Bosonization in a High-Density Fermi Gas

Upper Bound on the Correlation Energy

Niels Benedikter
joint work with
Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer

Quantum Many-Body Systems

Hamiltonian of N identical spinless particles on $[0,2 \pi]^{3}$ with periodic boundary conditions

$$
H_{N}:=\sum_{i=1}^{N}\left(-\Delta_{i}\right)+\sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right) \quad \text { with } V: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

on the bosonic Hilbert space

$$
L_{\text {symm }}^{2}\left(\mathbb{T}^{3 N}\right):=\left\{\psi \in L^{2}\left(\mathbb{T}^{3 N}\right) \mid \psi\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)=\psi\left(x_{1}, x_{2}, \ldots\right) \quad \forall \sigma \in S_{N}\right\}
$$

or on the fermionic Hilbert space

$$
L_{\text {antisymm }}^{2}\left(\mathbb{T}^{3 N}\right):=\left\{\psi \in L^{2}\left(\mathbb{T}^{3 N}\right) \mid \psi\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)=\operatorname{sgn}(\sigma) \psi\left(x_{1}, x_{2}, \ldots\right) \quad \forall \sigma \in S_{N}\right\}
$$

Ground State Energy

What is the ground state energy

$$
E_{N}:=\inf _{\|\psi\|=1}\left\langle\psi, H_{N} \psi\right\rangle=\inf \operatorname{spec}\left(H_{N}\right) ?
$$

Defining the two- and one-particle reduced density matrices (r.d.m.)

$$
\gamma^{(2)}:=\frac{N!}{(N-2)!} \operatorname{tr}_{3,4, \ldots N}|\psi\rangle\langle\psi|, \quad \gamma^{(1)}:=\frac{1}{N-1} \operatorname{tr}_{2} \gamma^{(2)}
$$

we always have

$$
\left\langle\psi, H_{N} \psi\right\rangle=\operatorname{tr}\left(-\Delta \gamma^{(1)}\right)+\frac{1}{2} \iint V\left(x_{1}-x_{2}\right) \gamma^{(2)}\left(x_{1}, x_{2} ; x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} .
$$

Ground State Energy

What is the ground state energy

$$
E_{N}:=\inf _{\|\psi\|=1}\left\langle\psi, H_{N} \psi\right\rangle=\inf \operatorname{spec}\left(H_{N}\right) ?
$$

Defining the two- and one-particle reduced density matrices (r.d.m.)

$$
\gamma^{(2)}:=\frac{N!}{(N-2)!} \operatorname{tr}_{3,4, \ldots N}|\psi\rangle\langle\psi|, \quad \gamma^{(1)}:=\frac{1}{N-1} \operatorname{tr}_{2} \gamma^{(2)}
$$

we always have

$$
\left\langle\psi, H_{N} \psi\right\rangle=\operatorname{tr}\left(-\Delta \gamma^{(1)}\right)+\frac{1}{2} \iint V\left(x_{1}-x_{2}\right) \gamma^{(2)}\left(x_{1}, x_{2} ; x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} .
$$

So we simply minimize over $\gamma^{(2)}$? Unfortunately not: the set of all two-particle reduced density matrices is hard to characterize: N -representability problem.

Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.
Simplest: high density \& weak interaction, s. th. we expect approximate mean-field behaviour:

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \text { particle number } N \rightarrow \infty
$$

Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.
Simplest: high density \& weak interaction, s. th. we expect approximate mean-field behaviour:

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \text { particle number } N \rightarrow \infty
$$

As $N \rightarrow \infty$, the set of two-particle r.d.m. is characterized by Quantum de-Finetti theorem:

$$
\frac{(N-k)!}{N!} \gamma^{(k)} \quad \longrightarrow \quad \int\left|u^{\otimes k}\right\rangle\left\langle u^{\otimes k}\right| \mathrm{d} \mu(u) \quad \text { factorized, no quantum correlations. }
$$

Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.
Simplest: high density \& weak interaction, s. th. we expect approximate mean-field behaviour:

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \text { particle number } N \rightarrow \infty
$$

As $N \rightarrow \infty$, the set of two-particle r.d.m. is characterized by Quantum de-Finetti theorem:

$$
\frac{(N-k)!}{N!} \gamma^{(k)} \quad \longrightarrow \int\left|u^{\otimes k}\right\rangle\left\langle u^{\otimes k}\right| \mathrm{d} \mu(u) \quad \text { factorized, no quantum correlations. }
$$

Implies convergence to Hartree functional [Lewin-Nam-Rougerie '13, ...]

$$
E_{N}^{\operatorname{mf}} \rightarrow N \inf _{\substack{u \in L^{2}\left(\mathbb{R}^{3}\right) \\\|u\|=1}}\left[\int|\nabla u(x)|^{2} \mathrm{~d} x+\int|u(x)|^{2} V(x-y)|u(y)|^{2} \mathrm{~d} x \mathrm{~d} y\right]=: N E^{\text {Hartree }}
$$

Correlation Corrections to the Hartree Functional

Next order correction: due to quantum correlations!

$$
E_{N}^{\mathrm{mf}} \rightarrow N E^{\text {Hartree }}+\mathcal{O}(1)
$$

Correlation Corrections to the Hartree Functional

Next order correction: due to quantum correlations!

$$
E_{N}^{\mathrm{mf}} \rightarrow N E^{\text {Hartree }}+\mathcal{O}(1)
$$

Bogoliubov theory [Grech-Seiringer '13, Pizzo '15]:

$$
E_{N}^{m f} \rightarrow N E^{\text {Harrtree }}-\frac{1}{2} \sum_{p \in \mathbb{Z}^{3}}\left[p^{2}+\hat{V}(p)-\sqrt{p^{4}+2 p^{2} \hat{V}(p)}\right]+\mathcal{O}\left(N^{-1 / 2}\right)
$$

Correlation Corrections to the Hartree Functional

Next order correction: due to quantum correlations!

$$
E_{N}^{\mathrm{mf}} \rightarrow N E^{\text {Hartree }}+\mathcal{O}(1)
$$

Bogoliubov theory [Grech-Seiringer '13, Pizzo '15]:

$$
E_{N}^{\mathrm{mf}} \rightarrow N E^{\text {Hartree }}-\frac{1}{2} \sum_{p \in \mathbb{Z}^{3}}\left[p^{2}+\hat{V}(p)-\sqrt{p^{4}+2 p^{2} \hat{V}(p)}\right]+\mathcal{O}\left(N^{-1 / 2}\right)
$$

Remark: In thermodynamic limit the correlation energy is given by Lee-Huang-Yang formula

$$
E(\rho) \rightarrow 4 \pi \rho a\left[1+\frac{128}{15 \sqrt{\pi}}\left(\rho a^{3}\right)^{1 / 2}+\ldots\right], \quad a=\text { scattering length of } V, \quad \rho=\text { density }
$$

[Yau-Yin '09], [Giuliani-Seiringer '09], [Boccato-Brennecke-Cenatiempo-Schlein '18], [Brietzke-Solovej '19], [Brietzke-Fournais-Solovej '19], [Fournais-Solovej '19]

Fermions

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\hbar^{2} \Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \hbar=N^{-1 / 3}
$$

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\hbar^{2} \Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \hbar=N^{-1 / 3}
$$

No Quantum de-Finetti theorem - set of two-particle r.d.m. is complicated [Klyachko '06].

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\hbar^{2} \Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \hbar=N^{-1 / 3}
$$

No Quantum de-Finetti theorem - set of two-particle r.d.m. is complicated [Klyachko '06]. Special correlation estimate implies convergence to Hartree-Fock functional [Graf-Solovej '94]:
$E_{N}^{\mathrm{mf}} \inf _{\substack{\omega^{2}=\omega \operatorname{on} L^{2}\left(\mathbb{T}^{3}\right) \\ \operatorname{tr} \omega=N}}\left[\operatorname{tr}(-\Delta \omega)+\iint \omega(x, x) V(x-y) \omega(y, y)-\iint|\omega(x, y)|^{2} V(x-y)\right]=: E_{N}^{\mathrm{HF}}$.

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

$$
H_{N}^{\mathrm{mf}}=\sum_{i=1}^{N}\left(-\hbar^{2} \Delta_{i}\right)+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad \hbar=N^{-1 / 3}
$$

No Quantum de-Finetti theorem - set of two-particle r.d.m. is complicated [Klyachko '06]. Special correlation estimate implies convergence to Hartree-Fock functional [Graf-Solovej '94]:

$$
E_{N}^{\mathrm{mf}} \rightarrow \inf _{\substack{\omega^{2}=\omega \operatorname{on} L^{2}\left(\mathbb{T}^{3}\right) \\ \operatorname{tr} \omega=N}}\left[\operatorname{tr}(-\Delta \omega)+\iint \omega(x, x) V(x-y) \omega(y, y)-\iint|\omega(x, y)|^{2} V(x-y)\right]=: E_{N}^{\mathrm{HF}}
$$

[Wigner '34]: What is the next order, due to quantum correlations?

The Gell-Mann-Brueckner Formula

Originally jellium model considered: no scaling of couplings, Coulomb interaction, thermodynamic limit, and density $\rho \rightarrow \infty$.

The solution [Macke '50], [Bohm-Pines '53], [Gell-Mann-Brueckner '57], [Sawada-Brueckner-Fukuda-Brout '57] also explained screening and collective plasmon oscillations.

Random Phase Approximation

$$
E^{\text {jellium }}(\rho)=\underbrace{C_{\mathrm{TF}} \rho^{5 / 3}-C_{\mathrm{D}} \rho^{4 / 3}}_{\begin{array}{c}
\text { Hartree-Fock energy } \\
\text { of Fermi ball }
\end{array}}+\underbrace{C_{\mathrm{BP}} \rho \log (\rho)+C_{\mathrm{GB}} \rho}_{\text {correlation energy }}+o(\rho) \quad \text { as } \rho \rightarrow \infty
$$

The Gell-Mann-Brueckner Formula

Originally jellium model considered: no scaling of couplings, Coulomb interaction, thermodynamic limit, and density $\rho \rightarrow \infty$.

The solution [Macke '50], [Bohm-Pines '53], [Gell-Mann-Brueckner '57], [Sawada-Brueckner-Fukuda-Brout '57] also explained screening and collective plasmon oscillations.

Random Phase Approximation

$$
E^{\text {jellium }}(\rho)=\underbrace{C_{\mathrm{TF}} \rho^{5 / 3}-C_{\mathrm{D}} \rho^{4 / 3}}_{\begin{array}{c}
\text { Hartree-Fock energy } \\
\text { of Fermi ball }
\end{array}}+\underbrace{C_{\mathrm{BP}} \rho \log (\rho)+C_{\mathrm{GB}} \rho}_{\text {correlation energy }}+o(\rho) \quad \text { as } \rho \rightarrow \infty
$$

Mean-field scaling with regular interaction is slightly different:

$$
E_{N}^{\mathrm{mf}}=E_{N}^{\mathrm{HF}}+\underbrace{E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}}_{\sim N^{-1 / 3}}+\underbrace{E^{\mathrm{GB}, 2}}_{\sim N^{-2 / 3}}
$$

How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
1 Notice: For Coulomb interaction, high orders are badly IR divergent,

$$
\hat{V}(k)^{n} \sim|k|^{-2 n} \quad \text { for } k \rightarrow 0
$$

How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
1 Notice: For Coulomb interaction, high orders are badly IR divergent,

$$
\hat{V}(k)^{n} \sim|k|^{-2 n} \quad \text { for } k \rightarrow 0
$$

2 Collect the most divergent term from each order of perturbation theory, finding

$$
\text { with } x \sim \hat{V}(k): \quad x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots=
$$

How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
1 Notice: For Coulomb interaction, high orders are badly IR divergent,

$$
\hat{V}(k)^{n} \sim|k|^{-2 n} \quad \text { for } k \rightarrow 0
$$

2 Collect the most divergent term from each order of perturbation theory, finding

$$
\text { with } x \sim \hat{V}(k): \quad x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots=\log (1+x)
$$

Resummation of all orders of perturbation theory \leadsto regularization to log-divergence.

How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
1 Notice: For Coulomb interaction, high orders are badly IR divergent,

$$
\hat{V}(k)^{n} \sim|k|^{-2 n} \quad \text { for } k \rightarrow 0
$$

2 Collect the most divergent term from each order of perturbation theory, finding

$$
\text { with } x \sim \hat{V}(k): \quad x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots=\log (1+x)
$$

Resummation of all orders of perturbation theory \leadsto regularization to log-divergence.

$$
E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}=\hbar \sum_{k \in \mathbb{Z}^{3}}|k|\left[\int_{0}^{\infty} \log \left(1+\hat{V}(k)\left(1-v \arctan v^{-1}\right)\right) \mathrm{d} v-\frac{1}{4} \hat{V}(k)\right]
$$

How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
1 Notice: For Coulomb interaction, high orders are badly IR divergent,

$$
\hat{V}(k)^{n} \sim|k|^{-2 n} \quad \text { for } k \rightarrow 0
$$

2 Collect the most divergent term from each order of perturbation theory, finding

$$
\text { with } x \sim \hat{V}(k): \quad x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots=\log (1+x)
$$

Resummation of all orders of perturbation theory \leadsto regularization to log-divergence.

$$
E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}=\hbar \sum_{k \in \mathbb{Z}^{3}}|k|\left[\int_{0}^{\infty} \log \left(1+\hat{V}(k)\left(1-v \arctan v^{-1}\right)\right) \mathrm{d} v-\frac{1}{4} \hat{V}(k)\right]
$$

Remark: $E^{\mathrm{GB}, 2}$ is much simpler, just second-order perturbation of exchange type.

> Our Result:
> Gell-Mann-Brueckner
> Formula as Upper Bound

Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]
Let $\hat{V}(k)$ be non-negative and compactly supported. Then

$$
E_{N}^{\mathrm{mf}} \leq E_{N}^{\mathrm{HF}}+E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}+\mathcal{O}\left(\hbar N^{-1 / 27}\right)
$$

Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]
Let $\hat{V}(k)$ be non-negative and compactly supported. Then

$$
E_{N}^{\mathrm{mf}} \leq E_{N}^{\mathrm{HF}}+E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}+\mathcal{O}\left(\hbar N^{-1 / 27}\right) .
$$

Remarks:

■ [Hainzl-Porta-Rexze '18]: perturbative upper and lower bound to second order in \hat{V}.

- We use a trial state which in principle also captures $E^{\mathrm{GB}, 2}$, but in the mean-field scaling this contribution is too small to be seen.

Preparation: Extracting the

 Hartree-Fock Energy
Extracting the Hartree-Fock Energy

Hamiltonian in momentum representation, written with fermionic canonical operators:

$$
H_{N}^{m f}:=\hbar^{2} \sum_{k \in \mathbb{Z}^{3}}|k|^{2} a_{k}^{*} a_{k}+\frac{1}{N} \sum_{q, s, k \in \mathbb{Z}^{3}} \hat{V}(k) a_{q+k}^{*} a_{s-k}^{*} a_{s} a_{q}, \quad \hbar=N^{-1 / 3}
$$

Extracting the Hartree-Fock Energy

Hamiltonian in momentum representation, written with fermionic canonical operators:

$$
H_{N}^{m f}:=\hbar^{2} \sum_{k \in \mathbb{Z}^{3}}|k|^{2} a_{k}^{*} a_{k}+\frac{1}{N} \sum_{q, s, k \in \mathbb{Z}^{3}} \hat{V}(k) a_{q+k}^{*} a_{s-k}^{*} a_{s} a_{q}, \quad \hbar=N^{-1 / 3}
$$

Introduce the Slater determinant of N plane waves in the Fermi ball

$$
\Psi_{N}:=\bigwedge_{k \in \mathcal{B}_{F}} e^{i k x}, \quad \mathcal{B}_{F}:=\left\{k \in \mathbb{Z}^{3}| | k \mid \leq N^{1 / 3}(3 / 4 \pi)^{1 / 3}\right\} .
$$

[Gontier-Hainzl-Lewin '18]: plane waves are very close to optimal Slater determinant:

$$
\left\langle\Psi_{N}, H_{N}^{m f} \Psi_{N}\right\rangle=E_{N}^{\mathrm{HF}}+\mathcal{O}\left(e^{-N^{1 / 6}}\right)
$$

Extracting the Hartree-Fock Energy

Hamiltonian in momentum representation, written with fermionic canonical operators:

$$
H_{N}^{m f}:=\hbar^{2} \sum_{k \in \mathbb{Z}^{3}}|k|^{2} a_{k}^{*} a_{k}+\frac{1}{N} \sum_{q, s, k \in \mathbb{Z}^{3}} \hat{V}(k) a_{q+k}^{*} a_{s-k}^{*} a_{s} a_{q}, \quad \hbar=N^{-1 / 3}
$$

Introduce the Slater determinant of N plane waves in the Fermi ball

$$
\Psi_{N}:=\bigwedge_{k \in \mathcal{B}_{F}} e^{i k x}, \quad \mathcal{B}_{F}:=\left\{k \in \mathbb{Z}^{3}| | k \mid \leq N^{1 / 3}(3 / 4 \pi)^{1 / 3}\right\} .
$$

[Gontier-Hainzl-Lewin '18]: plane waves are very close to optimal Slater determinant:

$$
\left\langle\Psi_{N}, H_{N}^{\mathrm{mf}} \Psi_{N}\right\rangle=E_{N}^{\mathrm{HF}}+\mathcal{O}\left(e^{-N^{1 / 6}}\right)
$$

Goal: find $\tilde{\Psi}_{N}$ s. th. $\left\langle\tilde{\Psi}_{N}, H_{N}^{\mathrm{mf}} \tilde{\Psi}_{N}\right\rangle=E_{N}^{\mathrm{HF}}+E^{\mathrm{BP}}+E^{\mathrm{GB}, 1}+o\left(N^{-1 / 3}\right)$.

Particle-Hole Transformation

Define the unitary map R on fermionic Fock space by

$$
R \Omega:=\Psi_{N}=\bigwedge_{k \in \mathcal{B}_{F}} e^{i k x}, \quad \quad R a_{k}^{*} R^{*}:= \begin{cases}a_{k} & k \in \mathcal{B}_{F} \\ a_{k}^{*} & k \in \mathcal{B}_{F}^{c}\end{cases}
$$

Particle-Hole Transformation

Define the unitary map R on fermionic Fock space by

$$
R \Omega:=\Psi_{N}=\bigwedge_{k \in \mathcal{B}_{F}} e^{i k x}, \quad \quad R a_{k}^{*} R^{*}:= \begin{cases}a_{k} & k \in \mathcal{B}_{F} \\ a_{k}^{*} & k \in \mathcal{B}_{F}^{c}\end{cases}
$$

Write $\tilde{\Psi}_{N}=R \xi$. Calculate $R^{*} H_{N}^{m f} R$ to get

$$
\left\langle\tilde{\Psi}_{N}, H_{N}^{\mathrm{mf}} \tilde{\Psi}_{N}\right\rangle=E_{N}^{\mathrm{HF}}+\langle\xi,(\underbrace{\hbar^{2} \sum_{p \in \mathcal{B}_{F}^{c}} p^{2} a_{p}^{*} a_{p}-\hbar^{2} \sum_{h \in \mathcal{B}_{F}} h^{2} a_{h}^{*} a_{h}}_{=: H^{\text {kin }}}+Q) \xi\rangle+\mathcal{O}\left(N^{-1}\right)
$$

where Q is quartic in fermionic operators. Notice: $\left(H^{\mathrm{kin}}+Q\right) \Omega=0$.
Our task: construct a correlated trial state ξ.

Adding Correlations using
 Bosonization

Collective Particle-Hole Pairs

The dominant part Q of the interaction can be expressed through collective pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{c}^{c} \\ h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

as a quadratic Hamiltonian

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Collective Particle-Hole Pairs

The dominant part Q of the interaction can be expressed through collective pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{c}^{c} \\ h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

as a quadratic Hamiltonian

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Idea: $\left[a_{p}^{*} a_{h}^{*}, a_{\hat{p}}^{*} a_{\hat{h}}^{*}\right]=0$, pairs of fermions as bosons? The bad news:

$$
\left.\left(a_{p}^{*} a_{h}^{*}\right)^{2}=0 \quad \text { (Pauli principle! }\right) .
$$

Collective Particle-Hole Pairs

The dominant part Q of the interaction can be expressed through collective pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{F}^{c} \\ h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

as a quadratic Hamiltonian

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Idea: $\left[a_{\rho}^{*} a_{h}^{*}, a_{\hat{\rho}}^{*} a_{\hat{h}}^{*}\right]=0$, pairs of fermions as bosons? The bad news:

$$
\left.\left(a_{p}^{*} a_{h}^{*}\right)^{2}=0 \quad \text { (Pauli principle! }\right) .
$$

The good news: b_{k}^{*} are approximately bosonic if we use the delocalization:
In $\left(\sum_{h} a_{h+k}^{*} a_{h}^{*}\right)^{2}$ only the n diagonal summands out of all n^{2} summands vanish.

Linearizing $H^{\text {kin }}=\hbar^{2} \sum_{p} p^{2} a_{p}^{*} a_{p}-\hbar^{2} \sum_{h} h^{2} a_{h}^{*} a_{h}$
Localize to $M=M(N)$ patches near the Fermi surface,

Fermi ball \mathcal{B}_{F}

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{h \in \mathcal{B}_{F} \cap B_{\alpha} \\ p \in \mathcal{B}_{F}^{C} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

where $n_{\alpha, k}=\sqrt{\# \mathrm{p}-\mathrm{h} \text { pairs in patch } \alpha \text { with momentum } k}$.

Linearizing $H^{\text {kin }}=\hbar^{2} \sum_{p} p^{2} a_{p}^{*} a_{p}-\hbar^{2} \sum_{h} h^{2} a_{h}^{*} a_{h}$
Localize to $M=M(N)$ patches near the Fermi surface,
Fermi ball \mathcal{B}_{F}

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{h \in \mathcal{B}_{F} \cap B_{\alpha} \\ p \in \mathcal{B}_{F}^{C} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

where $n_{\alpha, k}=\sqrt{\# \mathrm{p} \text {-h pairs in patch } \alpha \text { with momentum } k}$.
Linearize kinetic energy around patch centers ω_{α} :

$$
\begin{aligned}
H^{\mathrm{kin}} b_{\alpha, k}^{*} \Omega \simeq 2 \hbar \underbrace{\left|k \cdot \hat{\omega}_{\alpha}\right|}_{=: u_{\alpha}(k)^{2}} b_{\alpha, k}^{*} \Omega .
\end{aligned}
$$

By comparison to harmonic oscillator:

$$
H^{\mathrm{kin}} \simeq \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha} 2 \hbar u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}
$$

Effective Hamiltonian

Normalization constant $=$ number of available modes:

$$
\begin{aligned}
n_{\alpha, k}^{2} & =\# \mathrm{p}-\mathrm{h} \text { pairs in patch } \alpha \text { with momentum } k \\
& \simeq \frac{4 \pi N^{2 / 3}}{M}\left|k \cdot \hat{\omega}_{\alpha}\right|=\frac{4 \pi N^{2 / 3}}{M} u_{\alpha}(k)^{2} .
\end{aligned}
$$

In the quadratic Hamiltonian Q, decompose

$$
b_{k}^{*}=\sum_{\alpha} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

$$
H^{\mathrm{eff}}=\hbar \sum_{k \in \mathbb{Z}^{3}}\left[\sum_{\alpha} u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}+\frac{\hat{V}(k)}{M} \sum_{\alpha, \beta}\left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha, k}^{*} b_{\beta, k}+u_{\alpha}(k) u_{\beta}(-k) b_{\alpha, k}^{*} b_{\beta,-k}^{*}+\text { h.c. }\right)\right]
$$

Heuristics: Bosonic Approximation

For this slide only: Assume $b_{\alpha, k}^{*}, b_{\alpha, k}$ are exactly bosonic operators.
Then the ground state of $H^{\text {eff }}$ is given by a Bogoliubov transformation:

$$
\begin{equation*}
\xi_{\mathrm{gs}}=T \Omega, \quad T=\exp \left(\sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta} K(k)_{\alpha, \beta} b_{\alpha, k}^{*} b_{\beta,-k}^{*}-\text { h.c. }\right) \tag{1}
\end{equation*}
$$

$K(k)$ is an almost explicit $M \times M$-matrix
and

$$
\left\langle\xi_{\mathrm{gs}}, H^{\mathrm{eff}} \xi_{\mathrm{gs}}\right\rangle \rightarrow E^{\mathrm{BP}}+E^{\mathrm{GB}, 1} \quad \text { as } M \rightarrow \infty
$$

To get a rigorous upper bound for the fermionic system: Use (1) to define a trial state in fermionic Fock space.

Rigorous Analysis

Convergence to Bosonic Approximation

Lemma: We have approximately bosonic commutators:

$$
\left[b_{\alpha, k}^{*}, b_{\beta, l}^{*}\right]=0=\left[b_{\alpha, k}, b_{\beta, l}\right] \quad \text { and } \quad\left[b_{\alpha, k}, b_{\beta, l}^{*}\right]=\delta_{\alpha, \beta}\left(\delta_{k, l}+\mathcal{E}_{\alpha}(k, /)\right)
$$

where the operator $\mathcal{E}_{\alpha}(k, I)$ is bounded by

$$
\left\|\mathcal{E}_{\alpha}(k, I) \psi\right\| \leq \frac{2}{n_{\alpha, k} n_{\alpha, l}}\|\mathcal{N} \psi\| \quad(\mathcal{N}=\text { fermionic number operator })
$$

for all ψ in fermionic Fock space.

Approximate Bogoliubov Transformations

Proposition: With $K(k)$ from the bosonic approximation, let in fermionic Fock space

$$
T_{\lambda}:=\exp (\lambda B), \quad B:=\sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta} K(k)_{\alpha, \beta} b_{\alpha, k}^{*} b_{\beta,-k}^{*}-\text { h.c. }
$$

Then T_{λ} acts as an approximate Bogoliubov transformation on $b_{\alpha, k}^{*}$ and $b_{\alpha, k}$, i. e.,

$$
T_{\lambda}^{*} b_{\alpha, k} T_{\lambda}=\sum_{\beta=1}^{M} \cosh (\lambda K(k))_{\alpha, \beta} b_{\beta, k}+\sum_{\beta=1}^{M} \sinh (\lambda K(k))_{\alpha, \beta} b_{\beta,-k}^{*}+\mathfrak{E}_{\alpha, k}
$$

where the error is bounded by

$$
\left[\sum_{\alpha}\left\|\mathfrak{E}_{\alpha, k} \psi\right\|^{2}\right]^{1 / 2} \leq \frac{C}{\min _{\alpha} n_{\alpha, k}^{2}}\left\|(\mathcal{N}+2)^{3 / 2} T_{\lambda} \psi\right\| \quad \text { for all } \psi \text { in fermionic Fock space }
$$

Bound on \mathcal{N}

Lemma: The particle number on our trial state

$$
\xi:=T_{\lambda=1} \Omega
$$

is bounded by

$$
\left\langle\xi,(\mathcal{N}+1)^{3} \xi\right\rangle \leq C \quad \text { independent of } N .
$$

Conclusion: We introduce a cutoff excluding patches with $u_{\alpha}(k)^{2} \leq N^{-\delta}$; thus the error terms are small,

$$
\text { errors } \sim \frac{\left\langle\xi,(\mathcal{N}+2)^{3} \xi\right\rangle}{\min _{\alpha} n_{\alpha, k}^{2}} \leq \frac{C}{\frac{N^{2 / 3}}{M} u_{\alpha}(k)^{2}} \leq C \frac{M}{N^{2 / 3} N^{-\delta}},
$$

\sim bosonic approximation is self-consistent for $M(N) \ll N^{2 / 3-\delta}$.

Linearization Error

Lemma: The kinetic energy can be linearized as $H^{\text {kin }}=H^{\text {linear }}+\mathfrak{E}$, where

$$
H^{\text {linear }}=\hbar \sum_{\alpha=1}^{M}\left[\sum_{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha}}\left|p \cdot \hat{\omega}_{\alpha}\right| a_{p}^{*} a_{p}-\sum_{h \in \mathcal{B}_{F} \cap B_{\alpha}}\left|h \cdot \hat{\omega}_{\alpha}\right| a_{h}^{*} a_{h}\right]
$$

and the error operator \mathfrak{E} is small compared to $\hbar=N^{-1 / 3}$ if $M(N) \gg N^{1 / 3}$; namely

$$
|\langle\psi, \mathfrak{E} \psi\rangle| \leq \frac{C}{M}\langle\psi, \mathcal{N} \psi\rangle \quad \text { for all } \psi \text { in fermionic Fock space. }
$$

Linearization Error

Lemma: The kinetic energy can be linearized as $H^{\text {kin }}=H^{\text {linear }}+\mathfrak{E}$, where

$$
H^{\text {linear }}=\hbar \sum_{\alpha=1}^{M}\left[\sum_{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha}}\left|p \cdot \hat{\omega}_{\alpha}\right| a_{p}^{*} a_{p}-\sum_{h \in \mathcal{B}_{F} \cap B_{\alpha}}\left|h \cdot \hat{\omega}_{\alpha}\right| a_{h}^{*} a_{h}\right]
$$

and the error operator \mathfrak{E} is small compared to $\hbar=N^{-1 / 3}$ if $M(N) \gg N^{1 / 3}$; namely

$$
|\langle\psi, \mathfrak{E} \psi\rangle| \leq \frac{C}{M}\langle\psi, \mathcal{N} \psi\rangle \quad \text { for all } \psi \text { in fermionic Fock space. }
$$

Lemma: We have

$$
\left[H^{\text {linear }}, b_{\alpha, k}^{*}\right]=2 \hbar\left|k \cdot \hat{\omega}_{\alpha}\right| b_{\alpha, k}^{*} ;
$$

in this (and only this) sense $H^{\text {linear }} \simeq \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha} 2 \hbar u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}$.

Proof of Main Theorem

Proof: We just have to calculate $\left\langle R \xi, H_{N}^{\mathrm{mf}} R \xi\right\rangle \simeq\left\langle\Omega, T_{\lambda=1}^{*}\left(H^{\text {linear }}+Q\right) T_{\lambda=1} \Omega\right\rangle$.

- The interaction part Q is quadratic in b^{*} and b; just calculate the action of the approximate Bogoliubov transformation.

Proof of Main Theorem

Proof: We just have to calculate $\left\langle R \xi, H_{N}^{m f} R \xi\right\rangle \simeq\left\langle\Omega, T_{\lambda=1}^{*}\left(H^{\text {linear }}+Q\right) T_{\lambda=1} \Omega\right\rangle$.

- The interaction part Q is quadratic in b^{*} and b; just calculate the action of the approximate Bogoliubov transformation.
- The linearized kinetic energy $H^{\text {linear }}$ is not quadratic in b^{*} and b; expand into commutators by applying once the Duhamel formula

$$
\begin{aligned}
\left\langle\xi, H^{\text {linear }} \xi\right\rangle & =\int_{0}^{1}\left\langle\Omega, T_{\lambda}^{*}\left[H^{\text {linear }}, B\right] T_{\lambda} \Omega\right\rangle \mathrm{d} \lambda \\
& =\int_{0}^{1}\left\langle\Omega, T_{\lambda}^{*} \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta} K(k)_{\alpha, \beta}\left[H^{\text {linear }}, b_{\alpha, k}^{*} b_{\beta,-k}^{*}-\text { h.c. }\right] T_{\lambda} \Omega\right\rangle \mathrm{d} \lambda \\
& =\int_{0}^{1}\left\langle\Omega, T_{\lambda}^{*} \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta} K(k)_{\alpha, \beta} 2 \hbar\left(\left|k \cdot \hat{\omega}_{\alpha}\right|+\left|k \cdot \hat{\omega}_{\beta}\right|\right) b_{\alpha, k}^{*} b_{\beta,-k}^{*} T_{\lambda} \Omega\right\rangle+\text { c. c. }
\end{aligned}
$$

and $T_{\lambda}^{*} b_{\alpha, k}^{*} T_{\lambda}$ is given by the approximate Bogoliubov transformation.

QED

Work in Progress

- Corresponding lower bound - gapless system!
- Coulomb interaction and the plasmon:

Work in Progress

- Corresponding lower bound - gapless system!
- Coulomb interaction and the plasmon:

Thank you!

