Examen

Deux heures. Sans document, ni calculatrice, ni téléphone, etc.

Chaque réponse doit être justifiée et concise.

Il suffit de traiter deux exercices sur trois pour avoir la note maximale.

Exercice 1 B-A-BA de théorie ergodique

[Les questions 2 et 7 n'ont pas été posées à l'examen.]

Soient $(\Omega, \mathcal{A}, \mu)$ un espace de probabilité et $T : \Omega \to \Omega$ une application mesurable. On note μ_T la probabilité image de μ par T (pour tout $A \in \mathcal{A}$, $\mu_T(A) = \mu(T^{-1}(A))$), et T^n la n-ième composée itérée de T, définie par récurrence par $T^0 = \mathrm{id}$, $T^{n+1} = T \circ T^n$ (n > 0).

- 1. Montrer que $\mathcal{I} = \{A \in \mathcal{A}, T^{-1}(A) = A\}$ est une tribu de Ω (on l'appelle la tribu invariante de T).
- 2. Montrer que les fonctions \mathcal{I} -mesurables sont f-invariantes.
- 3. On suppose dans cette question qu'il existe un point $x \in \Omega$ et un entier $k \geq 1$ tel que $T^k(x) = x$. Montrer que, si δ_a est la mesure de Dirac en $a \in \Omega$, la mesure $\mu = \frac{1}{k}(\delta_x + \delta_{T(x)} + ... + \delta_{T^{k-1}(x)})$ est T-invariante (i.e. $\mu_T = \mu$ sur \mathcal{A}).
- 4. Montrer en général que μ est T-invariante ($\mu_T = \mu$) si et seulement si

$$\int (\varphi \circ T - \varphi) \, d\mu = 0$$

pour toute fonction $\varphi \in L^1(\mu)$ telle que $\varphi \circ T \in L^1(\mu)$; on pourra commencer par montrer que

$$(\mu_T - \mu)(A) = \int (\mathbf{1}_A \circ T - \mathbf{1}_A) d\mu \quad (\forall A \in \mathcal{A}).$$

5. On suppose dans cette question que $\Omega =]0,1[$, \mathcal{A} est la tribu borélienne, μ est la mesure de densité $((\ln 2)(1+x))^{-1}$ par rapport à la mesure de Lebesgue, et $T: [0,1[\to]0,1[$ est l'application de Gauss définie par

$$T(x) = \begin{cases} \frac{1}{x} - k & \text{si } \frac{1}{k+1} < x < \frac{1}{k}, \ k \in \mathbb{N}_* \\ 1/2 & \text{si } x = 1/k, \ k \in \mathbb{N}_*. \end{cases}$$

Montrer que μ est T-invariante; on pourra, dans le calcul de $\int_{]0,1[} \varphi \circ T \, d\mu$, découper]0,1[en $\cup_{k\geq 1} \left[\frac{1}{k+1},\frac{1}{k}\right[$, puis utiliser le fait que $[(y+k+1)(y+k)]^{-1} = (y+k)^{-1} - (y+k+1)^{-1}$.

Soit $A \in \mathcal{A}$. Un point $x \in A$ est A-récurrent s'il existe une infinité de rangs n tels que $T^n(x) \in A$. Notons \hat{A} l'ensemble des points A-récurrents.

6. Montrer que, si μ est T-invariante, on a $\mu(\hat{A}) = \mu(A)$ (théorème de récurrence de Poincaré); on pourra montrer pour cela que $A \setminus \hat{A}$ est l'union des $B_n = \{x \in A, T^{n-1}(x) \in A, \forall k \geq n \ T^k(x) \notin A\}$ $(n \geq 1)$, que pour tous $n, k, l \geq 1$ les parties $T^{-nk}(B_n)$ et $T^{-nl}(B_n)$ sont disjointes si $k \neq l$, et par l'absurde que $\mu(B_n) = 0$ pour tout n.

On suppose de plus que Ω est une partie compacte non vide de \mathbb{R}^n et T un homéomorphisme. On cherche à montrer qu'il existe une probabilité T-invariante sur Ω .

7. Donner un exemple de probabilité μ sur Ω . On pose $\bar{\mu}_n = \frac{1}{n}(\mu + \mu_T + \dots + \mu_{(T^{n-1})})$. Conclure, en admettant qu'il existe une sous-suite $\bar{\mu}_{n_k}$ qui converge étroitement vers une probabilité $\bar{\mu}$; on pourra commencer par montrer que $(\bar{\mu}_{n_k})_T$ converge étroitement vers $\bar{\mu}_T$.

Exercice 2 Formules de la moyenne

Soient $(\Omega, \mathcal{A}, \mu)$ un espace mesuré, f une fonction réelle borélienne sur Ω à valeurs dans un intervalle [u, v] et g une fonction réelle intégrable sur Ω .

1. Montrer que fg est intégrable et que, si g est positive, il existe $k \in [u, v]$ tel que

$$\int_{\Omega} f g d\mu = k \int_{\Omega} g d\mu \quad (première formule de la moyenne).$$

Supposons de plus que Ω est un intervalle [a,b] de \mathbb{R} , que μ est la mesure de Lebesgue, et que f est positive décroissante. On veut montrer qu'il existe $\xi \in [a,b]$ tel que

$$\int_{[a,b]} f(x) g(x) dx = f(a) \int_a^{\xi} g(x) dx \quad (seconde formule de la moyenne).$$

- 2. Montrer que $G(\xi) := \int_a^{\xi} g(x) dx$ est continue et que G([a,b]) est un intervalle [m,M].
- 3. En supposant f étagée, montrer qu'il existe une subdivision $a = a_0 < a_1 < \cdots < b = a_n$ de l'intervalle [a, b] telle que, sur chaque intervalle $]a_i, a_{i+1}[$, la fonction f est constante égale à un réel α_i ; en déduire que

$$\int_{[a,b]} f(x) g(x) dx = \sum_{1 \le i \le n-1} (\alpha_{i-1} - \alpha_i) G(a_i) + \alpha_{n-1} G(a_n);$$

puis que la seconde formule de la moyenne est satisfaite pour f.

4. Montrer la seconde formule de la moyenne dans le cas général.

Soient $f:[0,+\infty[\to\mathbb{R}$ positive, décroissante et de limite nulle, et $g(x)=\sin x$.

5. Déduire de la seconde formule de la moyenne que $F(x) := \int_0^x f(t) \sin t \, dt$ possède une limite quand x tend vers $+\infty$ (on pourra montrer que, si (x_n) tend vers l'infini, $(F(x_n))$ est de Cauchy).

Exercice 3 Exemple de variable aléatoire gaussienne

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles sur (Ω, \mathcal{A}, P) .

On note, si $n \ge 1$, $\vec{X}_n = (X_1, ..., X_n)$ et, si $(x_n)_{n \ge 1}$ est une suite réelle, $\vec{x}_n = (x_1, ..., x_n)$.

On suppose que X_1 est de loi gaussienne N(0,1) et que, pour tout $n \geq 1$ et tout $\vec{x}_n \in \mathbb{R}^n$, une loi conditionnelle de X_{n+1} sachant \vec{X}_n est la loi gaussienne $N(x_n,1)$; cela signifie que

$$f_{X_{n+1}}^{\vec{X}_n = \vec{x}_n}(x_{n+1}) := \frac{f_{\vec{X}_{n+1}}(\vec{x}_{n+1})}{f_{\vec{Y}}(\vec{x}_n)} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_{n+1} - x_n)^2}{2}\right).$$

- 1. Quelle est la densité de $\vec{X}_2 = (X_1, X_2)$?
- 2. Montrer que $E(X_{n+1}|\vec{X}_n) = X_n$ et $E(X_{n+1}^2|\vec{X}_n) = 1 + X_n^2$; en déduire les moyenne et variance de X_n , puis que la suite (X_n) ne converge pas dans L^2 .

- 3. Montrer que la densité de \vec{X}_n est de la forme $f_{\vec{X}_n}(\vec{x}_n) = (2\pi)^{-n/2} e^{-t\vec{x}_n \cdot A_n \cdot \vec{x}_n/2}$ pour une matrice A_n qu'on déterminera, puis calculer la fonction caractéristique $\varphi_{\vec{X}_n}$ de \vec{X}_n .
- 4. Quelle est la loi du vecteur bi-dimensionnel (X_j, X_k) , j < k? Calculer la limite en loi de $(X_j, X_k/\sqrt{k})$ quand k tend vers l'infini, j étant fixé.
- 5. (*) Calculer la limite en loi de la suite des variables aléatoires $Z_n = \frac{1}{n\sqrt{n}} \sum_{1 \le j \le n} X_j$.

Solution de l'exercice 1

1. On a \emptyset , $\Omega \in \mathcal{I}$. De plus, si $A \in \mathcal{I}$,

$$T^{-1}(A^c) = T^{-1}(A)^c = A^c$$

donc $A^c \in \mathcal{I}$. Enfin, si (A_n) est une suite d'événements de \mathcal{I} ,

$$T^{-1}(\cup_n A_n) = \cup_n T^{-1}(A_n) = \cup_n A_n,$$

donc $\cup_n A_n \in \mathcal{I}$. Donc \mathcal{I} est une tribu de Ω , contenue dans \mathcal{A} .

- 2. Supposons qu'il existe $x \in \Omega$ tel que $X(T(x)) \neq X(x)$. Notons y = X(T(x)). L'ensemble $A = X^{-1}(\{y\})$ contient T(x) mais pas x, donc $A \notin \mathcal{I}$. Donc X n'est pas \mathcal{I} -mesurable.
- 3. Par définition de μ , pour tout $A \in \mathcal{A}$ on a

$$\mu_T(A) = \frac{1}{k} \left(\sum_{0 \le j \le k-1} \delta_{T^j(x)} \right) (T^{-1}(A)).$$

Or

$$T^{j}(x) \in T^{-1}(A) \Leftrightarrow T^{j+1}(x) \in A$$

et donc

$$\mu_{T^j(x)}(T^{-1}(A)) = \mu_{T^{j+1}(x)}(A).$$

Comme de plus $T^k(x) = x$, on en déduit que

$$\mu_T(A) = \frac{1}{k} \left(\sum_{0 \le j \le k-1} \delta_{T^{j+1}(x)} \right) (A) = \frac{1}{k} \left(\sum_{0 \le j \le k-1} \delta_{T^j(x)} \right) (A) = \mu(A).$$

4. Si $A \in \mathcal{A}$, on a

$$(\mu_T - \mu)(A) = \int \mathbf{1}_A d\mu_T - \int \mathbf{1}_A \mu$$
 par définition de l'intégrale
$$= \int \mathbf{1}_A \circ T d\mu - \int \mathbf{1}_A d\mu$$
 par la formule de transfert
$$= \int (\mathbf{1}_A \circ T - \mathbf{1}_A) d\mu$$
 par linéarité de l'intégrale.

Donc, si $\int (\varphi \circ T - \varphi) \ d\mu = 0$ pour toute fonction $\varphi \in L^1(\mu)$, certainement μ est T-invariante puisque cela correspond au cas particulier où φ est une fonction indicatrice.

Réciproquement, supposons que μ est T-invariante. D'après le calcul précédent, $\int (\varphi \circ T - \varphi) \ d\mu = 0$ pour toute fonction φ qui est une fonction indicatrice d'une partie $A \in \mathcal{A}$, donc (par linéarité de la formule) pour toute fonction φ borélienne étagée.

Si φ est une fonction borélienne positive, il existe une suite croissante de fonctions boréliennes étagées $\varphi_n \geq 0$ qui converge vers φ . Pour tout n on a

$$\int \left(\varphi_n \circ T - \varphi\right) \, d\mu = 0.$$

D'après le théorème de convergence monotone, à la limite quand n tend vers l'infini on obtient que

$$\int \left(\varphi \circ T - \varphi\right) \, d\mu = 0.$$

Si enfin φ est une fonction μ -intégrable, ses parties φ^{\pm} positive et négative satisfont la formule voulue, et donc, par linéarité, φ elle-même.

5. Soit $\varphi \in L^1(\mu)$. On veut montrer que $\int \varphi \circ T d\mu = \int \varphi d\mu$. Or,

$$\int \varphi \circ T \, d\mu = \sum_{k \ge 1} \int_{\left]\frac{1}{k+1}, \frac{1}{k}\right[} \varphi \left(\frac{1}{x} - k\right) \frac{dx}{(\ln 2)(1+x)}$$
par définition de T et converge

par définition de T et convergence dominée

$$= \sum_{k \ge 1} \int_{]0,1[} \varphi(y) \frac{dy}{(y+k)^2 (\ln 2) \left(1 + \frac{1}{y+k}\right)}$$

par le changement de variable $y = \frac{1}{x} - k$

$$= \int \varphi(y) \left(\sum_{k \ge 1} \frac{1}{(y+k+1)(y+k)} \right) \frac{dy}{\ln 2}$$

par le théorème de convergence dominée,

où la somme entre parenthèses vaut

$$\sum_{k>1} \frac{1}{(y+k+1)(y+k)} = \sum_{k>1} \left(\frac{1}{y+k} - \frac{1}{y+k+1} \right) = \frac{1}{y+1}.$$

Finalement, on a la formule voulue. Donc μ est T-invariante.

6. Soit $B = A \setminus A$ l'ensemble des points de A qui ne sont pas A-récurrents : pour tout $x \in B$, il existe $n \ge 1$ tel que $T^k(x) \notin A$ pour tout $k \ge n$. Donc

$$B = \bigcup_{n>1} B_n$$
, $B_n = \{x \in A, T^{n-1}(x) \in A, \forall k \ge n \ T^k(x) \notin A\}$.

On veut montrer que $\mu(B) = 0$. Supposons par l'absurde qu'il existe un entier $n \geq 1$ tel que $\mu(B_n) \neq 0$. Les parties de la forme $T^{-nk}(B_n), k \geq 0$, sont deux à deux disjointes : en effet, si $0 \le k < l$, un point $x \in T^{-nk}(B_n) \cap T^{-nl}(B_n)$ vérifierait $T^{nk}(x) \in B_n$, et en même temps on aurait

$$T^{nl}(x) = T^{n(l-k)}(T^{nk}(x)) \in B_n,$$

ce qui est absurde puisque $T^{nk}(x)$ n'est pas censé repasser dans A au-delà de la (n-1)-ième itération. Donc on a construit une suite infinie $(T^{-nk}(B_n))_{k>0}$ de parties deux à deux disjointes. Or, comme μ est f-invariante, on voit que

$$\mu(T^{-n(k+1)}(B_n)) = \mu_{T^n}(T^{-nk}(B_n)) = \mu(T^{-nk}(B_n)),$$

donc, par récurrence sur k, ces parties ont toute même probabilité. Donc

$$1 = \mu(\Omega) \ge \sum_{k>0} \mu\left(T^{-nk}(B_n)\right) = \sum_{k>0} \mu(B_n) = +\infty,$$

ce qui est absurde. Donc $\mu(B_n) = 0$ pour tout n, donc $\mu(B) = 0$, donc $\mu(A) = 0$ $\mu(A)$.

7. Soit $a \in \Omega$. Un exemple de probabilité sur Ω est la mesure de Dirac en a.

On a admis que $\bar{\mu}_{n_k}$ converge étroitement vers $\bar{\mu}$, c'est-à-dire que, pour toute fonction réelle φ continue bornée sur Ω ,

$$\int \varphi \, d\bar{\mu}_{n_k} \to \int \varphi \, d\bar{\mu}.$$

Comme T est un homéomorphisme, si φ est continue bornée, il en est de même de $\varphi \circ T$, donc, d'après la formule de transfert,

$$\int \varphi \, d(\bar{\mu}_{n_k})_T \to \int \varphi \, d\bar{\mu}_T.$$

Autrement dit, $(\bar{\mu}_{n_k})_T$ converge étroitement vers $\bar{\mu}_T$. Or,

$$(\bar{\mu}_{n_k})_T = \bar{\mu}_{n_k} + \frac{\mu_{T^{n_k}} - \mu}{n_k}.$$

En passant à la limite étroite quand k tend vers l'infini et en utilisant le théorème de convergence dominée, on voit que $\bar{\mu}_T = \bar{\mu}$.

Solution de l'exercice 2

1. Le produit fg est intégrable parce que f est bornée et g intégrable. D'autre part, par hypothèse on a

$$ug \leq fg \leq vg$$

donc en intégrant on obtient

$$u \int g \, d\mu \le \int f \, g \, d\mu \le v \int g \, d\mu,$$

donc il existe $k \in [u, v]$ ayant la propriété voulue.

2. Soit (x_n) est une suite de [a,b] convergeant vers x. La suite des fonctions

$$t \mapsto \mathbf{1}_{[a,x_n]}(t) g(t)$$

converge presque sûrement vers $t \mapsto 1_{[a,x]}(t) g(t)$ et est dominée par g, qui est supposée intégrable. Donc, d'après le théorème de convergence dominée,

$$G(x_n) = \int_{[a,x_n]} g(t) dt \to G(x) = \int_{[a,x]} g(t) dt.$$

Donc G est continue. L'image d'un intervalle compact par une fonction continue étant un intervalle compact, il existe deux réels $m \leq M$ tels que G([a,b]) = [m,M].

3. Supposons f étagée. Elle prend un nombre finie de valeurs. Comme elle est décroissante, elle possède un nombre fini de points de discontinuités, disons $a_1 < \cdots < a_{n-1}$. On note de plus $a_0 = a$ et $a_n = b$. Alors f est constante sur les intervalles $]a_i, a_{i+1}[$, et l'on peut noter $\alpha_i = f|_{[a_i, a_i+1]}$.

Alors

$$I := \int_{[a,b]} f(t) g(t) dt = \sum_{0 \le i \le n-1} \alpha_i \int_{[a_i, a_{i+1}]} g(x) dx$$
$$= \sum_{0 \le i \le n-1} \alpha_i (G(a_{i+1}) - G(a_i))$$
$$= \sum_{1 \le i \le n-1} (\alpha_{i-1} - \alpha_i) G(a_i) + \alpha_{n-1} G(a_n).$$

Donc I est une somme pondérée des $G(a_i)$, et la somme des pondérations vaut

$$\sum_{1 \le i \le n-1} (\alpha_{i-1} - \alpha_i) + \alpha_{n-1} = \alpha_0 = f(a).$$

Donc $I \in f(a)[m, M]$, et il existe $\xi \in [a, b]$ tel que $I = f(a)G(\xi)$.

4. On peut approcher presque sûrement une fonction f positive décroissante par une suite croissante de fonctions f_n étagées décroissantes en posant

$$f_n(x) = \begin{cases} f(a) & \text{si } x = a \\ f(a_i) & \text{si } a_{i-1} < x \le a_i, \ 1 \le i \le n. \end{cases}$$

avec $a_i = a + i \frac{b-a}{n}$. Pour tout n, d'après la question précédente,

$$\int f_n(x) g(x) dx = f(a) \int_a^{\xi_n} g(t) dt,$$

avec $\xi_n \in [a, b]$. Comme [a, b] est compact, il existe une sous-suite ξ_{n_k} qui converge vers un $\xi \in [a, b]$. Quand k tend vers l'infini, d'après le théorème de convergence monotone,

$$\int f_{n_k}(x) g(x) dx \to \int f(x) g(x) dx$$

et, par continuité de G

$$f(a) \int_a^{\xi_{n_k}} g(t) dt \to f(a) \int_a^{\xi} g(t) dt.$$

La seconde formule de la moyenne en découle.

5. Pour tous a, b tels que $0 \le a < b$, il existe $\xi \in [a, b]$ tel que

$$F(b) - F(a) = f(a) \int_0^{\xi} g(t) dt = f(a)(\cos a - \cos \xi).$$

Done

$$|F(b) - F(a)| \le 2f(a) \to_{a,b \to +\infty} 0$$

Donc, si (x_n) tend vers l'infini, $(F(x_n))$ est de Cauchy, donc converge vers une certaine limite, qui ne peut dépendre de (x_n) . Donc F a une limite finie en $+\infty$.

Solution de l'exercice 3 Ce problème est tiré du second volume de *Probabilités* de J.-Y. Ouvrard.

1. La densité de \vec{X}_2 est

$$f_{\vec{X}_2}(\vec{x}_2) = f_{X_1}(x_1) f_{X_2}^{X_1 = x_1}(x_2)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_1^2}{2}\right) \sqrt{2\pi} \exp\left(-\frac{1}{2}(x_2 - x_1)^2\right)$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2}(x_1^2 + (x_2 - x_1)^2)\right).$$

2. Pour toute fonction borélienne bornée $h: \mathbb{R} \to \mathbb{R}$,

$$E(X_{n+1}h(\vec{X}_n)) = \int x_{n+1}h(\vec{x}_n)f_{\vec{X}_{n+1}}(\vec{x}_{n+1}) d\vec{x}_{n+1}$$

$$= \int x_{n+1}h(\vec{x}_n)f_{\vec{X}_n}(\vec{x}_n)f_{X_{n+1}}^{\vec{X}_n = \vec{x}_n}(x_{n+1}) d\vec{x}_{n+1}$$

$$= \int h(\vec{x}_n) \left(\int x_{n+1} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x_{n+1} - x_n)^2} dx_{n+1} \right) f_{\vec{X}_n}(\vec{x}_n) d\vec{x}_n$$

$$= \int h(\vec{x}_n) x_n f_{\vec{X}_n}(\vec{x}_n) d\vec{x}_n$$

$$= E(X_n h(\vec{X}_n)),$$

donc

$$E(X_{n+1}|\vec{X}_n) = X_n.$$

En prenant l'espérance des deux membres de l'égalité, on obtient $E(X_{n+1}) = E(X_n)$ et, par récurrence, on voit que $E(X_n) = 0 \quad (\forall n)$.

De même, on a

$$E(X_{n+1}^{2}h(\vec{X}_{n})) = \int h(\vec{x}_{n}) \left(\int x_{n+1}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x_{n+1} - x_{n})^{2}} dx_{n+1} \right) f_{\vec{X}_{n}}(\vec{x}_{n}) d\vec{x}_{n}$$

$$= E((1 + X_{n}^{2})h(\vec{X}_{n})),$$

donc

$$E(X_{n+1}^2|\vec{X}_n) = 1 + X_n^2$$

donc

$$E(X_n^2) = n.$$

Comme la suite (X_n) n'est pas bornée dans L^2 , elle diverge.

3. On a

$$f_{\vec{X}_n}(\vec{x}_n) = f_{X_1}(x_1) \prod_{1 \le j \le n-1} f_{X_{j+1}}^{\vec{X}_j = \vec{x}_j}(x_{j+1})$$

$$= \frac{1}{(2\pi)^{n/2}} \exp \left[-\frac{1}{2} \left(x_1^2 + (x_2 - x_1)^2 + \dots + (x_n - x_{n-1})^2 \right) \right],$$

soit, en notant

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & & \vdots \\ 0 & -1 & 2 & -1 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ & & 0 & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 1 \end{pmatrix}, \quad A_{n}^{-1} = \begin{pmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & 2 & \cdots & \cdots & 2 \\ 1 & 2 & 3 & \ddots & 3 & 3 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 2 & 3 & \ddots & n-1 & n-1 \\ 1 & 2 & 3 & \cdots & n-1 & n \end{pmatrix}$$

 $(A_n^{-1} \text{ est la matrice de dispersion de } \vec{X}_n),$

$$f_{\vec{X}_n}(\vec{x}_n) = \frac{1}{(2\pi)^{n/2}} \exp\left[-\frac{1}{2}^t \vec{x}_n \cdot A_n \cdot \vec{x}_n\right].$$

Comme \vec{X}_n est centrée, sa fonction caractéristique vaut, en $\vec{u}_n \in \mathbb{R}^n$,

$$\varphi_{\vec{X}_n}(\vec{u}_n) = \exp\left[-\frac{1}{2}t\vec{u}_n \cdot A_n^{-1} \cdot \vec{u}_n\right].$$

4. La variable aléatoire (X_j, X_k) , marginale de \vec{X}_n pour $n \geq k$, est encore gaussienne centrée. Sa matrice de dispersion est

$$D_{(X_j,X_k)} = \begin{pmatrix} j & j \\ j & k \end{pmatrix}.$$

Donc

$$\varphi_{(X_j,X_k)}(u_j,u_k) = \exp\left[-\frac{1}{2}(ju_j^2 + 2ju_ju_k + ku_k^2)\right],$$

donc

$$\varphi_{\left(X_j, \frac{X_k}{\sqrt{k}}\right)}(u_j, u_k) = \exp\left[-\frac{1}{2}(ju_j^2 + 2\frac{j}{\sqrt{k}}u_ju_k + u_k^2)\right].$$

Donc

$$\lim_{k} \varphi_{\left(X_{j}, \frac{X_{k}}{\sqrt{k}}\right)}(u_{j}, u_{k}) = \exp\left[-\frac{1}{2}(ju_{j}^{2} + v^{2})\right].$$

D'après le théorème de Lévy,

$$\left(X_j, \frac{X_k}{\sqrt{k}}\right) \to_k^{\mathcal{L}} N_2\left(0, \begin{pmatrix} j & 0\\ 0 & 1 \end{pmatrix}\right)$$

 $(X_i \text{ et } X_k/\sqrt{k} \text{ sont asymptotiquement indépendantes}).$

5. Notons $\vec{1}_n$ le vecteur de \mathbb{R}^n dont toutes les composantes valent 1, de sorte que $Z_n = n^{-3/2}(t\vec{1}_n \cdot \vec{X}_n)$. La fonction caractéristique de Z_n est

$$\varphi_{Z_n}(u) = E\left(\exp iun^{-3/2}(^t\vec{1}_n \cdot \vec{X}_n)\right)$$

$$= \varphi_{\vec{X}_n}\left(n^{-3/2}u\vec{1}_n\right)$$

$$= \exp\left[-\frac{u^2}{2n^3}(^t\vec{1}_n \cdot A_n^{-1} \cdot \vec{1}_n)\right] = \exp\left[-\frac{u^2S_n}{2n^3}\right],$$

où S_n est la somme des coefficients de A_n^{-1} , que l'on peut calculer en sommant parallèlement à la première diagonale :

$$S_n = \frac{n(n+1)(2n+1)}{6}.$$

Donc

Donc
$$\varphi_{Z_n}(u) = \exp\left[-\frac{u^2}{12}\frac{(n+1)(2n+1)}{n^2}\right] \to_n \exp\left[-\frac{t^2}{6}\right].$$
 Il en résulte que, en vertu du théorème de Lévy, la loi de Z_n converge étroitement

vers $N_1(0, \frac{1}{3})$.