap- 
proach and the two-variable minimization is that in the 
latter, we always have a descent in energy at each step. 
In the former case, the energy descent at one step can 
be balanced by an increase in the second step and gen- 
erate oscillations. This Remark is also valid for the 
other examples. 

7. Pattern Matching, Registration 

The problem of pattern matching can be seen as a 
special case of deformable templates, where the pa- 
rameters of the model correspond to the nature of the 
deformation. 

7.1. Rigid or Affine Transform 

Let us see first the case when the match between the 
model and data is done through an affine transform. 
We have a curve or surface model defined by a set of 
points Sx = (X])i and try to match this model to data. 
The data is a set of points S 2 = (X})j and we try to 

minimize the average distance to data after a rotation 
or an affine transform R followed by a translation t. 
The energy we are trying to minimize has the form: 

E(R,t) =  d(RX] +t,  S2) (83) 
i 

where d(RX] + t, S 2) = infj d(RX] + t, X2). This 
problem would be very simple if to each point of 81, we 
knew in advance the point in S 2 which corresponds, but 
this is one of the unknowns of the problem. Therefore, 
an iterative algorithm composed of two steps is often 
used to find the minimizing transform (see ICP, Iterative 
Closest Point algorithm in [29, 30, 31]). 

Step 1: Matching. For a previous estimate of the 
transform (Rn, tn), find the matching between 
points of the transformed shape (RnS 1 + tn) and 
S 2. This is done finding for each X~ in S1 the clos- 
est point X),(i ) in S 2 to (RnX] + t.). The output is 
a list of couples (X~, 2 X j n ( i ) ) i .  

Step 2: Transform. For a given set of matches, 
(x] 2 , Xjn(i))i, find the best transform (R~+I, tn+l) 
minimizing ~ i  II en+l X] + t n +  1 - -  Xj2n(i)II 2. 

The necessity of these two steps comes from the fact 
that when matching the two sets of points, we do not 
know in advance which point of the first set corresponds 
to which point of the second set. The first step makes a 
tentative match and the second step solve the problem 
now made easier. 

Defining P(X) = ~d(X, 82)2 = ~ds2(X)2, we can 
identify this model to a deformable template since en- 
ergy of (83) can be written: 

E(R,t) = S P(RX] + t) (84) 
i 

This is the same as Eq. (76) with .A = (R, t) and 
vi (.4) = R X ] + t. However the two steps are in reverse 
order, the matching corresponds to the deformation of 
the set of points in the previous section, while the min- 
imizing transform corresponds to the model fitting in 
the deformable model. 

7.2. Auxiliary Variable Formulation 

In the case the distance d in Eq. (83) is the same as the 
one induced by the norm in Step 2, this algorithm en- 
sures convergence since at each step it is the same term 
that is minimized with respect to each of the variables 
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(R, t) or jn as shown in [29]. However, in the case 
d is a distance in a higher dimension space, including 
other features like in [31], or in the case the potential is 
a function of the distance taking into account only the 
best matches like in robust estimation, there is no rea- 
son for convergence and our formulation gives a way 
to ensure decreasing in the energy at each step. 

As for deformable templates, we can understand 
these two steps as the minimization of an auxiliary en- 
ergy with respect to two variables. 

1 
E a u x ( ( e ' t ) ' J ~ )  = 2 E I I R x ]  + t -  M, II = 

i 

+ E P1 (Mi) (85) 
i 

where P1 is associated to P by equality (62) of The- 
orem 4. In our case since P(X) = ~ds2(X) 2, we 

½ds2(X) 2 which has the same have PI(M) - 1-~ 
expression. 

Exactly as in the deformable template case, the (R, t) 
minimization corresponds to finding the best transform 
while the 3//minimization defines an auxiliary set of 
matching couples (Xi, Mi). The difference is that since 
the auxiliary points Mi are minimizing the energy (85), 
they are not necessarily points of S 2. From Eqs. (61) 
and Section 5.3.2, we see that 

M~' = (1 - oe)(RnX] + t~) + otX2(i) (86) 

So instead of taking the match with Xj,2 (;) directly, an 
intermediary point is chosen to satisfy better the con- 
vexity hypotheses and ensure descent in energy after 
the two steps. 

7.3. General Non-Rigid Transform 

If the deformation is nonrigid, it can be defined by a 
function v minimizing: 

Enr(V) = E d ( v ( X ] ) , S 2 ) 2 =  Z P(v(X])) (87) 
i i 

with the previous potential. Since this is not sufficient 
to define a unique deformation, we have either to con- 
strain the kind of possible deformation and we come 
back to the problem of deformable templates of the 
previous section or regularize the problem and have a 
similar formulation as in the case of snakes dealt in 
next section. 

8. Snakes 

8.1. Active Contour Models 

The snake model introduced in [3] is the minimization 
of the following energy: 

/ ,  

E s n ( V )  = ./o{tOl Ilo'(s)ll 2 + tO21lp"(s)][ 2 

+ P(v(s))}ds (88) 

All we say here is also true in the general case of reg- 
ularization R(v) like in energy of (7) and also in the 
case of 3D deformable surfaces [32, 4]. 
We show in [13] how the solution of the associated 
evolution equation 

l 
OP /tO l) TM - -  r tO 1)lz~tl " ~ - -  k 1 )-r-~, 2 ) 

v(O, s) = v°(s),  

+ boundary conditions 

= F(v) = - V P ( v ) ,  

(89) 

is discretized into a two-step iteration algorithm. The 
system to solve is 

(~f + lrA)v t+l = (v t q- r .F (v t ) ) .  (90) 

where A is the stiffness matrix obtained after discretiza- 
tion of the derivative terms either by finite differences 
or finite elements. It is decomposed in two steps, first a 
deformation along attraction force, then regularization 
(see Fig. 5): 

Step 1: Local deformation, vt+½ = (v t + vF(vt)) 

Step 2: Regularization. v t+l = (Z + ~ A) -1 vt+½ 
(91) 

Equation (89) is called a reaction diffusion equation and 
our decomposition in two steps could be also seen as 
a separation between these two aspects: the first step 
represents only reaction while the second represents 
only diffusion. Remark that in [33, Section 17.6], such 
a separation of iterations in substeps is also used to 
solve a linear equation by splitting an operator as a 
sum of operators. Each operator is then inversed in a 
separate step. It is applied there in a sum of differential 
operators while in the snake algorithm it applies to the 
differential and data operators. We now interpret each 
step of (91) as the minimization of an energy, in the first 

| . . . .  

step, v t+~ is the mlmmum with respect to the second 
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Figure 5. On the upper left the initial snake followed by one two-step iteration with P = f (d) where f is in the limit case of the convexity 
in Theorem 4. The curve stabilizes very quickly to the solution. In the middle and bottom, the two half iterations are shown, local deformation 
(left) followed by regularization (right). The middle pair is the very first iteration and the bottom one is at convergence. 

variable v of  

Esn2(Vt' v)= fa { l llv - vtll2 + 

+ VP(vt) • (v - vt))}ds (92) 

where  the potential  term is in fact  a first order linear 
approximation of  P(v). In the second step, v TM is the 
discrete minimizat ion with respect  to the first variable 

v of  

Esnl(V , v t+½) = ff~ { 1/911[v'(s)[I 2 + w211v"(s)[I 2 

+ -]llv~ - v t + ½ l l 2 } d s  (93) 

Remark  that in fact the term f o  ~llv - v~ll 2 is a n  

approximation of  f n  II ~tt 112 in (89). 
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Figure 6. One two-step iteration (deformation on the left, smoothing on the right) with f being 1.5 times the limit case in Theorem 4. This is 
unstable and oscillates around edges. 

8.2. Auxiliary Variable Formulation 

Assuming (½IJNIJ 2 - vP(N)) is convex, or (½d 2 - 
r f ( d ) )  is convex in the case P = f(ds), these two 
steps can be interpreted as the alternate minimization 
of an auxiliary energy with respect to its two variables: 

Es~UX(u1, 1)aux)= f. + 

(94) 

where vl is the feature curve, Vau x is an auxiliary curve 
and ( rP i )  is associated to ( r P )  by equality (35) or (62) 
of Theorems 2 or 4. The successive minimization of 
this energy with respect to the two variables Vl and Vaux 
is as follows: 

• The vl minimization corresponds to our second step 
ofregularization, minimizing E~nl in Eq. (93) above 
with respect to its first variable (2r  instead of r). 

• The Va, x minimization corresponds to our deforma- 
tion step minimizing the partial energy: 

Esant~(vl' 1)aux)----Ja f 1 / l l l v  1 2 v  - vau×ll2 + Pl(l)aux(S))} dS 

(95) 

This second energy is similar to Esn 2 of step I in 
Eq. (92). The minimizing Vaux is a trade-offbetween 
the minimization of P1 (Vaux) and the closeness to 
Vl. This gives the good direction of displacement 
and avoids a too large deformation of the auxiliary 
curve. It follows from Theorem 3 that the first step 
of Eq. (91) is the same as the Vaux minimization. 

This has the advantage that the interaction between the 
curve Vl and the data P is indirect through Vaux. The 
two partial problems are easier to solve since we have 
a direct formulation for its resolution from Sections 3 
to 5 which give 

in f {  1 infEsnat~(Vl, Vaux) = -- I[Vl (S) -- l)aux(S ) II 2 
oau. r J a  V~ux(,) 

+ rP1 (Vaux(S)) Ids 

= f P(Vl(S))ds (96) da 

inf [ infE•X(vt, Vaux)} = infEsn(Vl) (97) 
131 { Uaux DI 

So the minimization of the two variables problem leads 
to the solution of the energy minimization of the ini- 
tial problem (88) and ensures convergence and avoid 
oscillations that can occur if the convexity hypothesis 
is not satisfied (see Fig. 6). This last result is also true 
for a local minima in vl of Esn. Remark also that the 
auxiliary curve appears to be a more precise localiza- 
tion of features but less smooth than the actual curve. 
It maybe more interesting than the curve itself in case 
the features are not too much noisy and regularization 
is needed only for a global behavior. 

Notice that in our snake algorithm [14], there is a 
resampling of the curve from time to time to avoid 
concentration of nodes in some areas and account for 
length variation. This may be interpreted as the use of  
a geometric model of  the curve or close to a two step 
formulation of the shape reconstruction on a varying 
mesh of [9]. 
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8.3. Image Restoration 

We saw in Section 8.1 that the two steps came from the 
semi-explicit scheme of Eq. (90). Other algorithms 
have this same property of being explicit in the nonlin- 
ear part and implicit in the linear part. 

In some restoration problems where there is in the 
energy E ( u )  a nonlinear function of the gradient of 
the image u, each iteration is replaced by two steps. 
The first minimizes the energy with the previous value 
of the gradient in this nonlinear term. The second is a 
new evaluation of the gradient from the new value of u. 
This may be seen as using an auxiliary linear problem 
at each time step. We give here two examples: 

Anisotropie Diffusion. To solve the evolution equa- 
tion of anisotropic diffusion [34] a kind of two-step 
algorithm was used in [35]. The equation is 

~ U  
- Vg((llVull)Vu) = 0 (98) 

8t 

which is discretized using finite differences: 

Step 1. G n = g(llVunll) (99) 
Step 2. u ~+1 - u n - v V ( G n V u  ~+1) = 0 

Nonlinear Total Variation. The same kind of equa- 
tion with g(llVu II) = tt@ull also appears in arestoration 
algorithm based on nonlinear total variation [36] min- 
imizing f ~ .  This gives the evolution equation 
similar to (98): 

Ot Ox 2 2 \ / 8y 2 2 

This is solved using a totally explicit scheme. A similar 
approach is used for optical flow computation in [37], 
but the scheme is semi-explicit. This means that the 
nonlinear part ~ is explicit while the partial dif- 

Ux+U • . ~ / u ~ + ~  
ferentlal equation solved is similar to (99). This could 
be interpreted as solving an auxiliary problem where 
this nonlinear term is not time dependent. 

Note that in these examples, the original problem 
is modified not by adding an auxiliary variable but by 
freezing a nonlinear part at each step. This can be 
also interpreted as smoothing algorithms with variable 
weights. A first step estimates the weights and a second 
solves the minimization with these constant weights. 
Such an approach is also used for deformable templates 
in [38]. Those variable weights algorithms have been 

transformed using a different duality relation in [18, 
19]. This is also related to the EM algorithm. 

This makes use of a function fl such that 

infvllVull 2 + A(v) = f(llVull) (101) 
lJ 

and defines the auxiliary energy such as: 

Eaux(U,o)= f vliVull2+f~(,)÷ f ltu-dll 2 (102) 

This duality permits to give a closer relation between 
the anisotropic diffusion and the Blake and Zisserman 
algorithm. Indeed, the non linear term in the latter 
energy is: 

f f(IWuJl) = f f(llVulJ) 2 IlVull 

= f g(lJVull)llVul[2 (103) 

d 2 
and for f ( d )  = Inf(fl, ce5-), g(d)  = In f (~ ,  or). This 
function is very close to the one used in anisotropic 
diffusion. 

There is also successive minimization over two 
variables in the more general Uzawa algorithm [21, 
Chapter VIII. 

EM algorithm. Adding auxiliary variables for alter- 
nate minimization was also used in a different way in 
the EM algorithm [39]. Examples of application of 
this algorithm for image identification and restoration 
are presented in [40, Chapter 7]. It is also close to a 
minimization in a Mumford and Shah [6] like image 
segmentation presented briefly in [25], where the en- 
ergy depends on the reconstruction of the image and of 
the line process field 1. This last paper also quotes the 
link to the problem of smoothing algorithms with vari- 
able weights. These weights can be considered also as 
unknown extra variables. In these examples as well as 
in our approach, an energy is minimized alternatively 
with respect to each variable. A further similarity is 
that for each iteration there is one quadratic step and 
one analytic step. 

The general idea of the EM algorithm deals with 
the problem of finding the parameters of a model with 
some incomplete data (observed variables), and there 
are two other multi-dimensional variables or arrays-- 
the model parameters and the unobserved variables. 
The missing information does have a physical mean- 
ing but the goal is to estimate the model parameters, 
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which would be easy or easier if one could observe 
the unobserved variables. To solve the problem, ex- 
tra (unobserved) variables are then estimated to re- 
store the missing data. Alternate minimization of a 
probability distribution (which may be obtained by 
an energy using Gibbs distribution) gives an estima- 
tion of the unobserved variables for a given set of pa- 
rameters and then the new complete data leads to a 
new set of parameters. In the image restoration ex- 
ample in [40], the data is the noisy blurred image, 
the unknown is the pair of arrays given by the true 
(restored) image (unobserved variable) and the point 
spread function (unknown parameters). In [41], the EM 
algorithm is used for 3D curve reconstruction from pro- 
jections using an approach close to B-snakes described 
in Section 9.1. 

An important difference with our work is that in the 
EM approach, extra variables have a real meaning but 
are not available as data. In our approach, we introduce 
new artificial variables, that have no physical meaning, 
to make the minimization work better by adding con- 
vexity to the energy. This is related in spirit but differ- 
ent in details upon closer examination for most of our 
examples. However in the Pattern Matching example 
(see Section 7), we may identify the observed data as 
the deformed pattern S 2, the parameters as the trans- 
formation (R, t) and the unobserved variables as the 
correspondence j between a data point and the points 
of the transformed original model S 1. 

9. B-Snakes 

We present the B-snake model and show how it can be 
interpreted as a two-step minimization of a two vari- 
ables energy. 

Our purpose in this Section is not only to interpret 
an algorithm as an auxiliary energy minimization as in 
the other examples. It is mainly to set a more precise 
link between classic snakes, as presented in the pre- 
vious section, and the B-snake model. We show that 
B-snakes or spline-snakes may be interpreted as the so- 
lution of a discretization of a snake energy like (112). 
This means that the solution may be seen either as the 
minimum of a data energy among all cubic spline func- 
tions or a minimum of a classic snake energy among 
all functions. 

Leitner et. al. [5] introduced a simplified active con- 
tour model they called "Spline-Snakes." This model 
was also used by many authors with the name of 
B-Snakes. The solution of their snake model is found 

by deformation of a set of node points submitted to an 
attraction force and then by curve reconstruction using 
B-Splines. 

Note that in [42], the snake problem is solved using 
a finite element method. B-Splines can be seen as a 
special case of finite element, but the main difference 
is that in the snake-spline model, the energy is only 
external. Formulations equivalent to the finite element 
one presented in [42] have also been used in [43, 44], 
keeping the internal energy term. In [45] some inter- 
mediary model was introduced. 

9.1. Descript ion o f  the Me thod  

The main idea is that since the classical snake energy 
contains a regularization part and cubic splines already 
minimize a regularization energy, it may be easier to 
limit the curve set to cubic spline curves and minimize 
only the potential energy (see [46]). 

The active contour is now parametrically represented 
by 

VS C [ 0 ,  1 ] ,  UA(S ) = ~-~ Bi(s)oti, 
i=1 

(104) 

where .A = (Oti)l<i<_n , O~ i E l;~ 2 are the control points, 
Bi are the basis cubic B-spline functions. 

These basis B-Spline functions Bi(s), 1 _< i _< n 
already minimize the regularizing energy: 

fo ff/ (s)2ds, (105)  

for all C 2 real valued function b(s)  satisfying b(si)  = 
1, b ( s j )  = O, 1 < j < n, j ¢ i, s j  = if-a) 

- - ( n - l ) "  

It follows that v.4 minimizes the following energy 

fo l [ (x" ( s ) )  + (y"(s))Z]ds ,  (106) 

for all v(s)  = (x (s ) ,  y ( s ) )  satisfying v ( s j )  = oQ, 1 < 
j < n, Sj = ( j - l )  

- -  ( n - l )  " 
A cubic B-Spline function is defined by its control 

points, and it represents among all functions passing 
by these control points, the one minimizing the above 
regularization energy. 

A snake is minimizing an energy making a trade-off 
between data fitting and regularization. Accordingly, 
the snake-spline is the B-spline curve that minimizes 
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only the second part of the snake energy, the potential: 

Minimize P(x(s), y(s))ds (107) 

This external energy can take the discrete form: 

m 
Minimize E P(Mi) (108) 

i=1 

where the Mi form a set of nodes representing the curve. 
We formulate the method of resolution proposed in 
[5] as a two-step iterative algorithm beginning with an 
initial set of data points M °. 

Step 1: Spline Fitting. A set of points AA k = 
(Mk)l<_j<m being given, the set of control points 
~A k = (ot/k)l<i<n is determined to minimize the least 
square error IIM k - BAll2: 

M~. ~ Bijoti 2, 
j=l i=1 

(109) 

where Bij = (Bi(tj))l<i<n,l<j<m, t j  = ~lm-_ll~, the 
solution is A k = (13tB)-lBtA4k = CM k. 

If m = n, B is the identity matrix, and the least 
square corresponds to the B-spline interpolation of 

k the M~ = otj. 
If m > n, the B-spline is over-determined and 

some smoothing of the nodes M~ takes place to 
determine the ~/~. This smoothing of nodes M~. is a 
further justification for omitting the regularization 
term in the snake energy. 

Step 2: External Force. A set of control points .A k 
being given, the external force is applied separately 
to each point of BA = (VAk(tj))l<_j<m to define a 
new set of data points. 

k+a q- zF~, (110) Yj ~ { 1, m }, Mj = vA* (t j) 

where the force F~ = -VP(vA~(tj)). After ap- 
plying a local deformation to the set of nodes, we 
go back to the previous step with this A-I k+l. 

Remark that an analogous algorithm was also used 
for 3-D splines solving the inverse problem for Free- 
Form Deformations in [15]. It alternates determination 
of control points and displacement field computation. 
In fact, in [5], the first of the two steps is included in 

the second. This gives an evolution equation for the 
set A: 

dA = C d M  
dt ~ = C F ( M )  = CF(B.A). (111) 

However, this does not matter for our purpose since 
this evolution equation is in fact a two step algorithm 
and our purpose in this example is to show the link 
between this algorithm and the minimization of the 
original snake energy. 

9.2. Interpretation as an Auxiliary Variables 
Problem 

In the context of the previous section, the problem we 
want to solve is defined through the minimization of 
the following energy similar to a half discrete version 
of the snake model (88): 

f01 ~ Eb,(V) = Ilv'(s)ll 2 + P(v(si)) (112) 
i=1 

This is an implicit version of the problem presented 
in [12]: 

1 N 
G,(v) = ~2 Z IIv'(s)ll2 + ~ llni - v(s/) l l  2 (1!3) 

i=1 

If a function v is a minimizer of one of these last two 
problems, we can show that its fourth derivative van- 
ishes everywhere except at the nodes si where v is sin- 
gular. It follows that the solution is a cubic spline and 
for problem (113), the coefficients can be defined from 
the values ui as a convolution kernel if the si are regu- 
larly spaced. The basis of solutions is sometimes called 
interpolation splines. 

For problem (112), the equation found at the junc- 
tions si involves P and the resolution is not straight- 
forward like for energy (113). Therefore we have to 
use a minimization algorithm and the one described 
in the previous Section 9.1 corresponds to the succes- 
sive minimization of each term of the energy. We now 
give a better understanding of how this minimization is 
done in that algorithm using the definition of auxiliary 
variables in the energy: 

f0 
1 n 1 

g;UX(v, A/t) = IIv'(s)ll 2 + ~ ~-~r lip(s;) - Mi 112 
i=1 

+ ~ PI(Mi) (114) 
i=1 
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where r P1 is the potential associated to r P by equality 
(35) or (62) of Theorems 2 and 4 assuming P satisfies 
the demanded hypotheses. 

• When .L4 is given, solving the minimization with 
respect to v is the same as solving the problem (113). 
So, the solution in v is a cubic spline with nodes 
at si that approximates the M/'s. It can be defined 
by a set of coordinates .4 in the spline basis. This 
corresponds to the first step of "spline fitting". 

• When v (or "4) is given, minimizing the energy with 
respect to A'[ is the determination of the Mi's that are 
at the same time close to the v (si) and have low value 
of P1. So v being given the Mi's solve a trade offbe- 
tween localization of features and small deformation 
from v by minimizing: 

1 n 
E~U~(,/~) = ~ [1 v(si )  -- Mi II 2 -[- Z P1 (Mi )  

i=1 i=1 
(115) 

This corresponds to the second step in the algorithm 
of the previous Section ("external force"). 

It turns out that the two steps of the Spline-snakes 
method correspond to minimizing the energy of (114) 
alternatively with respect to v or 3//. However, the 
basis of spline functions is different and corresponds 
to the interpolation splines. This makes sense since 
in the snake model a deformation at one point of the 
curve has influence on the whole curve. This is the case 
in the interpolation splines minimizing (113) while a 
deformation in the case of B-splines has only local 
consequences. Although this last property may be de- 
sired sometimes, this makes a difference with the snake 
model. 

In a way similar to Eqs. (81) and (82), the minimum 
of E~  x in (114) is the minimum of (112): 

i~f E~U~(A'4) : ~ .  inf { 1 } • Mi 7~r I ] v ( S i ) - M i l l z ' + - P l ( M i )  

= S P(v(s i ) )  (116) 
i 

in  aux = inf{ ~fEbs (v ,3d)} infEb,(v) (t17) 

If the potential used is of the form P = or-@, (as in [5]) 
as seen in Section 5.3.2, the potential/'1 that has to be 

used for intermediate steps is of the same kind P1 = 
d 2 

~-~ 2'  So in this case, Eq. (68) becomes: 

¥i ~ {1, m}, m k+l = (1 - "gOl)PA~(Si) "4- 720[.1) k'i, 

(118) 

k,i is the projection on the data S of v,4k(si). where v s 
Remarks of the previous sections still apply. 

Notice that in our formulation, we deal with the case 
n = m in (109), but in the general case, to have m aux- 
iliary points and keep n < m basis functions, we could 
consider the auxiliary term •iml ~ [I ~, j  Bj iv(s j )  - 
Me II 2, with the same Bji as before. Our auxiliary vari- 
able interpretation is still valid and the minimized en- 
ergy becomes 

/o 1 Ebs(V) = Ilv'(s)l[ 2 + P B j i v ( s j )  (119) 

which integrates in the discretization of the potential 
term the spline weights between chosen values v(sj) .  

In the energy of (112), if the regularization term con- 
tains a first derivative or a combination of the two first 
derivatives (like in snakes), the result of the v minimiza- 
tion gives a different kind of splines presented in [47, 
48]. In case the snake internal term is half discretized 
a f v"(s)+b ~ v'(si), the minimizing curves are called 
v-Splines [48]. In all these cases, since the solution of 
the semi-discretized problem, similar to (112) with var- 
ious regularization terms, can be described in a space 
of spline functions, the solution can be formulated by 
its decomposition .4 in this space. It is then natural to 
look for minimization of the potential term in this space 
of spline functions. Our formulation gives the link be- 
tween the original snake like problems and, through an 
auxiliary variable energy, the two-step algorithm min- 
imizing P along all curves in the spline space. This is 
a further justification for finite element methods [4] or 
spline-snakes. 

10.  C o n c l u s i o n  

We have presented a new mathematical formulation 
to shape extraction and reconstruction problems. By 
introducing auxiliary variables we defined a two- 
variables energy and showed some mathematical re- 
sults on its successive minimization with respect to 
each variable. These variables represent an interme- 
diary reconstructed shape. This permits to transform a 
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problem with implicit data constraints defined through 
the minimization of a non convex potential into an ex- 
plicit reconstruction convex problem defined by regu- 
larization of known data. We showed a way to make 
this transformation easily in the case where the poten- 
tial is a function of the distance to the closest data. 
This kind of potential is more and more used in shape 
extraction work. 

This permits to give a better understanding of many 
already existing two-step algorithms used for de- 
formable templates and deformable models. This per- 
mits also to give a more precise link between snakes and 
B-snakes. They can be interpreted as a minimization 
of a two-variables energy. Our work can give a good 
mathematical formulation to many of these data extrac- 
tion and reconstruction algorithms to modify current 
algorithms and ensure that the initial energy is mini- 
mized and that the algorithm converges. 
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