
Geodesic Remeshing Using Front Propagation

Gabriel Peyré Laurent Cohen
CMAP CEREMADE, UMR CNRS 7534

Ecole Polytechnique Universite Paris Dauphine
91128 Palaiseau, France 75775 Paris, France

peyre@cmapx.polytechnique.fr cohen@ceremade.dauphine.fr

Figure 1. Different steps in mesh parameterization.

Abstract

In this paper, we present a method for remeshing trian-
gulated manifolds by using geodesic path calculations and
distance maps. Our work builds on the Fast Marching al-
gorithm, which has been extended to arbitrary meshes by
Sethian and Kimmel in [17]. First, a set of points that are
evenly spaced across the surface is automatically found. A
geodesic Delaunay triangulation of the set of points is then
created, using a Voronoi diagram construction based on
Fast Marching. At last, we use the distance information to
find a simple parameterization of the manifold. Marching
algorithm makes this method computationally inexpensive,
and gives very good results. Examples are shown for syn-
thetic and real surfaces.

1 Introduction

The applications of 3D manifold sampling are nowadays
almost everywhere. It ranges from finite element computa-
tions to computer graphics, including all kinds of questions
related to surface reconstruction techniques used in 3D im-
age segmentation, like deformable models. The most com-
mon representation of 3D objects is the triangle mesh, and
the need for the construction of a nice triangulation of a
given surface is obvious. Thus it is often needed to enhance
a given 3D structure (for example obtained from a 3D med-
ical image or artist modeling) using a so-called remeshing
algorithm.

The manifold parameterization problem is important as
it is the basis for building “good” mesh representations. For
example, obtaining a parameterization that minimizes cer-

tain distortion measures is the first step used in texture map-
ping or semi-regular remeshing. Also, once a semi-regular
representation of the mesh is built, it is easy to compute
wavelet transforms [19, 15] and perform data compression
[11].

1.1 Overview

In this paper, we introduce in section 3 an isotropic
remeshing algorithm that provides automatically a set of
points that are spaced on the surface either uniformly or
adaptively with a given density. Thiese points are de-
fined iteratively, adding each point according to geodesic
(weighted) distance map to the current set of points. A
fast algorithm is proposed that updates by Fast Marching
the distance map at each iteration. Basic facts about Fast
Marching and geodesic computations are recalled in sec-
tion 2. At last, in section 4, we propose a novel parameter-
ization method based on geodesic information.

In order to parameterize a manifold, we first calculate
a coarse mesh by defining a Voronoi diagram on the sur-
face. The parameterization is then interpolated inside each
geodesic triangle, by using appropriate distance data. Fig-
ure 1 shows the different steps involved in the parameteri-
zation process:
– Original mesh.
– Automatic determination of basis points.
– Determination of associated Delaunay triangulation.
– Calculation of the corresponding geodesic triangles.
– Distance data calculation.
– Parameterization interpolation.
– Semi-regular remeshing.

1.2 Related work

Geodesic calculations on manifolds is a large topic, and
numerous algorithms have been proposed. Some of the
most interesting exact methods are:
– Chen and Han’s shortest path algorithm [3] is of

quadratic order, and difficult to implement.
– Polthier and Schmies’s straightest geodesic algorithm

[12] allows solving the problem with initial conditions
(a starting point, and direction). This problem is well de-
fined (uniqueness), but cannot be used for remeshing and
building surface parameterizations.

– Sethian and Kimmel’s Fast Marching algorithm [17] al-
lows solving the problem with boundary conditions (start
and end points), which has not necessarily a unique so-
lution. The algorithm is fast, of order

���������
	������
in the

number of vertices on the manifold.
Some applications of geodesic computations on manifolds
have been proposed, such as [13], which applies the Fast
Marching algorithm to obtain Voronoi diagram and offset
curves on a manifold. This idea is used in our algorithm to
calculate Delaunay triangulations.

Remeshing methods roughly fall into two categories:
– Isotropic remeshing: a surface density of points is de-

fined, and the algorithm tries to position the new vertices
to match this density. For example the algorithm of Ter-
zopoulos and Vasilescu [20] uses dynamic models to per-
form the remeshing.

– Anisotropic remeshing: the algorithm takes into account
the principal directions of the surface to align locally the
newly created triangles and/or rectangles. The algorithm
proposed in [1] used lines of curvature to build a quad-
dominant mesh. Finite element methods make heavy use
of such remeshing algorithms [14].

Our method relies on an isotropic distribution of points so
that it can be cast into an Eikonal problem.

The last point presented in this paper is mesh parame-
terization. Some of the most effective methods available
are:
– Energy based approach: first introduced by Floater [10],

these methods consist in solving a linear system in order
to minimize a certain energy measure. Geodesic paths
are often chosen as boundaries to partition the the mesh.

– Geodesic surface flattening: in [22] Zigelman et al use
geodesic information. They use multidimensional scal-
ing to flatten the manifold while attempting to maintain
the accuracy of distance information.

2 Geodesic Calculations

2.1 Fast Marching on an orthogonal grid

The classical Fast Marching algorithm is presented for
example in [16, 4] for finding 2D paths or in [8, 6] for 3D
extension and improvements. A similar algorithm was also

proposed in [21]. Fast Marching enables solving the non-
linear Eikonal equation:����� ���� ����� ������

(1)

where
�

is the weighted distance function to a given set of
points in the plane, and � ���! "��#%$

is the speed of front
propagation. In this section, we consider the orthogonal tri-
angulation as represented on the left of figure 2. The Fast

xx1

x2

x
x1

x2

Figure 2. Orthogonal and arbitrary triangula-
tions.

Marching algorithm makes use of an upwind finite differ-
ences scheme to compute the value & at a given point

�('�) *
of the grid:+�,"- � &/. � ���0'�1(2�) *!3� &/. � ����'5462�) *7�� $ 98: +�,"- � &/. � ��� '�) *31(2 3� &/. � ��� '�) *�462 �� $ 8�<; 8 � ��� '�) * 8>=
This is a second order equation that is solved as detailed in
[5]. An optimal ordering of the grid points is chosen so that
the whole computation only takes

���@?A�5�>	��@?<9
, where

?
is the number of points.

2.2 Study over a more general triangulation

Following [17], to generalize the above construction to
an arbitrary triangulation, we consider the neighborhood
of a point

�
represented by right side of figure 2. More

specifically, we try to calculate a value for
� ����

in the
triangle B ���0� 2 �C� 8!D , if possible. Since several triangles
around

�
may yield valid solutions, we consider only the

smallest one. The problem that we face in approximating
the gradient of

�
over the triangle B �6�C� 2 �C� 8ED is that there

is no “natural” coordinate system that we can use (unlike
the case of an orthogonal grid). In [17] such a system is
judiciously chosen, and trigonometric calculations are per-
formed.

In a more general manner, [18] proposes a gradient cal-
culation method in arbitrary dimension. It consists in con-
sidering the matrix F of size GIHJG whose lines are con-
stituted of the vectors .K.ML�0� 2 and .K.NL�O� 8 . We can then calculate
the directional derivatives of

�
in
�

according to the vec-
tors .K.ML�0��2 and .K.ML�O� 8 with the first order formula:

PIQ �SR � ���� . � ����2E� ���� . � ��� 8 UT �V� ����9W :YX �

where
W �SR �� T and

X � . R � ��� 2 � ��� 8 UT . Now, the derivative

in the direction of .�. L�O� � is by definition equal to B ��� � .�.KL�O� � D ,
hence the formula

����� F 1 2 P . By plugging this into the
Eikonal equation (1), and denoting

� Q � � F F�� 1(2 , we
get: ��W � � W � ���� 8 . � G W � � X � ���� : X � � X � � ���� 8 =
This is a second order equation, its discriminant being pos-
itive by the Cauchy-Schwartz formula. The upwind propa-
gation condition we impose, as is the case in the orthogonal
grid, is that . ��� ���� points towards the interior of the tri-
angle. We can show that if the angle in

�
is acute, then the

scheme is monotone.
Figure 3 shows the propagation of a front and the calcu-

lation of a geodesic path (see 2.3).

Figure 3. Front Propagation and geodesic
path (on the right).

If, on the other hand, the triangulation contains obtuse
angles, then the numerical scheme presented above is not
monotone anymore, which can lead to numerical instabil-
ities. To solve this problem, we follow Sethian who pro-
poses to “unfold” the triangles in a zone where we are sure
that the update step will work [17].

2.3 Geodesic Extraction

Once we have calculated the function
�

, which is the
geodesic distance to a vertex � , we need to determine the
geodesic path starting from a point ��� and reaching the
point � . To that effect, we look for the parametric curve	���
9

that verifies back propagation equation [4]:������ � . .�.5L���	�� $ � � � =
We solve this equation by a numerical method such as
Runge Kutta 4 [9]. To that end, we need to calculate the
value of

.�. L���
at any given point on the surface.

To obtain a continuous variation of
.@.5L���

over the surface,
we introduce a novel interpolation scheme that differs from
the one used in [17]. First, we calculate the value of the
gradient of

�
at every vertex � on the surface. Then, we

linearly interpolate the value of
.@.5L���

on each face. To esti-
mate the value of

.�.5L���
at a vertex � , we consider the 1-ring

represented in figure 4 (left), where the � ' ’s are the neigh-
bors of � . By replacing each angle � ' by �� ' in order to

have a sum of G�� , we flatten the neighborhood of � on a
plane (figure 4, on the right). We can thus approximate the

⇒

v

v1

v2

vn

ṽ1

ṽ2

ṽ

ṽ

n

α 1

α̃ 1

Figure 4. Flattening of a neighborhood.
gradient along each edge

� � � � '�462E :����� '�� � � � � ' . � � � � � ' .�� � =
The gradient at � ' satisfies the

�
equations:

B ��� ��� ' D ����� � '�� �
where

�!' Q ��� 1 � �!" � 1 � �! " . We solve this over-determined system
by least squares, which correspond to solving the G<H%G
system:R$# � ' � � ' � # � ' � � 'K2# � ' � � ' 2 # � 'K2 � 'K2 T R � ��� �� ��� 2 T � R$# � ' � ��� � '��# � ' 2 ��� � '�� T �
where

���!' � �%�7'K2E represent the coordinates of
�"'

in a local
frame of the flattening plane.

Figure 5 shows the geodesic path calculation for differ-
ent models. We can also start several fronts and make them

Figure 5. Geodesic paths.
evolve at the same time, as it is shown in figure 6. The dif-
ferent colored regions form a Voronoi diagram of the start-
ing points, and the intensity represents the geodesic dis-
tance to the closest point.

Figure 6. Front propagation (top), geodesic
distance map (bottom, left), and Voronoi dia-
gram (bottom, right).

3 Isotropic remeshing of a triangulation

Our approach iteratively adds new vertices based on the
geodesic distance on the surface. The result of the algo-
rithm gives a set of vertices uniformly distributed on the
surface according to the geodesic distance. Taking into ac-
count a local density of vertices will be done in sections 3.3
and 3.4.

This is an extension of an idea of the algorithm of [5] that
updated a front propagation from a set of points in order
to iteratively find pairs of points to link together. In our
context, there are two main differences. The first is that we
find points on a triangulated surface instead of an image.
The second is that we give a precise approximation of the
point where the maximal geodesic distance is reached.

3.1 Iterative choice of basis points

We now describe how to automatically build an evenly
spaced set of points on a triangulated surface. A first point� 2

is chosen at random on the mesh and its geodesic dis-
tance map

� 2
computed by fast marching. A more elabo-

rate choice consists in replacing this random point by the
point with maximum distance from it.

Then we assume we have already computed a set of
points ��� ��� ��2"� =�=E= � � ��� , together with

� � the geodesic
distance map to ��� . To add a new point

� � 4 2 , we simply
select a point on the manifold that is furthest away from� � . To compute the new distance map

� � 462 , we use the
fact that

� � 462 � +��
	 � � � � �������� , where we have noted

��������
the distance map to

� � 462 . So we simply need to
update

� � by starting a front from
� � 462 (using the Fast

Marching algorithm exposed in section 2) and to confine
it on the set

� ��� � � ���� ������ � � ���� � . This assures
that the whole remeshing process roughly takes less than���@? �5�>	0�@?< 8

operations (which would be the case if we
desire as many points as the original mesh has, i.e.

?
).

At each iteration, the new point
� � 462 needs not to be

a vertex of the original mesh. It can be positioned accu-
rately by interpolating the distance map. To be more pre-
cise, we add a new vertex � � � � 462 in one of the trian-
gles B�� 2"� � 8 � ��� D around the vertex of greatest distance � 2 .
We choose � 8 the point around � 2 of greatest geodesic dis-
tance, and similarly for ��� but on the neighbors of the edge� � 2"� � 8�� . It happens most often that the three vertices � ' are
reached by three different fronts (the other cases are triv-
ial). We denote

 2
,

 8 , and

 � the arrival times of the three
fronts at the three vertices. We calculate the point � � at
which the fronts

�
and G meet by linearly interpolating the

distance map along edge
� � 2 � � 8 � (here we assume a front

speed of 1):
��� Q � � � 2 : � � . � � 8

with: � Q � � � 2 . � 8 � :
 8 .
�2G � � 2 . � 8 �
We then choose for � the center of mass of the three inter-
section points � ' , as shown in figure 7. Note that � is also

v1

v2

v3

w2

w1

w3

t1 = 1

t2 = 0.9

t3 = 0.8

v

Figure 7. Determination of intersection
points of three propagating fronts.

added to the set of vertices of the original mesh.
We choose to stop the algorithm either when the last

added point
� � 4 2 satisfy

� � ��� � 462�!�#" , where
"

is a given
threshold, or when a given number of points have been dis-
tributed.

Figure 8 shows three stages of the process of inserting
points on a square. (in addition to the triangulation ob-
tained, which is explained in the next section). The inten-
sity reflects the geodesic distance to the nearest basis point
(white for value 0).

3.2 Calculation of the geodesic triangles

Once we have found the complete set � ��$, we must de-
termine which vertices to link together to obtain our basis

Figure 8. Insertion of points in a square (top),
and corresponding triangulation (bottom).

triangulation � which is built incrementally during the al-
gorithm. To that end, during the point distribution process
we keep track of saddle points, which are vertices � that
satisfy these two criterions:
– When the value of

� � � is set by the Fast Marching al-
gorithm, two fronts coming from different basis points

�('
and

� *
must meet for the first time at � (see [5]).

– Adding edge
� ��'��C� * � to the basis triangulation � must

keep the triangulation valid (e.g. the edge must have less
than two adjacent faces).

Note that when we update a distance map
� � 462 , a previ-

ously found saddle point � can disappear (if � is reached
by the front coming from

� � 4 2), and of course new saddle
points can be created.

The set of saddle points tells us which vertices should
be linked together to obtain a valid triangulation � . We
can also trace on the original mesh the geodesic path cor-
responding to the edges of � . If we have a saddle point �
where two fronts from

� '
and

� *
meet, we simply perform

the gradient descent described in section 2.3 from � in both
the direction of

� '
and the direction of

� *
.

Figure 9 shows progressive remeshing of the bunny.
At last, we can note that some holes might still be found

in the resulting triangulation, for instance if there are holes
in the original mesh. If we want to avoid such holes (e.g.
if we want to use the resulting mesh for parameterizing the
manifold), we must fill in the gaps. This can be performed
by first unfolding and projecting the hole on a plane, and
then computing a constrained Delaunay triangulation. This
method is illustrated in figure 10.

3.3 Adaptive remeshing

In the algorithm presented in sections 3.1 and 3.2, the
fronts propagate at a constant speed which results in uni-
formly spaced mesh. Our approach can be extended to
work with an arbitrary speed function ��� $

for the front
propagation, thus computing a geodesic distance weighted
by

� � �" � . Since vertices are added at maximal values
of the geodesic weighted distance, the resulting triangula-
tion will be dense in regions with smaller � , and in regions
with higher � the triangulation will be sparse. This is due
to the fact that the algorithm distributes points in such a
way that their weighted geodesic distances to neighbors are

Figure 9. Geodesic remeshing with
�E$>$

, � $
$,� $
$
and

���
$
$
points.

Figure 10. Original hole, flattened hole, and
constrained Delaunay triangulation.

almost equal. The geodesic distance to vertices in a region
with higher value of

�
is thus smaller. Function � can

reflect the need of the user to refine some specific regions
with more vertices.

Figure 11 shows a uniform distribution of points on the
head and the distribution of points with a split of the mesh
into two regions, one with high � and the other with low� . Similar results are shown for the bunny on the left and
middle images of figure 13.

When a mesh is obtained from range scanning, a picture
of the model can be mapped onto the 3D mesh. Using a
function � that is inversely proportional to the norm of the
gradient of the image, the user can refine regions with high
variations in intensity. Figure 12 shows such a 3D model.

3.4 Curvature-based remeshing

The local density of vertices can also reflect some geo-
metric proprerties of the surface. The most natural choice
is to adapt the mesh in order to be finer in regions where the
local curvature is larger. To that end we choose the speed� to be inversely proportional to +�,"- � � � 2 � � � � 8 � , where

� '
are the eigenvalues of the local curvature tensor. This ten-
sor is computed in a pre-processing step using least square
fitting of a quadric. The evaluation of the curvature ten-

Figure 11. Uniform (left) and user-defined
remeshing (right).

Figure 12. Original model, � function, adap-
tive distribution of points, and triangulation.
Thanks to authors of [22] for providing data.

sor is a vast topic we used a robust construction proposed
recently [7]. Figure 13 shows on the right a curvature-
based distribution of points on the bunny. Figure 14 shows

Figure 13. Uniform, user defined, and
curvature-based distribution of points.

remeshing of two models with sharp features. Clearly the
curvature-based method gives better reconstruction results.

4 Application to mesh parameterization

4.1 Problem statement

A parameterization � of a 3D triangulated manifold �
corresponds to a set of mappings � ' Q�� ' L�� , where the� '��	� 8 , and the � ' are homeomorphisms whose images
cover all of � . To simplify, we will consider a triangulated
manifold � � that contains very few triangles, but that has
the same topology as � . The maps � ' will then be piecewise
linear, and the � ' are the triangles of � � . Figure 15 shows

Figure 14. Original model (top), uniform
remeshing (middle) and curvature-based
remeshing (bottom).

such a parameterization. The functions �
1 2'

are affine on
every small triangle of � , and the image of each triangle � '
of � � by � ' delimits a region of � .

f

f1

A

B

C

A′

B′

C ′

Figure 15. Piecewise linear parameterization

As basis domain for the mapping � we choose the basis
mesh constructed with our algorithm in section 3. So the
borders of each region � ' � � ' are geodesic paths, and these
paths need to be added to the original mesh. Figure 16
shows how to perform this inclusion.

Since inside each small triangle of a region � ' � � ' the
function �

1(2'
is affine, for every vertex

�
of � , we only

need to know the barycentric coordinates of �
1(2' ����

in the
triangle � ' . The remaining question is how to calculate
those barycentric coordinates judiciously.

4.2 Parameterization interpolation

last, we need to calculate the barycentric coordinates� P 2 � P 8 � P � of �
1(2 � � inside a given triangle B � 2 �C� 8 �C� � D ,

for each vertex � . Note, the points � 2 � � ��� 2 , � 8 �

Figure 16. Triangulation before inclusion of
the path (left) and after (right).

� ��� 8 , and � � � � ��� � are the basis points determined in
paragraph 3.1. To that end, we will use the geodesic dis-
tances

��
�2 �
 8 �
 � between � and each of the � ' . We will in
fact place the point �

1 2 � � inside the triangle B �(2 �C� 8 �C� � D
whith conservation of the calculated geodesic distances.

Therefore, knowing the distances
�
 2"�%
 8 �%
 � of a point�

to the three vertices
��� 2"�C� 8 � � � of the triangle, we need

to calculate the barycentric coordinates
� P 2 � P 8 � P � of

�
in a manner analogous to the case of a planar triangle. We
denote

��� 2 ��� 8 ��� � the lengths of the geodesic edge opposite
to each point (for example,

� 2
is given by the arrival time in� � of the front departing from � 8). Now, in a plane, Heron’s

formula says that the area � � of the triangle B �6�O� 2 �C� 8!D is:

� � ��� � � � . � � 3� � .
 2 3� � .
 8 ��
with

� Q � ��
 2 :
 8 : � � G . Figure 17 shows the triangle
considered. Similarly, we can calculate � 2 and � 8 , which

t1

t2

t3

l1

l2

l3

x1

x2

x3
A3

Figure 17. Determination of the barycentric
coordinates of a point �

gives us the following barycentric coordinates:P 2 � � 2
� 2 : � 8 : � � P 8 � � 8

� 2 : � 8 : � �P � � � �
� 2 : � 8 : � �

Those formulas give us a parameterization of the point
�

,
as long as there is no other point that has the same values
for

��
 2 ��
 8 �%
 � . This condition is met in practice as long
as � � is topologically equivalent to � , and that the basis
meshing is fine enough.

To compute the three distances
�
 2"�%
 8 �%
 � for each ver-

tex, we simply start a front and confine it to the geodesic
neighborhood of each basis vertex, as depicted on the left
of figure 18. Doing this, we are sure that each point will be
reached by three fronts and only three. On the right of fig-
ure 18, we can see the geodesic parameterization obtained.
We simply assign a random color to each vertex, and inter-
polate the color using the parameterization.

Figure 18. Examples of parameterizations.

4.3 Application to multiresolution constructions

We can sample each basis triangle according to a reg-
ular subdivision scheme such as those depicted in figure
19. The resulting triangulation is a so-called semi-regular
mesh.

Figure 19. Triangle-based and quad-based
subdivision schemes.

These kinds of triangulations are of primary importance,
both because the connectivity is known in advance (which
is a great advantage for compression), and because the sub-
division process gives a natural multiresolution represen-
tation of the mesh. Wavelet transforms can then be built
using the lifting scheme [19]. Wavelet coefficients can be
encoded using a zerotree coder [11], which gives good dis-
tortion results.

Figure 20 show the process of subdivision. The parame-
terization of the mesh is shown in figure 18 (bottom right).

5 Final remarks and future work

The running times of our algorithm are very reasonable,
and it takes about 10 seconds to distribute 500 points on
a model of about 5000 vertices. The distribution of more
points is almost immediate, thanks to the incremental struc-
ture of our method. The coarse mesh construction and the

Figure 20. Four steps of regular subdivision.

parameterization steps take about the same time. So our
current implementation allows us to process a whole model
in less than one minute.

The isotropic remeshing algorithm proposed here gives
very good results, similar to those given in [20] for a 2D
mesh. The advantage of our method is that it is conceptu-
ally simple and very fast. The main component is the Fast
Marching algorithm, which is pretty well understood.

The mesh parameterization scheme proposed in this pa-
per gives a smooth map in regions of the manifold that
are smooth. Tests and distortion measures remain to be
made to compare this method with classical ones, such as
Floater’s scheme [10].

Our future directions of research include taking into ac-
count special features (such as sharp edges) during the
remeshing and the parameterization. One could define a
linear density of vertices on these 1D features. An interest-
ing question is finding theoretical bounds for the parame-
terization distortion in case of smooth surfaces.

6 Conclusion

We have described an iterative algorithm for distribut-
ing a set of points on a surface according to a local density
function. This algorithm is fast and efficient, and provides
a simple way to automatically find a geodesic Delaunay
triangulation of the original surface. We have applyed this
construction to build a coarse basis domain for a param-
eterization of the triangulated manifold. This method pro-
vides a smooth mapping from the basis mesh to the original
triangulation, allowing multiresolution constructions and
wavelet compression.

References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and
M. Desbrun. Anisotropic polygonal remeshing. ACM Trans-
actions on Graphics, 2003.

[2] M. Bertalmio, G. Sapiro, L-T. Cheng, and S. Osher. Varia-
tional problems and PDE’s on implicit surfaces. Proc. IEEE
VLSM 2001, pages 186–193, 2001.

[3] J. Chen and Y. Hahn. Shortest path on a polyhedron. Proc.
6th ACM Sympos. Comput Geom, pages 360–369, 1990.

[4] Laurent D. Cohen and R. Kimmel. Global minimum for
active contour models: A minimal path approach. Interna-
tional Journal of Computer Vision, 24(1):57–78, Aug. 1997.

[5] L.D. Cohen. Multiple contour finding and perceptual group-
ing using minimal paths. Journal of Mathematical Imaging
and Vision, 14(3), 2001. Presented at VLSM01.

[6] L.D. Cohen and T. Deschamps. Grouping connected com-
ponents using minimal path techniques. Application to re-
construction of vessels in 2D and 3D images. In Proc. of
IEEE CVPR’01, Hawai, 2001.

[7] D. Cohen-Steiner and J-M. Morvan. Restricted Delaunay
triangulations and normal cycles. Proc. 19th ACM Sympos.
Comput. Geom., pages 237–246, 2003.

[8] T. Deschamps and L.D. Cohen. Fast extraction of minimal
paths in 3D images and applications to virtual endoscopy.
Medical Image Analysis, 5(4), December 2001.

[9] W.H. Press et Al. Numerical Recipes in C : the art of com-
puter programming. Cambridge University Press, 1988.

[10] M. S. Floater, K. Hormann, and M. Reimers. Parameteri-
zation of manifold triangulations. Approximation Theory X:
Abstract and Classical Analysis, pages 197–209, 2002.

[11] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Nor-
mal meshes. In K. Akeley, editor, Siggraph 2000, Computer
Graphics Proc., Ann. Conf. Series, pages 95–102, 2000.

[12] K. and M. Schmies. Straightest geodesics on polyhedral sur-
faces. In H.-C. Hege and K. Polthier, editors, Mathematical
Visualization, pages 135–150. Springer Verlag, 1998.

[13] R. Kimmel and J. A. Sethian. Fast Voronoi diagrams on tri-
angulated surfaces. In Proc. of the 16th European Workshop
on Comp. Geom. (EUROCG-00), pages 1–4, 2000.

[14] G. Kunert. Towards anisotropic mesh construction and error
estimation in the finite element method. Numerical Methods
in PDE, 18:625–648, 2002.

[15] P. Schröder and W. Sweldens. Spherical wavelets: effi-
ciently representing functions on the sphere. Computer
Graphics, 29(Ann. Conf. Series):161–172, 1995.

[16] J.A. Sethian. Level Sets Methods and Fast Marching Meth-
ods. Cambridge University Press, 2nd edition, 1999.

[17] J.A. Sethian and R. Kimmel. Computing geodesic paths on
manifolds. Proc. Natl. Acad. Sci., 95(15):8431–8435, 1998.

[18] J.A. Sethian and A. Vladimirsky. Fast methods for the
Eikonal and related Hamilton-Jacobi equations on unstruc-
tured meshes. Proc. Natl. Acad. Sci. USA, 97(11):5699–
5703, 2000.

[19] W. Sweldens. The Lifting Scheme: A construction of sec-
ond generation wavelets. SIAM Journal on Mathematical
Analysis, 29(2):511–546, 1998.

[20] D. Terzopoulos and M. Vasilescu. Adaptive meshes and
shells: Irregular triangulation, discontinuities, and hierar-
chical subdivision. In Proc. IEEE CVPR ’92, pages 829–
832, Champaign, Illinois, 1992.

[21] J. Tsitsiklis. Efficient algorithms for globally optimal tra-
jectories. IEEE Trans. on Automatic Control, 1995.

[22] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping
using surface flattening via multi-dimensional scaling. IEEE
Trans. on Visualization and Computer Graphics, 8(1):198–
207, 2002.

