Examen de janvier 2014

Deux heures — Sans document, ni calculatrice, ni téléphone, etc. — Chaque question numérotée sera notée sur environ deux points. Il n'est donc pas nécessaire de terminer le sujet — Les réponses devront être concises, et les passages à la limite justifiés.

Exercice 1 Un espace mesurable

- 1. Monter que la tribu \mathcal{A} engendrée par les singletons d'un ensemble E est la classe des parties qui sont soit dénombrables soit de complémentaire dénombrable.
- 2. Montrer qu'une fonction mesurable $f:(E,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est constante en dehors d'une partie dénombrable; on pourra d'abord considérer le cas d'une fonction étagée.
- 3. Dans le cas où E = [0, 1], calculer l'espérance conditionnelle sachant \mathcal{A} d'une fonction réelle borélienne intégrable définie sur E.

Exercice 2 De la formule de Taylor probabiliste aux fonctions d'Hermite

Soient (Ω, \mathcal{A}, P) un espace de probabilité et $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle. Pour tout $\xi \in \mathbb{R}$, on note $\epsilon_{\xi} : \mathbb{R} \to \mathbb{R}$ la fonction $x \mapsto e^{x\xi}$ et $\epsilon_{\xi}^{(n)}$ sa dérivée n-ième.

1. Supposons qu'il existe une suite $(p_n)_{n\in\mathbb{N}}$ de polynômes d'une variable telle que, pour tout $\xi\in\mathbb{R}$, on a

$$\epsilon_{\xi}(x) = \sum_{n \in \mathbb{N}} E(\epsilon_{\xi}^{(n)}(X)) \frac{p_n(x)}{n!} \quad \text{et} \quad \epsilon_{\xi}'(x) = \sum_{n \in \mathbb{N}} E(\epsilon_{\xi}^{(n)}(X)) \frac{p_n'(x)}{n!}.$$

a) Calculer les dérivées $\epsilon_{\xi}^{(n)}$ pour $n \in \mathbb{N}$, montrer que

$$\frac{e^{x\xi}}{E(e^{X\xi})} = \sum_{n>0} \frac{p_n(x)}{n!} \xi^n \quad \text{et} \quad \frac{\xi e^{x\xi}}{E(e^{X\xi})} = \sum_{n>0} \frac{p'_n(x)}{n!} \xi^n, \tag{1}$$

puis en déduire que les polynômes p_n sont totalement déterminés par les relations suivantes :

$$p_0(x) = 1, \quad p'_n = np_{n-1}, \quad \int p_n dP_X = 0 \quad (\forall n \ge 1).$$
 (2)

- b) Calculer les p_n dans le cas où $P_X = \delta_a$ (mesure de Dirac) avec $a \in \mathbb{R}$, ainsi que p_n pour n = 0, 1, 2 dans le cas où P_X est la loi de Bernoulli $\frac{1}{2}(\delta_0 + \delta_1)$.
- 2. On veut montrer, la "formule de Taylor" suivante, pour toute fonction f réelle de classe C^{∞} sur \mathbb{R} telle que, pour tout $n \in \mathbb{N}$, $f^{(n)}(X)$ soit intégrable, et pour tout $n \in \mathbb{N}$:

$$f(x) = \sum_{0 \le k \le n} E(f^{(k)}(X)) \frac{p_n(x)}{k!} + E\left(\int_0^{X-x} \frac{p_n(x+t)}{n!} f^{(n+1)}(X-t) dt\right).$$

a) Montrer que, pour toute fonction f réelle de classe C^{∞} et pour tout $n \in \mathbb{N}$, on a

$$\sum_{0 < k < n} \left(\frac{p_k(x)}{k!} f^{(k)}(y) - \frac{p_k(y)}{k!} f^{(k)}(x) \right) = \int_0^{y-x} \frac{p_n(x+t)}{n!} f^{(n+1)}(y-t) dt.$$

b) Conclure; on pourra intégrer la formule précédente par rapport à y.

On se spécialise dorénavant au cas où X est de loi gaussienne N(0, 1/2), c'est-à-dire de densité $e^{-x^2}/\sqrt{\pi}$. Les polynômes p_n (définis par (1) ou (2)) s'appellent alors les polynômes d'Hermite et se notent H_n .

- 3. a) Montrer que, pour tout $\xi \in \mathbb{R}$, la variable aléatoire $e^{X\xi}$ est intégrable, et que la fonction $h: \xi \mapsto E(e^{X\xi})$ est dérivable sur \mathbb{R} , calculer sa dérivée, et en déduire que $h(\xi) = e^{\xi^2/4}$ (on pourra trouver une équation différentielle vérifiée par h, et la résoudre).
 - b) En déduire que

$$H_n(x) = (-1)^n 2^{-n} e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right),$$

et calculer H_n pour n=0, 1 et 2.

Pour $n \geq 0$, notons ψ_n la n-ième fonction d'Hermite définies sur \mathbb{R} par

$$\psi_n(x) = e^{-x^2/2} H_n(x).$$

- 4. a) Montrer que $(\psi_n|\psi_m)_{L^2} = \int_{\mathbb{R}} \psi_n(x) \psi_m(x) dx = 0$ si $n \neq m$ et que $(\psi_n|\psi_n)_{L^2} \neq 0$; on pourra faire des intégrations par parties et utiliser la récurrence de (2).
 - b) (Difficile) Soit $\varphi \in L^2$ une fonction L^2 -orthogonale à chaque ψ_n et telle que $e^{x^2/2}\varphi(x) \in L^1(\mathbb{R})$. Montrer que $\varphi = 0$; on pourra remarquer que, pour tout $\xi \in \mathbb{R}$,

$$0 = \sum_{n>0} \frac{\xi^n}{n!} \int e^{-x^2/2} H_n(x) \varphi(x) dx,$$

montrer que le membre de droite de cette égalité s'exprime comme la convolée de e^{-x^2} et de $e^{x^2/2}\varphi(x)$, puis prendre la transformée de Fourier.

On admettra que le raisonnement de la question précédente montre que (ψ_n) est une base hilbertienne de L^2 .

- 5. On veut maintenant prolonger la transformation de Fourier à $L^2(\mathbb{R})$.
 - a) Montrer que $\psi_{n+1}(x) = \frac{1}{2}(x\psi_n(x) \psi'_n(x))$ pour tout $n \in \mathbb{N}$.
 - b) En déduire que $\hat{\psi}_{n+1}(\xi) = -\frac{i}{2} \left(\xi \hat{\psi}_n(\xi) \hat{\psi}'_n(\xi) \right)$, puis que $\hat{\psi}_n = \sqrt{2\pi} (-i)^n \psi_n$.
 - c) Montrer qu'il existe une unique application linéaire continue $\mathcal{F}_2: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ telle que $\mathcal{F}_2(\psi_n) = \sqrt{2\pi}(-i)^n \psi_n$.

Solution de l'exercice 1

- 1. Soit \mathcal{B} la classe des parties dénombrables ou de complémentaire dénombrable. Vérifions que \mathcal{B} est une tribu, ce dont nous aurons besoin pour montrer que $\mathcal{A} \subset \mathcal{B}$:
 - L'ensemble vide étant dénombrable, $\emptyset \in \mathcal{B}$.
 - \mathcal{B} est trivialement stable par passage au complémentaire.
 - Soient $A_1, A_2, ... \in \mathcal{B}$. Si tous les A_i sont dénombrables, leur union (dénombrable) est dénombrable, donc appartient à \mathcal{B} . Sinon, il existe j tel que A_j soit infini non dénombrable, et, par définition de \mathcal{B} , le complémentaire de A_j est dénombrable; alors

$$\mathbb{C} \cup_i A_i = \cap_i \mathbb{C} A_i \subset \mathbb{C} A_i$$

est dénombrable, donc $\cup_i A_i \in \mathcal{B}$.)

On peut maintenant facilement montrer que A = B:

 $-\mathcal{B}\subset\mathcal{A}$?

La tribu \mathcal{A} , étant stable par union dénombrable, contient les parties dénombrables; étant aussi stable par passage au complémentaire, elle contient les parties de complémentaire dénombrable. Donc $\mathcal{B} \subset \mathcal{A}$.

 $-\mathcal{A}\subset\mathcal{B}$?

Réciproquement, les singletons de E sont dans \mathcal{B} . Comme \mathcal{A} est la plus petite tribu engendrée par les singletons et comme \mathcal{B} est une tribu, $\mathcal{A} \subset \mathcal{B}$.

Donc $\mathcal{A} = \mathcal{B}$.

2. Si E est dénombrable, la propriété demandée est triviale puisqu'alors toute fonction est constante en dehors d'une partie dénombrable (en l'occurence sur $E^c = \emptyset$). Supposons donc que E est non dénombrable.

Soit $f: E \to \mathbb{R}$ une fonction mesurable étagée. Ses ensembles de niveau $f^{-1}(y)$, $y \in f(E)$, forment une partition finie de E; en particulier, si $y, z \in f(E)$, soit $f^{-1}(y) = f^{-1}(z)$ (i.e. y = z) soit $f^{-1}(y) \cap f^{-1}(z) = \emptyset$ (i.e. $y \neq z$).

Supposons que $y, z \in f(E)$ et que $f^{-1}(y)$ et $f^{-1}(z)$ soient non dénombrables. Leurs complémentaires sont dénombrables. Comme $f^{-1}(y)$ ne peut pas être contenu dans le complémentaire de $f^{-1}(z)$, forcément y = z. Donc il existe au plus une valeur $y \in f(E)$ telle que $f^{-1}(y)$ soit non dénombrable. Mais il existe forcément une telle valeur y parce que E est non dénombrable et parce que f prend un nombre fini de valeurs (l'union finie de parties dénombrables est dénombrable). Donc f = y en dehors de l'ensemble dénombrable $Cf^{-1}(y)$.

Soit $f: E \to \mathbb{R}$ une fonction mesurable positive. Soit (f_n) une suite croissante de fonctions mesurables étagées positives, convergeant vers f. Pour chaque fonction f_n , d'après le cas précédent il existe un réel y_n tel que $f_n = y_n$ en dehors d'une partie dénombrable A_n . En dehors de la partie dénombrable $\cup A_n$, $f_n = y_n \to f$; donc la suite réelle (y_n) converge vers un certain $y \in \mathbb{R}$, et f = y en dehors de $\cup A_n$.

Pour une fonction f mesurable de signe quelconque, le cas précédent appliqué aux parties positive et négative de f montre que f est constante en dehors d'une partie dénombrable.

3. Soit $f:[0,1]\to\mathbb{R}$ intégrable (sous-entendu par rapport à la mesure de Lebesgue, i.e. la loi uniforme sur [0,1]). D'après la question précédente, puisque la

mesure de Lebesgue d'une partie dénombrable est nulle, $E(f|\mathcal{A})$ est constante presque sûrement. Comme $E(E(f|\mathcal{A})) = E(f)$, cette constante doit être E(f). Donc $E(f|\mathcal{A}) = E(f)$ p.s.

Solution de l'exercice 2

1. a) Comme $\epsilon_{\xi}^{(n)}(x) = \xi^n e^{x\xi}$

$$e^{x\xi} = \left(\sum_n \frac{p_n(x)}{n!} \xi^n\right) E(e^{X\xi}) \quad \text{et} \quad \xi e^{x\xi} = \left(\sum_n \frac{p_n'(x)}{n!} \xi^n\right) E(e^{X\xi});$$

en divisant par $E(e^{X\xi}) > 0$, on obtient bien

$$\frac{e^{x\xi}}{E(e^{X\xi})} = \sum_{n>0} \frac{p_n(x)}{n!} \xi^n \quad \text{et} \quad \frac{\xi e^{x\xi}}{E(e^{X\xi})} = \sum_{n>0} \frac{p'_n(x)}{n!} \xi^n.$$
 (3)

La première égalité de (3) en $\xi = 0$ montrer que $\frac{1}{E(1)} = 1 = p_0(x)$. En multipliant la première égalité de (3) par ξ , puis en égalant avec les membres de la seconde, on obtient que

$$\sum_{n>0} \frac{p_n(x)}{n!} \xi^{n+1} = \sum_{n>1} \frac{p_{n-1}(x)}{(n-1)!} \xi^n = \sum_{n>0} \frac{p'_n(x)}{n!} \xi^n,$$

soit, par unicité du développement de Taylor, $p_0'=0$ (ce que l'on sait déjà) et

$$p_n' = np_{n-1} \quad (n \ge 1).$$

En intégrant enfin la première égalité de (3) par rapport à P_X ,

$$\int \frac{e^{x\xi}}{E(e^{X\xi})} dP_X = 1 = \sum_{n\geq 0} \frac{1}{n!} \left(\int p_n dP_X \right) \xi^n,$$

donc $(\int p_1 dP_X = 1$, ce que l'on savait déjà, et)

$$\int p_n \, dP_X = 0 \quad (\forall n \ge 1).$$

Ces formules déterminent uniquement les polynômes p_n , par récurrence, puisque, à chaque étape, la constante d'intégration de l'équation $p'_n = np_{n-1}$ est déterminée par le fait que p_n doit être d'espérance nulle.

b) Si $P_X = \delta_a$, d'après la question précédente on doit avoir

$$p_0(x) = 1$$
, $p'_n = np_{n-1}$, $p_n(a) = 0$ $(\forall n \ge 1)$.

Donc, par récurrence on voit que $p_n(x) = (x-a)^n$. Si $P_X = \frac{1}{2}(\delta_0 + \delta_1)$,

$$p_0(x) = 1$$
, $p_1(x) = x - \frac{1}{2}$, $p_2(x) = x(x - 1)$.

2. a) En utilisant le fait que $p'_n = np_{n-1}$, une intégration par parties montre que

$$\int_0^{y-x} \frac{p_n(x+t)}{n!} f^{(n+1)}(y-t) dt = \frac{p_n(x)}{n!} f^{(n)}(y) - \frac{p_n(y)}{n!} f^{(n)}(x) + \int_0^{y-x} \frac{p_{n-1}(x+t)}{(n-1)!} f^{(n)}(y-t) dt.$$

Après $\ell \in \{1,...,n\}$ intégrations par parties, on voit que

$$\int_0^{y-x} \frac{p_n(x+t)}{n!} f^{(n+1)}(y-t) dt = \sum_{n-\ell+1 \le k \le n} \left(\frac{p_k(x)}{k!} f^{(k)}(y) - \frac{p_k(y)}{k!} f^{(k)}(x) \right) + \int_0^{y-x} \frac{p_{n-\ell}(x+t)}{(n-\ell)!} f^{(n+1-\ell)}(y-t) dt.$$

Pour $\ell = n$, on obtient, en utilisant le fait que $p_0 = 1$,

$$\int_{0}^{y-x} \frac{p_{n}(x+t)}{n!} f^{(n+1)}(y-t) dt = \sum_{1 \le k \le n} \left(\frac{p_{k}(x)}{k!} f^{(k)}(y) - \frac{p_{k}(y)}{k!} f^{(k)}(x) \right) + \int_{0}^{y-x} p_{0}(x+t) f'(y-t) dt$$

$$= \sum_{0 \le k \le n} \left(\frac{p_{k}(x)}{k!} f^{(k)}(y) - \frac{p_{k}(y)}{k!} f^{(k)}(x) \right),$$

d'où la formule voulue.

b) En intégrant par rapport à y (par rapport à la loi de X), en se rappelant que $p_0 = 1$ et que $\int p_n P_X = 0$ pour $n \ge 1$ on obtient

$$\int \left(\int_0^{y-x} \frac{p_n(x+t)}{n!} f^{(n+1)}(y-t) dt \right) dP_X(y)$$

$$= \sum_{0 \le k \le n} \frac{p_k(x)}{k!} E(f^{(k)}(X)) - f(x),$$

d'où la formule de Taylor annoncée.

- 3. a) Notons $Y(\xi, \omega) = e^{X(\omega)\xi}$. Vérfions les hypothèses du théorème de dérivation sous le signe somme, pour montrer la dérivabilité et calculer la dérivée de $E(Y(\xi, \cdot))$ en un point $\xi_0 \in \mathbb{R}$ donné :
 - Pour tout $x = X(\omega)$, la fonction $\xi \mapsto e^{x\xi}$ est dérivable en ξ_0 .
 - Pour tout $\xi \in \mathbb{R}$, la fonction

$$e^{x\xi}e^{-x^2} = \underbrace{e^{x\xi-x^2/2}}_{\text{bornée}} \underbrace{e^{-x^2/2}}_{\in L^1}$$

est le produit d'une fonction continue tendant vers 0 à l'infini (donc bornée) par une fonction dx-intégrable, donc, est elle même dx-intégrable. Donc, d'après la formule de transfert, la variable aléatoire Y est intégrable.

— Sur l'intervalle $[-|\xi_0|-1,|\xi_0|+1]$, la dérivée $\partial_{\xi}Y=X\,e^{X\,\xi}$ vérifie

$$|\partial_{\xi}Y| = |X e^{X\xi}| \le |X| e^{|X| (|\xi_0| + 1)}$$

donc, d'après le théorème des accroissements finis, si $\xi \in [-|\xi_0| - 1, |\xi_0| + 1] \setminus \{\xi_0\},$

$$\left| \frac{Y(\xi, \omega) - Y(\xi_0, \omega)}{\xi - \xi_0} \right| \le |X| e^{|X|(|\xi_0| + 1)},$$

où le membre de droite est dans L^1 , puisque

$$|x| e^{|x|(|\xi_0|+1)} e^{-x^2} \le \underbrace{|x| e^{|x|(|\xi_0|+1)} e^{-x^2/2}}_{\text{born\'ee}} \underbrace{e^{-x^2/2}}_{\in L^1} \in L^1(\mathbb{R}).$$

Donc, d'après le théorème de dérivation d'une intégrale, $h(\xi) = E(Y)$ est dérivable de dérivée

$$h'(\xi) = \int_{\mathbb{R}} e^{x\xi} x \frac{e^{-x^2}}{\sqrt{\pi}} dx.$$

Une intégration par parties (justifiée comme dans la question 4) montre que

$$h'(\xi) = \frac{\xi}{2} \int_{\mathbb{R}} e^{x\xi} \frac{e^{-x^2}}{\sqrt{\pi}} dx = \xi h(\xi).$$

Donc il existe $C \in \mathbb{R}$ tel que $h(\xi) = Ce^{\xi^2/4}$. Dans le cas où $\xi = 0$, on voit que C = 1. Donc

$$E(e^{X\xi}) = e^{\xi^2/4}.$$

Remarquons que $h(\xi) = \Phi_X(i\xi)$, où Φ_X est la fonction caractéristique de X. C'est pourquoi le calcul précédent ressemble tant au calcul de Φ_X fait en cours. Mais, en toute rigueur, il faut refaire ce calcul parce que nous n'avons défini Φ_X que sur la droite réelle.

b) D'après la question précédente,

$$\frac{e^{x\xi}}{E(e^{X\xi})} = e^{x\xi - \xi^2/4} = e^{x^2/2}e^{-(x - \xi/2)^2}$$

Donc, d'après l'égalité (1),

$$e^{x^2/2}e^{-(x-\xi/2)^2} = \sum_{n>0} \frac{H_n(x)}{n!} \xi^n.$$

Donc, par unicité du développement de Taylor,

$$H_n(x) = e^{x^2} \frac{\partial^n}{\partial \xi^n} \left(e^{-(x-\xi/2)^2} \right) \Big|_{\xi=0}.$$

Or, par récurrence on voit que

$$\frac{\partial^n}{\partial \xi^n} e^{-(x-\xi/2)^2} = (-2)^{-n} \frac{\partial^n}{\partial x^n} e^{-(x-\xi)^2/2},$$

donc, en $\xi = 0$,

$$\frac{\partial^n}{\partial \xi^n} e^{-(x-\xi/2)^2} \bigg|_{\xi=0} = (-1)^n \frac{d^n}{dx^n} e^{-x^2}.$$

Donc, pour tout $n \geq 0$,

$$H_n(x) = (-1)^n 2^{-n} e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right).$$

Soit avec cette dernière formule, soit en utilisant la formule de récurrence (2), on voit que

$$H_0(x) = 1$$
, $H_1(x) = x$ et $H_2(x) = x^2 - \frac{1}{2}$.

4. a) Il convient premièrement de remarquer que $\psi_n \in L^2$. En effet,

$$\psi_n(x) = e^{-x^2/2} H_n(x) = (-2)^{-n} e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2} \right),$$

donc par récurrence on voit que $\psi_n(x)$ est de la forme

$$\psi_n(x) = e^{-x^2/2} Q_n(x),$$

où Q_n est un polynôme. Donc

$$\psi_n(x) = \underbrace{e^{-x^2/4}Q_n(x)}_{\text{born\'ee}} \underbrace{e^{-x^2/4}}_{\in L^2} \in L^2.$$

Soit $n \geq m$. On a

$$(\psi_n|\psi_m)_{L^2(\mathbb{R})} = (-2)^{-n} \int \frac{d^n}{dx^n} \left(e^{-x^2}\right) H_m(x) dx.$$

D'après le théorème de convergence dominée,

$$(\psi_n|\psi_m)_{L^2(\mathbb{R})} = (-2)^{-n} \lim_{A \to +\infty} \int_{-A}^A \frac{d^n}{dx^n} \left(e^{-x^2}\right) H_m(x) dx.$$

Or, A > 0 étant fixé, une intégration par partie montre que

$$\int_{-A}^{A} \frac{d^{n}}{dx^{n}} \left(e^{-x^{2}} \right) H_{m}(x) dx = \left[\frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^{2}} \right) H_{m}(x) \right]_{-A}^{A} + \int_{-A}^{A} \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^{2}} \right) H'_{m}(x) dx.$$

Le terme entre crochets a une limite nulle quand A tend vers $+\infty$, parce que $\frac{d^{n-1}}{dx^{n-1}}\left(e^{-x^2}\right)H_m(x)$ est le produit d'un polynôme par e^{-x^2} ; le terme intégral converge, lui, d'après le théorème de convergence dominée, vers

$$\int_{\mathbb{R}} \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^2} \right) H'_m(x) \, dx.$$

Donc

$$(\psi_{n}|\psi_{m})_{L^{2}(\mathbb{R})} = (-1)^{n+1}2^{-n} \int \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^{2}}\right) H'_{m}(x) dx$$

$$= (-1)^{n+1}2^{-n} m \int \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^{2}}\right) H_{m-1}(x) dx \quad \text{(formule (2))}$$

$$= (-1)^{n+m}2^{-n} m! \int \frac{d^{n-m}}{dx^{n-m}} \left(e^{-x^{2}}\right) dx \quad \text{(m intégrations par parties)}$$

$$= \begin{cases} (-1)^{n+m}2^{-n} m! \left[\frac{d^{n-m-1}}{dx^{n-m-1}} \left(e^{-x^{2}}\right)\right]_{-\infty}^{+\infty} = 0 \quad \text{si $n > m$} \\ 2^{-n} n! \int e^{-x^{2}} dx = 2^{-n} n! \sqrt{\pi} \quad \text{si $n = m$,} \end{cases}$$

ce qui montre que (ψ_n) est orthogonale (et que $\left(2^{n/2}\psi_n/\sqrt{n!\sqrt{\pi}}\right)$) est orthonormée).

b) Pour tout $t \in \mathbb{R}$

$$0 = \sum_{n\geq 0} \frac{\xi^n}{n!} (\psi_n(x), \varphi(x))_{L^2}$$

$$= \sum_{n\geq 0} \frac{\xi^n}{n!} \int_{\mathbb{R}} e^{-x^2/2} H_n(x) \varphi(x) dx$$

$$= \int_{\mathbb{R}} e^{-x^2/2} \left(\sum_{n\geq 0} H_n(x) \frac{\xi^n}{n!} \right) \varphi(x) dx \quad \text{(par convergence dominée)}$$

$$= \int_{\mathbb{R}} e^{-x^2/2} \left(e^{x^2} e^{-(x-\xi/2)^2} \right) \varphi(x) dx \quad \text{(par définition des } H_n)$$

$$= \int_{\mathbb{R}} e^{-(\xi/2-x)^2} \left(e^{x^2/2} \varphi(x) \right) dx$$

$$= g * f(\xi/2),$$

οù

$$g(x) = e^{-x^2}$$
 et $f(x) = e^{x^2/2}\varphi(x)$.

Comme la transformation de Fourier des fonctions L^1 échange produit de convolution et produit habituel, pour tout $\xi \in \mathbb{R}$ on a

$$0 = \widehat{g * f}(\xi) = \widehat{g}(\xi) \,\widehat{f}(\xi);$$

or $\hat{g}(\xi) \neq 0$, donc

$$\hat{f}(\xi) = 0 \quad (\forall \xi \in \mathbb{R}).$$

Par injectivité de la transformation de Fourier,

$$f(x) = 0 \quad (\forall x \in \mathbb{R}),$$

donc $\varphi = 0$.

(Pour voir que les fonctions d'Hermite forment une base hilbertienne de L^2 , il faudrait faire ce même calcul pour toute fonction $\varphi \in L^2$, sans supposer que $f = e^{x^2/2} \varphi \in L^1$. Mais alors il faut pouvoir écrire que $0 = \widehat{g*f}(\xi) = \widehat{g}(\xi) \widehat{f}(\xi)$, ce qui exige de définir la transformation de Fourier dans des espaces fonctionnels plus généraux que L^1 . Ici, f appartient par exemple à l'espace des "distributions tempérées", auquel la transformation de Fourier se prolonge effectivement.)

5. a) On a

$$\psi_{n+1}(x) = (-2)^{-(n+1)} e^{x^2/2} \frac{d^{n+1}}{dx^{n+1}} \left(e^{-x^2} \right)$$

$$= (-2)^{-(n+1)} \left[\frac{d}{dx} \left(e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2} \right) \right) - x e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2} \right) \right]$$

$$= \frac{1}{2} (x \psi_n(x) - \psi'_n(x)).$$

b) Une intégration par parties (et un passage à la limite, comme précédemment dans la question b) montre que

$$\widehat{\psi'_n}(\xi) = \int e^{-ix\xi} \psi'_n(x) \, dx = i\xi \int e^{-ix\xi} \psi_n(x) \, dx = i\xi \hat{\psi}_n(\xi).$$

De plus, le théorème de dérivation sous l'intégrale montre que

$$\widehat{x\psi_n(x)}(\xi) = \int e^{-ix\xi} x \psi_n(x) dx$$

$$= -\frac{1}{i} \int \frac{\partial \left(e^{-ix\xi}\right)}{\partial \xi} \psi_n(x) dx$$

$$= i \frac{d}{d\xi} \int e^{-ix\xi} \psi_n(x) dx$$

$$= i \psi'_n(\xi).$$

Donc, d'après la question précédente,

$$\hat{\psi}_{n+1}(\xi) = -\frac{i}{2} \left(\xi \hat{\psi}_n(\xi) - \hat{\psi}'_n(\xi) \right).$$

Donc la suite des fonctions $\theta_n(\xi) = (-i)^{-n} \hat{\psi}_n(\xi)$ vérifie la même relation de récurrence que (ψ_n) :

$$\theta_{n+1}(\xi) = \frac{1}{2} \left(\xi \theta_n(\xi) - \theta'_n(\xi) \right).$$

De plus, $\psi_0(x) = e^{-x^2/2}$ et $\theta_0(\xi) = \hat{\psi}_0(\xi) = \sqrt{2\pi}$. Donc, pour tout n,

$$\theta_n(\xi) = \sqrt{2\pi}\psi_n(\xi).$$

soit

$$\hat{\psi}_n(\xi) = \sqrt{2\pi} (-i)^n \psi_n(\xi).$$

c) L'unicité résulte du fait que l'espace engendré par les fonctions d'Hermite est dense. L'existence résulte de la formule, si $f = \sum_{n>0} f_n \psi_n$,

$$\hat{f} = \sum_{n>0} \sqrt{2\pi} (-i)^n f_n \psi_n.$$