Partiel du 8 novembre 2011

Deux heures. Sans document, ni calculatrice, ni téléphone, etc.

Exercice 1 Mesures

Soient μ et ν les mesures sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ définies par

$$\mu = \sum_{n>1} e^{-n} \delta_{1/n}$$
 et $\nu = \sum_{n>1} e^{n} \delta_{1/n}$,

où δ_a est la mesure de Dirac en $a \in \mathbb{R}$ (on admettra que ce sont des mesures positives).

- 1. Les mesures μ et ν sont-elles finies? de probabilité? σ -finies?
- 2. Calculer $\mu(\{0\})$, $\mu([0,1/k])$ $(k \ge 1)$ et $\lim_k \mu([0,1/k])$. Comparer les résultats.
- 3. Faire de même avec ν .

Solution de l'exercice 1

1. Comme $1/n \in \mathbb{R}$ pour tout $n \geq 1$,

$$\mu(\mathbb{R}) = \sum_{n>1} e^{-n} = \frac{e}{1 - e^{-1}}$$

et μ est finie; μ n'est pas une probabilité parce que $e^2 \neq e-1$ (puisque par exemple $2 \leq e \leq 3$, donc $e^2 \geq 4$ tandis que $e-1 \leq 2$). De même,

$$\nu(\mathbb{R}) = \sum_{n \ge 1} e^n = +\infty$$

donc ν est infinie (et n'est pas une probabilité). Mais ν est σ -finie, puisque

$$\mathbb{R} = \bigcup_n \mathbb{C}[0, 1/n], \quad \text{avec } \nu(]0, 1/n]) = \sum_{1 \le k < n} e^k < \infty.$$

2. Comme $1/n \neq 0$ quel que soit $n \geq 1$, $\mu(\{0\}) = 0$. Comme $1/n \in [0, 1/k]$ si et seulement si $n \geq k$,

$$\mu([0,1/k]) = \sum_{n \ge k} e^{-k} = \frac{e^{-k}}{1 - e^{-1}}.$$

Le fait que $\mu([0,1/k]) \to_k \mu(\{0\})$ pouvait être prévu par le fait général qu'une mesure finie est continue extérieurement.

En revanche, la mesure infinie ν n'est pas continue extérieurement puisque $\nu(\{0\}) = 0$, tandis que

$$\nu([0,1/k]) = \sum_{n > k} e^n = +\infty \to +\infty.$$

Exercice 2 Dés truqués

- 1. On jette deux dés non pipés. Calculer la loi de la somme des points. Indication : Calculer la fonction génératrice de la somme des points.
- 2. Peut-on truquer deux dés indépendants de façon que la somme des points soit équirépartie ? Indication : Étudier les racines complexes de la fonction (polynomiale) génératrice de la somme, et en déduire que cette fonction ne peut pas engendrer la loi uniforme.

Solution de l'exercice 2

 On pourrait répondre à cette question par un simple raisonnement de dénombrement. Nous allons passer par les fonctions génératrices, ce qui facilitera la résolution de la seconde question.

Soient X_i , i = 0, 1, les variables aléatoires correspondant aux deux dés jetés, et $S = X_0 + X_1$. Soient G_i et G_S les fonctions génératrices associées :

$$G_i(s) = \sum_{1 \le k \le 6} P(X_i = k) s^k$$
 et $G_S(s) = \sum_{2 \le k \le 12} P(S = k) s^k$.

Comme les dés sont non pipés, la loi de X_i , i = 0, 1, est uniforme et

$$G_i(s) = \frac{1}{6} \sum_{1 \le k \le 6} s^k.$$

Comme les variables aléatoires X_0 et X_1 sont indépendantes,

$$G_S(s) = G_0(s) G_1(s) = \frac{1}{36} \left(\sum_{1 \le k \le 6} s^k \right)^2$$
$$= \frac{1}{36} \left(s^2 + 2s^3 + 3s^4 + 4s^5 + 5s^6 + 6s^7 + 5s^8 + 4s^9 + 3s^{10} + 2s^{11} + s^{12} \right),$$

expression développée dans la quelle on lit la probabilité P(S=k) cherchée sur le coefficient de s^k .

2. Montrons qu'on ne peut pas choisir la loi des dés de façon que la somme soit équirépartie. La fonction génératrice d'une variable aléatoire S équirépartie serait le polynôme de degré 12

$$G_S(s) = \frac{1}{11} \sum_{2 \le k \le 12} s^k = \frac{s^2}{11} \frac{s^{11} - 1}{s - 1},$$

dont les racines sont 0 (avec multiplicité deux) et les dix racines 11-ièmes de l'unité distinctes de 1, soit $\exp ki2\pi/11$, k=1,...,10.

D'autre part, comme $G_i(0) = 0$ (par définition d'un dé dont les faces sont numérotées de 1 à 6), les polynômes $G_i(s)$ sont de la forme $sQ_i(s)$, où $Q_i(s)$ est un polynôme de degré ≤ 5 . Si les deux tirages sont indépendants, la loi de la somme est

$$G_0(s)G_1(s) = s^2Q_0(s)Q_1(s).$$

On voudrait que ce produit soit de degré 12, donc forcément que les $Q_i(s)$ soient chacun de degré 5. Mais alors les $Q_i(s)$, de degré impair, possèdent chacun une racine réelle, et leur produit ne peut pas être $(s^{11} - 1)/11(s - 1)$.

Exercice 3 Transformée de Laplace d'une mesure

Soit μ une mesure finie sur $(\mathbb{R}^+, \mathcal{B}_{\mathbb{R}^+})$. La fonction

$$f: \mathbb{R}^+ \to [0, +\infty], \quad x \mapsto \int_{\mathbb{R}^+} e^{-tx} \, d\mu(t)$$

est-elle finie? continue? dérivable?

Solution de l'exercice 3

Remarquons déjà que la fonction $f: \mathbb{R}^+ \to [0, +\infty]$ est bien définie parce que pour tout $x \in \mathbb{R}^+$ la fonction $t \mapsto e^{-tx}$ est continue donc borélienne, et positive.

Comme $e^{-tx} \leq 1$, et comme μ est finie, on a

$$f(x) \le \int_{\mathbb{R}^+} d\mu < +\infty.$$

De plus, pour tout t la fonction $x \mapsto e^{-tx}$ est continue, et pour tout x la fonction $t \mapsto e^{-tx}$ est dominée par la fonction μ -intégrable constante égale à 1. D'après le théorème de continuité des intégrales dépendant d'un paramètre (le paramètre, ici, est x), f est donc continue sur \mathbb{R}^+ (ce qui découlera aussi de la dérivabilité de f démontrée ci-dessous).

Montrons enfin que f est dérivable sur \mathbb{R}^+ . Soient $x \geq 0$ fixé et h petit (si x = 0, on suppose $h \geq 0$). Le taux d'accroissement de f entre x et x + h vaut

$$\tau_x(h) = \frac{f(x+h) - f(x)}{h} = \int_{\mathbb{R}^+} \frac{e^{-tx}}{h} (e^{-th} - 1) d\mu(t).$$

Or, d'après la formule de Taylor avec reste intégral, $e^u - 1 = u\theta(u)$, où θ est la fonction C^{∞} définie par

$$\theta(u) = \int_0^1 e^{us} \, ds.$$

Donc

$$\tau_x(h) = -\int_{\mathbb{R}^+} t e^{-tx} \theta(-th) d\mu(t).$$

Si réel x fixé est > 0, la fonction $t \mapsto te^{-tx}$ est bornée, donc μ -intégrable et alors la famille indexée par h de fonctions $t \mapsto e^{-tx}\theta(-th)$ est dominée par une fonction $d\mu(t)$ -intégrable indépendante de h:

$$|e^{-tx}\theta(-th)| \le Cte \in \mathcal{L}^1(\mu).$$

De plus, pour tout $t \geq 0$, la limite simple de la fonction $h \mapsto te^{-tx}\theta(-th)$ en 0 est $te^{-tx}\theta(0) = te^{-tx}$. Donc d'après le théorème de convergence dominée,

$$\tau_x(h) \to_{h \to 0} - \int_{\mathbb{R}^+} t e^{-tx} d\mu(t) \in \mathbb{R}^+.$$

Donc f est dérivable en x > 0 et

$$f'(x) = -\int_{\mathbb{R}^+} t e^{-tx} d\mu(t) \in \mathbb{R}^+.$$

Si x=0, le même raisonement montre que f est dérivable (à droite) en x=0 si et seulement si $t\in\mathcal{L}^1(\mu)$, auquel cas

$$f'(0) = -\int_{\mathbb{R}^+} t \, d\mu(t) \in \mathbb{R}^+.$$

Exercice 4 Mesurabilité par rapport à une variable aléatoire

Soient X et Y deux fonctions $\Omega \to \mathbb{R}$, et $\sigma(X)$ l'ensemble des parties $X^{-1}(B)$ avec $B \in \mathcal{B}_{\mathbb{R}}$.

- 1. Montrer que $\sigma(X)$ est une tribu. On l'appelle la tribu engendrée par X.
- 2. Montrer que s'il existe une fonction borélienne $f : \mathbb{R} \to \mathbb{R}$ telle que $Y = f \circ X$, la fonction $Y : (\Omega, \sigma(X)) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ est mesurable.
- 3. Montrer la réciproque, d'abord dans le cas où Y est étagée positive, puis dans le cas général.

Solution de l'exercice 4

1. $\emptyset = X^{-1}(\emptyset)$ et $\Omega = X^{-1}(\mathbb{R})$, donc $\emptyset, \Omega \in \sigma(X)$. De plus, si $A \in \sigma(X)$, par définition il existe un borélien B tel que $A = X^{-1}(B)$. Par stabilité de la tribu borélienne par passage au complémentaire, \bar{B} lui-même est borélien, et

$$\bar{A} = \complement X^{-1}(B) = X^{-1}(\bar{B}) \in \sigma(X).$$

Enfin, si (A_n) est une suite de $\sigma(X)$, pour tout n il existe un borélien B_n tel que $A_n = X^{-1}(B_n)$, donc

$$\bigcup_n A_n = \bigcup_n X^{-1}(B_n) = X^{-1}(\bigcup_n B_n) \in \sigma(X).$$

Donc $\sigma(X)$ est une tribu sur Ω .

2. S'il existe une fonction $f: \mathbb{R} \to \mathbb{R}$ borélienne telle que Y est de la forme $f \circ X$, pour tout borélien $B \in \mathcal{B}\mathbb{R}$ on a

$$Y^{-1}(B) = (f \circ X)^{-1}(B) = X^{-1}(f^{-1}(B)).$$

Comme f est borélienne $f^{-1}(B)$ est une partie borélienne de \mathbb{R} . Donc $Y^{-1}(B)$ appartient à $\sigma(X)$ par définition.

- 3. Supposons que Y est $\sigma(X)$ -mesurable et montrons qu'il existe une fonction borélienne f telle que $Y = f \circ X$.
 - Supposons d'abord que Y est en plus une fonction étagée :

$$Y = \sum_{1 \le i \le n} \alpha_i \mathbb{1}_A,$$

avec $\alpha_i \in \mathbb{R}$ et $A_i \in \sigma(X)$. Par définition de $\sigma(X)$, il existe des parties boréliennes de \mathbb{R} telles que $A_i = X^{-1}(B_i)$. Alors

$$\mathbb{1}_{A_i} = \mathbb{1}_{X^{-1}(B_i)} = \mathbb{1}_{B_i} \circ X,$$

et il suffit de poser

$$f = \sum_{1 \le i \le n} \alpha_i \mathbb{1}_{B_i}$$

pour avoir $Y = f \circ X$. Cette fonction f est bien borélienne. (On remarque que f n'est généralement pas du tout unique, puisque f ne subit aucune contrainte, si ce n'est de mesurabilité, en dehors des valeurs prises par X.)

— Traitons maintenant le cas général d'une fonction Y quelconque. Soit (Y_n) une suite de fonctions étagées convergeant simplement vers Y (pour voir l'existence d'une telle suite en se ramenant strictement au cours, on peut décomposer Y en la différence $Y^+ - Y^-$ de

ses parties positives et négatives, invoquer l'existence de suistes croissantes d'approximations étagées de Y^+ et Y^- , puis former la différence de ces suites). Comme les Y_n sont étagées, d'après le cas particulier précédent, il existe des fonctions boréliennes $f_n: \mathbb{R} \to \mathbb{R}$ telles que $Y_n = f_n \circ X$. L'ensemble de convergence C

$$C = \{ \liminf f_n = \limsup f_n \}$$

de la suite (f_n) est borélien et, comme $Y = \lim Y_n = \lim f_n \circ X$, C contient $X(\Omega)$ (qui n'est pas forcément borélien!). Alors la fonction borélienne f par

$$f = (\lim f_n) \mathbb{1}_C$$

vérifie bien $Y = f \circ X$.