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Preamble

I intend to stretch a bit Mathieu’s suggestion

“...it might not be appropriate to speak about your very last paper on

ArXiV. Do not hesitate to talk about older achievements, or even about

open problems or things that you have not been able to solve, if you

think they are of general interest...”

and essentially base my talk on a 15 year old paper with a former MS

student:

Bergthor Hauksson and Jakob Yngvason, J. Stat. Physics 116, pp-

523–546 (2004)
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Preamble (cont.)

The following points may justify my choice

In the 90’s I participated in several astrophysical projects where

MTF theory, including the T > 0 case, was used for computing the

equation of state of surface layers of neutron stars. The resulting

papers have been quite well cited in the astrophysics literature.

Also in the 90’s I collaborated with Elliott Lieb and Jan Philip

Solovej on rigorous papers on the subject for the T = 0 case.

These papers have likewise been well cited in the MP and M

literature.

By contrast, the only rigorous paper known to me on MTF theory

at T > 0 has essentially been totally ignored so far!
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Preamble (cont.)

That paper (subject of the present talk) is open to generalizations

and refinements which might be suitable for Master or even PhD

projects in MP, in particular in view of quite recent work of

Mathieu, Peter Madsen and Arnaud Triay, and of Søren Fournais,

Mathieu and Jan Philip Solovej on semiclassics for large Fermi

systems. Some examples will be mentioned at the end of the talk.
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The heuristics behind all TF models

Starting point: Relation between density, pressure and chemical
potential for a homogeneous (electron) gas, valid for all T ,

ρ = ∂P (µ)/∂µ =: P ′(µ).

Next: External potential V , Coulomb interaction between the electrons,

Vρ(x) := V (x) + ρ ∗ |x|−1.

Equilibrium condition: The total electrochemical potential

µTF := µ(x) + Vρ(x),

should be independent of x. The result is the Thomas-Fermi
equation:

ρ(x) = P ′ (µTF − Vρ(x))

supplemented by ∫
ρ(x)dx = N (particle number).
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The pressure functional and its Legendre transform

The TF equation is associated with minimization of the functional

P[ρ] =

∫
P (µTF − Vρ(x)) dx +D(ρ, ρ),

with D(ρ, ρ) = 1
2

∫ ∫ ρ(x)ρ(x′)
|x−x′| dx dx

′.

The minimum over all nonnegative ρ is called the TF pressure.
Alternative form: The derivative ∂f/∂ρ =: f ′(ρ) of free energy density

f(ρ) = sup
µ
{µρ− P (µ)}

is the inverse of P ′. Hence the TF equation can also be written

f ′(ρ(x)) + Vρ(x)) = µTF.

It is associated with the minimization of the free energy functional

F [ρ] =

∫
{f(ρ(x)) + V (x))ρ(x)} dx +D(ρ, ρ).
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Remark on Firsov’s (1957) point of view

Instead of considering P as a functional of the density ρ it could

equivalently be considered as a functional of the potential V̌ = Vρ.

This point of view arises naturally of we regard P as a Legendre

transform of F (and vice versa):

P[V̌ ] = sup
ρ
{
∫
V̌ (x)ρ(x)d3x−F [ρ]}, F [ρ] = sup

V̌

{
∫
ρ(x)V̌ (x)d3x− P[V̌ ]}

Note that ρ and hence D(ρ, ρ) is determined by Vρ because

4πρ(x) = −∆ρ ∗ |x|−1 = ∆(V − Vρ(x)).

For the present purpose we find it more convenient, however, to
regard P as a functional of ρ. Also, we prefer to study the pressure

functional rather than the free energy functional because explicit

formulas are available for P (µ) but not for f(ρ).
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The many-body Hamiltonian

The goal is to derive the TF equation for electrons interacting with
nuclei and a strong, constant magnetic field from the many-body
Hamiltonian in a suitable limit.

HN,Z,B =

N∑
i=1

{
[pi + A(xi)) · σi]2 + VZ,B(xi)

}
+

∑
1≤i<j≤N

|xi − xj |−1

Here p = −i∇, A(x) = 1
2(−Bx2, Bx1, 0) and σ the vector of Pauli

matrices. Units chosen so that ~ = 2m = e = 1, kB = 1. The external
potential is

VZ,B(x) = −Z
K∑
k=1

zk
|x− `Xk|

+ Z`−1W (`−1x)

with W a confining potential.
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The many-body Hamiltonian (cont.)

The Xk are fixed positions of nuclei with fixed charges zk ≤ 1 which

are scaled by an overall parameter Z. The length scaling factor

` = `Z,B = Z−1/3[1 + (B/Z4/3)]−2/5

is the one appropriate for TF atoms in a magnetic field.

The Hamiltonian HN,Z,B operates on the N -electron Hilbert space of

antisymmetric wave functions in space and spin variables:

HN = ∧NL2(R3,C2).

The corresponding Fock space is

Ĥ =
∞⊕
N=0

HN

with H0 = C. If AN are operators on HN , N = 0, 1, . . . , we denote the

operator ⊕∞N=0AN on Ĥ by Â.

ĤZ,B =

∞⊕
N=0

HN,Z,B.
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QM pressure and MTF pressure

Grand canonical QM pressure corresponding to ĤT,B:

PQM(µ,B, T, Z) = T ln Tr exp[−(ĤZ,B − µN̂)/T ].

For the MTF pressure we need first the pressure of a noninteracting

electron gas at temperature T in a magnetic field of strength B:

P free
T,B(µ) = T

∞∑
ν=0

dν(B)

∫ ∞
−∞

ln [1 + exp{−(εν(p)− µ)/T}] dp

with the Landau spectrum

εν(p) = 2Bν + p2 , ν = 0, 1, . . . ; p ∈ R

and degeneracy per unit area in R2

dν(B) =

{
B/(2π) if ν = 0
B/π if ν ≥ 1.
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MTF pressure (cont.)

The magnetic Thomas-Fermi pressure functional is now

PMTF[ρ;Z, µ, T,B] =

∫
P free
T,B(µ− VZ,B,ρ(x)) d3x +D(ρ, ρ)

with

VZ,B,ρ(x) = VZ,B(x) + ρ ∗ |x|−1.

Domain of definition:

M = {ρ : ρ(x) ≥ 0, D(ρ, ρ) <∞}.

The pressure according to MTF theory is

PMTF(Z, µ, T,B) := inf
ρ∈M

PMTF[ρ;µ, T,B,Z].
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The Main Result

Theorem (The MTF pressure is a limit of the QM pressure)

If Z →∞ and B/Z3 → 0 while the normalized chemical potential and
temperature,

µ/(Z`−1
B,Z) and T/(Z`−1

B,Z)

with
`B,Z = Z−1/3[1 + (B/Z4/3)]−2/5

are kept fixed fixed, then

PQM(µ, T,B,Z)

PMTF(µ, T,B,Z)
→ 1
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Limiting cases; proof strategy

Limiting cases:

B/Z4/3 � 1 corresponding to standard TF theory at positive

temperature, studied (albeit not with full mathematical rigor)

already in the 1950’s. Rigorous results by Thirring and Narnhofer,

and Messer in the 1980’s.

B/Z4/3 � 1, but still B/Z3 � 1. Here only the lowest Landau

level is relevant.

The proof strategy for the Theorem is in brief:

Show that MTF can be regarded as a semiclassical limit of a

mean field model, using magnetic coherent states and a magnetic

Lieb-Thirring inequality.

Compare the mean field model to the full QM theory using

correlation bounds and the Peierls-Bogoliubov inequality.
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Basic properties of the MTF pressure functional

PMTF is nonnegative and strictly convex onM, and weakly lower
semicontinuous w.r.t. the Hilbert norm D(ρ, ρ)1/2 onM.
There is a unique minimizer ρMTF ∈M and it is the unique
solution to the MTF equation

ρ(x) = ∂P free
T,B/∂µ (µ− VZ,B,ρ(x)).

Scaling relations:

PMTF[ρ;µ, T,B,Z] = Z2`−1P̃MTF
[ρ̃; µ̃, T̃, β]

where ρ̃(x) = Z−1`3ρ(`x) with ` = Z−1/3[1 + (B/Z4/3)]−2/5 and

β := B/Z4/3, µ̃ =: µ/(Z`−1), T̃ := T/(Z`−1),

P̃MTF
[ρ̃; µ̃, T̃, β] = (1+β)−3/5

∫
PT̃,β(1+β)−2/5(µ̃−Ṽρ̃(x))dx+D(ρ̃, ρ̃),

Ṽρ̃(x) = −
∑

k zk|x−Xk|−1 +W (x) + ρ̃ ∗ |x|−1.

Jakob Yngvason (Uni Vienna) MTF theory at T > 0 14 / 24



Mean field theory

For ρ ∈M we define a mean field (single particle) Hamiltonian by

H
(1)
Z,B,ρ = [(p + A(x)) · σ]2 + VZ,B,ρ(x)

and a mean field pressure functional by

Pmf [ρ;µ, T,B,Z] = T Tr ln
[
1 + exp{−(H

(1)
Z,B,ρ − µ)/T}

]
+D(ρ, ρ).

Note that the first term is equal to

T ln Tr exp[−(ĤZ,B,ρ − µN̂)/T ]

where ĤZ,B,ρ is the second quantization of H(1)
Z,B,ρ.
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Mean field theory (cont.)

The mean field pressure functional is strictly convex and weakly lower

semicontuous onM. The minimizer, ρmf , is the unique solution of the

Hartree equation

ρ(x) = 2

〈
x

∣∣∣∣(exp{(H(1)
Z,B,ρ − µ)/T}+ 1

)−1
∣∣∣∣x〉 .

By the unitary transformation U`(ψ)(x) = `−3/2ψ(`−1) the mean field

Hamiltonian is unitarily equivalent to

H̃
(1)
h,b,ρ̃ = [(hp + ba(x)) · σ]2 + Ṽρ̃(x).

Here a(x) = 1
2(−x2, x1, 0), and

h := `−1/2Z−1/2 = Z−1/3(1 + β)1/5,

b := B`3/2Z−1/2 = Z1/3β(1 + β)−3/5,

Ṽρ̃(x) = −
∑

k zk|x−Xk|−1 +W (x) + ρ̃ ∗ |x|−1
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Semiclassics

We consider now generally the operator

H
(1)
h,b,v = [(hp + ba(x)) · σ]2 + v(x)

with h > 0, b ∈ R, a(x) = 1
2(−x2, x1, 0), and

v(x) = v1(x) + v2(x)

where v1 ∈ L5/2
loc , and v2 is confining and sufficiently regular.

For the present application

v1(x) = −
∑

k zk|x−Xk|−1 + ρ̃ ∗ |x|−1

and

v2(x) = W (x)− µ̃.
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Semiclassical limit theorem for the mean field pressure

The pressure (without the D(ρ, ρ) term) corresponding to the the mean

field Hamiltonian H(1)
h,b,v is

PQ(h, b, v, τ) = τ Tr ln
(

1 + exp
(
−H(1)

h,b,v/τ
))

.

Its semiclassical approximation is

P scl(h, b, v, τ) = h−3

∫
P free
τ,hb(−v(x)) dx.

Theorem (Semiclassical limit theorem)

For fixed τ and v

lim
h→0

PQ(h, b, v, τ)

P scl(h, b, v, τ)
= 1

uniformly in b.
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Tools

A basic tool for the proof of the semiclassical limit theorem is a

partition of unity by means of magnetic coherent states (operators)

Πν,u,p with ν = 0, 1, 2, . . ., u ∈ R3 and p ∈ R. They are defined by their

integral kernels

Πν,u,p(x, s;x
′, s′) = gr(x− u)Π⊥ν (x⊥, s;x′

⊥
, s′)eip(z−z

′)gr(x
′ − u)

where Π⊥ν is the projector on the ν-th Landau level and gr a smooth

localization function.

Another tool is the magnetic Lieb-Thirring inequality that implies an

upper bound on PQ in terms of P scl:

PQ(h, b, v, τ) ≤ (const.)P scl(h, b, v, τ).
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Consequences for MTF

After replacing h, β, τ by Z,B, T , and adding the D(ρ, ρ) term, the

semiclassical pressure is just the MTF pressure. Likewise PQ is, after

taking D(ρ, ρ) into account, the mean field pressure Pmf .

As a Corollary of the semiclassical limit theorem and various bounds

on the error terms, which depend on the potentials v1 and v2 and the

parameters, one now obtains

Corollary (MTF as a limit of mean field theory)

If Z →∞ while B/Z3 → 0 and µ̃ = µ/(Z`−1) and T̃ = T/(Z`−1) are
fixed,

lim
PMTF(µ, T,B,Z)

Pmf(µ, T,B,Z)
= 1.
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Final step: QM vs mf

To link PMTF and PQM the remaining step is to show that

PQM/Pmf → 1

in the limit considered.

For the upper bound PQM ≤ Pmf(1 + o(1)) we need to bound the
two-body Coulomb interaction by a one-body operator. This can

be done by the Lieb-Oxford inequality, or alternatively by the easier

inequality

N∑
i<j

1

|xi − xj |
≥

N∑
i=1

∫
R3

ρ(x)

|x− xi|
dx−D(ρ, ρ)−3, 68γN− 3

5γ

∫
R3

ρ5/3(x) dx

that holds for all γ > 0 and all ρ ∈M∩ L1(R3) ∩ L5/3(R3). It is a

corollary of the classical Lieb-Thirring proof of stabilty of matter.
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QM vs mf (cont.)

For the lower bound we use the Peierls-Bogoliubov inequality: If A1, A2

and A1 +A2 are self-adjoint operators and F (A) = ln Tr e−A/T , then

F (A1 +A2) ≥ F (A1)− 〈A2〉A1

where

〈A2〉A1 :=
Tr
(
A2e

−A1/T
)

Tr e−A1/T
.

We use this inequality with A1 +A2 = ĤZ,B − µN̂ and

A1 = ĤZ,B,ρ − µN̂ −D(ρ, ρ). Then A2 is, apart from the constant

D(ρ, ρ), the second quantization of

N∑
i<j

|xi − xj |−1 −
N∑
i=1

ρ ∗ |xi|−1.
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QM vs mf (cont.)

Choosing ρ = ρmf , the minimizer of the mean field pressure functional,

this leads to the bound PQM ≥ Pmf .

In combination with the semiclassical limit theorem for Pmf and the

relation between P scl and PMTF, the upper and lower bounds on PQM

lead to the desired final result:

If Z →∞ and B/Z3 → 0 while

µ/(Z`−1
B,Z) and T/(Z`−1

B,Z)

with

`B,Z = Z−1/3[1 + (B/Z4/3)]−2/5

are kept fixed fixed, then

PQM(µ, T,B,Z)

PMTF(µ, T,B,Z)
→ 1
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Some open problems

Prove a limit theorem for the free energy functional rather than the

grand canonical pressure functional (perhaps via a Vlasov

functional).

Relax the conditions on the confining potential W , allowing e.g.

hard walls.

Study the thermodynamic limit of the MTF model.

Study MTF theory for 2D systems (quantum dots) with 3D

Coulomb interaction at T > 0.

Investigate the case B & Z3 at T > 0.

Allow other interactions that Coulomb, in the spirit of the recent

work by Lewin, Madsen, Triay, and Fournais, Lewin, Solovej .
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