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ON THE STABILITY OF THE SOLAR SYSTEM
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Abstract: Arnold’s theorem on the planetary problem states that, assum-
ing that the masses of n planets are small enough, there exists in the phase
space a set of initial conditions of positive Lebesgue measure, leading to
quasiperiodic motions with 3n−1 frequencies. Arnold’s initial proof is com-
plete only for the plane 2-planet problem. Arnold had missed a resonance
later discovered by Herman. The first complete proof, by Herman-Féjoz,
relies on the weak non-degeneracy condition of Arnold-Pyartli. A second
proof, by Chierchia-Pinzari, is closer to Arnold’s initial idea and shows the
strong non-degeneracy of the problem after suitable reduction by (part of)
the symmetry of rotation. We review and compare these proofs. In an
appendix, we define the Poincaré coordinates and prove their symplectic
nature through the shortest possible computation.

Consider 1 + n point bodies with masses m0, ǫm1, ..., ǫmn > 0 (ǫ > 0
and n ≥ 2) and position vectors x0, x1, ..., xn ∈ R

3, undergoing Newton’s
universal attraction:

ẍ0 = ǫ
∑

k≥1

mk
xk − x0

‖xk − x0‖3
,

and

ẍj = m0

x0 − xj
||x0 − xj ||3

+ ǫ
∑

k≥1, k 6=j

mk
xk − xj

||xk − xj ||3
(j = 1, ..., n).

We think of the body 0 as the Sun and the other bodies as n planets revolving
around the Sun. In our Solar System, the mass of Jupiter is 1/1000 that of
the Sun, which justifies that we consider small values of ǫ. The equations
have a limit when ǫ → 0, for which the Sun is still (in an appropriate
frame of reference) and each planet undergoes the only attraction of the
Sun. If their energies are negative, planets describe Keplerian ellipses, with
some fixed semi major axes and excentricities. As a whole, the system is
quasiperiodic with n frequencies. For a generic Hamiltonian system with 3n
degrees of freedom, one would expect 3n frequencies; due to this dynamical
degeneracy of the Newtonian potential, we are facing a problem of singular
perturbation.

In 1963, V. Arnold [2] published the following remarkable result.

Theorem 1. For every m0,m1, ...,mn > 0 and for every 0 < a1 < ... < an
there exists ǫ0 > 0 such that for every 0 < ǫ < ǫ0, in the phase space
in the neighborhood of circular and coplanar Keplerian motions with semi
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major axes a1, ..., an, there is a subset of positive Lebesgue measure of initial
conditions leading to quasiperiodic motions with 3n− 1 frequencies.

Arnold’s theorem is a breakthrough in respect of the oldest question in Dy-
namical Systems —the stability of the Solar System. Yet it should be noted
that it hardly “applies” to the Solar System. There is a first difficulty with
the upper value of the small parameter ǫ. Hénon noticed that, without any
additional care, the first proofs of Kolmogorov’s theorem show the existence
of invariant tori only for a derisory ǫ of the order of 10−300 [13]! However,
Robutel has shown numerically that some significant parts of the Solar Sys-
tem, in particular of the system consisting of the Sun, Jupiter and Saturn
[15, 17, 33], display a quasiperiodic behavior. Also, Celletti–Chierchia [4, 5]
and Locatelli-Giorgilli [19] have proved quantitative versions of the KAM
theorem, which they have applied to the systems Sun–Jupiter–asteroid Vic-
toria and Sun–Jupiter–Saturn; these applications are assisted by computer
symbolic processors, requiring in the second case the manipulation of se-
ries of ten million terms. Whether bounded motions form a set of positive
Lebesgue measure for all ǫ—and not only for ǫ ≪ 1—remains a completely
open problem.

Another matter for discontent when applying KAM theory to astron-
omy, is that the KAM tori in phase space fills a transversely Cantor set,
parametrized by Diophantine frequencies, which is topologically meager.
Given the approximation which is made by substituting the Newtonian plan-
etary system to the real Solar System, whether the planet’s mean motions
are Diophantine or not, is not a question with any straightforward meaning.
Incidentally, Molchanov has speculated on the opposite hypothesis that these
mean motions could be totally periodic [22]. Hence the direct conclusion of
Arnold’s theorem over an infinite time interval, is illusory in astronomy. Yet
KAM theory provides a fundamental conceptual tool in the study of conser-
vative systems, and, to paraphrase Poincaré, quasiperiodic orbits, as much
as periodic orbits, are part of the breach through which we can try to enter
a place up to now deemed unapproachable.

Nekhoroshev’s theorem [25] on the stability of almost integrable convex
Hamiltonian systems, over an exponentially long time interval with respect
to the small parameter, is more directly relevant to astronomy. By applying
a theorem of this type, Niederman has shown the stability of a Solar System
with two planets having small masses, not quite equal but much closer to
realistic values [28]. In order to describe the slow evolutions more accurately,
Neishtadt has developed the theory of adiabatic invariants [27], and extended
related results to non-Hamiltonian perturbations [26].

Over the centuries, mathematicians have spent an inordinate amount of
energy proving stronger and stronger stability theorems for dynamical sys-
tems more or less closely related to the Solar System. It was a huge surprise
when the numerical computations of Laskar showed that over the life span
of the Sun, or even over a few hundred million years, collisions and ejec-
tions of inner planets are probable (see [16] for a recent account). Our
Solar System is now widely believed unstable. Works of Sitnikov and Alek-
seev [23], Moeckel [21], Simó-Stuchi [34] and Galante-Kaloshin [12], among
others (see [3] for other references), show the complexity already of the
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simplest non-integrable n-body problem, the restricted three-body problem
(restricted meaning that the third body has zero mass and thus moves under
the influence of, but without influencing, the two primaries); for a planetary
problem more closely related to the Solar System, see [11].

The proof of Arnold’s theorem is rendered difficult by the multitudinous
degeneracies of the planetary system. Arnold’s initial proof does not fully
describe these degeneracies. Arnold’s initial understanding was wrong, as he
admitted, due to a resonance he had not forseen, discovered by Herman in
the 1990’s. However, this resonance happens not to play such an important
role. In 1998, in a series of lectures M. Herman sketched a complete and
more conceptual proof of this theorem, showing some weak non-degeneracy
property of the planetary problem, and then concluding by calling upon a
theorem of Diophantine approximation of Arnold-Pyartli [10]. Later, Chier-
chia and Pinzari strengthened the result qualitatively and quantitatively
with a proof closer to Arnold initial strategy, showing in particular the
strong non-degeneracy property (as defined by Poincaré in his proof of ex-
istence of Linstedt series [30], and later used also by Kolmogorov [14] or
Arnold) of the planetary problem [8, 9]. We now review some ideas of these
proofs.

1. Hamiltonian. Newton’s equations are equivalent to Hamilton’s equa-
tions (Cauchy, 1831)

{

ẋ0 = ǫ∂y0H

ẏ0 = −ǫ∂x0
H

and

{

ẋj = ∂yjH

ẏj = −∂xj
H

if the linear momenta are y0, ǫy1, ..., ǫyn and the Hamiltonian

ǫH =
1

2

‖y0‖2
m0

+ ǫ
∑

j

(

‖yj‖2
2mj

− m0mj

‖xj − x0‖

)

− ǫ2
∑

j<k

mjmk

‖xj − xk‖

(planets’s indices j, k vary from 1 to n).

2. Reduction by translations. Switch to the symplectic heliocentric co-
ordinates:

{
X0 = x0
Y0 = y0 + ǫy1 + ǫy2 + ...+ ǫyn

and

{
Xj = xj − x0
Yj = yj .

The conservation of the total linear momentum Y0 and the invariance by
translation of Newton’s equations allow us to focus on the subspace Y0 = 0
without loss of generality, and to ignore the variable X0. The equations now
read

Ẋj = ∂yjH, Ẏj = −∂xj
H,

with

H =
∑

j

(

‖Yj‖2
2µj

− µjMj

‖Xj‖

)

+ ǫ
∑

j<k

(

− mjmk

‖Xj −Xk‖
+

Yj · Yk
m0

)

;

the ’fictitious’ masses µj ∼ mj and Mj ∼ m0 are functions of the mj ’s and
of ǫ, defined by 1

ǫµj
= 1

m0
+ 1

ǫmj
and Mj = m0 + ǫmj .
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3. The Keplerian part and the perturbing function. The Hamilton-
ian splits into H = HKep + ǫHper, the sum of a Keplerian Hamiltonian and
an ǫ-small perturbing function.

Let (λj ,Λj , ξj , ηj , pj , qj) ∈ T
1×]0,+∞[×R × R × R × R be the Poincaré

coordinates of the j-th planet (see appendix A). Those coordinates are
analytic and symplectic on a neighborhood of the union of circular, direct,
horizontal (with respect to some given plane in space) Keplerian ellipses:

– the angle λj parameterizes the ellipse proportionally to the area swept
by the position vector,

– Λj = µj

√
Mjaj ,

– ξj and ηj determine the eccentricity and orientation of the ellipse within
its plane,

– pj and qj determine the position of the plane of the ellipse.
Those coordinates straighten the (degenerate) Keplerian dynamics, since

HKep now only depends on Λj ’s:

HKep =
∑

j

−
µ3
jM

2
j

2Λ2
j

.

Let

νj =
∂HKep

∂Λj
=

µ3
jM

2
j

Λ3
j

=

√
Mj

a
3/2
j

be the so-called mean motions (an old name for the Keplerian frequencies);
Kepler’s third law follows from this expression of νj .

4. The averaged Hamiltonian. From now on, restrict to the open set,
diffeomorphic to T

n × R
5n, over which Keplerian ellipses do not meet. Up

to renumbering, we can assume that 0 < a1 < · · · < an. Away from the
boundary and in a neighborhood of circular Keplerian ellipses, the perturb-
ing function is uniformly ǫ-small. Thus a change of coordinates ǫ-close to
the identity transforms H into the averaged Hamiltonian

HKep + ǫ〈Hper〉 = HKep + ǫ

∫

Tn

Hper
dλ1 · · · dλn

(2π)n
,

up to terms of order 2 in ǫ, along the Cantor set of Diophantine Keplerian
frequencies. (Technically, this means that the new Hamiltonian equals the
above expression, plus a term which is C∞-flat on the Cantor set, which
plays no role and which will be ignored here.)

For the averaged Hamiltonian, the momenta Λj are first integrals (this
is the first stability theorem of Lagrange and Laplace). It descends to the
quotient by the Keplerian action of Tn and induces a Hamiltonian system on
the space, diffeomorphic to R

4n = {(ξj , ηj , pj , qj)j∈{1,...,n}}, of Keplerian tori
with fixed semi major axes. This Hamiltonian, up to a constant, is 〈Hper〉; it
is called the secular Hamiltonian and its phase space the secular space. This
system describes the slow variations of excentricity and orientation in space
of the Keplerian ellipses of the planets, under the influence of mutual attrac-
tion, at the first order in ǫ, outside resonances in mean motions. Contrary
to its analogue in the Lunar problem (see [18]), it seems non-integrable.
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5. The elliptic secular singularity. By symmetry, the origin ξ = η =
p = q = 0 of the secular space is an equilibrium point. It turns out to
be an elliptic critical point of the averaged Hamiltonian (this is the second
stability theorem of Laplace), having the following remarkable expansion:

〈Hper〉 = C0(m, a) +Qh · ξ2 +Qh · η2 +Qv · p2 +Qv · q2 +O(4),

where the “horizontal” and “vertical” quadratic forms Qh and Qv are of the
form






Qh · ξ2 =
∑

1≤j<k≤n

mjmk

(

C1(aj , ak)

(

ξ2j
Λj

+
ξ2k
Λk

)

+ 2C2(aj , ak)
ξjξk
√
ΛjΛk

)

Qv · p2 =
∑

1≤j<k≤n

−mjmkC1(aj , ak)

(

pj
√
Λj

− pk√
Λk

)2

;

coefficients Cj are real analytic with respect to the semi major axes, and
can be expressed in terms of the Laplace coefficients.

6. The secular frequencies. Let ρh and ρv be orthogonal diagonalizing
transformations of Qh and Qv (depending analytically on the masses and
semi major axes):

ρ∗hQh =
∑

j

σj dξ
2
j and ρ∗vQv =

∑

j

σn+j dp
2
j .

In the full phase space, the map

ρ : (ξ, η, p, q) 7→ (ρh · ξ, ρh · η, ρv · p, ρv · q)
is symplectic and the problem thus boils down to studying a Hamiltonian
of the form

HKep(Λ) + ǫ
∑

j

(
σj(Λ)(ξ

2
j + η2j ) + σn+j(Λ)(p

2
j + q2j )

)

+ ǫO4(ξ, η, p, q) + O2(ǫ), (1)

where the first remainder does not depend on λ. The Hamiltonian obtained
by neglecting the two remainders is integrable and its integral curves (outside
the elliptic singularity) are quasiperiodic, with the 3n frequencies given by

αo := (ν1, ..., νn, ǫσ1, ..., ǫσn, ǫσn+1, ..., ǫσ2n) .

The arithmetic properties of the frequency vector αo play a deciding role in
the existence of higher order normal forms; αo depends on the masses and
the semi major axes, and can also be thought of as a constant function of
the actions ξ2j +η2j and p2j+q2j when one moves away from the elliptic secular
singularity.

7. Properties of the frequency vector. KAM theory asserts that there
is a perturbed frequency vector α, not explicitely known but tending to αo

when ǫ, ξ2j +η2j and p2j+q2j tend to zero, such that whenever α is Diophantine
there is a corresponding invariant torus.

It is customary in this theory to measure the abundance of invariant tori
given by the KAM theorem with fixed masses. J. Moser justified this habit
with the argument that one cannot change the masses of the planets. We
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will let the reader decide form himself whether it is easier to change semi
major axes.

— If α is seen as a function of a = (a1, ..., an) alone (implying that we
look for tori very close to circular coplanar Keplerian ellipses), the best we
can hope for is the weak non-degeneracy property of Arnold-Pyartli i.e., the
local image of α does not lie in a hyperplane. In this case, the theory of
Diophantine approximations shows that the set of parameters a such that
the frequency vector is Diophantine has positive Lebesgue measure.

— If α is seen as a function of both a and the actions ξ2j+η2j ’s and p2j+q2j ’s,
one can hope for the strong non-degeneracy property of Kolmogorov i.e.,
the map α is a local diffeomorphism, thus obviously reaching Diophantine
vectors for a set of parameters of positive measure.

There are difficulties in both cases, which are removed when one takes
advantage of the invariance of the system by rotations. This symmetry
allows us to decrease the number of degrees of freedom by two units and get
rid of annoying resonances.

8. Weak non-degeneracy. In the plane (p = q = 0), the application of
KAM theory is quite straightforward, due to the following fact.

Proposition 2. Outside an analytic proper subset of values of a = (a1, ..., an),
the vector (ν1, ..., νn, ǫσ1, ..., ǫσn) locally defines an analytic function of a,
whose image is not contained in any vector hyperplane.

This means that no resonance is identically verified and, by Pyartli’s the-
orem [32], that the perturbed frequency vector passes through Diophantine
vectors in positive measure. Arnold’s theorem in the plane follows. The
proof of the proposition goes along the following lines.

For n = 2 planets, there is an explicit asymptotics of α in the ‘well-
spaced regime’ where a1 ≪ a2, where the conclusion of the proposition is
readily checked. Complexifying the semi major axes and using the analytic
continuation of Qh, one can deduce the proposition for n = 2. In the case
of n + 1 planets, in the well-spaced regime the spectrum of Qh splits into
a very small eigenvalue and the spectrum corresponding to n planets. By
induction over the number n of planets the conclusion follows.

In space, the situation is more intricate.

Proposition 3. Outside an analytic proper subset of values of a, the fre-
quency vector αo locally defines an analytic function of a, whose image en-
tirely lies in the codimension-2 space of R3n of equations

σ2n = 0,
∑

1≤j≤2n

σj = 0,

(up to reordering of the σ′
js) but is contained in no space of larger codimen-

sion.

It is straightforward to check the two resonances. The proof of the propo-
sition then goes along the same lines as for the plane problem.

Unsurprisingly, the first resonance is due to the invariance of the system by
rotations about any horizontal axis (hence the linearized secular vector field
has two vanishing eigenvalues), so that one of the spatial secular frequencies,



ARNOLD’S THEOREM 7

say σ2n, vanishes. Thus this resonance disappears when one restricts to a
fixed direction, say vertical, of the angular momentum —a codimension-2,
hence (6n− 2)-dimensional, symplectic submanifold.

The second resonance is mysterious and does not seem to be associated
with any symmetry. Although it was known to astronomers in particular
cases (n = 2), it was discovered in its full generality by Herman. It happens
to disappear when one completes the reduction by rotations, by fixing the
angular momentum vector and quotienting by rotations around the fixed
direction of the angular momentum. For n = 2 planets, this is checked by
carrying out the classical reduction of the node of Jacobi.

The difficulty when n ≥ 3 is that we do not know of simple coordinates
adapted to the reduction by rotations. Arnold thus suggested to merely
fix the direction of the angular momentum, not being aware of Herman’s
resonance. In order to check without much computation that Herman’s res-
onance does not exist at the fully reduced level, one can use a trick (already
used by Poincaré in order to find some periodic orbits [30]), consisting in
adding to the Hamiltonian a term in δ‖C‖, where δ is small real number,
and ‖C‖ = Cz is the length of the angular momentum. This amounts to
switching to a rotating frame of coordinates. The KAM theorem applies
to show the existence of Diophantine Lagrangian tori of dimension 3n − 1,
invariant for the modified Hamiltonian, for a positive measure of values of δ
(one value of δ would suffice). Then, by an argument of Lagrangian intersec-
tion, these tori must be invariant by the flow of the initial Hamiltonian; as
Chierchia-Pinzari’s results will later prove, these tori are sometimes ergodic,
and sometimes foliated in ergodic invariant tori of dimension 3n − 2. This
proves Arnold’s theorem.

9. Strong non-degeneracy. Chierchia and Pinzari have strengthened and
completed the previous result by investigating the part of the secular Hamil-
tonian which is quartic with respect to the secular Poincaré coordinates
ξ, η, p, q, as in Arnold’s original strategy.

Rotations around a horizontal axis generate a degeneracy of all Birkhoff
invariants, which disappears by fixing the direction of the angular momen-
tum (but the norm of the angular momentum is not fixed and we do not
descend to the quotient by rotations around the angular momentum). Now
the phase space has dimension 6n− 2. This partial reduction by rotations,
which already played a key role above for proving the weak non-degeneracy
condition, can be understood as follows. Topologically, the group SO3 is an
S1-bundle over S2. The action of the maximal torus S1 = SO(2) carries
all the non-trivial dynamical information, while all directions of the angular
momentum are equivalent to each other.

For the Birkhoff normal form to exist at the order 4, a priori we need
the secular frequencies to avoid resonances of order ≤ 4 ; see [7] for the
applicability of KAM which follows. According to the proposition above, the
only remaining resonance is Herman’s, which is order 2n−1. This resonance
is not an obstruction for n ≥ 3 planets. For n = 2 planets (a case which can
be handled anyway by completing the reduction by rotations, by carrying
out Jacobi’s reduction of the node, as in Robutel’s thesis [33]), it happens
that the resonant terms vanish, even up to terms of order 10 [20]! So, in
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all cases, the secular Hamiltonian (1) has a non-resonant Birkhoff normal
form at the 4-th order: there exists a system of symplectic coordinates
((λ̃j ,Λj)1≤j≤n, (xj , yj)1≤j≤2n−1) in which the Hamiltonian (1) has the form

HKep(Λ) + ǫ
∑

j

σj(Λ)(x
2
j + y2j ) +

∑

j,k

τj,k(Λ)(x
2
j + y2j )(x

2
k + y2k)

+ ǫO6(x, y) +O2(ǫ),

(2)

where the symmetric matrix τ = (τj,k(Λ)) depends analytically of Λ and
the masses. The determinant of τ is the “torsion” of the secular system.
That the system is strongly non-degenerate (in the sense of Poincaré, or
Kolmogorov), means that the torsion does not vanish.

The fourth order terms τj,k are formidable to compute. Chierchia-Pinzari
use some regularized version of the Deprit coordinates. Those coordinates
do not reduce to separate coordinates associated with each planet. The De-
prit coordinates were independently rediscovered by G. Pinzari in her PhD
thesis [29], before she realized they matched Deprit’s coordinates. Interest-
ingly, Deprit believed that nobody would ever make anything useful with
these coordinates. Pinzari managed to compute asymptotics of τ , as before
in the well-spaced regime. An induction shows that torsion does not vanish.
Chierchia-Pinzari can conclude triumphantly, probably as closely as possible
in the spirit of what Arnold had in mind in 1963:

Theorem 4. The torsion of the planetary problem at the elliptic singularity
of the averaged system is non-degenerate, both in restriction to the subman-
ifold obtained by fixing the direction of the angular momentum, and in the
system fully reduced by rotations.

Hence KAM theory can be applied to the planetary problem, with full
strength. Chierchia-Pinzari’s theorem gives some additional information
on the secular system and allows Chierchia-Pinzari to give better measure
estimates than what the weak non-degeneracy would give. (Un)fortunately,
the torsion is undefinite (as Herman’s resonance shows), which prevents
from using variational methods to (easily?) find invariant sets from Mather
theory...

Appendix A. Poincaré coordinates. For the Kepler Hamiltonian

K =
‖p‖2
2µ

− µM

‖q‖ , (q, p) ∈ R
3
∗ × R

3,

we will first define some symplectic action-angle coordinates, attributed to
Delaunay, which blow up circular or horizontal Keplerian motions; blowing
down the singularity will yield the symplectic analytic Poincaré coordinates.
For elementary facts about K, we refer to [3]. For other ways to introduce
those coordinates, see [36, Chap. vii], or [6, 24, 28, 31, 35].

Notations in the plane Kepler problem with negative energy:
v = true anomaly = argument of q, measured from the pericenter
a = semi major axis
g = argument of the pericenter from Ox
ǫ = eccentricity.
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Restrict to the set {(v, a, g, ǫ), 0 < ǫ < 1} ≡ T
2 × R

2 of non-degenerate,
non-circular, elliptical, Keplerian motions. Define coordinate t as the time
from the pericenter; it is defined modulo the period T of the orbit. Define
ℓ, the mean anomaly, as the angle obtained by rescaling time: ℓ := 2πt/T
(mod 2π). Now, if we want an action coordinate L(K) conjugate to ℓ:
dt ∧ dK = dℓ ∧ dL, we see that

L′(K) =
1

ℓ̇
=

T

2π
=

a3/2√
M

=
µ3/2M

(−2K)3/2
.

Conventionally choosing L = 0 at infinity where a = +∞, we get

L =
µ3/2M√
−2K

= µ
√
Ma

(

so that K = −µ3M2

2L2

)

.

We now wish to define coordinates on the space of non-circular, non-
degenerate, prograde Keplerian ellipses in the plane with fixed L. The an-
gular momentum

G := µ
√

Ma(1− ǫ2) = L
√

1− ǫ2,

is a first integral of K and thus descends to the space of Keplerian orbits.
Its Hamiltonian flow acts by 2π-periodic rotations around the origin. Define
g as the angle, modulo 2π, measuring time along XG-orbits, and vanishing
when the pericenter meets the Ox-semi-axis.

The coordinates which (ℓ, L, g,G) define are symplectic:
– {ℓ, L} = {g,G} = 1 by definition.
– {L, g} = {L,G} = 0 because g and G are first integrals of K(L).
– {ℓ,G} = 0 because the flow of G rotates the Keplerian ellipse without

revolving the body along the ellipse.
– {ℓ, g} = 0. Due to the Jacobi identity, {L, {ℓ, g}} = {G, {ℓ, g}} = 0.

Hence it suffices to show that {ℓ, g} = 0 in restriction to the section {ℓ =
g = 0 (mod π)} of the L- and G-flows. We may thus assume that the body
is on the major axis and that the major axis itself is the x-axis. But then
the partial derivatives of ℓ and g with respect of x or py are zero, and

{ℓ, g} =
∂ℓ

∂x
︸︷︷︸

=0

∂g

∂px
− ∂ℓ

∂px

∂g

∂x
︸︷︷︸

=0

+
∂ℓ

∂y

∂g

∂py
︸︷︷︸

=0

− ∂ℓ

∂py
︸︷︷︸

=0

∂g

∂y
= 0.

In the 3-dimensional Kepler problem, choose R
2 × {0} ⊂ R

3 as a refer-
ence plane, called horizontal. Temporarily restrict to non-horizontal, non-
circular, non-degenerate, prograde elliptic Keplerian motions.

Let ~C = q × p be the angular momentum vector and Θ be its projection
on the vertical axis. The flow of XΘ consists of 2π-periodic rotations in
the horizontal plane (diagonally for positions and impulsions), leaving the
horizontal 4-plane invariant.

Each Keplerian oriented plane meets the horizontal plane along a half
axis, the ascending line of the node. Let θ be the angle measuring time
along XΘ-orbits, vanishing when the line of the node is the Ox-semi-axis.

The so-defined coordinates (ℓ, L, g,G, θ,Θ) are symplectic:
– Poisson brackets with L, G and Θ are what they should : 0, except

{ℓ, L} = {g,G} = {θ,Θ} = 1 (we know the flows of L, G and Θ).



10 JACQUES FÉJOZ

– The three Poisson brackets between angles can be checked to vanish as
above in the plane. Indeed, on the submanifold {ℓ = g = θ = 0 (mod π)},
the partial derivatives of any of these angles with respect to x, py or pz
vanish.

Now, define the Poincaré coordinates (λ,Λ, ζ, z) by the following formulas
(several sign conventions exist):







λ = ℓ+ g + θ, Λ = L

ζ =
√

2(L−G) e−ig

z =
√

2(G−Θ) e−iθ

Knowing that the Delaunay coordinates are symplectic, it is straightforward
that the Poincaré coordinates are symplectic too. From the above formulas,
one checks that the Poincaré coordinates extend to continuous coordinates
at direct circular coplanar motions (ζ = z = 0), since

{

ζ =
√

Λ/2 ǫ (1 +O(ǫ2)) e−ig

z =
√

Λ/2 ι
(
1 +O(ǫ2) +O(ι2)

)
e−iθ, cos ι = Θ

G

(in particular, g and ι need not be defined at the singularity). In fact, their
extension is analytic, as one can see by expressing the coordinates as explicit
analytic functions of analytic first integrals; see [1] for an elegant choice of
first integrals.

Thank you to A. Albouy, A. Chenciner, L. Chierchia, S. Kuksin, J. Laskar
and G. Pinzari for their enthusiasm or useful remarks.
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non périodiques. Bulletin Astronomique, 3(1:2):49–66, 1966.

[14] A. N. Kolmogorov. On the conservation of conditionally periodic motions for a small
change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98:527–530, 1954.

[15] J. Laskar. The chaotic motion of the solar system. A numerical estimate of the size
of the chaotic zones. Icarus, 88:266–291, 1990. science direct

[16] J. Laskar. Le système solaire est-il stable ? In Le Chaos, number XIV in Séminaire
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