Gibbs measures of nonlinear Schrödinger equations and many-body quantum mechanics

Antti Knowles

Université de Genève

With Jürg Fröhlich, Benjamin Schlein, and Vedran Sohinger

Classical mechanics and Gibbs measures

A Hamiltonian system consists of the following ingredients.

- Linear phase space $\Gamma \ni \phi$.
- Hamilton (or energy) function $H \in C^{\infty}(\Gamma)$.
- Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(\Gamma) \times C^{\infty}(\Gamma)$.

(Properties: antisymmetric, bilinear, Leibnitz rule in both arguments, Jacobi identity.)

Classical dynamics is given by Hamiltonian flow $\phi \mapsto S^t \phi$ on Γ defined by the ODE

$$\frac{\mathrm{d}}{\mathrm{d}t}f(S^t\phi) = \{H, f\}(S^t\phi)$$

for any $f \in C^{\infty}(\Gamma)$.

Standard example: classical system of n degrees of freedom.

• Phase space $\Gamma = \mathbb{R}^{2n} \ni (p,q)$.

Hamiltonian flow reads

$$\frac{\mathrm{d}}{\mathrm{d}t}p_i = -\frac{\partial H}{\partial q_i} = -\partial_i V(q), \qquad \frac{\mathrm{d}}{\mathrm{d}t}q_i = \frac{\partial H}{\partial p_i} = \frac{p_i}{m_i}$$

The Gibbs measure at temperature β is

$$\mathbb{P}(\mathrm{d}\phi) := \frac{1}{Z} \mathrm{e}^{-\beta H(\phi)} \,\mathrm{d}\phi \,, \qquad Z := \int \mathrm{e}^{-\beta H(\phi)} \,\mathrm{d}\phi \,.$$

 \mathbb{P} is invariant under the flow S^t .

Nonlinear Schrödinger equations

Let $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ be the *d*-dimensional torus.

- Phase space Γ is some appropriate subspace of $\{\phi : \mathbb{T}^d \to \mathbb{C}\}$.
- Hamilton function

$$\begin{split} H(\phi) &= \int \mathrm{d}x\,\bar{\phi}(x)(\kappa-\Delta)\phi(x) + \frac{1}{2}\int \mathrm{d}x\,\mathrm{d}y\,w(x-y)|\phi(x)|^2|\phi(y)|^2\,,\\ \text{here }\kappa>0. \end{split}$$

Poisson bracket

W

$$\{\phi(x), \bar{\phi}(y)\} = \mathrm{i} \delta(x-y) \,, \qquad \{\phi(x), \phi(y)\} = \{\bar{\phi}(x), \bar{\phi}(y)\} = 0 \,.$$

Hamiltonian flow given by time-dependent nonlinear Schrödinger equation

$$\mathrm{i}\partial_t\phi(x) = (\kappa - \Delta)\phi(x) + \int \mathrm{d}y \, w(x - y) |\phi(y)|^2 \phi(x) \,.$$

Time-dependent nonlinear Schrödinger equation

$$i\partial_t \phi(x) = (\kappa - \Delta)\phi(x) + \int dy \, w(x - y) |\phi(y)|^2 \phi(x) \,. \tag{1}$$

Gibbs measure of nonlinear Schrödinger equation is formally

$$\mathbb{P}(\mathrm{d}\phi) = \frac{1}{Z} \mathrm{e}^{-H(\phi)} \mathrm{d}\phi \,.$$

Formally, \mathbb{P} is invariant under the flow generated by (1).

Rigorous results: Lebowitz–Rose–Speer, Bourgain, Bourgain–Bulut, Tzvetkov, Thomann–Tzvetkov, Nahmod–Oh–Rey-Bellet–Staffilani, Oh–Quastel, Deng–Tzvetkov–Visciglia, Cacciafesta–de Suzzoni, Genovese–Lucá–Valeri, ...

Important application: $\mathbb P\text{-almost}$ sure well-posedness of (1) for rough initial data.

Goal

Analyse \mathbb{P} and (S^t) through

- the moments of \mathbb{P} (which determine \mathbb{P}),
- the time-dependent correlation functions

$$\int X^1(S^{t_1}\phi)\cdots X^m(S^{t_m}\phi)\,\mathrm{d}\mathbb{P}(\phi)\,,$$

for $X^i \in C^{\infty}(\Gamma)$ and $t_i \in \mathbb{R}$.

Derivation as a (high-temperature) limit of a microscopic *n*-body quantum theory of bosons.

Rigorous construction of Gibbs measure

Spectral decomposition

$$\kappa - \Delta = \sum_{k \in \mathbb{N}} \lambda_k u_k u_k^*, \qquad \lambda_k > 0, \qquad \|u_k\|_{L^2} = 1.$$

Let $\omega = (\omega_k)_{k \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ be i.i.d. $\mathcal{N}_{\mathbb{C}}(0, 1)$ random variables with joint law μ_0 . Define the Gaussian free field

$$\phi^{\omega} \equiv \phi := \sum_{k \in \mathbb{N}} \frac{\omega_k}{\sqrt{\lambda_k}} u_k.$$

The sum converges in $\|\phi\|_{\mathcal{H}^s} := \|(\kappa - \Delta)^{s/2}\phi\|_{L^2}$ in the sense of $L^p(\mu_0)$ for all $p \in (1, \infty)$, provided that

$$\sum_{k\in\mathbb{N}}\lambda_k^{s-1}<\infty\,.$$

For example

e,
$$\mathbb{E}^{\mu_0} \|\phi\|_{\mathcal{H}^s}^2 = \sum_{k \in \mathbb{N}} \mathbb{E}^{\mu_0} |\omega_k|^2 \frac{\lambda_k^s}{\lambda_k} = \sum_{k \in \mathbb{N}} \lambda_k^{s-1} \,.$$

Under μ_0 , $\phi = \sum_{k \in \mathbb{N}} \frac{\omega_k}{\sqrt{\lambda_k}} u_k$ is a Gaussian free field with covariance $(\kappa - \Delta)^{-1}$:

$$\mathbb{E}^{\mu_0} \langle f, \phi \rangle \langle \phi, g \rangle = \langle f, (\kappa - \Delta)^{-1} g \rangle.$$

We find that

$$\mu_0[\phi \in \mathcal{H}^0] = \begin{cases} 1 & \text{if } d = 1\\ 0 & \text{if } d > 1 \,. \end{cases}$$

Define the measure

$$\mu(d\omega) := \frac{1}{Z} e^{-W(\phi^{\omega})} \mu_0(d\omega), \qquad W(\phi) = \frac{1}{2} \int dx \, dy \, w(x-y) |\phi(x)|^2 |\phi(y)|^2$$

 $\boldsymbol{\mu}$ is well-defined for instance if

d = 1, $w \in L^{\infty}$, w positive definite,

since then $0 \leq W(\phi) < \infty \mu_0$ -a.s. (Then \mathbb{P} is defined as $\phi_*\mu$.)

Quantum many-body theory

Define the one-particle space $\mathfrak{H}:=L^2(\mathbb{T}^d;\mathbb{C})$ and the n-particle space

$$\mathfrak{H}^{(n)} := \mathfrak{H}^{\otimes_{\mathrm{sym}} n} = L^2_{\mathrm{sym}} \big((\mathbb{T}^d)^n \big) \,.$$

Hamilton operator

$$H^{(n)} := H_0^{(n)} + \lambda \sum_{1 \le i < j \le n} w(x_i - x_j), \qquad H_0^{(n)} := \sum_{i=1}^n (\kappa - \Delta_{x_i})$$

Canonical thermal state at temperature $\tau > 0$ is $P_{\tau}^{(n)} := e^{-H^{(n)}/\tau}$. Expectation of an observable $A \in \mathfrak{B}(\mathfrak{H}^{(n)})$ is

$$\rho_{\tau}^{(n)}(A) := \frac{\operatorname{Tr}(AP_{\tau}^{(n)})}{\operatorname{Tr}(P_{\tau}^{(n)})}$$

What happens as $n \to \infty$?

In order to obtain a nontrivial limit, we set $\lambda = 1/n$.

Theorem [Lewin-Nam-Serfaty-Solovej, 2012; Lewin-Nam-Rougerie, 2013]. For $\lambda = 1/n$ and τ fixed, the state $\rho_{\tau}^{(n)}(\cdot)$ converges to the atomic measure δ_{Φ} in the sense of *p*-particle correlation functions (see later), where Φ is the minimizer of the energy function *H*.

Complete Bose-Einstein condensation for fixed τ .

In order to obtain the Gibbs measure μ , we need to let

- τ grow with n (high-temperature limit),
- *n* fluctuate. $(n/\tau \text{ will correspond to } \|\phi\|_2^2.)$

High-temperature limit and Fock space

Define the Fock space $\mathcal{F}:=igoplus_{n\in\mathbb{N}}\mathfrak{H}^{(n)}$ and the grand canonical thermal state

$$P_{\tau} := \bigoplus_{n \in \mathbb{N}} P_{\tau}^{(n)} = e^{-H_{\tau}}, \qquad H_{\tau} := \frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} H^{(n)}$$

Rescaled particle number operator $\mathcal{N}_{\tau} := \frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} nI$. Expectation of an observable $A \in \mathfrak{B}(\mathcal{F})$ is

$$o_{\tau}(A) := rac{\operatorname{Tr}(AP_{\tau})}{\operatorname{Tr}(P_{\tau})}.$$

Explicit computation for d = 1 and $\lambda = 0$:

$$\lim_{\tau \to \infty} \rho_{\tau}(\mathcal{N}_{\tau}^k) = \mathbb{E}^{\mu} \|\phi\|_{L^2}^{2k}, \qquad k = 1, 2, \dots.$$

Number of particles is of order τ . Thus, set $\lambda := \tau^{-1}$ to obtain nontrivial interacting limit.

Second quantization

Let b,b^* be the bosonic annihilation and creation operators on ${\mathcal F}$ and set $\phi:=\tau^{-1/2}b.$ Hence,

$$[\phi_{\tau}(x), \phi_{\tau}^{*}(y)] = \frac{1}{\tau} \delta(x - y), \qquad [\phi_{\tau}(x), \phi_{\tau}(y)] = [\phi_{\tau}^{*}(x), \phi_{\tau}^{*}(y)] = 0.$$

Thus, we can write $H_{ au} = H_{ au,0} + W$, where

$$H_{\tau,0} = \int \mathrm{d}x \,\phi_{\tau}^*(x)(\kappa - \Delta)\phi_{\tau}(x) \,,$$
$$W_{\tau} = \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\phi_{\tau}^*(x)\phi_{\tau}(x) \,w(x - y) \,\phi_{\tau}^*(y)\phi_{\tau}(y) \,,$$

as well as $P_{\tau} = e^{-H_{\tau}}$, $\rho_{\tau}(A) = \frac{\operatorname{Tr}(AP_{\tau})}{\operatorname{Tr}(P_{\tau})}$.

High-temperature limit for d = 1

Define the *p*-particle reduced density matrix

$$\gamma_{\tau,p}(x_1,\ldots,x_p;y_1,\ldots,y_p) := \rho_\tau \left(\phi_\tau^*(y_1)\cdots \phi_\tau^*(y_p)\phi_\tau(x_1)\cdots \phi_\tau(x_p) \right).$$

Analogously, we define the classical p-particle correlation function

$$\gamma_p(x_1,\ldots,x_p;y_1,\ldots,y_p) := \mathbb{E}^{\mu}\big(\bar{\phi}(y_1)\cdots\bar{\phi}(y_p)\phi(x_1)\cdots\phi(x_p)\big)$$

The family $(\gamma_p)_{p \in \mathbb{N}}$ completely determines all moments of the field ϕ .

Theorem [Lewin-Nam-Rougerie, 2015]. For d = 1 and w positive definite, for any $p \in \mathbb{N}$ we have $\gamma_{\tau,p} \to \gamma_p$ in trace class as $\tau \to \infty$.

Time-dependent correlations

Introduce Hamiltonian time evolution:

(CI) for a random variable $X \equiv X(\phi)$ set $\Psi^t X(\phi) := X(S^t \phi)$; (Qu) for an operator **X** on \mathcal{F} set $\Psi^t_{\tau} \mathbf{X} := e^{it\tau H_{\tau}} \mathbf{X} e^{-it\tau H_{\tau}}$.

For a p-particle operator ξ on $\mathfrak{H}^{(p)}$ introduce the observables

(CI)
$$\Theta(\xi) := \int dx_1 \cdots dx_p dy_1 \cdots dy_p \xi(x_1, \dots, x_p; y_1, \dots, y_p)$$

 $\times \bar{\phi}(x_1) \cdots \bar{\phi}(x_p) \phi(y_1) \cdots \phi(y_p);$

$$(\mathsf{Qu}) \quad \Theta_{\tau}(\xi) := \int \mathrm{d}x_1 \cdots \mathrm{d}x_p \, \mathrm{d}y_1 \cdots \mathrm{d}y_p \, \xi(x_1, \dots, x_p; y_1, \dots, y_p) \\ \times \phi_{\tau}^*(x_1) \cdots \phi_{\tau}^*(x_p) \phi_{\tau}(y_1) \cdots \phi_{\tau}(y_p) \, .$$

Theorem [Fröhlich-K-Schlein-Sohinger, 2017]. Let d = 1 and $w \in L^{\infty}$ be pointwise positive. Given $m \in \mathbb{N}$, $p_1, \ldots, p_m \in \mathbb{N}$, $\xi^1 \in \mathcal{L}(\mathfrak{H}^{(p_1)}), \ldots, \xi^m \in \mathcal{L}(\mathfrak{H}^{(p_m)})$ and $t_1, \ldots, t_m \in \mathbb{R}$, we have

 $\lim_{\tau \to \infty} \rho_{\tau} \left(\Psi_{\tau}^{t_1} \Theta_{\tau}(\xi^1) \cdots \Psi_{\tau}^{t_m} \Theta_{\tau}(\xi^m) \right) = \mathbb{E}^{\mu} \left(\Psi^{t_1} \Theta(\xi^1) \cdots \Psi^{t_m} \Theta(\xi^m) \right).$

Remarks:

- Also works on \mathbb{R} instead of \mathbb{T} , with sufficiently confining potential v in free Hamiltonian $\kappa \Delta + v(x)$.
- We also prove that there exists a null sequence $\varepsilon = \varepsilon_{\tau}$ such that, with a quantum two-body potential $\frac{1}{\varepsilon}w(\frac{x}{\varepsilon})$ the limit is that of the cubic NLS with local nonlinearity, $w = \delta$.

Higher dimensions

If d > 1 then ϕ has μ_0 -a.s. negative regularity, $\phi \notin L^2$, since $\sum_{k \in \mathbb{N}} \lambda_k^{-1} = \infty$. Consequences:

• $W(\phi) = \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \, w(x-y) |\phi(x)|^2 |\phi(y)|^2$ ill-defined even for $w \in L^\infty$.

 ${\mbox{ }} p$ -particle correlation functions γ_p are not in trace class, since

$$\operatorname{Tr}(\gamma_1) = \mathbb{E}^{\mu} \|\phi\|_{L^2}^2 = \infty.$$

 On the quantum side, rescaled number of particles N_τ is no longer bounded. Explicit computation for noninteracting case w = 0:

$$\rho_{\tau}(\mathcal{N}_{\tau}) = \sum_{k \in \mathbb{N}} \frac{1}{\tau} \frac{1}{\mathrm{e}^{\lambda_k/\tau} - 1} \to \infty$$

as $\tau \to \infty$. Quantum model has intrinsic cutoff at energies $\lambda_k \approx \tau$. Heuristics:

Singularity of classical field \iff Rapid growth of number of particles .

Renormalization

Renormalize interaction W by Wick ordering. Formally, take

$$W(\phi) = \frac{1}{2} \int dx \, dy \, w(x-y) (|\phi(x)|^2 - \infty) (|\phi(y)|^2 - \infty) \,.$$

Rigorously, introduce truncated field and density

$$\phi_{[K]} := \sum_{k=0}^{K} \frac{\omega_k}{\sqrt{\lambda_k}} u_k , \qquad \varrho_{[K]}(x) := \mathbb{E}^{\mu_0} |\phi_{[K]}(x)|^2$$

Then

$$W_{[K]} := \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,w(x-y) \big(|\phi_{[K]}(x)|^2 - \varrho_{[K]}(x) \big) \big(|\phi_{[K]}(x)|^2 - \varrho_{[K]}(x) \big)$$

has a limit in $\bigcap_{p<\infty} L^p(\mu_0)$ as $K \to \infty$, denoted by W. Use this W in definition of μ . Similarly, we need to renormalize the quantum interaction. The quantum Gibbs state is defined by the renormalized many-body Hamiltonian $H_{\tau} = H_{\tau,0} + W_{\tau}$, where

$$W_{\tau} := \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \left(\phi_{\tau}^*(x)\phi_{\tau}(x) - \varrho_{\tau}(x)\right) w(x-y) \left(\phi_{\tau}^*(y)\phi_{\tau}(y) - \varrho_{\tau}(y)\right),$$

where the quantum density at $x \ \varrho_{\tau}(x)$ is defined as

$$\varrho_{\tau}(x) := \rho_{\tau,0} \big(\phi_{\tau}^*(x) \phi_{\tau}(x) \big) \,.$$

Convergence of moments for d = 2, 3

For technical reasons, instead of $P_{\tau} = e^{-H_{\tau,0}-W_{\tau}}$, we consider a family of modified thermal quantum states

$$P_{\tau}^{\eta} := e^{-\eta H_{\tau,0}} e^{-(1-2\eta)H_{\tau,0}-W_{\tau}} e^{-\eta H_{\tau,0}}, \qquad \eta \in [0,1).$$

Theorem [Fröhlich-K-Schlein-Sohinger, 2016]. Let $d = 2, 3, w \in L^{\infty}$ positive definite, $\eta > 0$, and $p \in \mathbb{N}$. Then $\gamma_{\tau,p}^{\eta} \to \gamma_p$ in Hilbert-Schmidt as $\tau \to \infty$. Recent developments:

- [Sohinger, 2019] optimal integrability conditions [Bourgain, 1997] on w: $w \in L^1$ (d = 1), $w \in L^{1+}$ (d = 2), $w \in L^{3+}$ (d = 3).
- [Lewin-Nam-Rougerie, 2018] $\eta = 0$ for smooth w and d = 2.

Counterterm problem

Also works on \mathbb{R}^d with sufficiently confining potential V. Relation between original and renormalized problems is nontrivial. True Hamiltonian

$$\begin{split} \widetilde{H}_{\tau} &:= \int \mathrm{d}x \,\mathrm{d}y \,\phi_{\tau}^*(x) \big(\nu - \Delta + V\big)(x;y) \phi_{\tau}(y) \\ &\quad + \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\phi_{\tau}^*(x) \phi_{\tau}^*(y) \,w(x-y) \,\phi_{\tau}(x) \phi_{\tau}(y) \end{split}$$

compared with renormalized Hamiltonian (from above),

$$H_{\tau} = \int \mathrm{d}x \, \phi_{\tau}^*(x) (\kappa - \Delta + v_{\tau}) \phi_{\tau}(x) + \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}y \left(\phi_{\tau}^*(x) \phi_{\tau}(x) - \varrho_{\tau}(x) \right) w(x - y) \left(\phi_{\tau}^*(y) \phi_{\tau}(y) - \varrho_{\tau}(y) \right)$$

Essentially, H_{τ} and H_{τ} are related by a shift in a diverging chemical potential, provided that one chooses the bare one-body potential v_{τ} appropriately (depending on τ).

More precisely, for any constant $\bar{\varrho}_{\tau} \in \mathbb{R}$ we have

$$\widetilde{H}_{\tau} = H_{\tau} + \left[\bar{\varrho}_{\tau} \hat{w}(0) - \frac{1}{2\tau} w(0) + \nu - \kappa \right] \mathcal{N}_{\tau} - \frac{1}{2} \int \mathrm{d}x \,\mathrm{d}y \,\varrho_{\tau}(x) w(x-y) \varrho_{\tau}(y) \,,$$

provided that v_{τ} solves the counterterm problem

$$v_{\tau} = V + w * \left(\varrho_{\tau}^{v_{\tau}} - \bar{\varrho}_{\tau}\right). \tag{2}$$

For $\rho_{\tau}^{v_{\tau}} - \bar{\rho}_{\tau}$ to remain bounded, we need $\lim_{\tau \to \infty} \bar{\rho}_{\tau} = \infty$, and hence (for bracket to vanish) $\lim_{\tau \to \infty} \nu = -\infty$. (Compensates large repulsive interaction energy.)

The counterterm problem (2) is solved in [FKSS, 2016], where we also show that the solution v_{τ} converges (in a suitable space) to some v = the correct renormalized external potential.

Morsels of proof

Basic approach: perturbative expansion of partition functions $\mathbb{E}^{\mu_0} e^{-zW}$ and $\operatorname{Tr}(e^{-H_{\tau,0}-zW_{\tau}})$ in powers of z. Well-defined for $\operatorname{Re} z \ge 0$ but ill-defined for $\operatorname{Re} z < 0$: zero radius of convergence around z = 0.

Toy problem:
$$A(z) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{d}x \,\mathrm{e}^{-x^2/2} \,\mathrm{e}^{-zx^4}\,;$$

analytic for ${\rm Re}\,z>0$ but zero radius of convergence, with Taylor coefficient $a_m=A^{(m)}(0)/m!\sim m!.$

However, Taylor series $\sum_{m \ge 0} a_m z^m$ has Borel transform $B(z) := \sum_{m \ge 0} \frac{a_m}{m!} z^m$ with positive radius of convergence. Formally, we can recover A from

$$A(z) = \int_0^\infty \mathrm{d}t \,\mathrm{e}^{-t} B(tz) \,.$$

Works provided we can prove good enough bounds on Taylor coefficients and remainder term of A (Sokal, 1980).

Main work: control of the coefficients and remainder of quantum many-body problem. Starting point for algebra is Wick's theorem for the free states.

For time-dependent problem, we perform an expansion of $\Psi_{\tau}^{t}\Theta_{\tau}(\xi) = e^{it\tau H_{\tau}}\Theta_{\tau}(\xi) e^{-it\tau H_{\tau}}$ in powers of the interaction potential w.

The expansion is controlled graphically, tree graphs sum up precisely to the quantization of $\Psi^t \Theta(\xi)$.

Problem: expansion is only convergent on sector of \mathcal{F} where \mathcal{N}_{τ} is bounded. Introduce cutoff in rescaled number of particles \mathcal{N}_{τ} . Need to show that for $f \in C_c^{\infty}(\mathbb{R})$ we have

$$\lim_{\tau \to \infty} \rho_{\tau} \left(\Theta_{\tau}(\xi) f(\mathcal{N}_{\tau}) \right) = \mathbb{E}^{\mu} \left(\Theta(\xi) f(\mathcal{N}) \right)$$
(3)

Problem: cutoff breaks Gaussianity, and Wick's theorem does not apply to (3). Idea: using complex analysis, it suffices to analyse $\rho_{\tau} (\Theta_{\tau}(\xi) e^{-N_{\tau}})$ for fixed $\nu > 0$.