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New definition of the N -point function

The usual N-particle translation-invariant Hamiltonian in a box Λ of

volume |Λ|, and particle density ρ = N/|Λ|, is

H = − 1
2

∑
1≤j≤N ∆j +

∑
1≤i<j≤N V (|xi − xj|).

Its ground-state wave function Ψ(x1 . . . , xN ) is unique and positive,

and we normalize it by
∫
ΛN Ψ = 1.

We assume the 2-body potential V is positive, radial and integrable.

A special case is the hard-core V of radius (and scattering length) a

The new n-body density, which is not quadratic in Ψ, is

gn(x1, . . . xn) = |Λ|n
∫
ΛN−n Ψ(x1, . . . , dxN ) dxn+1 . . . xN .

By translation invariance, g0 and g1 equal 1, and g2(x1, x2) =: g(|x1 − x2|).

We want to find suitable equations for g and hence for e := E/N , the

ground-state energy/particle.
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Quick ’derivation’ of simple equation, 1963

From Schrödinger’s equation HΨ = NeΨ, we integrate to obtain

2e/ρ =

∫
g(x)V (x)dx . Next, we integrate over (N − 2) x′s and get

[− 1
2
(∆1 + ∆2) + V12]g

2(1, 2) = eg2(1, 2) − 2ρ
∫
g3(1, 2, 3)V2,3dx3

− 1
2
ρ2

∫ ∫
g4(1, 2, 3, 4)V3,4dx3dx4.

This is motivated by a similar equation in classical stat mech where the

role of Ψ is played by the Boltzmann factor e−βH .

We write g(x) := 1 − u(x).

To make progress we make assumptions about how g3, g4 are related to

g2. They are presumably quite reliable to leading order when ρ ≪ 1 .

For example g3(1, 2, 3) ≈ [1 − u(1, 2)][1 − u(1, 3)][1 − u(2, 3)] and

Then (in the limit |Λ| → ∞)

∫
g3(1, 2, 3)V (2, 3)d3 = g2(1, 2)

[
2e/ρ −

∫
u(1, 3)g2(2, 3)V (2, 3)d3

]
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Quick ’derivation’ of simple equation, 1963

I confess to having been sloppy by leaving out O(1/|Λ|) corrections. They

play no role in the calculation of g3 above, but they do play a role in the

calculation of g4 in terms of g2. All these approximations remain to be

proved. But they work quite well, as we shall see.

The final equation for the 2-body function g = 1 − u is:

(−∆ + V (x))g(x) = ρg(x){2K(x) − ρL(x)} with

L(1, 2) =
∫ ∫ {

u(1, 3)u(2, 4){g(1, 4)g(2, 3) − 1
2
u(1, 4)u(2, 3)}g(3, 4)V (3, 4)

}
d3d4

K(1, 2) =
∫
u(1, 3) g(2, 3)V (2, 3) d3 or K(x) = (u ∗ gV )(x).

This is quite a complicated ‘differential-integral’ equation– the ‘big equa-

tion’. We have investigated it numerically and the results agree with the

slightly less accurate ‘small equation’ which is obtained from this by taking

leading terms from the big equation–as follows:
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The ‘small simple equation’

Recalling g = 1 − u and
∫
V (1 − u) =

∫
V g = 2e/ρ, and taking the main

terms from the big equation:

(
−∆ + 4e + V (x)

)
u(x) = V (x) + 2eρ(u ∗ u)(x). ∗ ∗

There are 2 supplementary conditions: (a) 0 ≤ u(x) → 0 as x → ∞;

(b)
∫
V (1 − u) = 2e/ρ.

We also expect to find that u(x) ≤ 1, otherwise g = 1−u is not nonegative.

If there is such a solution then, by integrating the equation,
∫
u = 1/ρ.

There is a unique solution that satisfies these conditions, as we will prove.

But let us first demonstrate the accuracy of this enterprise in the case

where the exact e(ρ) is known — the 1D δ-function gas:
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Lieb-Liniger model 1963

Here, V (x) = cδ(x) with c ≥ 0. The dimensionless parameter is γ = c/ρ,

and the energy/particle (denoted by e before) is ρ2e(γ).

Note: The easy, perturbation theory side corresponds to large ρ. The

graphic compares the exact e with Bogolubov’s and with simple perturba-

tion theory. As γ → ∞, e(γ) → π2/3, a fact ‘proved’ not long ago.
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The δ-function and 1D makes things easy, even the Big equation, which

becomes (in dimensionless units) ü = e(1−u)
{
2u−u∗u+2u2∗u− 1

2
u2∗u2

}
.

The Small equation is simply ü = e(γ)
{
2u − u ∗ u

}
.

The maximum error with the Big eqn is only 19%. The Small eqn can be

solved exactly with Fourier transforms and its error is 69%.
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Existence and uniqueness
We fix e and proceed by iteration of the u ∗ u term.

u0 :=(−∆+ 4e+V (x))−1V . un+1 :=(−∆+ 4e+V (x))−1
[
V + 2eρnun ∗un

]
where ρn is defined by 2e/ρn :=

∫
V (1 − un) ,

and is exact if there is a solution. Note that (· · · )−1 is a positive kernel.

(Important:We might have used
∫
un =: 1/ρn, but that doesn’t work!)

LEMMA: un(x) ≤ 1 (miracle) and un+1(x) ≥ un(x), ρn+1 ≥ ρn ∀n ≥ 0, ∀x.

Proof: Let An = {x : un(x) > 1}. Clearly, un+1 ≥ un ⇒ ρn+1 ≥ ρn.

We start with A0. (−∆)u0 = V (1 − u) − 4eu0 ⇒ u0 is subharmonic on A0

and u0 → 0 at ∞. Therefore, maxu0 = 1 in A0, which implies A0 = ∅.
Now we turn to un+1, n > 0. By induction, ρn ≥ ρn−1 and un ∗ un ≥

un−1 ∗ un−1, so un+1 ≥ un. Moreover, (un ∗ un)(x) ≤
∫
un

We claim
∫
un ≤ 1/ρn. By induction, 4e

∫
un+1 =

2e/ρn+1 + 2eρn(
∫
un)

2 ≤ 2e/ρn+1 + 2eρn

∫
un

∫
un+1≤ 2e/ρn+1 + 2e

∫
un+1.

To prove un+1 ≤ 1, i.e. An = ∅, use the subharmonicity argument. On An,

(−∆)un+1 = V (1− un+1)− 4eun+1 + 2eρnun ∗ un = (< 0) + (≤ −4e) + (≤ 2e).
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Existence and uniqueness (cont.)

We now have an increasing sequence of u′s and ρ′s for each fixed e,

which are uniformly bounded in every Lp for 0 ≤ p ≤ ∞. By monotone

convergence (or whatever) this has a limit that satisfies the ‘small’ simple

equation (
−∆ + 4e + V (x)

)
u(x) = V (x) + 2eρ(u ∗ u)(x).

(We have not tried to do this for the big equation, but we are hopeful.)

This solution gives us a unique function ρ(e). While there are other so-

lutions, there is only one ρ ≥ 0, u ≥ 0 that satisfies the condition∫
V (1 − u) = 2e/ρ.

Proof of uniqueness: We suppose ũ, ρ̃ is another solution. From the equa-

tion ũ = (· · · )−1(V +2eρ̃ũ∗ũ) we see that ũ > u0 and, since
∫
V (1−ũ) = 2e/ρ̃,

we have ρ̃ > ρ0. By inserting this into the equation for u1, we also have

ũ > u1 and ρ̃ > ρ1. Continuing to ∞, we have that ũ ≥ u and ρ̃ ≥ ρ. Since∫
ũ = 1/ρ̃ we have a contradiction unless there is equality everywhere. 9



Small equation challenges

(A) We have seen that e determines ρ, but we need to prove that ρ

determines e uniquely. This would lead to Monotonicity of the function

e(ρ), which is required for physics. (We are able to prove continuity.)

(B) The physical requirement of stability (i.e., remove a partition and

the density equilibrates) means that the function ρ → ρe(ρ) is convex. In

terms of the inverse function e → ρ(e), this means that ρ̇(e)2−ρρ̈ ≥ 0. This

is equivalent to e → 1/ρ(e) is convex.

Numerical solution of the equation shows unambiguously that A and B

are true.

(C) Repeat this whole story for the ‘Big’ simple equation.

(−∆ + V (x))u(x) = ρg(x){2K(x) − ρL(x)}.
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To get accurate numerical solutions is surprisingly tricky. Here are re-

sults for V (x) = exp(−|x|) in 3D. We find a ≈ 1.2544. Graph #1 shows that

e(ρ) starts as 2πρa and ends as 1
2
ρ
∫
V . (Note:

∫
V > 4πa when V ≥ 0.) It

displays the monotonicity (as a function of log ρ)
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Analytic solution for small ρ

We try to solve the small equation analytically for small ρ. First, D = 3.

Step 1: To leading order (−∆+V )g1 = 0, so g1 = 1−u1 is the zero energy

scattering solution with scattering length a. Then e1 ≈ 2πρa.

Step 2: In the full equation, replace V (1−u) by 2πρaδ(x) and solve it by

Fourier transforms. The result is: û2(k) =
4e3/2

π2ρ

(
k2 + 1− k(k2 + 2)1/2 − 1

2
k−2

)
The second term, e2, is obtained by inserting e1 in this formula and inte-

grating V u2, which is essentially 2πρ a û2(0). We can integrate û2(k). This

is a familiar integral and the final result (for D=3) is the famous

e ≈ 2πρa(1 +
128

15
√
π

√
ρa3).

Something similar can be done for D=2, and we obtain Schick’s formula,

which he obtained (as late as 1971 !) using Bogolubov’s method, but

only after summing infinitely many diagrams. A rigorous proof was given

(in 2001 !) by L–Yngvason. e ≈ 2πρ/ log(ρa2). 12



Condensate fraction

The usual way to define the condensate fraction (the fraction of particles

in the 1-body ground state ϕ(x) = |Λ|−1/2) to be N−1× the largest eigen-

value of the 1-body density matrix. In our case, we note that our integral

over Ψ measures the overlap of Ψ with the totally condensed state ϕ⊗N .

Define η to be the probability that two particles are not in the state

ϕ while N − 2 are condensed. This is our substitute for the usual η =

probability that the other N − 2 are in any state. This leads to our

First Guess: η = ρ
∫
u2 = ρ

∫
dk

(2π)3
û2(k). A more Refined Guess is

η =

∫
dk

(2π)3
ρû2(k)

1 − ρ2û2(k)
. (Recall: 1 = ρû(0) > |û(k ̸= 0|)

If we use our small ρ asymptotics, ρû(k) ≈ 1 + k2

2e
−

√(
1 + k2

2e

)2

− 1,

the Refined Guess gives: (2/3)
√

2
π
ρa3

0 (1 + O(
√
ρ)), which agrees perfectly

with the Bogolubov estimate.

Our First Guess is only 9% smaller: (64/105)
√

2
π
ρa3

0 (1 + O(
√
ρ)). 13



Condensate fraction for large ρ

Since our ’small’ equation is supposed to be reasonably good for all

ρ, we took V = exp(−|x|), solved the equation numerically, (found that

a ≈ 1.2544), and found that η increased with ρ and then decreased. This

was surprising until we realized that as ρ → ∞ the energy e moves from

e ≈ 2πρa to 2πρ
∫
V . The particles are then all over each other, the problem

becomes ’mean field’, and correlations disappear. The gas becomes ’ideal’,

and all particles shelter in ϕ.

Here is the numerical plot of our Refined η as a function of log10 ρa
3 in

3D. Is it reasonable? Has this been noted earlier?
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THANKS FOR LISTENING !
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