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Diffusion (Fokker-Planck) equations

If p > 0 is a solution of the Fokker-Planck equation
Op
ot

with initial datum py € L*(R?) (of mass 1), if 4 = e~V is the density

of a probability measure such that the Poincaré inequality

/Rd |u—a|2dﬂgep/Rd \Vaul?dp Vu € HY (R, du)

then u = p/u solves the Ornstein-Uhlenbeck equation
Ou =Au—Vu-VV
ot

and ||u(t7')”L1(Rd,dp) = ||p(t, ')||L1(Rd,dm) = HpOHLl(Rd,dx) =u,

=Ap+V-(pVV) in R?

_ 2 _
Tt ) =ulEe a gay = = 21 Vult e i gy < e lut, ) =tll2@a az)

and / lu(t, ) —ul* du < / lup — @l? dpe 21" Wi >0
R Re
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Confinement: Poincaré inequality
Diffusions, rates,and inequalities
R Sl iaatisun iy No confinement: Nash inequality
. . I Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates
With sub-exponential local equilibria

The decay rate of the heat equation

If p is a solution of the heat equation

Op

e =Ap in R?

with initial datum py € L*(R?), then

lp(t ML @a,dz) = llpollr v az)

d 2+4
Ellp(t, ')”%}’(]Rd,dm) =—2|IVp(t, ')HIZJZ(]Rd,dz) < —Clp(t, )HLz f@d Jdz)

by Nash’s inequality

2+4 4 2
[ull,” < Crvasn [l [IVull3

and so
llo(t, )2 @e aey < CllpollLe(rd,dzy (1 + t) =42
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Diffusions, rates and inequalities

Confinement: Poincaré inequality
No confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg

With sub-exponential local equilibria

Diffusion (Fokker-Planck) equations

. Vi)=rloghl | V@=kl | Vig)=p

p ] = °
ofenfia =0 . ac(0,1) a>1

: Caffarelli-Kohn Weak Poincaré .

Inequality Nash Nigenber or Poincaré
8 Weighted Poincaré

Asymptotic g0/2 t=(d=)/2 i or t‘wik—a) g
behavior decay decay convergence convergence

Table 1: Qu=Au+V-(uVV)
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Confinement: Poincaré inequality
No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Diffusions, rates and inequalities
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Very weak confinement: Caffarelli-Kohn-Nirenberg

% =Au+ Vg (VoVu) =V, (e7V V(e u))

Here x € R?, d > 3, and V is a potential such that e~V ¢ L!(R%)
corresponding to a very weak confinement

Two examples
Vi(xz) =~ loglz| and Va(z) =~ log(z)
with v < d and (z) := /1 + |z|2 for any x € R?

In collaboration with Emeric Bouin and Christian Schmeiser
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Confinement: Poincaré inequality
No confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg

With sub-exponential local equilibria
_ — o _ o
bt | v—g  |V@=rbgll [ V-l [Vie)=l
v<d a€(0,1) a>1
k Poincaré
. Caffarelli-Kohn Weak Poincaé o
Inequality Nash Nirenber or Poincaré
& Weighted Poincaré
Asymptotic L {{d=)/2 +H o t‘2(1k—a> e M
behavior decay decay convergence convergence

Table 2: dyu=Au+V - (uVV)

Actually, this is more complicated, because the rate depends on the
Junctional space (and of the range of the parameters)...
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Confinement: Poincaré inequality
No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Diffusions, rates and inequalities

A first decay result (1/3)

Theorem

Assume thatd >3, v < (d—2)/2 and V =V} or V =V,
F any solution u with initial datum ug € L} NL2(R?),

4/d
1 luolly

lluol3 : . 2
2 with c¢:= g min {1, L= ﬁ} CNash 1/d
||u0||1 )

(1+ct)?

2
lu(t, )z <

Here Cnasn denotes the optimal constant in Nash’s inequality

2+4 4
lull, ™™ < Cxasn [[ull{ [Vull; Yu € Ltn H'(RY)
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Confinement: Poincaré inequality

No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Extended range of exponents, with moments (2/3)

Diffusions, rates and inequalities

Theorem

Letd>1,0<v<d, V=V, or V=V, and uy GLi_ﬂLZ(eV)
with H|az|kuo||1 < oo for some k > max{2,v/2}

2 2 — =3
Vi > 0’ ||U(t, ')”Lz(evdm) < ||u0||L2(ede) (]‘ + Ct) 2

for some ¢ depending on d, v, k, |[uolli2(ev 4r) lwolly, and [l /Fuo |,
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Confinement: Poincaré inequality
No confinement: Nash inequality
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Diffusions, rates and inequalities

Extended range of exponents, self-similar variables (3/3)

Cx |z|?
Uit ) = ——————= [z exp ( )
(1+26)F" 2(1+21)
Here the initial data need to have a sufficient decay...
¢, is chosen such that ||us]|1 = ||uoll1

Theorem
Letd > 1, v € (0,d), V =V, assume that

Ve eRY, 0 <up(x) < Kue(0,)
for some constant K > 1

(1+2t)~¢

1 3 (1-3)
)

1—1
V20, Jlult,) =t < Keluollf (ot

for any p € [1,400), where  := % (1 = —) I 5= m1n{2, = ,y}
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Diffusions, rates and inequalities

Proofs: basic case (1/3)

ré inequality
h inequality

d
dt
with either V=V or V = V5 and

AVi() =4 and AV () =

— u2dx:—2/ |Vu|2dx+/ AV |u|* dx
Rd R4 Rd

d—2 2y

|[?

For v < 0: apply Nash’s inequality

d 9 9 2
— ull; < =2](|Vull; < —
&l < =2 Val} < - e

For 0 < v < (d — 2)/2: Hardy-Nash inequalities

Letd >3, 6 < (d—2)%/4 andeg—GNash/(

—4/d
luolly /4|

T TP (1+ |z[2)°

@)

PLEL 2 u 4
Jull”* < Cs IIVuIIQ—é/ T dz ) [lullf
Re |7

Vu € L' n HY(RY)
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Confinement: Poincaré inequality

No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates

Proofs: moments (2/3)

Growth of the moment
Mi(t) := / |z|Fu da
Rd
From the equation
M, zk(d+k—2—’y)/ wlz|F? de < k(d+k—2—fy)M0%M,:7%
R4

then use the Cuffarelli-Kohn-Nirenberg inequality

a 2(1—a)
/xnu?dxge(/ e~ |V(x|'vu)2dx> </ 1:|k|u|dx>
Rd Rd Rd
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Confinement: Poincaré inequality

Diffusions, rates and inequalities . ! : .
g a No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg

With sub-exponential local equilibria

Proofs: self-similar solutions (3/3)

The proof relies on uniform decay estimates + Poincaré inequality

in self-similar variables

Proposition

Let v € (0,d) and assume that
2\ —7/2 |z d
0 <u(0,2) <ci (o4 |z]?) exp | ——- Ve eR

witho =014V =V, ando =1 if V="V5. Then

Cx 2\ —7/2 |z[?
0 <wu(t <
<u(t,z) < a 2t)d;w (o +|z|*) exp( 20+20

for any x € R? and t > 0
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With sub-exponential equilibria

> We consider the homogeneous Fokker-Planck equation
g =V (FV.(F'g))
associated with sub-exponential equilibria
F()=Che ™" ae(0,1)

or the corresponding Ornstein-Uhlenbeck equation for h = g/F
— decay rates based on the weak Poincaré inequality (Kavian,

Mischler)
— decay rates based on a weighted Poincaré / Hardy-Poincaré

inequality

In collaboration with Emeric Bouin, Laurent Lafleche and Christian
Schmeiser
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_ — [0} — 0]
b | vy Y@=kl | V@R Vi =K
y<d a€(0,1) a>1
. Caffarelli-Kohn Weak Poincart L
Inequality Nash Nietber or Poincaré
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Table 3: Qyu=Au+V - (uVV)
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Kinet

Weak Poincaré inequality

2
1+7
Loo (R4)

p-

/Rd hf%fdg < Cor </Rd |Vh|2d§)

for some explicit positive constant C,,, hi= fRd hd¢. Using

2

A ) —h‘ ¢ = —2/ IV, A2 de
dt Jra Rd

where h = g/F and d§ = F dv + Holder’s inequality

~12 ~12 141»7'
Jza h—h‘ d¢ < (fRd h—h( (v) Bdg) (fRd - HLOO(W) <U>ﬂfd§>
| | "
with (7 +1)/7 = B/, then for with M = sup,¢ (g ) ‘h(s HLOO(Rd)

1
~|2 T 2771
h(0,-) — h‘ df) + T t)

L2 Hypocoercivity & inequalities

worifcs (]

J. Dolbeault

/Rd



Confinement: Poincaré inequality
No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
‘With sub-exponential local equilibria

Diffusions, rates and inequalities
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Weighted Poincaré inequality

There exists a constant € > 0 such that

~12
/ IVh] Fdv > € h—h) (0)~? Fdv
Rd Rd

with =2 (1 —a), h:= Jga hFdv and F(v) = Coe ()" and
ae€(0,1)

Written in terms of g = h F', the inequality becomes
_ 2 _ —9(l—a
[Ivr o) Papze [ 1958 @00
R4 Rd
where dy = Fdv and g := ([pa gdv) F
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Confinement: Poincaré inequality

No confinement: Nash inequality

Very weak confinement: Caffarelli-Kohn-Nirenberg
‘With sub-exponential local equilibria

Diffusions, rates and inequalities

i/ |h(t,v)]? (v)F Fdv+ 2/ |V, h|? () Fdv
dt Rd ]Rd

=— | V,(h?) - (V,(0)*) Fdv
]Rd

With =2 —a,a € R, b€ (0,+00)

Vo (FV,(0)F) = W (d+ (k+d—2)[v]* —a @) v*) <a—b(v)™*

Proposition (Weighted L? norm)

There exists a constant Ky, > 0 such that, if h solves the
Ornstein- Uhlenbeck equation, then

Vi>0 At )lliz(wyrag < K Hhin”Lz(mk de)
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h— E‘Q ()P d¢

~12
h(t,-)—h’ d§:—2/ |Vvh\2d§§—2€/
R4 R4

il
dt Jga

+ Holder

Theorem

Assume that o € (0,1). Let g™ € LY (du) NL2((v)*du) for some k >0
and consider the solution g to the homogeneous Fokker-Planck
equation with initial datum ¢g™. If g = (f]Rd gdv) F, then

—B/k —k/B
=2 in _ —|2 28¢€
/Rdlg(tw)—gl duﬁ((/Rdlg .l du) +Wt>

with B =2(1 = a) and K = %2 {972 1oyr 4 + Ok (o 9 dv)”
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Diffusions, rates, and inequalities An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
Kinetic equations: decay and convergence rates The compact case

L2 Hypocoercivity

> Abstract statement
> Diffusion limit
> The extension to the non-compact case

Collaboration with C. Mouhot and C. Schmeiser
+ E. Bouin, S. Mischler

J. Dolbeault L2 Hypocoercivity & inequalities



5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

a An abstract evolution equation

Let us consider the equation

dF
— 4+ TF =LF
dt +

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (I, (-, -))

A= (1+ (TI)*TI) ™ (TID)*
* denotes the adjoint with respect to (-, )

IT is the orthogonal projection onto the null space of L

J. Dolbeault L2 Hypocoercivity & inequalities



5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

The assumptions

Am, Au, and C)y are positive constants such that, for any F' € H

> microscopic coercivity:
—(LF,F) > A [|(1 = IDF|?
D> macroscopic coercivity:
ITILF|? = Ap |[ILF |2
> parabolic macroscopic dynamics:
OTIIF =0

> bounded auziliary operators:

[AT(1 = I F[| + |ALF|| < Cp [|(1 =T F|
The estimate

1d

2 dt
is not enough to conclude that || F'(t, )

[F|]> = (LF, F) < = A [|(1 = ID F?
I

J. Dolbeault L2 Hypocoercivity & inequalities
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5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

Equivalence and entropy decay

For some 6 > 0 to be determined later, the L? entropy / Lyapunov
functional is defined by

H[F] := % ||[F|* + 6 Re(AF, F)
so that (ATIIF, F) ~ ||TLF||? and

~yp = Dl

dt
= — (LF,F) + 6 (ATIIF, F)
— §Re(TAF, F) 4+ § Re(AT(1 — II)F, F) — § Re(ALF, F)

> entropy decay rate: for any ¢ > 0 small enough and A = A(9)
AH[F] < D[F]
> norm equivalence of H[F] and || F||?
2— 24

g 2 4 2
—  ||F < FI< —||F

J. Dolbeault L2 Hypocoercivity & inequalities



5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

Exponential decay of the entropy

_ A ; A Am 1 Am Am
A= S L) min {1, Ams (ESYRYers }, 0 = 5 min {1., Ams (ESYRYers }

2 2496 0 A 2446
= —4 — _— R —
hi(8,N) == (6 Cas) ()\m 6= A) ( e A)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)—(H4), for any t >0

H[F(t,)] < H[Fo]e ™!

where A\, is characterized by

Ae=sup{A>0:36>0st hi(5,\)=0, Ay — 6 — 1 (2+6) A >0}

J. Dolbeault L2 Hypocoercivity & inequalities



5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

Sketch of the proof

@ Since ATII = (1 + (TH)*TH)_1 (TID)*TI, from (H1) and (H2)
0 Ay

—(LF, F) 4+ 6 (ATIIF, F) > \,, |(1 = D) F||? +
14+ Ay

[eai

@ By (H4), we know that
[Re(AT(1 —II)F, F) + Re(ALF, F)| < Cp ||ILF || ||(1 = I) F||
@ The equation G = AF is equivalent to (TII)*F = G + (TI)* TII G
(TAF, F) = (G, (TI)" F) = |G||* + IITHGII2 IAE|* + | TAF]?

(G, (TID* F) < [TAF|[|(1 = I)F|| < ﬂ ITAFI? + 5 Ll —mF|?

1
IAF] < S I =TF|, TAF| < [[(1 = IF||, |(TAF, F)| < [|(1 - I F|
@ With X := ||(1 - I)F|| and YV := ||HF||

DIF]=AH[F] > (A, —9) X2+1‘”M 50MXY—%5A<X2+Y2>

+ A\

J. Dolbeault L2 Hypocoercivity & inequalities



5 An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

Hypocoercivity

Corollary

For any § € (0,2), if A(9) is the largest positive root of hy(d,\) =0 for
which Ay, — 6 — % (24 6) A > 0, then for any solution F of the
evolution equation

24+0 _
IFOI* < 5—e XOFQO) vEz0

From the norm equivalence of H[F] and || F||?

2 mp < HiF) <

2496

a1y A
2 E

We use 232 || Fp||? < H[Fp] so that A, > SUPse(0,2) AM(9)

J. Dolbeault L2 Hypocoercivity & inequalities



D) An abstract hypocoercivity result
L“ Hypocoercivity DlHusmn limit
The compact cas

o Formal macroscopic (diffusion) limit

Scaled evolution equation

dF
— TF_fLF
Edt—i—

on the Hilbert space H. F. = Fy+e F1 + &2 Fa + O(e®) as e — 04
el LFy =0,
EO : TF() = LFl,
el P L TR = LE

The first equation reads as u = Fy = I1F}
The second equation is simply solved by Fy = — (TII) Fj
After projection, the third equation is
4 (IFy) — IIT (TH) Fy =TILF, =0

Opu + (TIH* (T u =0

is such that 4 ||ul|> = — 2 ||(TID) ul|* < —2 A [Jul|?

J. Dolbeault L2 Hypocoercivity & inequalities




) An abstract hypocoercivity result
L2 Hypocoercivity Diffusion limit
The compact case

The compact case

(H1) Regularity & Normalization: V € VVE):O R?) )s Jgae Vdr =1

(H2) Spectral gap / Poincaré inequality: for some A >0,
Vu € H'(e7Vdz) such that [p,ue Vdr =0
Jga lul?e™Vde <A [pu|Vaul? e Vd
(H3) Pointwise conditions:
there exists ¢g > 0, ¢; > 0 and 0 € (0,1) s.t.
AV <8IV, V(@)2+eco, |VEV(2) <1 (14]|V,V(2)]) Vo e RY
(H4) Growth condition: [,, |V,V|*e™Vdx < oo

Theorem (D., Mouhot, Schmeiser)

Let L be either a Fokker-Planck operator or a linear relaxation
operator with a local equilibrium F(v) = (2m)~%2 exp(—|v|?/2). If f
solves

Of+v-Vuf =V, V-V, f=Lf
then

VE>0, [If(t)-FI><@+n)llfo-F

J. Dolbeault L2 Hypocoercivity & inequalities
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The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalities
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Decay and convergence rates for
kinetic equations

What can we do when at least one of the coercivity conditions is
missing ¢ microscopic coercivity (H1) or macroscopic coercivity (H2)

In collaboration with Emeric Bouin, Stéphane Mischler, Clément
Mouhot, Christian Schmeiser + Laurent Lafleche

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture

Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalities
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Some non-compact cases

@ The global picture
> by what can we replace the Poincaré inequalities 7

@ Nash’s inequality and a decay rate when V' =0

@ Very weak confinement: Caffarelli-Kohn-Nirenberg inequalities
and moments

@ With sub-exponential equilibria: weighted Poincaré /
Hardy-Poincaré

J. Dolbeault L2 Hypocoercivity & inequalities
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‘ el ua 1t es Without confinement: Nash inequality
L2 Hypocoercivity = A :
Kinetic equations: decay and convergence rates VWAl ey el coniBlncmcit
: ¥ Without confinement and with sub-exponential local equili

Some references

@ Some entries in the literature which will not be considered in this

lecture

> Weak Poincaré inequality: (Rockner & Wang, 2001), (Kavian,
Mischler), (Cao, PhD thesis), (Hu, Wang, 2019) + (Ben-Artzi, Einav)
for recent spectral considerations

> Weighted Nash inequalities: (Bakry, Bolley, Gentil, Maheux, 2012),
(Wang, 2000, 2002, 2010)

> Related topic:
fractional diffusion (Cattiaux, Puel, Fournier, Tardif,...)

@ Our strategy: rely on the estimates of the diffusion limits

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture
Without confinement: Nash inequality
. . . With very weak confinement
Kinetic equations: decay and convergence rates . 2 . .
Without confinement and with sub-exponential local equili

a The global picture

@ Depending on the local equilibria and on the external potential
(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:

> microscopic coercivity (H1)

—(LE,F) > A |1 — I F|?
— weak Poincaré inequalities or
Hardy-Poincaré inequalities
> macroscopic coercivity (H2)
ITILF | > Aar |[ILF 2
—> Nash inequality, weighted Nash or
Caffarelli- Kohn- Nirenberg inequalities

@ This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalitic
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Kinetic Fokker-Planck equations

B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

. V(z) = |z]*
Potential V=0 V(‘E> =7 log|z| Vi(z) = |=| a>1,orT¢
v<d a € (0,1) Macro Poincaré
DMS,
. o . "
Micro Poincaré BDE\;[%IS' BDS: ¢—(@—7)/2 Cao: e™", Mischler
F(v) = e—)” 8>1 t deca b<1,8=2 Mouhot
= decay Y convergence e M
convergence

BDLS: t°¢,
F(v) = e, <=
B e (0,1) min{g,%
decay
BDLS,
F(v) = (v) 47 fractional

in progress

Table 1: O f +v-V,f = FV,(F~'V,f). Notation: (v) = /1 +]v[2
J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rate nd inequalities e mlelpll pisinm
o 2 Hybocoercivity Without confinement: Nash inequality
N ) g 12Xe With very weak confinement
Kinetic equations: decay and convergence rates 7

Without confinement and with sub-exponential local equili

a A result based on Nash’s inequality

0 +v-Vof =Lf, (tz,v) ERT xR! xR

DI/} =~ H[) 2 a (1 — M1 +2(ATNY, 1))

We observe that

A f=TNA+ (TN)*TM) ' f
=T+ (MM T ' Nf =M Tuy=vM - V,uy
if uy is the solution in HY(RY) of uy — © Auy = py, and
[ (£, ’)HLl(dm) = pr(t,')HLl(dz) = ||f0||L1(dxdv)
2 2 2 1
HufHLz(dm) < HPf”Lz(dz) ) Hvxuf”Lz(dz) < =) (ATOS, f)

2 2 2
||Pf||L2(dg;) = |INf[" < Hume(dw) +2(ATNf, f)

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalities
L“ Hypocoercivity
Kinetic equations: decay and convergence rates

Nash’s inequality

4 2d
/1?24y < CNash lllyy gy IVull2 ey Yu€ L' nHY(RY)

Use |Nf]2 < @1 (2 (ATNf, ) with & (y) := y + (£) 7 to get

11 =M £ + 2 (ATOF, £) > S(IFI1*) > @ (555 HIf])

d

D/(t,-)] = = HIf(t: )] = a® (L5 HIf(,)])

As s — 04, B(s) ~ 272 + Gronwall: H[f(t,-)] ~ ¢ %2 as t — +o0
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The global picture
Without confinement: Nash inequality
q 3 5 N . With very weak confinement
Kinetic equations: decay and convergence rates 7

Without confinement and with sub-exponential local equili
Algebraic decay rates in R?

V = 0: On the whole Euclidean space, we can define the entropy
HIfL = 5 £ 12 (s ay) + O (AS, Fasay

Replacing the macroscopic coercivity condition by Nash’s inequality

4
iy < Coxvosn Nl FE ) V5

proves that H[] < C (H{fol + | foll2s gy a0)) (14 1) #

There exists a constant C > 0 such that, for any t > 0

2 2 2 _4d
IF @ )2 @zarn <€ (”fOHL?(dwd'y) + HfOHL?(dy;Ll(dx))) (I+1)72

@ Factorization / enlargement of the space (Gualdani, Mischler,
Mouhot) allows to consider weights with polynomial growth

@ Zero moments of order larger than 1 and mode-by-mode analysis
(Fourrier): faster decay rates (BDMMS)
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The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalitic
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

Kinetic Fokker-Planck equation, very weak confinement

Let us consider the kinetic equation
Oif +v-Vof =V, V-V, f=Lf

where Lf is one of the two following collision operators

(a) a Fokker-Planck operator
Lf =V, - (FVU (F~'f) )

(b) a scattering collision operator

Lf = [ o(0) (f() F() = f() F(v)) '

Rd

V(@) ~7logla|, 7€ (0,d)]

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalitic a}“" global picture

) e hout confinement: Nash inequality
Hypocoercivity . .
. . . N With very weak confinement
Kinetic equations: decay and convergence rates N

Without confinement and with sub-exponential local equili

o V(z) = |z|™
Potential V=0 V(z) =~ log || V(z) = || a>1,or T4
v<d @€ (0.1) Macro Poincaré

DMS,
: . o—tt f .

Micro Poincaré BDBEV,}S' BDS: ¢—(d—)/2 Cao: e 5 Mischler

Fo)=e ™" g>1 ¢ decay b<l,B=2 Mouhot

- decay convergence e M
convergence
BDLS: ¢t ¢,
8
F(v) = e (@) s

¢ =
B€(0,1) min {g, £}
decay

) BDLS,
F(v) = (v)~** fractional

in progress

Table 2: Oy f +v - Vof = FV,(F~'V,f). Notation: (v) = /1+ [v]?
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The global picture

Without confinement: Nash inequality
. . . N With very weak confinement
Kinetic equations: decay and convergence rates . .
Without confinement and with sub-exponential local equili

Decay rates

‘ 2

V(z,v) e RIxRY,  F(z,v) = M(w)e V@ | M) = (271')7% ezl
(H1) 1<o(v,v') <7, VYov,v €¢R? forsome 7>1
(H2) / (o(v,0") —o(¥',v)) M(v')dv' =0 VveR?
Rd

+ Caffarelli- Kohn-Nirenberg inequalities

Theorem

Letd>1,V =V, withy € [0,d), k > max{2,7/2} and
fo € LA(M~1dx dv) such that

ffRded fodl'd’l)‘f'ffRdx]Rd |’U| fodxdv < 400
If (H1)—(H2) hold, then there exists C' > 0 such that

d—y

vi>0, [f(- ’)”iZ(M—ldmdv) SC(+1) 2
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Diffusions, rates and inequalitic The global picture ) :
L2 Hypocearsivity Without confinement: Nash inequality
Kinetic equations: decay and convergence rates Woih womy ol GemisineneRt q 48
Without confinement and with sub-exponential local equili

a Kinetic Fokker-Planck, no confinement and
sub-exponential local equilibria

@ the Fokker-Planck operator
Lif=V,- (Fvv(Fil f))
@ the scattering collision operator
Laf = [ o) (F0)FO) = £ F()) do
Rd

under assumptions (H1)—(H2)
V=0 |F)=e ™" ge(0,1)

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates and inequalitic
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

. V@ =
Potential V=0 V(z) =~ log |«| V(z) = || a>1,or T¢
v<d a€(0,1) Macro Poincaré
DMS,
: e tt i .
Micro Poincaré BDEV‘E\;IS' BDS: ¢t—(d—)/2 Cao: e, Mischler
F(v) = e—(” B=>1 t doca b<1l, =2 Mouhot
’ N decay Y convergence e A
convergence

BDLS: ¢~¢,
F(v) = =", ¢=
indd k
B e (0,1) mln{i,ﬁ
decay
BDLS,
F(v) = (v) 4 F fractional

in progress

Table 3: O f +v - Vaf = FV,(F~1V,f). Notation: (v) = /1+ [v]?

J. Dolbeault L2 Hypocoercivity & inequalities



The global picture
Without confinement: Nas h inequality
With very weak confiner

ISneticieduationsdecayiandicon SEsSncEjates Without confinement and wlth sub-exponential local equili

The decay rate with sub-exponential local equilibria

Theorem

Let a € (0,1), >0, k>0 and let F(v) = Cy e~ ", Assume that
either L=L; and $=2(1 —a), orL=1Ly + Assumptwns. There
exists a numerical constant € > 0 such that any solution f of

Of+v-Vof =Lf, £(0,--) = f™ € L*((v)*dzdu) N LY (dz dv)
satisfies

[

V>0, t,-,- 2:// tz,0) dedp<e 2
20, G-Il = [  [f&eo) deds<erm—in

with rate ¢ = min {d/2,k/5}, for.’ some positive £ which is an explicit
function of the two quotients, Hme / ||f‘“”k and ||meL1(dIdv) / ||f‘“H
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The global picture
Without confinement: Nash inequality

Kinetic equations: decay and convergence rates Woih womy ol GemisineneRt " .
Without confinement and with sub-exponential local equili

Proof (1/2)

DIf] := = (Lf, /) + 6 (ATIS, 1)
+ 0 (AT(Id — N)f,Nf) — & (TAQd — M) £, (Id — M) f)
— 8 (AL(Id — M) £, 11f)

Q microscopic coercivity. If L = Ly, we rely on the weighted
Poincaré inequality

(Lf,f) < =€ -1mf|2,

If L = L,, we assume that there exists a constant € > 0 such that
/ |h—%\2<v>—ﬁdege// o(v,0") W = h|* F F' dv do/
Rd Rd x R4

@ Weighted L2 norms Let k > 0, f* € L2((v)* dz du) a solution.
dXK; > 1 such that

vVt > 0, ”f(t K ')HL%(U)’“dwdu) < K ||fin||L2((v)"" dadp)
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Diffusions, rates and inequalities e mlelpll pisinm
o el ua 1t es Without confinement: Nash inequality
L2 Hypocoercivity = - 3
Kinetic equations: decay and convergence rates WAl ey walk conifinccit
: Without confinement and with sub-exponential local equili

Proof (2/2)

d
Half) == 5 IFIP 46 (AL 1), SHsls) =~

@ There exists & > 0 such that V f € L? ((v)~# dz dp) N L (dz dv),

DIf) > x (Jl(1d — ) fI” , + (ATAS M)
@ For any f € L'(dz du) N L%(dz dv),

(ATnfNf) > @ (INf]?)

o'y =2+ (D)7, c=oend i

@ For any f € L2((v)*da du) N L (dx dv),

jaa -, = w (liad - /)

2

=l

U(y) = Coy™ /%, Coi= (K (1+04) I/™]1x)
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The global picture
W :rh >ut confinement: Nas h inequality
With very weak cc

i @ ati 3 - inement
ISneticieduationsdecayiandicon SEsSncEjates Wlthout Conﬁnement and wlth sub-exponential local equili
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arxiv: 1708.06180, Oct. 2017, to appear. Nash

@ E. Bouin, J. Dolbeault, and C. Schmeiser. Diffusion and kinetic
transport with very weak confinement. Preprint hal-01991665 and
arxiv: 1901.08323, to appear in Kinetic Rel. Models. weighted Nash /
Caffarelli-Kohn-Nirenberg inequalities

@ M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization of
non-symmetric operators and exponential H-theorem. Mém. Soc.
Math. Fr. (N.S.), (153):137, 2017.

@ E. Bouin, J. Dolbeault, and C. Schmeiser. A variational proof of
Nash’s inequality. Preprint hal-01940110 and arxiv: 1811.12770, to
appear in Atti della Accademia Nazionale dei Lincei. Rendiconti
Lincei. Matematica e Applicazioni, 2018. Nash

@ E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser.
Hypocoercivity and sub-exponential local equilibria, soon. Weighted
Poincaré inequalities
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The global picture
Without confinement: Nash inequality

With very weak confinement

Without confinement and with sub-exponential local equili

Diffusions, rates, and inequalities
L2 Hypocoercivity
Kinetic equations: decay and convergence rates

These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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