# Gibbs measures of nonlinear Schrödinger equations and many-body quantum mechanics 

Antti Knowles<br>Université de Genève

With Jürg Fröhlich, Benjamin Schlein, and Vedran Sohinger

## Classical mechanics and Gibbs measures

A Hamiltonian system consists of the following ingredients.

- Linear phase space $\Gamma \ni \phi$.
- Hamilton (or energy) function $H \in C^{\infty}(\Gamma)$.
- Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(\Gamma) \times C^{\infty}(\Gamma)$.
(Properties: antisymmetric, bilinear, Leibnitz rule in both arguments, Jacobi identity.)

Classical dynamics is given by Hamiltonian flow $\phi \mapsto S^{t} \phi$ on $\Gamma$ defined by the ODE

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(S^{t} \phi\right)=\{H, f\}\left(S^{t} \phi\right)
$$

for any $f \in C^{\infty}(\Gamma)$.

Standard example: classical system of $n$ degrees of freedom.

- Phase space $\Gamma=\mathbb{R}^{2 n} \ni(p, q)$.
- Hamilton function $H(p, q)=\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 m_{i}}+V(q)$.
- Poisson bracket $\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}\right)$.

Hamiltonian flow reads

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{i}=-\frac{\partial H}{\partial q_{i}}=-\partial_{i} V(q), \quad \frac{\mathrm{d}}{\mathrm{~d} t} q_{i}=\frac{\partial H}{\partial p_{i}}=\frac{p_{i}}{m_{i}} .
$$

The Gibbs measure at temperature $\beta$ is

$$
\mathbb{P}(\mathrm{d} \phi):=\frac{1}{Z} \mathrm{e}^{-\beta H(\phi)} \mathrm{d} \phi, \quad Z:=\int \mathrm{e}^{-\beta H(\phi)} \mathrm{d} \phi .
$$

$\mathbb{P}$ is invariant under the flow $S^{t}$.

## Nonlinear Schrödinger equations

Let $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ be the $d$-dimensional torus.

- Phase space $\Gamma$ is some appropriate subspace of $\left\{\phi: \mathbb{T}^{d} \rightarrow \mathbb{C}\right\}$.
- Hamilton function

$$
H(\phi)=\int \mathrm{d} x \bar{\phi}(x)(\kappa-\Delta) \phi(x)+\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y w(x-y)|\phi(x)|^{2}|\phi(y)|^{2},
$$

where $\kappa>0$.

- Poisson bracket

$$
\{\phi(x), \bar{\phi}(y)\}=\mathrm{i} \delta(x-y), \quad\{\phi(x), \phi(y)\}=\{\bar{\phi}(x), \bar{\phi}(y)\}=0 .
$$

Hamiltonian flow given by time-dependent nonlinear Schrödinger equation

$$
\mathrm{i} \partial_{t} \phi(x)=(\kappa-\Delta) \phi(x)+\int \mathrm{d} y w(x-y)|\phi(y)|^{2} \phi(x) .
$$

Time-dependent nonlinear Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \partial_{t} \phi(x)=(\kappa-\Delta) \phi(x)+\int \mathrm{d} y w(x-y)|\phi(y)|^{2} \phi(x) . \tag{1}
\end{equation*}
$$

Gibbs measure of nonlinear Schrödinger equation is formally

$$
\mathbb{P}(\mathrm{d} \phi)=\frac{1}{Z} \mathrm{e}^{-H(\phi)} \mathrm{d} \phi .
$$

Formally, $\mathbb{P}$ is invariant under the flow generated by (1).
Rigorous results: Lebowitz-Rose-Speer, Bourgain, Bourgain-Bulut, Tzvetkov, Thomann-Tzvetkov, Nahmod-Oh-Rey-Bellet-Staffilani, Oh-Quastel, Deng-Tzvetkov-Visciglia, Cacciafesta-de Suzzoni, Genovese-Lucá-Valeri, ... Important application: $\mathbb{P}$-almost sure well-posedness of (1) for rough initial data.

## Goal

Analyse $\mathbb{P}$ and $\left(S^{t}\right)$ through

- the moments of $\mathbb{P}$ (which determine $\mathbb{P}$ ),
- the time-dependent correlation functions

$$
\int X^{1}\left(S^{t_{1}} \phi\right) \cdots X^{m}\left(S^{t_{m}} \phi\right) d \mathbb{P}(\phi)
$$

for $X^{i} \in C^{\infty}(\Gamma)$ and $t_{i} \in \mathbb{R}$.

Derivation as a (high-temperature) limit of a microscopic $n$-body quantum theory of bosons.

## Rigorous construction of Gibbs measure

Spectral decomposition

$$
\kappa-\Delta=\sum_{k \in \mathbb{N}} \lambda_{k} u_{k} u_{k}^{*}, \quad \lambda_{k}>0, \quad\left\|u_{k}\right\|_{L^{2}}=1 .
$$

Let $\omega=\left(\omega_{k}\right)_{k \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ be i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables with joint law $\mu_{0}$.
Define the Gaussian free field

$$
\phi^{\omega} \equiv \phi:=\sum_{k \in \mathbb{N}} \frac{\omega_{k}}{\sqrt{\lambda_{k}}} u_{k} .
$$

The sum converges in $\|\phi\|_{\mathcal{H}^{s}}:=\left\|(\kappa-\Delta)^{s / 2} \phi\right\|_{L^{2}}$ in the sense of $L^{p}\left(\mu_{0}\right)$ for all $p \in(1, \infty)$, provided that

$$
\sum_{k \in \mathbb{N}} \lambda_{k}^{s-1}<\infty
$$

For example,

$$
\mathbb{E}^{\mu_{0}}\|\phi\|_{\mathcal{H}^{s}}^{2}=\sum_{k \in \mathbb{N}} \mathbb{E}^{\mu_{0}}\left|\omega_{k}\right|^{2} \frac{\lambda_{k}^{s}}{\lambda_{k}}=\sum_{k \in \mathbb{N}} \lambda_{k}^{s-1} .
$$

Under $\mu_{0}, \phi=\sum_{k \in \mathbb{N}} \frac{\omega_{k}}{\sqrt{\lambda_{k}}} u_{k}$ is a Gaussian free field with covariance $(\kappa-\Delta)^{-1}$ :

$$
\mathbb{E}^{\mu_{0}}\langle f, \phi\rangle\langle\phi, g\rangle=\left\langle f,(\kappa-\Delta)^{-1} g\right\rangle .
$$

We find that

$$
\mu_{0}\left[\phi \in \mathcal{H}^{0}\right]= \begin{cases}1 & \text { if } d=1 \\ 0 & \text { if } d>1\end{cases}
$$

Define the measure
$\mu(\mathrm{d} \omega):=\frac{1}{Z} \mathrm{e}^{-W\left(\phi^{\omega}\right)} \mu_{0}(\mathrm{~d} \omega), \quad W(\phi)=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y w(x-y)|\phi(x)|^{2}|\phi(y)|^{2}$.
$\mu$ is well-defined for instance if

$$
d=1, \quad w \in L^{\infty}, \quad w \text { positive definite },
$$

since then $0 \leqslant W(\phi)<\infty \mu_{0}$-a.s.
(Then $\mathbb{P}$ is defined as $\phi_{*} \mu$.)

## Quantum many-body theory

Define the one-particle space $\mathfrak{H}:=L^{2}\left(\mathbb{T}^{d} ; \mathbb{C}\right)$ and the $n$-particle space

$$
\mathfrak{H}^{(n)}:=\mathfrak{H}^{\otimes_{\mathrm{sym}} n}=L_{\mathrm{sym}}^{2}\left(\left(\mathbb{T}^{d}\right)^{n}\right) .
$$

Hamilton operator

$$
H^{(n)}:=H_{0}^{(n)}+\lambda \sum_{1 \leqslant i<j \leqslant n} w\left(x_{i}-x_{j}\right), \quad H_{0}^{(n)}:=\sum_{i=1}^{n}\left(\kappa-\Delta_{x_{i}}\right)
$$

Canonical thermal state at temperature $\tau>0$ is $P_{\tau}^{(n)}:=\mathrm{e}^{-H^{(n)} / \tau}$.
Expectation of an observable $A \in \mathfrak{B}\left(\mathfrak{H}^{(n)}\right)$ is

$$
\rho_{\tau}^{(n)}(A):=\frac{\operatorname{Tr}\left(A P_{\tau}^{(n)}\right)}{\operatorname{Tr}\left(P_{\tau}^{(n)}\right)} .
$$

What happens as $n \rightarrow \infty$ ?
In order to obtain a nontrivial limit, we set $\lambda=1 / n$.
Theorem [Lewin-Nam-Serfaty-Solovej, 2012; Lewin-Nam-Rougerie, 2013]. For $\lambda=1 / n$ and $\tau$ fixed, the state $\rho_{\tau}^{(n)}(\cdot)$ converges to the atomic measure $\delta_{\Phi}$ in the sense of $p$-particle correlation functions (see later), where $\Phi$ is the minimizer of the energy function $H$.
Complete Bose-Einstein condensation for fixed $\tau$.

In order to obtain the Gibbs measure $\mu$, we need to let

- $\tau$ grow with $n$ (high-temperature limit),
- $n$ fluctuate. ( $n / \tau$ will correspond to $\|\phi\|_{2}^{2}$.)


## High-temperature limit and Fock space

Define the Fock space $\mathcal{F}:=\bigoplus_{n \in \mathbb{N}} \mathfrak{H}^{(n)}$ and the grand canonical thermal state

$$
P_{\tau}:=\bigoplus_{n \in \mathbb{N}} P_{\tau}^{(n)}=\mathrm{e}^{-H_{\tau}}, \quad H_{\tau}:=\frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} H^{(n)} .
$$

Rescaled particle number operator $\mathcal{N}_{\tau}:=\frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} n I$. Expectation of an observable $A \in \mathfrak{B}(\mathcal{F})$ is

$$
\rho_{\tau}(A):=\frac{\operatorname{Tr}\left(A P_{\tau}\right)}{\operatorname{Tr}\left(P_{\tau}\right)} .
$$

Explicit computation for $d=1$ and $\lambda=0$ :

$$
\lim _{\tau \rightarrow \infty} \rho_{\tau}\left(\mathcal{N}_{\tau}^{k}\right)=\mathbb{E}^{\mu}\|\phi\|_{L^{2}}^{2 k}, \quad k=1,2, \ldots
$$

Number of particles is of order $\tau$. Thus, set $\lambda:=\tau^{-1}$ to obtain nontrivial interacting limit.

## Second quantization

Let $b, b^{*}$ be the bosonic annihilation and creation operators on $\mathcal{F}$ and set $\phi:=\tau^{-1 / 2} b$. Hence,

$$
\left[\phi_{\tau}(x), \phi_{\tau}^{*}(y)\right]=\frac{1}{\tau} \delta(x-y), \quad\left[\phi_{\tau}(x), \phi_{\tau}(y)\right]=\left[\phi_{\tau}^{*}(x), \phi_{\tau}^{*}(y)\right]=0
$$

Thus, we can write $H_{\tau}=H_{\tau, 0}+W$, where

$$
\begin{aligned}
H_{\tau, 0} & =\int \mathrm{d} x \phi_{\tau}^{*}(x)(\kappa-\Delta) \phi_{\tau}(x), \\
W_{\tau} & =\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y \phi_{\tau}^{*}(x) \phi_{\tau}(x) w(x-y) \phi_{\tau}^{*}(y) \phi_{\tau}(y),
\end{aligned}
$$

as well as $P_{\tau}=\mathrm{e}^{-H_{\tau}}, \rho_{\tau}(A)=\frac{\operatorname{Tr}\left(A P_{\tau}\right)}{\operatorname{Tr}\left(P_{\tau}\right)}$.

High-temperature limit for $d=1$

Define the $p$-particle reduced density matrix

$$
\gamma_{\tau, p}\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{p}\right):=\rho_{\tau}\left(\phi_{\tau}^{*}\left(y_{1}\right) \cdots \phi_{\tau}^{*}\left(y_{p}\right) \phi_{\tau}\left(x_{1}\right) \cdots \phi_{\tau}\left(x_{p}\right)\right) .
$$

Analogously, we define the classical $p$-particle correlation function

$$
\gamma_{p}\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{p}\right):=\mathbb{E}^{\mu}\left(\bar{\phi}\left(y_{1}\right) \cdots \bar{\phi}\left(y_{p}\right) \phi\left(x_{1}\right) \cdots \phi\left(x_{p}\right)\right) .
$$

The family $\left(\gamma_{p}\right)_{p \in \mathbb{N}}$ completely determines all moments of the field $\phi$.
Theorem [Lewin-Nam-Rougerie, 2015]. For $d=1$ and $w$ positive definite, for any $p \in \mathbb{N}$ we have $\gamma_{\tau, p} \rightarrow \gamma_{p}$ in trace class as $\tau \rightarrow \infty$.

## Time-dependent correlations

Introduce Hamiltonian time evolution:
(CI) for a random variable $X \equiv X(\phi)$ set $\Psi^{t} X(\phi):=X\left(S^{t} \phi\right)$;
(Qu) for an operator $\mathbf{X}$ on $\mathcal{F}$ set $\Psi_{\tau}^{t} \mathbf{X}:=\mathrm{e}^{\mathrm{i} t \tau H_{\tau}} \mathbf{X} \mathrm{e}^{-\mathrm{i} t \tau H_{\tau}}$.
For a $p$-particle operator $\xi$ on $\mathfrak{H}^{(p)}$ introduce the observables
$\begin{aligned} &(\mathrm{Cl}) \Theta(\xi):=\int \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p} \mathrm{~d} y_{1} \cdots \mathrm{~d} y_{p} \xi\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{p}\right) \\ & \times \bar{\phi}\left(x_{1}\right) \cdots \bar{\phi}\left(x_{p}\right) \phi\left(y_{1}\right) \cdots \phi\left(y_{p}\right) ;\end{aligned}$
(Qu) $\quad \Theta_{\tau}(\xi):=\int \mathrm{d} x_{1} \cdots \mathrm{~d} x_{p} \mathrm{~d} y_{1} \cdots \mathrm{~d} y_{p} \xi\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{p}\right)$

$$
\times \phi_{\tau}^{*}\left(x_{1}\right) \cdots \phi_{\tau}^{*}\left(x_{p}\right) \phi_{\tau}\left(y_{1}\right) \cdots \phi_{\tau}\left(y_{p}\right) .
$$

Theorem [Fröhlich-K-Schlein-Sohinger, 2017]. Let $d=1$ and $w \in L^{\infty}$ be pointwise positive. Given $m \in \mathbb{N}, p_{1}, \ldots, p_{m} \in \mathbb{N}$, $\xi^{1} \in \mathcal{L}\left(\mathfrak{H}^{\left(p_{1}\right)}\right), \ldots, \xi^{m} \in \mathcal{L}\left(\mathfrak{H}^{\left(p_{m}\right)}\right)$ and $t_{1}, \ldots, t_{m} \in \mathbb{R}$, we have

$$
\lim _{\tau \rightarrow \infty} \rho_{\tau}\left(\Psi_{\tau}^{t_{1}} \Theta_{\tau}\left(\xi^{1}\right) \cdots \Psi_{\tau}^{t_{m}} \Theta_{\tau}\left(\xi^{m}\right)\right)=\mathbb{E}^{\mu}\left(\Psi^{t_{1}} \Theta\left(\xi^{1}\right) \cdots \Psi^{t_{m}} \Theta\left(\xi^{m}\right)\right) .
$$

## Remarks:

- Also works on $\mathbb{R}$ instead of $\mathbb{T}$, with sufficiently confining potential $v$ in free Hamiltonian $\kappa-\Delta+v(x)$.
- We also prove that there exists a null sequence $\varepsilon=\varepsilon_{\tau}$ such that, with a quantum two-body potential $\frac{1}{\varepsilon} w\left(\frac{x}{\varepsilon}\right)$ the limit is that of the cubic NLS with local nonlinearity, $w=\delta$.


## Higher dimensions

If $d>1$ then $\phi$ has $\mu_{0}$-a.s. negative regularity, $\phi \notin L^{2}$, since $\sum_{k \in \mathbb{N}} \lambda_{k}^{-1}=\infty$.

## Consequences:

- $W(\phi)=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y w(x-y)|\phi(x)|^{2}|\phi(y)|^{2}$ ill-defined even for $w \in L^{\infty}$.
- p-particle correlation functions $\gamma_{p}$ are not in trace class, since

$$
\operatorname{Tr}\left(\gamma_{1}\right)=\mathbb{E}^{\mu}\|\phi\|_{L^{2}}^{2}=\infty .
$$

- On the quantum side, rescaled number of particles $\mathcal{N}_{\tau}$ is no longer bounded. Explicit computation for noninteracting case $w=0$ :

$$
\rho_{\tau}\left(\mathcal{N}_{\tau}\right)=\sum_{k \in \mathbb{N}} \frac{1}{\tau} \frac{1}{\mathrm{e}^{\lambda_{k} / \tau}-1} \rightarrow \infty
$$

as $\tau \rightarrow \infty$. Quantum model has intrinsic cutoff at energies $\lambda_{k} \approx \tau$.
Heuristics:
Singularity of classical field
$\Longleftrightarrow \quad$ Rapid growth of number of particles.

## Renormalization

Renormalize interaction $W$ by Wick ordering. Formally, take

$$
W(\phi)=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y w(x-y)\left(|\phi(x)|^{2}-\infty\right)\left(|\phi(y)|^{2}-\infty\right) .
$$

Rigorously, introduce truncated field and density

$$
\phi_{[K]}:=\sum_{k=0}^{K} \frac{\omega_{k}}{\sqrt{\lambda_{k}}} u_{k}, \quad \varrho_{[K]}(x):=\mathbb{E}^{\mu_{0}}\left|\phi_{[K]}(x)\right|^{2} .
$$

Then

$$
W_{[K]}:=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y w(x-y)\left(\left|\phi_{[K]}(x)\right|^{2}-\varrho_{[K]}(x)\right)\left(\left|\phi_{[K]}(x)\right|^{2}-\varrho_{[K]}(x)\right)
$$

has a limit in $\bigcap_{p<\infty} L^{p}\left(\mu_{0}\right)$ as $K \rightarrow \infty$, denoted by $W$.
Use this $W$ in definition of $\mu$.

Similarly, we need to renormalize the quantum interaction. The quantum Gibbs state is defined by the renormalized many-body Hamiltonian $H_{\tau}=H_{\tau, 0}+W_{\tau}$, where

$$
W_{\tau}:=\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y\left(\phi_{\tau}^{*}(x) \phi_{\tau}(x)-\varrho_{\tau}(x)\right) w(x-y)\left(\phi_{\tau}^{*}(y) \phi_{\tau}(y)-\varrho_{\tau}(y)\right),
$$

where the quantum density at $x \varrho_{\tau}(x)$ is defined as

$$
\varrho_{\tau}(x):=\rho_{\tau, 0}\left(\phi_{\tau}^{*}(x) \phi_{\tau}(x)\right) .
$$

## Convergence of moments for $d=2,3$

For technical reasons, instead of $P_{\tau}=\mathrm{e}^{-H_{\tau, 0}-W_{\tau}}$, we consider a family of modified thermal quantum states

$$
P_{\tau}^{\eta}:=\mathrm{e}^{-\eta H_{\tau, 0}} \mathrm{e}^{-(1-2 \eta) H_{\tau, 0}-W_{\tau}} \mathrm{e}^{-\eta H_{\tau, 0}}, \quad \eta \in[0,1) .
$$

Theorem [Fröhlich-K-Schlein-Sohinger, 2016]. Let $d=2,3, w \in L^{\infty}$ positive definite, $\eta>0$, and $p \in \mathbb{N}$. Then $\gamma_{\tau, p}^{\eta} \rightarrow \gamma_{p}$ in Hilbert-Schmidt as $\tau \rightarrow \infty$.
Recent developments:

- [Sohinger, 2019] optimal integrability conditions [Bourgain, 1997] on $w$ : $w \in L^{1}(d=1), w \in L^{1+}(d=2), w \in L^{3+}(d=3)$.
- [Lewin-Nam-Rougerie, 2018] $\eta=0$ for smooth $w$ and $d=2$.


## Counterterm problem

Also works on $\mathbb{R}^{d}$ with sufficiently confining potential $V$. Relation between original and renormalized problems is nontrivial. True Hamiltonian

$$
\begin{aligned}
\widetilde{H}_{\tau}:=\int \mathrm{d} x \mathrm{~d} y \phi_{\tau}^{*}(x)(\nu- & \Delta+V)(x ; y) \phi_{\tau}(y) \\
& +\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y \phi_{\tau}^{*}(x) \phi_{\tau}^{*}(y) w(x-y) \phi_{\tau}(x) \phi_{\tau}(y)
\end{aligned}
$$

compared with renormalized Hamiltonian (from above),

$$
\begin{aligned}
H_{\tau}= & \int \mathrm{d} x \phi_{\tau}^{*}(x)\left(\kappa-\Delta+v_{\tau}\right) \phi_{\tau}(x) \\
& +\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y\left(\phi_{\tau}^{*}(x) \phi_{\tau}(x)-\varrho_{\tau}(x)\right) w(x-y)\left(\phi_{\tau}^{*}(y) \phi_{\tau}(y)-\varrho_{\tau}(y)\right)
\end{aligned}
$$

Essentially, $\widetilde{H}_{\tau}$ and $H_{\tau}$ are related by a shift in a diverging chemical potential, provided that one chooses the bare one-body potential $v_{\tau}$ appropriately (depending on $\tau$ ).

More precisely, for any constant $\bar{\varrho}_{\tau} \in \mathbb{R}$ we have
$\widetilde{H}_{\tau}=H_{\tau}+\left[\bar{\varrho}_{\tau} \hat{w}(0)-\frac{1}{2 \tau} w(0)+\nu-\kappa\right] \mathcal{N}_{\tau}-\frac{1}{2} \int \mathrm{~d} x \mathrm{~d} y \varrho_{\tau}(x) w(x-y) \varrho_{\tau}(y)$,
provided that $v_{\tau}$ solves the counterterm problem

$$
\begin{equation*}
v_{\tau}=V+w *\left(\varrho_{\tau}^{v_{\tau}}-\bar{\varrho}_{\tau}\right) . \tag{2}
\end{equation*}
$$

For $\varrho_{\tau}^{v_{\tau}}-\bar{\varrho}_{\tau}$ to remain bounded, we need $\lim _{\tau \rightarrow \infty} \bar{\varrho}_{\tau}=\infty$, and hence (for bracket to vanish) $\lim _{\tau \rightarrow \infty} \nu=-\infty$. (Compensates large repulsive interaction energy.)
The counterterm problem (2) is solved in [FKSS, 2016], where we also show that the solution $v_{\tau}$ converges (in a suitable space) to some $v=$ the correct renormalized external potential.

## Morsels of proof

Basic approach: perturbative expansion of partition functions $\mathbb{E}^{\mu_{0}} \mathrm{e}^{-z W}$ and $\operatorname{Tr}\left(\mathrm{e}^{-H_{\tau, 0}-z W_{\tau}}\right)$ in powers of $z$. Well-defined for $\operatorname{Re} z \geqslant 0$ but ill-defined for $\operatorname{Re} z<0$ : zero radius of convergence around $z=0$.
Toy problem:

$$
A(z)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} x \mathrm{e}^{-x^{2} / 2} \mathrm{e}^{-z x^{4}} ;
$$

analytic for $\operatorname{Re} z>0$ but zero radius of convergence, with Taylor coefficient $a_{m}=A^{(m)}(0) / m!\sim m!$.
However, Taylor series $\sum_{m \geqslant 0} a_{m} z^{m}$ has Borel transform $B(z):=\sum_{m \geqslant 0} \frac{a_{m}}{m!} z^{m}$ with positive radius of convergence. Formally, we can recover $A$ from

$$
A(z)=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-t} B(t z)
$$

Works provided we can prove good enough bounds on Taylor coefficients and remainder term of $A$ (Sokal, 1980).

Main work: control of the coefficients and remainder of quantum many-body problem. Starting point for algebra is Wick's theorem for the free states.

For time-dependent problem, we perform an expansion of $\Psi_{\tau}^{t} \Theta_{\tau}(\xi)=\mathrm{e}^{\mathrm{i} t \tau H_{\tau}} \Theta_{\tau}(\xi) \mathrm{e}^{-\mathrm{i} t \tau H_{\tau}}$ in powers of the interaction potential $w$.

The expansion is controlled graphically, tree graphs sum up precisely to the quantization of $\Psi^{t} \Theta(\xi)$.
Problem: expansion is only convergent on sector of $\mathcal{F}$ where $\mathcal{N}_{\tau}$ is bounded. Introduce cutoff in rescaled number of particles $\mathcal{N}_{\tau}$. Need to show that for $f \in C_{c}^{\infty}(\mathbb{R})$ we have

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \rho_{\tau}\left(\Theta_{\tau}(\xi) f\left(\mathcal{N}_{\tau}\right)\right)=\mathbb{E}^{\mu}(\Theta(\xi) f(\mathcal{N})) \tag{3}
\end{equation*}
$$

Problem: cutoff breaks Gaussianity, and Wick's theorem does not apply to (3). Idea: using complex analysis, it suffices to analyse $\rho_{\tau}\left(\Theta_{\tau}(\xi) \mathrm{e}^{-\mathcal{N}_{\tau}}\right)$ for fixed $\nu>0$.

