Classical systems with Coulomb/Riesz interactions

Thomas Leblé

Courant Institute, New York University

23 mai 2019 Mean-field and other effective models in mathematical physics Les Treilles $\vec{X}_N = (x_1, \ldots, x_N)$ classical point particles in \mathbb{R}^d .

$$\mathcal{H}_N(\vec{X}_N) := \sum_{1 \leq i < j \leq N} g(x_i - x_j) + \sum_{i=1}^N N \cdot V(x_i)$$

Interaction potential

$$g(x-y) = \begin{cases} -\log|x-y| & \text{``log gases''}(d = 1, 2) \\ |x-y|^{-s} & \text{``Riesz gases''}(d \ge 1) \end{cases}$$

Coulomb: Log for d = 2 and Riesz with s = d - 2 for d \geq 3. V "confining" potential, grows fast enough e.g. $V(x) = ||x||^2$.

4 3 6 4 3 6

Canonical ensemble, inverse temperature $\beta > 0 = \frac{1}{T}$ Gibbs measure

$$d\mathbb{P}_{N,\beta}(\vec{X}_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\beta \mathcal{H}_N(\vec{X}_N)\right) d\vec{X}_N.$$

Volume = Lebesgue measure $d\vec{X}_N = dx_1 \dots dx_N$ on $(\mathbb{R}^d)^N$

Motivations?

- Statistical physics
- Random Matrix Theory
- (Appears as square of wavefunction for quantum systems.)

Macroscopic behavior

Empirical measure

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}.$$

Converges to some compactly supported "equilibrium measure" $\mu_{\rm eq}$, which does not depend on β (only on V). In general, $\mu_{\rm eq}$ minimises the energy functional

$$\mu \mapsto I_V(\mu) := \iint g(x-y)d\mu(x)d\mu(y) + \int V(x)d\mu(x)$$

Examples? Re-write the energy as

$$\mathcal{H}_N(ec{X}_N) = N^2 I_V(\mu_{ ext{eq}}) + ext{ lower order terms}.$$

Microscopic scale?

Rescale system by $N^{1/d}$.

Microscopic point configuration / arrangement

$$\mathcal{C}_{N} := \sum_{i=1}^{N} \delta_{N^{1/d} x_{i}}$$

• Background measure $\tilde{\mu}_{eq}(x)$ Second-order energy (order N). Sandier-Serfaty.

$$\iint g(x-y) \left(d\mathcal{C}_N(x) - d\tilde{\mu}_{\rm eq}(x) \right) \left(d\mathcal{C}_N(y) - d\tilde{\mu}_{\rm eq}(y) \right)$$

"Jellium": positive point charges, negative continuous background. **Drawing?**

What happens as $N \to \infty$? Is there a limit object? Fix z and consider

$$\mathcal{C}_{N,z} := \sum_{i=1}^{N} \delta_{N^{1/d}(x_i-z)} \longrightarrow_{N \to \infty}$$
 "Point process" ?

Empirical field = average of $C_{N,z}$ over z, "average microscopic behavior"

ヨト イヨト

Theorem (L. - Serfaty)

The law of the empirical field concentrates on minimisers of the "free energy functional" \mathcal{F}_{β} .

(Large Deviation Principle at speed N with rate function \mathcal{F}_{β}) P a probability measure on point configurations

$$\mathcal{F}_{\beta}(P) := \beta \mathcal{W}(P) + \mathcal{E}(P)$$

where \mathcal{W} is the **energy** and \mathcal{E} is the **entropy**.

•
$$\mathcal{E}(\text{Poisson}) = 0$$
, $\mathcal{E}(\text{Lattice}) = +\infty$.

W? minimized by lattice (d = 1 known, d = 2 conjectured, d = 3 ??)

Valid for Log, Coulomb, Riesz gases. Difficulty?

Finite object = gas of N particles as $N \to \infty$ \approx (locally, after rescaling and averaging) minimiser of \mathcal{F}_{β} = infinite object (point process)

ヨトイヨト

Rigidity of the finite object

We know:
$$\frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i} \approx \mu_{\mathrm{eq}}.$$

Order of magnitude of $\sum_{i=1}^{N} \delta_{x_i} - N\mu_{eq}$? Small scales? Consider fluctuations:

$$\sum_{i=1}^{N} \varphi(x_i) - N \int \varphi(x) d\mu_{eq}(x), \ \varphi \in C^4$$

d = 1 Log	d = 2 Coulomb	d = 3 Coulomb	Riesz cases
O(1)	O(1)	??	??
O(1) surprising, different from i.i.d. Valid at small scales.			

- d = 1 Johansson "very effective cancellations"
- d = 2 Bauerschmidt-Bourgade-Nikula-Yau, L.-Serfaty

Questions

Why?

Can be rephrased as the convergence of

$$\phi_N(z) := z \mapsto \sum_{i=1}^N \log |z - x_i|$$

to a Gaussian Free Field. What about $\max \phi_N$?

- What is the minimal regularity on φ?
- For φ indicator function, Jancovici-Lebowitz-Manificat conjecture on the speed of deviations for the number of points in boxes (Coulomb, d = 2,3).

4 3 6 4 3 6

Phase portrait

Infinite object: translation-invariant minimiser of $\mathcal{F}_{\beta} := \beta \mathcal{W} + \mathcal{E}$. Dependency on β ? Phase transition?

Dimension 1 (log-gas) the partition function is known explicitly (Selberg's integral) and analytic in β

Theorem (Erbar-Huesmann-L.)

1d log-gas: uniqueness of minimisers of \mathcal{F}_{β} for $\beta > 0$. (probably also true for Riesz cases, d = 1).

Usual argument: strict convexity. Here, the functional $P \mapsto \mathcal{F}_{\beta}(P)$ is **affine** in P for the usual linear interpolation, so no strict convexity.

Idea (A. Guionnet): show that it is strictly *displacement* convex.

Displacement interpolation ?

Let μ_0, μ_1 be two measures on \mathbb{R}^n (+ some regularity). What is the midpoint between μ_0 and μ_1 ? Usual answer: $\frac{1}{2}(\mu_0 + \mu_1)$. Another option:

1. Consider a transport map $T : \mathbb{R}^n \to \mathbb{R}^n$ that (optimally) pushes μ_0 onto μ_1 .

2. Define
$$T_{1/2} := \frac{\operatorname{id} + T}{2}$$

3. Define the "half displacement interpolate" $M_{1/2}$ as the push-forward of μ_0 by T.

Example:
$$\mu_0 = \delta_0$$
, $\mu_1 = \delta_1$, get $\delta_{1/2}$ instead of $\frac{1}{2}(\delta_0 + \delta_1)$

Consider certain functionals depending on a probability measure μ .

$$\mu \mapsto \begin{cases} \int V d\mu \\ \iint g(x-y) d\mu(x) d\mu(y) \\ \int F(d\mu) d\mu \end{cases}$$

э

∃ ► < ∃ ►</p>

Consider certain functionals depending on a probability measure μ .

Usual interpolation

$$\mu \mapsto \begin{cases} \int V d\mu & \text{linear} \\ \iint g(x-y) d\mu d\mu & \text{not necessarily convex even if } g \text{ convex} \\ \iint F(d\mu) d\mu & \text{depends. Entropy is convex} \end{cases}$$

Consider certain functionals depending on a probability measure μ .

Displacement interpolation

$$\mu \mapsto \begin{cases} \int V d\mu \\ \iint g(x-y) d\mu(x) d\mu(y) \\ \int F(d\mu) d\mu \end{cases}$$

convex if V convex convex if g convex depends, but entropy is convex

(McCann, 1997)

(Specific relative) Entropy

$$\mathcal{E}(P) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \int \rho_{\Lambda} \log \rho_{\Lambda}$$

 $\rho = \text{density of } P \text{ w.r.t. Poisson}$

Energy

$$\mathcal{W}(P) := \lim_{|\Lambda| \to \infty} rac{1}{|\Lambda|} \mathbf{E}_P \left[\iint_{\Lambda imes \Lambda} - \log |x - y| (d\mathcal{C}(x) - dx) (d\mathcal{C}(y) - dy)
ight]$$

Difficulty: transportation of measure is well-defined on \mathbb{R}^n . Here, we work with infinite point configurations, so more like $\mathbb{R}^{\mathbb{Z}}$. Also need **strict** convexity, in the thermoynamic limit.

Phase portrait (bis)

In higher dimensions? Conjecture (numerical simulations Alastuey-Jancovici, Caillol-Levesque-Weis-Hansen, Choquard-Clerouin early 80's): **phase transition at** $\beta \approx 140$. For d = 2, but similar results for d = 3. "Crystallization"? Nature, even conjectural, is not well-understood.

In d = 1 we have DLR equations to describe the infinite object. Not in higher dimensions (for now). (Non-)uniqueness of solutions?

Two-point correlations? For Ginibre ($\beta = 2$, 2d Coulomb case) decays as $\exp(-r^2)$...

2D2CP

Two-component system: d = 2, positive charges \vec{X}_N and negative charges \vec{Y}_N , in a box $\Lambda = [0, 1]^2$. Classical point particles, no short-range repulsion, no hardcore "protection".

$$\mathcal{H}_N(ec{X_N}, ec{Y_N}) = \sum_{i < j} -\log |x_i - x_j| + \sum_{i < j} -\log |y_i - y_j| + \sum_{i \leq j} -\log |x_i - y_j|$$

System is well-defined for $\beta < 2$ (partition function is finite). [L. - Serfaty - Zeitouni] free energy functional (similar to the one-component case).

Fluctuations?

$$\sum_{i} \varphi(x_i) - \varphi(y_i) \text{ small }?, \quad \sum_{i} \varphi(x_i) + \varphi(y_i) \text{ big }?$$

- Two-point correlations?
- BKT transition? Define the model...

Thank you for your attention.

э

Э