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Abstract. This article proposes a new framework to regularize linear inverse
problems using a total variation prior on an adapted non-local graph. The
non-local graph is optimized to match the structures of the image to recover.
This allows a better reconstruction of geometric edges and textures present
in natural images. A fast algorithm computes iteratively both the solution of
the regularization process and the non-local graph adapted to this solution.
The graph adaptation is particularly efficient to solve inverse problems with
randomized measurements such as inpainting random pixels or compressive
sensing recovery. Our non-local regularization gives state of the art results for
this class of inverse problems. On more challenging problems such as image
super-resolution, our method gives results comparable to translation invariant
wavelet-based methods.

1. Introduction

1.1. Inverse Problems Regularization. This paper is focussed on the solution
of linear ill-posed inverse problems in image processing. In this setting, one tries to
recover a high resolution image f0 ∈ Rn of n pixels from a set of p 6 n noisy linear
measurements

u = Φf0 + ε ∈ Rp.

where ε is an additive noise. The linear operator Φ typically accounts for some
blurring, sub-sampling or missing pixels so that the measured data u only captures
a small portion of the original image f one wishes to recover. Sections 1.1.1, 1.1.2
and 1.1.3 detail three examples of inverse problems we consider in our numerical
experiments.

In order to solve this ill-posed problem, one needs some prior knowledge on
the kind of typical images one expects to restore. This prior information should
help to recover the missing information. Regularization theory assumes that f0
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2 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

has some smoothness, for instance small derivatives (linear Sobolev regularization)
or bounded variations (non-linear regularization). This paper derives a new prior
model based on non-local comparison of patches.

A regularized solution f? to the inverse problem is written in variational form as

(1) f? ∈ argmin
f∈Rn

1
2λ
||u− Φf ||2 + J(f),

where J(f) is small when f is close to the smoothness model, and where the min-
imum is not necessarily unique. The weight λ needs to be adapted to match the
amplitude of the noise ε, which might be a non-trivial task in practical situations.

1.1.1. Super-resolution. Super-resolution corresponds to the recovery of a high-
definition image from a filtered and sub-sampled image. It is usually applied to
a sequence of images in video, see the review papers [43, 27]. We consider here the
problem of increasing the resolution of a single still image, which corresponds to
the inversion of the operator

(2) ∀ f ∈ Rn, Φf = (f ∗ h) ↓k

where ∗ is the discrete convoluton, p = n/k2, h ∈ Rn is a low-pass filter and
↓k: Rn → Rp is the sub-sampling operator by a factor k along each axis.

1.1.2. Inpainting. Inpainting aims at filling missing pixels from an image. It corre-
sponds to the following masking operator

(3) (Φf)(x) =
{

0 if x ∈ Ω,
f(x) if x /∈ Ω,

where Ω ⊂ {0, . . . ,
√
n− 1}2 is the region where the input data has been damaged.

1.1.3. Compressive Sensing. Compressive sensing is a new sampling theory that
uses a fixed set of linear measurements together with a non-linear reconstruction
[9, 17]. The sensing operator computes the projection of the data on a set of p� n
vectors

(4) Φf = {〈f, ϕi〉}p−1
i=0 ∈ Rp,

where {ϕi}p−1
i=0 are the rows of Φ. For the recovery of f0 from partial measurements

u to be efficient, compressive sensing theory makes use of operators Φ that are
drawn from certain random matrix distributions.

1.2. Smoothness and Sparsity Prior Models. The simplest prior model as-
sumes an uniform smoothness of the image, and use for instance a discretized
Sobolev norm

J sob(f) =
∑

x

||∇xf ||2,

where ∇xf is a finite difference approximation of the gradient of f at pixel x. To
enable the recovery of sharp features such as edges, Rudin, Osher and Fatemi [49]
proposed to use the total variation norm for denoising purpose, when Φ = Id

(5) J tv(f) =
∑

x

||∇xf ||.

Given a frame {ψm}m of Rn, one defines an analysis sparsity enforcing prior in
this frame using the `1 norm of the correlation with the frame atoms

(6) J spars(f) =
∑
m

|〈f, ψm〉|.
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Non-local Regularization of Inverse Problems 3

This prior has been introduced by Donoho and Johnstone [18] with the orthogonal
wavelet basis for denoising purpose, when Φ = Id. In this case, the solution f? of
(1) is obtained with a soft thresholding.

1.2.1. Smoothness and Sparsity for Inverse Problems. Total variation regularization
prior (5) has been used to solve super-resolution [35] and inpainting of small holes
[11]. Inpainting of larger holes requires higher order regularizations, that take into
account the curvature of the level lines [39, 3, 5] or a tensor diffusion [55].

Sparsity prior (6) has been used to solve general inverse problems, see for in-
stance [16, 13] and the references therein. It can also be used in conjunction with
redundant frames instead of orthogonal bases, see for instance [23]. For a redundant
frame of Rn, it is also possible to search for the coefficients of f? in this frame. This
corresponds to a synthesis sparsity prior, that differs from (6), see for instance [26].

1.2.2. Sparsity for Compressive Sensing. Compressive sampling theory gives hy-
potheses on both the input signal f0 and the sensing vectors {ϕi}i for the non-
uniform sampling process u = Φf0 + ε to be efficiently solved using the sparsity
prior (6). In particular, the {ϕi}i must be incoherent with the orthogonal basis
{ψm}m used for the sparsity prior, which is the case with high probability if they
are drawn randomly from certain random distributions. Under the additional con-
dition that f0 is sparse in an orthogonal basis {ψm}m

# {m \ 〈f0, ψm〉 6= 0} 6 s

then the optimization of (1) using the energy (6) leads to a recovery with a small
error ||f? − f0|| ≈ ||ε|| if p = O(s log(n/s)). These results extend to approximately
sparse signals, such as for instance signals that are compressible in an orthogonal
basis.

1.3. Non-local Prior Models.

1.3.1. Edge-aware diffusion. In order to better respect edges in images than total
variation and wavelet sparsity, several edge-aware filtering schemes have been pro-
posed, among which Yaroslavsky’s filter [57], the bilateral filter [54], Susan filter
[51] and Beltrami flow [52]. The non-local means filter [6] goes one step further by
averaging pixels that can be arbitrary far away, using a similarity measure based
on distance between patches.

1.3.2. Non-local regularization. As shown for instance in [44], for denoising Φ = Id,
these edge adaptive priors correspond to one step of gradient descent of (1) using
a graph based regularization over the image

(7) Jgraph
w (f) =

∑
x,y

wx,y|f(x)− f(y)|α

where α = 2. The weights wx,y are computed from the input noisy image u using
either a distance between the noisy pixel values |u(x)−u(y)| [54, 57, 52] or a distance
between the patches around x and y [6, 12, 53]. This variational denoising is related
to sparsity in an adapted basis of eigenvectors of the non-local diffusion operator
[53, 44]

This graph based energy (7) is generalized using an arbitrary α > 1 which, for
α = 1, defines a non-local total variation [29, 59, 24].
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4 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

1.3.3. Non-local regularization of inverse problems. For some class of inverse prob-
lems, the weights w can be estimated from the low dimensional observations u.
This is for instance the case for inpainting small holes [31], deblurring [40, 32, 7],
demosaicing [8] and segmentation [30].

We note that these approaches share similarities with exemplar-based super-re-
solution, see for instance see for instance [15, 28, 20]. Although these methods
operate using patches comparisons, they are different because they make use of
pairs of low/high resolution exemplar patches.

For many other inverse problems, like inpainting of large or randomized holes,
or compressive sensing, the observation u cannot be used directly to estimate the
regularization graph w. One thus needs to iteratively estimate the graph while
performing the inversion. For inpainting, computer graphics methods perform patch
copy [14], that is closely related to an iterative estimation of a non-local graph.
These methods are related to texture synthesis with patch recopy [21, 56], and can
be re-casted as a non-convex variational problem [2].

In this paper, we extend the idea of iteratively estimating the graph w for general
inverse problems. The quality of the graph thus improves as the algorithm progress
toward the regularized solution of the inverse problem.

1.3.4. Harmonic analysis with adaptive representations. Non-local diffusion meth-
ods are also related to adaptive decompositions in dictionaries of orthogonal bases.
The bandlets best basis decomposition [33, 38] re-transforms the wavelet coefficients
of an image to better capture edges. The grouplet transform of Mallat [37] does a
similar retransformation but makes use of an adaptive geometric flow that is well
suited to capture oriented oscillating textures [46].

Another class of approaches adapts the representation by learning the set of
atoms from a given set of examples, see for instance [42]. This leads to redundant
representations that leads to state of the art image denoising results [22]. Dictionar-
ies can also be learned iteratively to perform image inpainting [34]and simultaneous
image separation and inpainting [48].

2. Recent Works and Contributions

2.1. Related works on non-local regularization of inverse problems.
We have presented in the conference paper [47] for the first time a general frame-
work for the non-local regularization of inverse problems. This framework is used
by Zhang et al. in [58], where Bregman iterations are used instead of the forward-
backward splitting initially proposed in [47], which might result in a faster algo-
rithm. A similar framework for image inpainting is developed by Facciolo et al. in
[25], where a variational justification for our initial choice of weights [47] is given.
This paper extends our initial method [47], and makes use of the weights regular-
ization of [25] to obtain a self-contained non-local regularization framework.

2.2. Contributions. This paper proposes a new framework to solve general in-
verse problems using a non-local and non-linear regularization on graphs. Our
algorithm is able to efficiently solve for a minimizer of the proposed energy by it-
eratively computing an adapted graph and a solution of the inverse problem. We
show applications to inpainting, super-resolution and compressive sampling where
this new framework improves over wavelets and total variation regularizations.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Non-local Regularization of Inverse Problems 5

3. Non-local Regularization of Inverse Problems

3.1. Non-local Regularization. This section introduces a non-local graph-
based regularization of the inverse problem u = Φf0 + ε. This regularization is
adaptive since the energy we consider

(8) J(f) = Jw(f) + γE(w)

is parameterized by a non-local graph w. This graph is a set of weights wx,y > 0
that link pixels x and y over the image plane. The functional Jw(f) regularizes the
image and enforces a non-local regularity along the graph w, while the functional
E(w) constrains the graph itself.

The non-adaptive regularization (1) is extended to this adaptive non-local setting
by considering a minimization on both the image to recover and the graph

(9) f? ∈ argmin
f∈Rn,w∈C

1
2λ
||u− Φf ||2 + Jw(f) + γE(w),

where C is an additional set of constraints on the graph.

3.2. Patch-based Local Signatures. A non-local regularization is obtained by
comparing small patches that can be far away in the image plane. A patch of τ × τ
pixels at location x ∈ {0, . . . ,

√
n− 1}2 in the image is defined as

(10) ∀ t ∈ {−(τ − 1)/2 + 1, . . . , (τ − 1)/2}2, πx(f)(t) = f(x+ t)

where τ is assumed to be an odd integer. A patch πx(f) is a vector of size τ2.
A local signature of dimension q 6 τ2 is obtained from px(f) using an orthogonal

projector U ∈ Rq×τ2
that reduces the dimensionality of the patch

(11) px(f) = Uπx(f),

where U satisfies UU∗ = Id. Using a small value for q speeds up the algorithms
but might deteriorate the visual quality of the result. Section 5 describes how U is
computed in practice for the numerical experiments.

We note that this local signature framework extends to color images f of n pixels
by considering patches of dimension 3τ2.

3.3. Graph-based Priors on Images. A non-local graph is a set of weights
w = {wx,y}x,y which assigns to each pair of pixels a weight wx,y > 0. We further
impose that these weights correspond to a probability distribution and that the
graph only connects pixels that are not too far away

(12) C =

{
w \ wx,y > 0,

∑
y

wx,y = 1, and ||x− y|| > ρ ⇒ wx,y = 0

}
.

The parameter ρ controls the degree of non-locality of the graph. For image con-
taining periodic features, increasing the value of ρ might improve the numerical
results but it also increases the complexity of the algorithms. For natural images, it
might actually improve the results as well as the algorithmic complexity to impose
a not so large value of ρ, which leads to a semi-non-local regularization.

This weighted graph is used to indicate which local signatures should be com-
pared in the image, and leads to the following non-local regularization functional

(13) Jw(f) =
∑

||x−y||6ρ

wx,y||px(f)− py(f)||.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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6 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

This energy is similar to the non-local total variation introduced by several au-
thors [29, 59, 24] for denoising purpose. A major difference with these works is that
Jw uses patch variations ||px(f) − py(f)|| instead of pixel variations |f(x) − f(y)|.
Such patch variations were already considered by Peyré for texture synthesis [45]
and for inpainting by Facciolo et al. [25].

3.4. Maximum Entropy Prior on the Graph Weights. The constraint w ∈ C
is not strong enough to select an efficient graph to process an image. Following [25],
we force the graph to have a large entropy by defining the following graph energy

E(w) =
∑
x,y

wx,y log(wx,y).

The parameter γ in (8) weights the influence of this entropy constraint on w and
should be adapted to the geometry of the image to recover and on the noise level. In
particular, choosing γ which tends to zero imposes a degenerate weight distribution
that is a Dirac mass.

4. Non-local Regularization Algorithm

While the optimization problem (9) is separately convex with respect to f and
to w, it is not jointly convex in (f, w). The minimization of (9) is thus difficult,
and we propose to use a a coordinate descent algorithm that optimizes successively
the graph w and then the image f to recover.

4.1. Non-local Patch Operators. In order to derive the optimization proce-
dure, we re-write the graph-based prior using operator notations.

The signature extraction process (10) defines a mapping from the pixel domain
Rn to the signature domain P

P :
{

Rn −→ P
f 7−→ {px(f)}x

.

A set of signatures {px(f)}x ∈ P is stored as a matrix of q × n elements. The
adjoint mapping is defined as

P ∗ :
{

P −→ Rn

{px}x 7−→ f
where f(x) =

∑
y

py(x− y)

where the sum is restricted to pixels y = (y1, y2) such that −τ 6 x1 − y1 6 τ and
−τ 6 x2 − y2 6 τ . We note that a special care should be taken near boundaries
of the image. In the numerical experiments, we use a symmetric extension of the
image to avoid boundary artifacts.

The non-local energy defined in (13) is a vectorial `1 norm

Jw(f) = ||GwPf ||1,

where the signature-valued gradient maps signatures in P to signature differentials
in D

Gw :
{

P −→ D
{px}x 7−→ {dx,y}||x−y||6ρ

, where dx,y = wx,y(px − py).

A signature differential {dx,y}||x−y||6ρ ∈ D is stored as an array of size q×n×(Aρ2),
where Aρ2 is the number of pixels in the ball {x}||x||6ρ of radius ρ. The adjoint of

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Non-local Regularization of Inverse Problems 7

this signature-valued gradient is a signature-valued divergence

G∗w :
{

D −→ P
{dx,y}||x−y||6ρ 7−→ {px}x

, where px =
∑

||x−y||6ρ

wx,ydx,y − wy,xdy,x.

The `1 norm of signature differentials d = {dx,y}||x−y||6ρ is defined as

||d||1 =
∑

||x−y||6ρ

||dx,y||.

In the following we also make use of the `∞ norm,

||d||∞ = max
||x−y||6ρ

||dx,y||.

4.2. Optimization on the Graph. If f is fixed, optimizing (9) with respect to w
defines an optimal graph w(f), which is the solution of the following strictly convex
optimization problem

w(f) = argmin
w∈C

Jw(f) + γE(w) =
∑

||x−y||6ρ

wx,y||px(f)− py(f)||+ γwx,y log(wx,y).

As noticed in [25], the optimal graph corresponds to exponential weights

(14) w(f)x,y =
w̃x,y

Zx
where w̃x,y =

{
e−

||px(f)−py(f)||
γ if ||x− y|| 6 ρ,

0 otherwise,

where the normalizing constant is

Zx =
∑

y

w̃x,y.

We note that these weights differ from those used in NL-means, that are Gaussian
weights [6].

4.3. Optimization on the Image. If w is fixed, optimizing (9) with respect to f
defines an optimal image f(w) which is a solution of the following convex optimiza-
tion problem

(15) f(w) ∈ argmin
f∈Rn

1
2
||u− Φf ||2 + λ||GwPf ||1.

This corresponds to the minimization of the sum of a smooth quadratic func-
tional ||u−Φf ||2 and a non-smooth functional ||GwPf ||1. Several efficient first order
schemes have been devised to perform such a minimization, among which forward-
backward splitting [13, 4], Nesterov’s algorithm [41, 1] and Bregman iterations [58].
In this paper, we use a forward-backward splitting, that has the advantage of sim-
plicity, although more efficient algorithms could be used as well.

Starting from an initial image f (0), forward-backward iterations alternate be-
tween a gradient descent step

(16) f̃ (`) = f (`) + νΦ∗(u− Φf (`))

and a proximal denoising correction

(17) f (`+1) = proxνλJw
(f̃ (`)),

where the proximal operator is the solution of a denoising problem

(18) proxωJw
(f̃) = argmin

f∈Rn

1
2
||f − f̃ ||2 + ω||GwPf ||1

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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8 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

These forward backward iteration converge to a solution f(w) of (15) as long as
0 < ν < 2/||Φ∗Φ||, see [13].

4.4. Computation of the Proximal Operator. The proximal operator (18)
is the solution of a convex functional that generalizes the total variation denoising.
Following Chambolle [10], we compute this operator through a dual optimization
problem, that performs the optimization on a differential signature field d ∈ D
rather than on the set of images.

Using standard duality analysis, the proximal operator is written as

proxωJw
(f̃) = f̃ − ωP ∗G∗wd

?

where d? is a solution of the following dual convex optimization problem

(19) d? ∈ argmin
d∈D,||d||∞61

||f̃/ω − P ∗G∗wd||2.

This constraint problem can be solved using several first order schemes, including
foward-backward splitting [41] and Nesterov’s algorithm [41].

The foward-backward splitting corresponds to the usual projected gradient de-
scent, that iterates between a gradient step

(20) d̃(k) = d(k) + ηGwP (f̃/ω − P ∗G∗wd
(k)),

and a projection step on the `∞ constraint

(21) d(k+1)
x,y =

d̃
(k)
x,y

max(1, ||d̃(k)
x,y||)

.

These projected gradient iterations converge to a solution d? of (19) as long as
0 < η < 2/||GwPP

∗G∗w||, see [13]. The operator norm ||GwPP
∗G∗w|| is estimated

numerically using a few power iterations to compute the largest singular value of
GwP .

4.5. The Non-local Regularization Algorithm. Putting together the com-
putation of the optimal weights w(f) given in (14), the forward-backward iterations
(16), (17) to compute f(w) and the inner iterations (20), (21) of projected gradient
to compute the proximal iteration leads to the algorithm 1 to minimize (9). This
algorithm depends on two tolerance parameters tolf and told that control the outer
and inner iteration loops.

Convergence of the forward-backward outer iteration on ` is guaranteed if the
errors generated by the inner iterations on k are summable [13]. This requires to
lower the tolerance told = tol(k)

d as k is increasing. For the numerical experiments,
we use a fixed tolerance told, which in practice does not lead to convergence issue.

Since the energy to minimize is non-convex and non-smooth, little can be said
about the convergence of this iterative scheme, beyond the fact that the energy (9) is
decaying through the iterations. In the numerical experiments detailed in Section 5,
we always observed convergence of the iterates. In fact, a small number of iterations
(between 10 and 20 for natural images) are enough to obtain a stabilization of the
graph parameter close to a limit value w?. Once this graph is fixed to w = w?,
the regularization (9) corresponds to an `1 analysis prior, and forward backward
splitting is known to converge to the solution [13].

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Non-local Regularization of Inverse Problems 9

Algorithm 1: Block coordinate descent algorithm to minimize (9).
Initialization: set f = Φ∗u.
while not converged do

Weight update: compute w = w(f) using (14).
Image update: initialize f (0) = f , set ` = 0.
while ||f (`+1) − f (`)|| > tolf do

Gradient descent: compute f̃ (`) using (16).
Proximal correction: initialize d(0) = 0, set k = 0.
while ||d(k) − d(k+1)|| > told do

Gradient descent: compute d̃(k) using (20) with f̃ = f̃ (`).
Projection: compute d(k+1) using (21).

Set f (`+1) = f̃ (`) − ωP ∗G∗wd
(k+1).

Set f = f (`+1)

Output: f? = f .

5. Numerical Experiments

In the numerical simulations, we consider three different regularizations:
The total variation energy J tv, defined in equation (5). An algorithm similar to
algorithm 1 is used for this minimization, using the usual discrete gradient ∇x

instead of the graph gradient Gw.
The sparsity energy J spars, defined in equation (6), using a redundant tight frame
of translation invariant 7-9 biorthogonal wavelets {ψm}m, see [36]. An algorithm
similar to algorithm 1 is used for this minimization, excepted that the proximal
projection is computed with a soft thresholding as detailed in [26].
The non-local total variation regularization Jw in an optimized graph, solved using
algorithm 1. For this regularization, the size of the patch is set to τ = 5 pixels.
The parameter γ of equation (8) is set to τ ||f ||∞/10, which gives satisfying results
for the noise level we consider. The locality parameter ρ of equation (12) is fixed
to ρ = 15 pixels. The size of the signature is set to q = 14, and the projector U
used in (11) is obtained by considering the q leading PCA eigenvectors of random
patches extracted from noise-free natural images.

Both total variation and non-local total variation require approximately the same
number of iterations for a given tolerance. Non-local iterations are computationally
more intensive since they require the computation of the non-local weights {wx,y}y

and the gradient operator is of much higher dimension. In the three applications
of Sections 5.1, 5.2 and 5.3, we use a Gaussian white noise ε of standard deviation
0.02||u||∞. For all the proposed methods, the parameter λ is optimized in an oracle
manner to maximize the PSNR of the recovered image f?

PSNR(f?, f) = −20 log2(||f? − f ||/||f ||∞).

5.1. Inpainting. Inpainting corresponds to the making operator (3). In this case,
Φ∗ = Φ, and one can take a proximity step size ν = 1 so that the proximal iteration
(17) becomes

f (`+1) = ProxλJ(f̃ (`)) where f̃ (`)(x) =
{
f (`)(x) if x ∈ Ω,
u(x) if x /∈ Ω.

Figure 1 shows some numerical examples of inpainting on images where 80% of the
pixels have been damaged, so that |Ω|/n = 0.8. The wavelets method performs

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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10 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

better than total variation in term of PSNR but tends to introduce some ringing
artifacts. Non-local total variation performs better in term of PSNR and is visually
more pleasing since edges are better reconstructed.

Input u Wavelets TV Non local

25.70dB 24.10dB 25.97dB

24.52dB 23.24dB 24.9dB

29.65dB 28.68dB 30.03dB

Figure 1. Examples of inpainting where Ω occupates 80% of pix-
els. The original images f0 are displayed on the left of figure 3.

5.2. Super-resolution. Super-resolution inverse problem corresponds to the op-
erator (2). For a symmetric filter h, the dual operator is given by

∀ g ∈ Rp, Φ∗g = (g ↑k) ∗ h
where ↑k: Rp → Rn corresponds to the insertion of k − 1 zeros along horizontal
and vertical directions In this experiment, we used a Gaussian kernel h of standard
deviation 6 pixels, and k = 8.

Figure 2 shows some graphical results of the three tested super-resolution meth-
ods. The results are comparable or slightly better than wavelet inpainting.

5.3. Compressive-sampling. Compressive sensing corresponds to an operator Φ ∈
Rp×n that is the realization of a random matrix distribution. In this paper, following
for instance [19], we consider a fast sampling operator

Φf = (P1HP2f) ↓[p],
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Non-local Regularization of Inverse Problems 11

Input u Wavelets TV Non local

21.16dB 19.19dB 21.32dB

20.23dB 18.82dB 20.69dB

25.03dB 24.48dB 24.98dB

Figure 2. Examples of image super-resolution with a down-
sampling k = 8. The original images f0 are displayed on the left of
figure 3.

where P1 and P2 are realizations of a random permutation of the n entries of a
vector in Rn, H is a 2D orthogonal Hadamard transform, and ↓[p] selects the p
first entries of a vector, see [50] for a definition of the Hadamard transform and its
fast implementation. Such a random sensing operator is computed in O(n log(n))
operations, which is important to process high dimensional data.

Figure 3 shows examples of compressive sampling reconstructions. The results
are consistently better than both translation wavelets and total variation regular-
izations.

Conclusion

This paper proposed a new framework for the non-local resolution of linear inverse
problems. The variational minimization computes iteratively an adaptive non-local
graph that enhances the geometric features of the recovered image. Numerical tests
show how this method improves over some state of the art methods for inpainting,
super-resolution and compressive sampling.
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12 Gabriel Peyré and Sébastien Bougleux and Laurent Cohen

Original f0 Wavelets TV Non local

26.06dB 24.94dB 26.8dB

25.33dB 24.12dB 26.40dB

32.21dB 30.31dB 32.88dB

Figure 3. Examples of compressive sensing reconstruction with
p = n/8.
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