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Diffusion (Fokker-Planck) equations
If ρ ≥ 0 is a solution of the Fokker-Planck equation

∂ρ

∂t
= ∆ρ+∇ · (ρ∇V ) in Rd

with initial datum ρ0 ∈ L1(Rd) (of mass 1), if µ = e−V is the density
of a probability measure such that the Poincaré inequality∫

Rd
|u− ū|2 dµ ≤ CP

∫
Rd
|∇u|2 dµ ∀u ∈ H1(Rd, dµ)

then u = ρ/µ solves the Ornstein-Uhlenbeck equation
∂u

∂t
= ∆u−∇u · ∇V

and ‖u(t, ·)‖L1(Rd,dµ) = ‖ρ(t, ·)‖L1(Rd,dx) = ‖ρ0‖L1(Rd,dx) = ū,
d

dt
‖u(t, ·)−ū‖2

L2(Rd,dx) = − 2 ‖∇u(t, ·)‖2
L2(Rd,dx) ≤ −

2
CP
‖u(t, ·)−ū‖2

L2(Rd,dx)

and
∫
Rd
|u(t, ·)− ū|2 dµ ≤

∫
Rd
|u0 − ū|2 dµ e−2 t/CP ∀ t ≥ 0
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The decay rate of the heat equation

If ρ is a solution of the heat equation

∂ρ

∂t
= ∆ρ in Rd

with initial datum ρ0 ∈ L1(Rd), then

‖ρ(t, ·)‖L1(Rd,dx) = ‖ρ0‖L1(Rd,dx)

d

dt
‖ρ(t, ·)‖2

L2(Rd,dx) = − 2 ‖∇ρ(t, ·)‖2
L2(Rd,dx) ≤ −C ‖ρ(t, ·)‖2+ 4

d

L2(Rd,dx)

by Nash’s inequality

‖u‖2+ 4
d

2 ≤ CNash ‖u‖
4
d
1 ‖∇u‖

2
2

and so
‖ρ(t, ·)‖L2(Rd,dx) ≤ C ‖ρ0‖L2(Rd,dx) (1 + t)−d/2
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Diffusion (Fokker-Planck) equations

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 1: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 2: @tu = �u + r · (urV )
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Very weak confinement: Caffarelli-Kohn-Nirenberg

∂u

∂t
= ∆xu+∇x · (∇xV u) = ∇x

(
e−V ∇x

(
eV u

))
Here x ∈ Rd, d ≥ 3, and V is a potential such that e−V 6∈ L1(Rd)
corresponding to a very weak confinement

Two examples

V1(x) = γ log |x| and V2(x) = γ log〈x〉

with γ < d and 〈x〉 :=
√

1 + |x|2 for any x ∈ Rd

In collaboration with Emeric Bouin and Christian Schmeiser
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Actually, this is more complicated, because the rate depends on the
functional space (and of the range of the parameters)...
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A first decay result (1/3)

Theorem

Assume that d ≥ 3, γ < (d− 2)/2 and V = V1 or V = V2
F any solution u with initial datum u0 ∈ L1

+ ∩ L2(Rd),

‖u(t, ·)‖2
2 ≤

‖u0‖2
2

(1 + c t) d2
with c := 4

d
min

{
1, 1− 2 γ

d−2

}
C−1

Nash
‖u0‖4/d

2

‖u0‖4/d
1

Here CNash denotes the optimal constant in Nash’s inequality

‖u‖2+ 4
d

2 ≤ CNash ‖u‖
4
d
1 ‖∇u‖

2
2 ∀u ∈ L1 ∩ H1(Rd)

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates

Confinement: Poincaré inequality
No confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Extended range of exponents, with moments (2/3)

Theorem

Let d ≥ 1, 0 < γ < d, V = V1 or V = V2, and u0 ∈ L1
+ ∩ L2(eV )

with
∥∥|x|ku0

∥∥
1 <∞ for some k ≥ max{2, γ/2}

∀ t ≥ 0 , ‖u(t, ·)‖2
L2(eV dx) ≤ ‖u0‖2

L2(eV dx) (1 + c t)−
d−γ

2

for some c depending on d, γ, k, ‖u0‖L2(eV dx), ‖u0‖1, and
∥∥|x|ku0

∥∥
1
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Extended range of exponents, self-similar variables (3/3)

u?(t, x) = c?

(1 + 2 t) d−γ2
|x|−γ exp

(
− |x|2

2 (1 + 2 t)

)
Here the initial data need to have a sufficient decay...
c? is chosen such that ‖u?‖1 = ‖u0‖1

Theorem

Let d ≥ 1, γ ∈ (0, d), V = V1 assume that

∀x ∈ Rd , 0 ≤ u0(x) ≤ K u?(0, x)

for some constant K > 1

∀ t ≥ 0 , ‖u(t, ·)− u?(t, ·)‖p ≤ K c
1− 1

p
? ‖u0‖

1
p

1

(
e

2 |γ|

) γ
2

(
1− 1

p

)
(1+2 t)−ζp

for any p ∈ [1,+∞), where ζp := d
2
(
1− 1

p

)
+ 1

2 p min
{

2, d
d−γ

}
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Proofs: basic case (1/3)

d

dt

∫
Rd
u2 dx = − 2

∫
Rd
|∇u|2 dx+

∫
Rd

∆V |u|2 dx

with either V = V1 or V = V2 and

∆V1(x) = γ
d− 2
|x|2

and ∆V2(x) = γ
d− 2

1 + |x|2 + 2 γ
(1 + |x|2)2

For γ ≤ 0: apply Nash’s inequality
d

dt
‖u‖2

2 ≤ − 2 ‖∇u‖2
2 ≤ −

2
CNash

‖u0‖−4/d
1 ‖u‖2+4/d

2

For 0 < γ < (d− 2)/2: Hardy-Nash inequalities

Lemma

Let d ≥ 3, δ < (d− 2)2/4 and Cδ = CNash/
(

1− 4 δ
(d−2)2

)
‖u‖2+ 4

d
2 ≤ Cδ

(
‖∇u‖2

2 − δ
∫
Rd

u2

|x|2
dx

)
‖u‖

4
d
1 ∀u ∈ L1 ∩ H1(Rd)
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Proofs: moments (2/3)

Growth of the moment

Mk(t) :=
∫
Rd
|x|ku dx

From the equation

M ′k = k
(
d+ k − 2− γ

) ∫
Rd
u |x|k−2 dx ≤ k

(
d+ k − 2− γ

)
M

2
k

0 M
1− 2

k

k

then use the Caffarelli-Kohn-Nirenberg inequality∫
Rd
|x|γ u2 dx ≤ C

(∫
Rd
|x|−γ |∇ (|x|γu)|2 dx

)a(∫
Rd
|x|k |u| dx

)2(1−a)
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Proofs: self-similar solutions (3/3)

The proof relies on uniform decay estimates + Poincaré inequality
in self-similar variables

Proposition

Let γ ∈ (0, d) and assume that

0 ≤ u(0, x) ≤ c?
(
σ + |x|2

)−γ/2 exp
(
−|x|

2

2

)
∀x ∈ Rd

with σ = 0 if V = V1 and σ = 1 if V = V2. Then

0 ≤ u(t, x) ≤ c?

(1 + 2 t) d−γ2

(
σ + |x|2

)−γ/2 exp
(
− |x|2

2 (1 + 2 t)

)
for any x ∈ Rd and t ≥ 0
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With sub-exponential equilibria

B We consider the homogeneous Fokker-Planck equation

∂tg = ∇v ·
(
F ∇v

(
F−1 g

))
associated with sub-exponential equilibria

F (v) = Cα e
−〈v〉α , α ∈ (0, 1)

or the corresponding Ornstein-Uhlenbeck equation for h = g/F
– decay rates based on the weak Poincaré inequality (Kavian,
Mischler)
– decay rates based on a weighted Poincaré / Hardy-Poincaré
inequality

In collaboration with Emeric Bouin, Laurent Lafleche and Christian
Schmeiser
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Potential V = 0
V (x) = � log |x|
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V (x) = |x|↵
↵ � 1
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or
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behavior

t�d/2
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t�(d��)/2
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t�µ or t

� k
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Potential V = 0
V (x) = � log |x|
� < d
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Inequality Nash
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Weak Poincaré
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Poincaré

Asymptotic
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decay
t�(d��)/2
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t�µ or t

� k
2 (1�↵)

convergence

e�� t
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2
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Weak Poincaré inequality∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤ Cα,τ

(∫
Rd
|∇h|2 dξ

) τ
1+τ ∥∥∥h− h̃∥∥∥ 2

1+τ

L∞(Rd)

for some explicit positive constant Cα,τ , h̃ :=
∫
Rd hdξ. Using

d

dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ

where h = g/F and dξ = F dv + Hölder’s inequality

∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤
(∫

Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ
) τ
τ+1

(∫
Rd

∥∥∥h− h̃∥∥∥2

L∞(Rd)
〈v〉β τ dξ

) 1
1+τ

with (τ + 1)/τ = β/η, then for with M = sups∈(0,t)

∥∥∥h(s, ·)− h̃
∥∥∥2/τ

L∞(Rd)∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ ≤

((∫
Rd

∣∣∣h(0, ·)− h̃
∣∣∣2 dξ

)− 1
τ

+ 2 τ−1

C
1+1/τ
α,τ M

t

)−τ
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Weighted Poincaré inequality

There exists a constant C > 0 such that∫
Rd
|∇h|2 F dv ≥ C

∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β F dv

with β = 2 (1− α), h̃ :=
∫
Rd hF dv and F (v) = Cα e

−〈v〉α and
α ∈ (0, 1)

Written in terms of g = hF , the inequality becomes∫
Rd

∣∣∇v(F−1 g
)∣∣2 F 2 dµ ≥ C

∫
Rd
|g − g|2 〈v〉−2 (1−α) dµ

where dµ = F dv and g :=
(∫

Rd g dv
)
F

J. Dolbeault L2 Hypocoercivity & inequalities
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d

dt

∫
Rd
|h(t, v)|2 〈v〉k F dv + 2

∫
Rd
|∇vh|2 〈v〉k F dv

= −
∫
Rd
∇v(h2) ·

(
∇v〈v〉k

)
F dv

With ` = 2− α, a ∈ R, b ∈ (0,+∞)

∇v ·
(
F ∇v〈v〉k

)
= k

〈v〉4
(
d+ (k + d− 2) |v|2 − α 〈v〉α |v|2

)
≤ a−b 〈v〉−`

Proposition (Weighted L2 norm)

There exists a constant Kk > 0 such that, if h solves the
Ornstein-Uhlenbeck equation, then

∀ t ≥ 0 ‖h(t, ·)‖L2(〈v〉k dξ) ≤ Kk

∥∥hin∥∥
L2(〈v〉k dξ)

J. Dolbeault L2 Hypocoercivity & inequalities
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d

dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ ≤ − 2C

∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ

+ Hölder

Theorem

Assume that α ∈ (0, 1). Let gin ∈ L1
+(dµ) ∩ L2(〈v〉kdµ) for some k > 0

and consider the solution g to the homogeneous Fokker-Planck
equation with initial datum gin. If g =

(∫
Rd g dv

)
F , then

∫
Rd
|g(t, ·)− g|2 dµ ≤

((∫
Rd

∣∣gin − g
∣∣2 dµ

)−β/k
+ 2β C
kKβ/k

t

)−k/β

with β = 2 (1− α) and K := K2
k

∥∥gin
∥∥2

L2(〈v〉k dµ) + Θk

(∫
Rd g

in dv
)2
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An abstract hypocoercivity result
Diffusion limit
The compact case

L2 Hypocoercivity

B Abstract statement

B Diffusion limit

B The extension to the non-compact case

Collaboration with C. Mouhot and C. Schmeiser
+ E. Bouin, S. Mischler
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The compact case

An abstract evolution equation

Let us consider the equation

dF

dt
+ TF = LF

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)

A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗

∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L

J. Dolbeault L2 Hypocoercivity & inequalities
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The compact case

The assumptions
λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:
−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:
‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:
ΠTΠF = 0 (H3)

B bounded auxiliary operators:
‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)

The estimate
1
2
d

dt
‖F‖2 = 〈LF, F 〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F (t, ·)‖2 decays exponentially
J. Dolbeault L2 Hypocoercivity & inequalities
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Equivalence and entropy decay
For some δ > 0 to be determined later, the L2 entropy / Lyapunov
functional is defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉
so that 〈ATΠF, F 〉 ∼ ‖ΠF‖2 and

− d

dt
H[F ] = : D[F ]

= − 〈LF, F 〉+ δ 〈ATΠF, F 〉
− δRe〈TAF, F 〉+ δRe〈AT(1−Π)F, F 〉 − δRe〈ALF, F 〉

B entropy decay rate: for any δ > 0 small enough and λ = λ(δ)
λH[F ] ≤ D[F ]

B norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

J. Dolbeault L2 Hypocoercivity & inequalities
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An abstract hypocoercivity result
Diffusion limit
The compact case

Exponential decay of the entropy

λ = λM
3 (1+λM ) min

{
1, λm, λm λM

(1+λM )C2
M

}
, δ = 1

2 min
{

1, λm, λm λM
(1+λM )C2

M

}
h1(δ, λ) := (δ CM )2 − 4

(
λm − δ − 2 + δ

4 λ

)(
δ λM

1 + λM
− 2 + δ

4 λ

)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)–(H4), for any t ≥ 0

H[F (t, ·)] ≤ H[F0] e−λ?t

where λ? is characterized by

λ? := sup
{
λ > 0 : ∃ δ > 0 s.t. h1(δ, λ) = 0 , λm − δ − 1

4 (2 + δ)λ > 0
}

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates
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Diffusion limit
The compact case

Sketch of the proof
Since ATΠ =

(
1 + (TΠ)∗TΠ

)−1 (TΠ)∗TΠ, from (H1) and (H2)

−〈LF, F 〉+ δ 〈ATΠF, F 〉 ≥ λm ‖(1−Π)F‖2 + δ λM
1 + λM

‖ΠF‖2

By (H4), we know that

|Re〈AT(1−Π)F, F 〉+ Re〈ALF, F 〉| ≤ CM ‖ΠF‖ ‖(1−Π)F‖

The equation G = AF is equivalent to (TΠ)∗F = G+ (TΠ)∗ TΠG

〈TAF, F 〉 = 〈G, (TΠ)∗ F 〉 = ‖G‖2 + ‖TΠG‖2 = ‖AF‖2 + ‖TAF‖2

〈G, (TΠ)∗ F 〉 ≤ ‖TAF‖ ‖(1−Π)F‖ ≤ 1
2µ ‖TAF‖2 + µ

2 ‖(1−Π)F‖2

‖AF‖ ≤ 1
2 ‖(1−Π)F‖ , ‖TAF‖ ≤ ‖(1−Π)F‖ , |〈TAF, F 〉| ≤ ‖(1−Π)F‖2

With X := ‖(1−Π)F‖ and Y := ‖ΠF‖

D[F ]−λH[F ] ≥ (λm− δ)X2+ δ λM
1 + λM

Y 2− δ CM X Y−2 + δ

4 λ (X2+Y 2)
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An abstract hypocoercivity result
Diffusion limit
The compact case

Hypocoercivity

Corollary

For any δ ∈ (0, 2), if λ(δ) is the largest positive root of h1(δ, λ) = 0 for
which λm − δ − 1

4 (2 + δ)λ > 0, then for any solution F of the
evolution equation

‖F (t)‖2 ≤ 2 + δ

2− δ
e−λ(δ) t ‖F (0)‖2 ∀ t ≥ 0

From the norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

We use 2− δ
4 ‖F0‖2 ≤ H[F0] so that λ? ≥ supδ∈(0,2) λ(δ)
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An abstract hypocoercivity result
Diffusion limit
The compact case

Formal macroscopic (diffusion) limit
Scaled evolution equation

ε
dF

dt
+ TF = 1

ε
LF

on the Hilbert space H. Fε = F0 + ε F1 + ε2 F2 + O(ε3) as ε→ 0+

ε−1 : LF0 = 0 ,
ε0 : TF0 = LF1 ,

ε1 : dF0
dt + TF1 = LF2

The first equation reads as u = F0 = ΠF0
The second equation is simply solved by F1 = − (TΠ)F0
After projection, the third equation is

d
dt (ΠF0)− ΠT (TΠ)F0 = ΠLF2 = 0

∂tu+ (TΠ)∗ (TΠ)u = 0

is such that d
dt‖u‖

2 = − 2 ‖(TΠ)u‖2 ≤ − 2λM ‖u‖2
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The compact case

The compact case
(H1) Regularity & Normalization: V ∈W 2,∞

loc (Rd),
∫
Rd e

−V dx = 1
(H2) Spectral gap / Poincaré inequality: for some Λ > 0,

∀u ∈ H1(e−V dx) such that
∫
Rd u e

−V dx = 0∫
Rd |u|

2 e−V dx ≤ Λ
∫
Rd |∇xu|

2 e−V dx

(H3) Pointwise conditions:
there exists c0 > 0, c1 > 0 and θ ∈ (0, 1) s.t.

∆V ≤ θ
2 |∇xV (x)|2 + c0 , |∇2

xV (x)| ≤ c1 (1 + |∇xV (x)|) ∀x ∈ Rd
(H4) Growth condition:

∫
Rd |∇xV |

2 e−V dx <∞

Theorem (D., Mouhot, Schmeiser)

Let L be either a Fokker-Planck operator or a linear relaxation
operator with a local equilibrium F (v) = (2π)−d/2 exp(−|v|2/2). If f
solves

∂tf + v · ∇xf −∇xV · ∇vf = Lf
then

∀ t ≥ 0 , ‖f(t)− F‖2 ≤ (1 + η) ‖f0 − F‖2 e−λt
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The global picture
Without confinement: Nash inequality
With very weak confinement
Without confinement and with sub-exponential local equilibria

Decay and convergence rates for
kinetic equations

What can we do when at least one of the coercivity conditions is
missing ? microscopic coercivity (H1) or macroscopic coercivity (H2)

In collaboration with Emeric Bouin, Stéphane Mischler, Clément
Mouhot, Christian Schmeiser + Laurent Lafleche
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Without confinement and with sub-exponential local equilibria

Some non-compact cases

The global picture
B by what can we replace the Poincaré inequalities ?

Nash’s inequality and a decay rate when V = 0

Very weak confinement: Caffarelli-Kohn-Nirenberg inequalities
and moments

With sub-exponential equilibria: weighted Poincaré /
Hardy-Poincaré
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The global picture
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With very weak confinement
Without confinement and with sub-exponential local equilibria

Some references

Some entries in the literature which will not be considered in this
lecture
B Weak Poincaré inequality: (Röckner & Wang, 2001), (Kavian,
Mischler), (Cao, PhD thesis), (Hu, Wang, 2019) + (Ben-Artzi, Einav)
for recent spectral considerations

B Weighted Nash inequalities: (Bakry, Bolley, Gentil, Maheux, 2012),
(Wang, 2000, 2002, 2010)

B Related topic:
fractional diffusion (Cattiaux, Puel, Fournier, Tardif,...)

Our strategy: rely on the estimates of the diffusion limits
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The global picture
Depending on the local equilibria and on the external potential

(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:
B microscopic coercivity (H1)

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2

=⇒ weak Poincaré inequalities or
Hardy-Poincaré inequalities

B macroscopic coercivity (H2)

‖TΠF‖2 ≥ λM ‖ΠF‖2

=⇒ Nash inequality, weighted Nash or
Caffarelli-Kohn-Nirenberg inequalities

This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)
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Kinetic Fokker-Planck equations
B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 1: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

1
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The global picture
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With very weak confinement
Without confinement and with sub-exponential local equilibria

A result based on Nash’s inequality
∂tf + v · ∇xf = Lf , (t, x, v) ∈ R+ × Rd × Rd

D[f ] = − d

dt
H[f ] ≥ a

(
‖(1− Π)f‖2 + 2 〈ATΠf, f〉

)
We observe that

A∗f = TΠ (1 + (TΠ)∗TΠ)−1
f

= T (1 + (TΠ)∗TΠ)−1 Πf = M Tuf = vM · ∇xuf

if uf is the solution in H1(Rd) of uf − Θ ∆uf = ρf , and

‖uf (t, ·)‖L1(dx) = ‖ρf (t, ·)‖L1(dx) = ‖f0‖L1(dx dv)

‖uf‖2
L2(dx) ≤ ‖ρf‖

2
L2(dx) , ‖∇xuf‖2

L2(dx) ≤
1
Θ 〈ATΠf, f〉

‖ρf‖2
L2(dx) = ‖Πf‖2 ≤ ‖uf‖2

L2(dx) + 2 〈ATΠf, f〉
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Nash’s inequality

‖u‖2
L2(dx) ≤ CNash ‖u‖

4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx) ∀u ∈ L1 ∩H1(Rd)

Use ‖Πf‖2 ≤ Φ−1(2 〈ATΠf, f〉
)
with Φ−1(y) := y +

(
y
c
) d
d+2 to get

‖(1− Π)f‖2 + 2 〈ATΠf, f〉 ≥ Φ(‖f‖2) ≥ Φ
( 2

1+δ H[f ]
)

D[f(t, ·)] = − d

dt
H[f(t, ·)] ≥ a Φ

( 2
1+δ H[f(t, ·)]

)
As s→ 0+, Φ(s) ∼ s1+ d

2 + Grönwall: H[f(t, ·)] ∼ t−d/2 as t→ +∞
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With very weak confinement
Without confinement and with sub-exponential local equilibria

Algebraic decay rates in Rd

V = 0: On the whole Euclidean space, we can define the entropy
H[f ] := 1

2 ‖f‖
2
L2(dx dγ) + δ 〈Af, f〉dx dγ

Replacing the macroscopic coercivity condition by Nash’s inequality

‖u‖2
L2(dx) ≤ CNash ‖u‖

4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx)

proves that H[f ] ≤ C
(

H[f0] + ‖f0‖2
L1(dx dv)

)
(1 + t)− d2

Theorem
There exists a constant C > 0 such that, for any t ≥ 0

‖f(t, ·, ·)‖2
L2(dx dγ) ≤ C

(
‖f0‖2

L2(dx dγ) + ‖f0‖2
L2(dγ; L1(dx))

)
(1 + t)− d2

Factorization / enlargement of the space (Gualdani, Mischler,
Mouhot) allows to consider weights with polynomial growth

Zero moments of order larger than 1 and mode-by-mode analysis
(Fourrier): faster decay rates (BDMMS)
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The global picture
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Without confinement and with sub-exponential local equilibria

Kinetic Fokker-Planck equation, very weak confinement

Let us consider the kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Lf

where Lf is one of the two following collision operators
(a) a Fokker-Planck operator

Lf = ∇v ·
(
F ∇v

(
F−1 f

) )
(b) a scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f(v′)F (·)− f(·)F (v′)

)
dv′

V (x) ∼ γ log |x| , γ ∈ (0, d)
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 2: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

2
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Decay rates
∀ (x, v) ∈ Rd×Rd , F(x, v) = M(v) e−V (x) , M(v) = (2π)− d2 e− 1

2 |v|
2

(H1) 1 ≤ σ(v, v′) ≤ σ , ∀ v , v′ ∈ Rd , for some σ ≥ 1

(H2)
∫
Rd

(
σ(v, v′)− σ(v′, v)

)
M(v′) dv′ = 0 ∀ v ∈ Rd

+ Caffarelli-Kohn-Nirenberg inequalities

Theorem

Let d ≥ 1, V = V2 with γ ∈ [0, d), k > max {2, γ/2} and
f0 ∈ L2(M−1dx dv) such that∫∫

Rd×Rd〈x〉
k f0 dx dv +

∫∫
Rd×Rd |v|

k f0 dx dv < +∞

If (H1)–(H2) hold, then there exists C > 0 such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖2
L2(M−1dx dv) ≤ C (1 + t)−

d−γ
2
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Without confinement: Nash inequality
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Kinetic Fokker-Planck, no confinement and
sub-exponential local equilibria

the Fokker-Planck operator

L1f = ∇v ·
(
F ∇v

(
F−1 f

))
the scattering collision operator

L2f =
∫
Rd
σ(·, v′)

(
f(v′)F (·)− f(·)F (v′)

)
dv′

under assumptions (H1)–(H2)
V = 0 F (v) = e−〈v〉

β

β ∈ (0, 1)
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The global picture
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 3: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

3
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The decay rate with sub-exponential local equilibria

Theorem

Let α ∈ (0, 1), β > 0, k > 0 and let F (v) = Cα e
−〈v〉α . Assume that

either L = L1 and β = 2 (1− α), or L = L2 + Assumptions. There
exists a numerical constant C > 0 such that any solution f of

∂tf + v · ∇xf = Lf , f(0, ·, ·) = f in ∈ L2(〈v〉kdx dµ) ∩ L1
+(dx dv)

satisfies

∀ t ≥ 0 , ‖f(t, ·, ·)‖2 =
∫∫

Rd×Rd

∣∣f(t, x, v)
∣∣2 dx dµ ≤ C

∥∥f in
∥∥2

(1 + κ t) ζ

with rate ζ = min {d/2, k/β}, for some positive κ which is an explicit
function of the two quotients,

∥∥f in
∥∥ / ∥∥f in

∥∥
k
and

∥∥f in
∥∥

L1(dx dv) /
∥∥f in

∥∥
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Proof (1/2)

D[f ] :=− 〈Lf, f〉+ δ 〈ATΠf,Πf〉
+ δ 〈AT(Id− Π)f,Πf〉 − δ 〈TA(Id− Π)f, (Id− Π)f〉
− δ 〈AL(Id− Π)f,Πf〉

microscopic coercivity. If L = L1, we rely on the weighted
Poincaré inequality

〈Lf, f〉 ≤ −C ‖(Id−Π)f‖2
−β

If L = L2, we assume that there exists a constant C > 0 such that∫
Rd

∣∣h− h̃∣∣2 〈v〉−β F dv ≤ C

∫∫
Rd×Rd

σ(v, v′)
∣∣h′ − h∣∣2 F F ′ dv dv′

Weighted L2 norms Let k > 0, f in ∈ L2(〈v〉k dxdµ) a solution.
∃Kk > 1 such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖L2(〈v〉k dx dµ) ≤ Kk

∥∥f in∥∥
L2(〈v〉k dx dµ)
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Proof (2/2)

Hδ[f ] := 1
2 ‖f‖

2 + δ 〈Af, f〉 , d

dt
Hδ[f ] = −D[f ]

There exists κ > 0 such that ∀ f ∈ L2 (〈v〉−β dxdµ
)
∩ L1(dxdv),

D[f ] ≥ κ
(
‖(Id−Π)f‖2

−β + 〈ATΠf,Πf〉
)

For any f ∈ L1(dxdµ) ∩ L2(dxdv),

〈ATΠf,Πf〉 ≥ Φ
(
‖Πf‖2)

Φ−1(y) := 2 y +
(y

c

) d
d+2

, c = ΘC
− d+2

d

Nash ‖f‖
− 4
d

L1(dx dv)

For any f ∈ L2(〈v〉kdxdµ) ∩ L1(dxdv),

‖(Id−Π)f‖2
−β ≥ Ψ

(
‖(Id−Π)f‖2

)
Ψ(y) := C0 y

1+β/k , C0 :=
(
Kk

(
1 + Θk

)
‖f in‖k

)− 2 β
k
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More references
E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, and C. Schmeiser.

Hypocoercivity without confinement. Preprint hal-01575501 and
arxiv: 1708.06180, Oct. 2017, to appear. Nash

E. Bouin, J. Dolbeault, and C. Schmeiser. Diffusion and kinetic
transport with very weak confinement. Preprint hal-01991665 and
arxiv: 1901.08323, to appear in Kinetic Rel. Models. weighted Nash /
Caffarelli-Kohn-Nirenberg inequalities

M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization of
non-symmetric operators and exponential H-theorem. Mém. Soc.
Math. Fr. (N.S.), (153):137, 2017.

E. Bouin, J. Dolbeault, and C. Schmeiser. A variational proof of
Nash’s inequality. Preprint hal-01940110 and arxiv: 1811.12770, to
appear in Atti della Accademia Nazionale dei Lincei. Rendiconti
Lincei. Matematica e Applicazioni, 2018. Nash

E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser.
Hypocoercivity and sub-exponential local equilibria, soon. Weighted
Poincaré inequalities

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates

The global picture
Without confinement: Nash inequality
With very weak confinement
Without confinement and with sub-exponential local equilibria

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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