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New definition of the N-point function

The usual N-particle translation-invariant Hamiltonian in a box A of

volume |A|, and particle density p = N/|A|, is
H = _% Z1§j§N Aj + Z1§z’<j§N V(|wz - w3|)

Its ground-state wave function ¥(x; ..., xn) is unique and positive,
and we normalize it by [, ¥ = 1.

We assume the 2-body potential V is positive, radial and integrable.
A special case is the hard-core V of radius (and scattering length) a

The new n-body density, which is not quadratic in ¥, is

g™ (x1,...xyn) = |A|™ fAN—’n VU(xy,...,deN)dxyir... TN.

By translation invariance, g’ and g' equal 1, and g*(x1, x2) =: g(|T1 — T2|).
We want to find suitable equations for g and hence for e := E/N, the

ground-state energy /particle.



Quick ’derivation’ of simple equation, 1963

From Schrodinger’s equation H¥Y = Ne V¥, we integrate to obtain

2e/p = /g(az)V(a:)da: . Next, we integrate over (IN — 2) x’s and get

[—3(A1 + Az) + Vi2]g?(1,2) = eg?(1,2) — 2p [ ¢*(1,2,3)Va,3dxs
—20* [ [9*(1,2,3,4) Vs sdxsdz,.
This is motivated by a similar equation in classical stat mech where the
role of ¥ is played by the Boltzmann factor e #H,
We write g(x) := 1 — u(x).
To make progress we make assumptions about how g, g* are related to
g%*. They are presumably quite reliable to leading order when p < 1 .
For example g(1,2,3) ~ [1 — u(1,2)][1 — u(1, 3)][1 — u(2,3)] and
Then (in the limit |A| — o0)

[ 9*(1,2,3)V (2,3)d3 = g*(1,2) |2¢/p — [ u(1,3)g*(2,3)V (2, 3)d3



Quick ’derivation’ of simple equation, 1963

I confess to having been sloppy by leaving out O(1/|A|) corrections. They
play no role in the calculation of g® above, but they do play a role in the
calculation of g* in terms of g?. All these approximations remain to be
proved. But they work quite well, as we shall see.

The final equation for the 2-body function g =1 — u is:
(—A + V(@))g(x) = pg(){2K (z) — pL(z)} with

L(1,2) = [ [{u(1,3)u(2, 9{g(1, 99(2,3) — Lu(l, Yu(2,3)}9(3, 9V (3,4) } d3d4

K(1,2) = [u(1,3)g(2,3)V(2,3)d3 or K(x)=(ux*xgV)(x).

This is quite a complicated ‘differential-integral’ equation— the ‘big equa-
tion’. We have investigated it numerically and the results agree with the
slightly less accurate ‘small equation’ which is obtained from this by taking

leading terms from the big equation—as follows:



The ‘small simple equation’

Recalling g =1 —w and [ V(1 —u) = [ Vg = 2e/p, and taking the main

terms from the big equation:

(—A + 4e + V(az))u(w) = V(x) + 2ep(u * u)(x). *

There are 2 supplementary conditions: (a) 0 < u(x) — 0 as x — oc;

(b) J V(1 —u)=2e/p.
We also expect to find that u(x) < 1, otherwise g = 1 — u is not nonegative.

If there is such a solution then, by integrating the equation, [ u =1/p.

There is a unique solution that satisfies these conditions, as we will prove.

But let us first demonstrate the accuracy of this enterprise in the case

where the exact e(p) is known — the 1D J-function gas:



Lieb-Liniger model 1963

Here, V(x) = c¢d(x) with ¢ > 0. The dimensionless parameter is v = ¢/p,

and the energy/particle (denoted by e before) is p?e(7).

Note: The easy, perturbation theory side corresponds to large p. The

graphic compares the exact e with Bogolubov’s and with simple perturba-

tion theory. As v — oo, e(y) — ©?/3, a fact ‘proved’ not long ago.
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The d-function and 1D makes things easy, even the Big equation, which
becomes (in dimensionless units) i = e(1 — u){Zu —uxu+2u?*u—jul% uz}.
The Small equation is simply 4 = e('y){Zu — U * u}

The maximum error with the Big eqn is only 19%. The Small eqn can be

solved exactly with Fourier transforms and its error is 69%.
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Existence and uniqueness

We fix e and proceed by iteration of the u * u term.
ug :=(—A +4e+V(x))~V. Upi1 :=(—A+4e+V(x))™? [V + 2epnlsy * Uy
where p,, is defined by 2e/pn = [ V(1 —uy),

and is exact if there is a solution. Note that (---)~! is a positive kernel.

(Important:We might have used [ u,, =: 1/p,,, but that doesn’t work!)

LEMMA: u,(x) < 1 (miracle) and U, 1(x) > un(x), pni1 > pn VN >0, V.

Proof: Let A,, = {x : u,(x) > 1}. Clearly, u,11 > Uy, = Pni1 > Pn-
We start with Ay. (—A)ug = V(1 — u) — 4deuy = wuy is subharmonic on A,
and uyg — 0 at co. Therefore, maxuy = 1 in Ay, which implies A, = 0.

Now we turn to u,;, n > 0. By induction, p,, > p,_1 and u,, * u,, >
Up—1 * Up—_1, SO Upt1 > Up. Moreover, (Un * un)(x) < [ uy
We claim [ u,, < 1/p,. By induction, 4e [ Upi1 =
2e/pni1 + 2epp ([ un)® < 2€/pni1 + 2€pn [ Un [ Uni1< 2€/pni1 + 2€ [ Unya.
To prove u,1 <1, i.e. A,, =0, use the subharmonicity argument. On A,,,
(—A)upsr = V(I — upy1) — 4d€Upnir + 2€ppUy x u, = (< 0) + (< —4e) + (L 2e).

[]



Existence and uniqueness (cont.)

We now have an increasing sequence of u’s and p’s for each fixed e,
which are uniformly bounded in every LP for 0 < p < oo. By monotone
convergence (or whatever) this has a limit that satisfies the ‘small’ simple
equation

(—A + 4e + V(:I:))u(a:) = V(x) + 2ep(u * u)(x).
(We have not tried to do this for the big equation, but we are hopeful.)
This solution gives us a unique function p(e). While there are other so-
lutions, there is only one p > 0, wu > 0 that satisfies the condition
V(1 —u)=2e/p.

Proof of uniqueness: We suppose u, p is another solution. From the equa-

tionu = (--- )" (V+2epuxu) we see that u > ug and, since [ V(1—u) = 2¢/p,
we have p > py. By inserting this into the equation for u;, we also have
u > u; and p > p;. Continuing to oo, we have that u > v and p > p. Since

[ u =1/p we have a contradiction unless there is equality everywhere. [
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Small equation challenges

(A) We have seen that e determines p, but we need to prove that p
determines e uniquely. This would lead to Monotonicity of the function

e(p), which is required for physics. (We are able to prove continuity:.)

(B) The physical requirement of stability (i.e., remove a partition and
the density equilibrates) means that the function p — pe(p) is convex. In
terms of the inverse function e — p(e), this means that p(e)? — pp > 0. This

is equivalent to e — 1/p(e) is convex.

Numerical solution of the equation shows unambiguously that A and B

are true.

(C) Repeat this whole story for the ‘Big’ simple equation.

(—A+ V(z))u(z) = pg(x){2K(x) — pL(x)}.
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To get accurate numerical solutions is surprisingly tricky. Here are re-
sults for V() = exp(—|z|) in 3D. We find a =~ 1.2544. Graph #1 shows that
e(p) starts as 2wpa and ends as ;p [ V. (Note: [V > 4wa when V > 0.) It

displays the monotonicity (as a function of log p)

14

DI

12:

10:

log; p

16

p

O 10 20 30 40 50 60 70 80 90 100

11



Analytic solution for small p

We try to solve the small equation analytically for small p. First, D = 3.

Step 1: To leading order (—A +V)g; =0, so g; = 1 — u, is the zero energy

scattering solution with scattering length a. Then e; = 27pa.

Step 2: In the full equation, replace V(1 — u) by 2wpad(x) and solve it by
Fourier transforms. The result is: uy(k) = 4e7” (k2 +1— k(k?+2)1/2 — %k_2)

2p

The second term, ey, is obtained by inserting e; in this formula and inte-
grating Vu,, which is essentially 27wp a u3(0). We can integrate u,(k). This

is a familiar integral and the final result (for D=3) is the famous

V pa?).

128
15/7

e ~ 2wpa(l +

Something similar can be done for D=2, and we obtain Schick’s formula,
which he obtained (as late as 1971 !) wusing Bogolubov’s method, but

only after summing infinitely many diagrams. A rigorous proof was given

(in 2001 !) by L-Yngvason. e =~ 2mp/ log(pa?).
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Condensate fraction

The usual way to define the condensate fraction (the fraction of particles
in the 1-body ground state ¢(x) = |A|7'/%) to be N~!x the largest eigen-
value of the 1-body density matrixz. In our case, we note that our integral
over ¥ measures the overlap of ¥ with the totally condensed state ¢p®.

Define 17 to be the probability that two particles are not in the state
¢ while N — 2 are condensed. This is our substitute for the usual n =
probability that the other N — 2 are in any state. This leads to our

First Guess: n=p [u?=p [ 2 e )3 u’(k). A more Refined Guess is

- dk pu(k) ecall: 1 = pu u
1= [ s 1 | (Recall: 1= pi(0) > Ja(k # 0]

2
If we use our small p asymptotics, pu(k) = 1+ ;‘“—Z — \/(1 + ;‘“—i) — 1,

the Refined Guess gives: (2/3),/ %pa% (1 + O(y/p)), which agrees perfectly

with the Bogolubov estimate.

Our First Guess is only 9% smaller: (64/105),/ %pa% (1+ O(y/p))- 13



Condensate fraction for large p

Since our ’small’ equation is supposed to be reasonably good for all
p, we took V = exp(—|x|), solved the equation numerically, (found that
a =~ 1.2544), and found that 1 increased with p and then decreased. This
was surprising until we realized that as p — oo the energy e moves from
e = 2mwpa to 2p f V. The particles are then all over each other, the problem
becomes ’mean field’, and correlations disappear. The gas becomes ’ideal’,
and all particles shelter in ¢.

Here is the numerical plot of our Refined 1 as a function of log,, pa® in

3D. Is it reasonable? Has this been noted earlier?
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THANKS FOR LISTENING!
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