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Chapter 1

Age Structure

1.1 Population models

When we write

(1.1.1)
dN

dt
= βN − µN = rN

and declare N to be the size of a population (perhaps in the form of the
uniform spatial density), β the per capita birth rate, µ the per capita death
rate and r = β − µ the Malthusian parameter, also known as the intrinsic
rate of natural increase (or decline, if less than zero), we ignore many things.
In particular

1. The difference between males and females. If there are always enough
males to inseminate all females, one may interpret (1.1.1) as an equation
for the female part of the population, with β pertaining to the daughters
only.

2. Demographic stochasticity. Individuals are discrete units that either
do or do not die and either do or do not reproduce, but if they do, they
produce an integer number of offspring.

3. Maturation delay. Newborn individuals are, as a rule, not able to
reproduce, they need to develop first. To distinguish individuals from
one another, one may introduce the notion of i-state (i for individual),
allow the i-state to take a continuum of values, and model how i-state
changes in the course of time.

4. Aging. In general, life time is not exponentially distributed. Matura-
tion has its negative sides too!
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4 CHAPTER 1. AGE STRUCTURE

5. Dependence. The linear equation (1.1.1) ignores that β may depend
on, for example, food density and µ on precator density and that, in
turn, food density is influenced by consumption and predator density by
being consumed. This feedback to the environmental condition creates
dependence and, in the deterministic description, nonlinearity.

6. Environmental variability. The time-translation invariant equation (1.1.1)
ignores seasonality as well as spatial heterogeneity. Yet often spatio-
temporal fluctuations have an impact on population dynamics.

In this book we focus on 3, 4 and 5, while referring to [16] for 2 and [30]
for 6.

In much of this chapter we consider a constant environmental condition,
that is, we not only ignore 6 but also 5. The key point is that under constant
conditions we can relate the i-state to the combination of age and state-at-
birth in a once and for all manner. Initially we assume that individuals are
born equal (perhaps in a stochastic sense, see Ex. 1.2.2 below), i.e., they can
be treated as if there is but one i-state at birth, but in Section 1.5 we allow
for finitely many different states-at-birth.

1.2 The ingredients

In a data-driven approach, it is natural to describe an age-structured popu-
lation model in terms of

– the survival probability to age a, denoted by F (a)

– the average number of offspring produced by age a, denoted by L(a).

Provided F is sufficiently smooth, one can define the age-specific per
capita death rate (i.e., the probability per unit of time of dying) by

(1.2.1) µ(a) = − d

da
ln F (a)⇔ F (a) = e

−
a∫
0

µ(α)dα
.

Likewise one can define the age-specific average per capita birth rate (i.e.,
the average number of births per unit of time) by

(1.2.2) β(a) =
1

F (a)

dL

da
(a)⇔ L(a) =

a∫
0

β(α)F (α)dα.
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If L and F are determined from data, there is no need to introduce β and
µ. But often we use a model to deduce the consequences at the p-level (p for
population) of (quasi-) mechanistic assumptions concerning i-behaviour and
then it is often more natural to start from β and µ.

Example 1.2.1 “Daphnia” under constant conditions

Suppose all Daphnia are born with size ξb and that their growth rate is
given by g(ξ, S), where ξ denotes the size and S the food/algae concentration,
here assumed to be constant. Let ξ(a) denote the solution of

(1.2.3)
dξ

da
= g(ξ, S), ξ(0) = ξb.

Let β̃(ξ, S) be the per capita rate of producing offspring, given size ξ and
food concentration S and let, likewise, µ̃(ξ, S) be the per capita death rate.
Then we may put

(1.2.4) β(a) = β̃(ξ(a), S), µ(a) = µ̃(ξ(a), S).

The point is that one can use energy budget considerations, see Section 2.8
below and scaling laws of individual behaviour characteristics to motivate
expressions for g and β̃ and, to a lesser extent, µ̃.

Example 1.2.2. Daphnia under constant conditions, but with variable
birth size

If ξb is variable, one should write ξ(a, ξb) to denote the solution of (1.2.3).
If ξb is a stochastic variable with density f , one simply introduces

F (a) =

∫
Ωb

F̃ (a, ξb)f(ξb)dξb

L(a) =

∫
Ωb

L̃(a, ξb)f(ξb)dξb

(1.2.5)

where Ωb denotes the set of all possible sizes-at-birth, and next uses the first
identity in formulas (1.2.1) and (1.2.2) to define µ and β. Practical consid-
erations, in particular the need to do numerical calculations, may motivate
us to replace the density f by a measure concentrated in a finite number of
points.
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1.3 Bookkeeping

The equation

(1.3.1) n(t, a) = b(t− a)F (a)

relates the age density n at time t to the p-birth rate b in the past and the
survival probability F . It simply expresses that a fraction F (a) of the large
cohort born at time t − a survived till time t and age a. (But one should
always keep in mind that both n and b have dimension 1/time and that
only integration over age (in the case of n) or time (in the case of b) leads
to numbers, so it is dangerous to speak about a ”cohort” born at a certain
time.)

The equation

(1.3.2) b(t) =

∞∫
0

β(a)n(t, a)da

expresses that the p-birth rate is obtained by adding contributions of indi-
viduals. Combining these two equations we arrive at the renewal equation

(1.3.3) b(t) =

∞∫
0

β(a)F (a)b(t− a)da

which alternatively can be written in the form

(1.3.4) b(t) =

∞∫
0

b(t− a)L(da)

where the so-called Stieltjes integral is defined by

BOX to be written

(note the very natural biological interpretation!)
If we start an experiment at time t = 0 with an (assumed to be known)

initial age density n(0, a), the identity (1.3.1) only holds for 0 ≤ a < t. For
a ≥ t we have instead (conditional survival probability)

n(t, a) =
F (a)

F (a− t)
n(0, a− t).
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So (1.3.2) now leads to

(1.3.5) b(t) =

t∫
0

β(a)F (a)b(t− a)da+ f(t)

with
(1.3.6)

f(t) =

∞∫
t

β(a)
F (a)

F (a− t)
n(0, a− t)da =

∞∫
0

β(α + t)
F (α + t)

F (α)
n(0, α)dα.

An alternative way to arrive at (1.3.5), is to assume that (1.3.3) holds for
t ≥ 0 and that the p-birth rate in the past (relative to time t = 0), so b(θ)
for θ < 0, is somehow known/given. In fact the two ways of prescribing an
“initial condition”, respectively n(0, a) and b(θ), are completely equivalent.
Indeed, it we take t = 0 in (1.3.1) we find

(1.3.7) n(0, a) = b(−a)F (a), a ≥ 0

showing how to compute b(θ) given n(0, a) or n(0, a) given b(θ).
Both (1.3.5) and (1.3.3) are called a renewal equation. For questions of

existence and uniqueness of solutions one considers (1.3.5). As we will see
soon, the translation invariant form (1.3.3) is more informative when dealing
with questions concerning the asymptotic behaviour for large time.

As an alternative for (1.3.1), one may formulate the first order partial
differential equation

(1.3.8)
∂n

∂t
+
∂n

∂a
= −µn.

The equation (1.3.2), rewritten as

(1.3.9) n(t, 0) =

∞∫
0

β(a)n(t, a)da

then provides a boundary condition at a = 0. This condition is called “non-
local” to emphasize that the right hand side involves values of n at points far
away from a = 0 (which is biologically obvious, in fact necessary: mothers
should have an age that exceeds some minimum age).

Note that
∂n

∂a
equals the divergence of the flux, the flux being the velocity

times the density and the velocity being 1. Also note that the left hand side
of (1.3.9) equals the flux at the boundary. These observations are important
if one generalizes (1.3.8)-(1.3.9) to, for instance, size structure; see [22].
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1.4 Growth or decline?

The basic reproduction number R0 is defined as the expected life time pro-
duction of offspring and hence is given by

(1.4.1) R0 := L(∞) =

∞∫
0

β(a)F (a)da.

Directly from the interpretation it follows that in our deterministic way of
looking at things generations grow (if R0 > 1) or decline (if R0 < 1) in a
geometric progression with ratio R0, that is, the kth generation is propor-
tional to Rk

0 . There is an asymmetry in the correction that results from
the incorporation of demographic stochasticity: extinction is guaranteed if
R0 < 1, but if R0 > 1 the population may also go extinct, instead of growing
exponentially, see [18, 16]. So, from a stochastic perspective, R0 measures
the potential for population growth.

One can prove (see below) that in real time the population grows like

ert

where r is the real root of the Euler-Lotka equation

(1.4.2) 1 =

∞∫
0

β(a)F (a)e−rada

Figure 1

Figure 1 shows the graph of the function z 7→
∞∫
0

β(a)F (a)e−zada with

real z, and illustrates that

R0 > 1⇔ r > 0

R0 = 1⇔ r = 0

R0 < 1⇔ r < 0

(1.4.3)
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(but the last equivalence should be interpreted with care, as r need not exist,
since the integral may cease to converge before the value 1 is reached). Under
suitable conditions on β and F one can formulate this more precisely and
use the monotonicity of the function to provide a proof.

Fisher [11] interpreted the right hand side of (1.4.2) as a discounted re-
production number, where the discounting is based on the growth of the
population (if we weigh a newborn individual with (population size at the
time of birth)−1 then the population growth rate r is such that the expected
number of offspring, with this weight factor taken into account, equals one).

For the biological interpretation only the real root of the equation

(1.4.4) 1 =

∞∫
0

β(a)F (a)e−zada

is relevant, but in the mathematical analysis complex roots play a role as
well. From the inequality

(1.4.5)

∣∣∣∣∣∣
∞∫

0

β(a)F (a)e−zada

∣∣∣∣∣∣ ≤
∞∫

0

β(a)F (a)e−Re z ada

which, under weak assumptions on β and F , is strict for Im z 6= 0, one sees
that the real root is dominant (in the sense that Re z < r if z is a root with
z 6= r). Here we use once more the monotone dependence on Re z, which
derives from the non-negativity of β and F . (One should compare this result
to the Perron-Frobenius theory of positive-off-diagonal matrices.)

Cautionary example. For cell division at exactly age 1, L jumps from zero
to two at age 1 (if we ignore the possibility of cell death) and the difference
equation

b(t) = 2b(t− 1)

leads to the characteristic equation

1 = 2e−z

which has roots
z = ln 2 + k2πi, k ∈ Z.

Main results. There exists a constant C > 0 such that

(1.4.6) b(t) = Cert + o(ert), t→∞
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and hence, according to (1.3.1), we have

(1.4.7) n(t, a) = Certe−raF (a) + o(ert), t→∞

showing that the age distribution stabilizes to a distribution with density

(1.4.8)
e−raF (a)∫∞

0
e−rαF (α)dα

while the size of the population grows like ert.

Note that the age density is steeply declining in fast growing populations.
The expression (1.4.8) also illustrates the aging of a population when r de-
creases. In this spirit, Aline de Koeijer [20] has observed that (assuming
that BSE infection occurs, if it occurs at all, early in a cow’s life) there are
relatively far more young individuals infected in an outbreak situation than
in the control induced decline situation afterwards. The moral is that the
relationship between the p-growth rate r and the stable distribution can be
used to deduce conclusions from data.

Sketch of the proof. Applying the Laplace transform to (1.3.5) we obtain

(1.4.9) b = K b+ f

where we have written K as a short-hand notation for the product of β and
F and denoted the Laplace transform of a function by a bar. If we solve for
b, the inversion formula yields

(1.4.10) b(t) =
1

2πi

∫
γ

ezt
f(z)

1−K(z)
dz

where γ is a vertical line to the right of r.

Figure 2



1.4. GROWTH OR DECLINE? 11

As W. Feller [10] showed (see also [6, 13, 17]) one may shift γ to the left,
picking up a residue when passing r. This (together with exponential esti-
mates for the integral along the shifted contour) justifies (1.4.6) and provides
the expression

(1.4.11) C =
f(r)

∞∫
0

aβ(a)F (a)e−rada

for the constant C.

From (1.3.6) we deduce

f(r) =

∞∫
0

∞∫
0

n(0, a)
F (a+ t)

F (a)
β(a+ t)dae−rtdt(1.4.12)

=

∞∫
0

n(0, a)ν(a)da

where

(1.4.13) ν(a) :=
era

F (a)

∞∫
a

F (τ)β(τ)e−rτdτ

is called the reproductive value of an individual at age a since such an indi-
vidual is expected to contribute ν(a) as much to future population sizes as a
newborn (note that ν(0) = 1). This concept was introduced by Fisher [11].
Mathematically we say that the projection onto the stable age distribution
is given by

(1.4.14) (Pφ)(a) =

∞∫
0

ν(α)φ(α)dα

∞∫
0

αβ(α)F (α)e−rαdα

e−raF (a).

The normalized distribution
L(a)

L(∞)
describes the “age at child bearing”

of a cohort. It is not equal to the distribution of the age of mothers of
newborn babies (given that the population is in the stable age distribution).
For instance, the mean of “age at child bearing” is

a =

∞∫
0

aβ(a)F (a)da

∞∫
0

β(a)F (a)da
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while the mean age of mothers of newborn babies is

∞∫
0

aβ(a)F (a)e−rada

and the two quantities differ if the population is growing or declining. This
observation is very relevant in the context of SARS, where one observes r but
needs to estimate R0 in order to decide what control measures are needed.
If one writes

(1.4.15) R0 = erT

with T interpreted as a ”generalization length”, one only shifts the problem
to ”how to estimate T from data?”, see [32, 26].

Remark 1.4.1. (cf.[28]) Example 1.2.1 continued. Along with (1.2.3)
one may numerically solve

(1.4.16)
dF

da
= −µ̃(ξ, S)F , F (0) = 1

and

(1.4.17)
dL

da
= β̃(ξ, S)F , L(0) = 0

to compute R0 = L(∞) as a function of the parameter S, with a stopping
criterion based on F decreasing beyond a chosen small level. If we replace
(1.4.17) by

(1.4.18)
dL̃z
da

(a) = e−zaβ̃(ξ(a), S)F (a), L̃z(0) = 0

we may find the Malthusian parameter by solving

(1.4.19) L̃z(∞) = 1

where again∞ should not be taken literally and where the monotonicity and
convexity with respect to real z guarantees rapid convergence of simple root
finding routines. If both β̃ and µ̃ are (more or less) constant for large a,
say β̃(ξ(a), S) = β∞(S) and µ̃(ξ(a), S) = µ∞(S) for a ≥ a, one may use, for
instance, (1.4.17) to compute L(a) and then add

β∞(S)

µ∞(S)
F (a)

to obtain L(∞). This provides an alternative to a stopping criterion based
on F decreasing beyond a chosen level.
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1.5 Multiple birth states

Suppose in a certain region there are a finite number of patches of suitable
habitat for a plant species. Assume there are quality differences between
the patches, for instance due to differences in soil type or micro-climatic
conditions. The patch in which a seed lands may then have a large impact on
the germination success, on subsequent growth of the plant, and ultimately on
the production of seeds. Therefore we attach a label to a seed that identifies
the patch in which it lands.

To deal with such situations, we only need to superimpose a certain
amount of linear algebra on the formalism of earlier sections (and if we allow
for infinitely many types, either still countable or a continuum, we should
use functional analysis rather than linear algebra; but for the time being we
refrain from considering such technically more complicated situations).

If we indicate the type by an index, we can replace (1.3.3) by

(1.5.1) bi(t) =
∑
j

∞∫
0

βij(a)Fj(a)bj(t− a)da

if we adopt the convention that the last of the two indices of β refers to the
state-at-birth of the mother and the first to the state-at-birth of the offspring
(Nota bene: probabilists usually do it the other way round). Instead of (1.4.1)
we now define

R0 := the dominant eigenvalue of the positive matrix L(∞),
where

(1.5.2) Lij(a) :=

a∫
0

βij(α)Fj(α)dα

and where we assume that L(∞) is primitive, i.e., for some power
k all entries of L(∞)k are strictly positive.

The corresponding eigenvector of L(∞) describes the stable distribution
of state-at-birth in the generation process (which is, for growing or declining
populations, in general different from the stable real time distribution of
state-at-birth; the latter we denote below by φ).

If we define

(1.5.3) Kij(a) := βij(a)Fj(a)
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and define the Laplace transform of vectors and matrices by taking component-
wise the transform, we can define the Malthusian parameter r as the real root
of the equation

(1.5.4) det (I −K(z)) = 0

obtained by substituting b(t) = eztb(0), where b(0) is now a vector, into the
renewal equation (1.5.1). Note that for real z

i) K(z) is primitive too, since it has strictly positive entries at exactly
the same positions as K(0) = L(∞)

ii) the dominant eigenvalue of K(z) is a strictly decreasing function of z,
since so are all non-zero elements of K(z) and, in general for a matrix
M depending on a parameter p, the derivative of a simple eigenvalue
with respect to p is given by the formula

(1.5.5) λ′ =
〈ψ∗,M ′ψ〉
〈ψ∗, ψ〉

where ψ and ψ∗ are the corresponding eigenvector and adjoint eigen-
vector, which are positive.

iii) the dominant eigenvalue of K(z) decreases to zero for z →∞

Main results There exists a constant C > 0 such that

(1.5.6) b(t) = Certφ+ o(ert), t→∞,

where φ is the eigenvector of K(r) corresponding to eigenvalue 1 (and nor-
malized, for instance, such that

∑
j

φj = 1). As a consequence we have

(1.5.7) ni(t, a) = Fi(a)bi(t− a) = Certe−raFi(a)φi + o(ert)

showing that the distribution with respect to age and state-at-birth stabilizes.
As we show below, the expression (1.4.11) for C generalizes to

(1.5.8) C =
〈φ∗, f(r)〉
−〈φ∗, K ′(r)φ〉
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if we normalize φ∗ such that 〈φ∗, φ〉 = 1. (Note that K
′
(r) has entries

−
∞∫
0

aβij(a)Fj(a)e−rada.) We can rewrite

〈φ∗, f(r)〉 =
∑
j

∞∫
0

∑
i

φ∗i νij(a)nj(0, a)da

and interpret ∑
i

φ∗i νij(a)

as the reproductive value of an individual of age a and state-at-birth j.
Explicitly we have

(1.5.9) νij(a) =
era

Fj(a)

∞∫
a

βij(τ)Fj(τ)e−rτdτ

and consequently
∑
j

νij(0)φj = φi, which amounts to the normalization that

a ”stochastic” newborn individual with distribution φ has reproductive value
1.

Technical aside 1.5.1. Computation of C. To avoid ambiguities, we now
need to take the dependence of φ, φ∗ and λ on z into account in the notation.
If we define y(z) = b(z), i.e.,

y(z) = (I −K(z))−1f(z)

then
y(z)−K(z)y(z) = f(z)

and hence

〈φ∗(z), y(z)〉 − λ(z)〈φ∗(z), y(z)〉 = 〈φ∗(z), f(z)〉

which we rewrite as

〈φ∗(z), y(z)〉 = (1− λ(z))−1〈φ∗(z), f(z)〉.

Since
y(z) = 〈φ∗(z), y(z)〉φ(z) +R(z)

for a function R of z which is regular in z = r, the residue of y(z) in z = r
equals the residue of 〈φ∗(z), y(z)〉φ(z) in z = r, which equals

〈φ∗(r), f(r)〉
−λ′(r)

φ(r).
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Using (1.5.5) and once more the normalization 〈φ∗(z), φ(z)〉 = 1, we arriwe
at (1.5.8).

Remark 1.5.2. Simplification for the case of a one-dimensional range of
K. If the distribution of the state-at-birth of the offspring is independent of
the state-at-birth of the mother, we are in a situation already known from
Example 1.2.2: one can do the averaging once and for all. Mathematically
this manifests itself in the matrix function K having one-dimensional range.
In view of (1.5.3) this amounts to

(1.5.10) βij(a) = piβ̃j(a), with
∑
k

pk = 1.

A possible interpretation of (1.5.10) is that pi measures the size of patch i
and seed dispersal is random in the sense that all seeds, no matter where they
are produced, have probability pi to land in patch i, given that they land
in a patch and not on unsuitable surface (so we incorporate the probability
that they land in a patch and not on unsuitable surface as a factor in each
of the β̃j.)

If we nevertheless start from the system (1.5.1) we can make the Ansatz

bi(t) = pib̃(t)

and derive the scalar renewal equation

b̃(t) =

∞∫
0

≈
β (a)b̃(t− a)da

where
≈
β (a) :=

∑
j

β̃j(a)Fj(a)pj.

Occasionally one meets a case in which the range of the matrix K has a
dimension in between 1 and the total number of types. Then one can reduce
the dimension of (1.5.1) to that of the range of K.

1.6 Cannibalism, taking only negative effects

into account

The deterministic view provides a simple dichotomy for population dynamics
under prescribed constant environmental conditions: either R0 < 1 and the
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population is doomed to go extinct or R0 > 1 and the population will grow
exponentially with rate r > 0. We dismiss the critical case R0 = 1 as too
exceptional to be considered seriously.

A first effect of density dependence in the form of feedback to the enviro-
mental condition is that R0 = 1 becomes, in a sense, the rule rather than the
exception. The aim of the present secton is to illustrate this phenomenon in
the context of a model that incorporates a caricatural description of canni-
balistic interaction. (It is always good to use caricatures to derive qualitative
insights and to use numerical simulation studies of complex models to de-
rive quantitative estimates, as the confrontation of the two approaches yields
more understanding than each separately. The focus of the present book is
on methods for studying what one could call relatively complex caricatures.
But we start simple.)

To set the stage, consider a population consisting of juveniles and adults,
with juveniles turning adults at exacty age τ . The chief distinction is that
only adults reproduce. We assume that both the per capita birth rate and
the per capita death rate of adults is a constant, i.e., independent of age,
once age exceeds τ . We call these β and µ, respectively. It follows at once
that

R0 = β
1

µ
F (τ)(1.6.1)

since the last factor is the probability of reaching adulthood, the middle
factor the expected life time as adult, given that the individual matures to
become adult, and the first factor the rate of producing offspring during this
period. If also the death rate of juveniles is a constant, i.e., independent of
the actual age a ∈ [0, τ ], we speak of a stage structured model (but note that
the age of juveniles is important, as it determines when they will mature;
also note that ambiguity about the death rate at age τ doesn’t hurt, as the
threshold τ is crossed with non-zero speed and hence the survival probability
is not affected by our choice for µ in that single point). In fact, to avoid
a proliferation of parameters, we assume that the death rate of juveniles is
equal to that of adults, that is, we assume

F (τ) = e−µτ .(1.6.2)

The results from our earlier sections can now be summarized in the diagram
depicted in Figure 3.
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Figure 3

In this diagram, A denotes the size of the subpopulation of adults, s means
that the zero population state (usually called the trivial steady state) is
stable and u that it is unstable (that in the latter case A grows to infinity is
implicitly incorporated in the picture by the absence of ”anything”, meaning
some attractor, other than the trivial steady state, except for the vertical line
of neutrally stable steady states for R0 = 1. How will this picture change if
we incorporate the effect of cannibalism?

Cannibalism has two sides, that of the agressor and that of the victim.
In general, therefore, the attack rate is a function of two i-states. Here we
assume (for no other reason than that we want to increase the tractability)
that those two i-states have an independent influence or, in other words,
that the function of two variables is in fact the product of a function of one
variable and a function of the other variable. More precisely, we assume that
the death rate of a juvenile of age a is, due to cannibalism, increased from µ
to

µ+ h(a)A

meaning that adults (and only adults) practise cannibalism. The vulnerabil-
ity h is assumed to have a graph somewhat like the one depicted in Figure
4.

Figure 4

Before proceeding with the formulation of the equations for population level
quantities, we introduce a very important piece of notation: φt denotes the
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history, relative to time t, of the function φ, in the sense that

φt(θ) := φ(t+ θ) for θ ≤ 0.(1.6.3)

An individual born at time t − a survives, to have age a at time t, with
probability

F (a,At) = e
−µa−

a∫
0

h(α)A(t−a+α)dα
.(1.6.4)

We now assume that, although cannibalism is a not infrequent cause of
death of juveniles, the own species forms but a very minor part of the diet
of adults. Or, in simpler words, we assume that the per capita birth rate of
adults is a constant, again denoted by β. The renewal equation now reads

(1.6.5) b(t) = β

∞∫
τ

F (a,At)b(t− a)da.

By definition

(1.6.6) A(t) =

∞∫
τ

F (a,At)b(t− a)da.

We view (1.6.6) as an updating rule for A just as (1.6.5) is an updating rule
for b. If the support of h is bounded away from τ , the values of the argument
of A that matter at the right hand side are bounded away from t and one can
proceed by steps (this is indeed called ”the method of steps” in the theory
of delay equations). In fact we can restrict to just one of the two equations,
because our assumption concerning reproduction can also be stated as

(1.6.7) b(t) = βA(t).

Either directly from the interpretation or by formal formula manipulation
(using that in (1.6.6) we have a ≥ τ and that the support of h is restricted
to [0, τ ]), it follows that

(1.6.8)
dA

dt
(t) = b(t− τ)F (τ , At)− µA(t).

If we substitute (1.6.7) into (1.6.8) we obtain the single delay differential
equation

(1.6.9)
dA

dt
(t) = βA(t− τ)F (τ , At)− µA(t).



20 CHAPTER 1. AGE STRUCTURE

Let us next pay attention to initial conditions. If we start an experiment
at time t = a with an (assumed to be known) initial age density n(0, a),
we should replace the right hand sides of (1.6.5), (1.6.6), (1.6.9) by more
complicated expressions and, also, restrict to t ≥ 0. For instance, for 0 ≤
t ≤ τ one should replace (1.6.9) by

dA

dt
(t) = n(0, τ − t)

−µt−
t∫
0

h(τ−t+σ)A(σ)dσ
− µA(t)

and put as initial condition

A(0) =

∞∫
τ

n(0, α)dα.

For t > τ we can use (1.6.9) as it stands. The traditional mathematical way
of formulating an initial condition for (1.6.9) is to prescribe A itself on an
interval of length τ , i.e., to require that

(1.6.10) A(θ) = ψ(θ), −τ ≤ θ ≤ 0

where ψ is a given continuous function. When we said “For t > τ we can
use (1.6.9) as it stands”, the statement implicitly included that At(θ) is a
well-defined continuous function of θ on [−τ , 0] for t > τ . Or, in other words,
for t > τ we can represent the population state by the history of the adult
population size A, without losing any information that has an impact on
dynamics.

Similarly we can equip the renewal equation

(1.6.11) b(t) = β

∞∫
τ

F

(
a,

1

β
bt

)
b(t− a)da, t > 0,

with an initial condition

(1.6.12) b(θ) = φ(θ), −∞ < θ ≤ 0

where φ is a given integrable function. But a representation of the population
state by the history of the population birth rate b need not be completely
accurate (as far as dynamics is concerned) after finite time. It only applies
asymptotically for t→∞.

Formula (1.3.7) shows that, in the case of a constant environment, there
is a simple relationship between the age-density at time zero and the birth
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rate in the past. Here the influence of A in the survival probability (1.6.4)
makes that juvenile individuals experience a fluctuating environment. If we
prescribe both the population birth rate b and the adult population size A in
the past, we can compute the age-density at time zero as

(1.6.13) n(0, a) = b(−a)F (a,A0)

(where, of course, A0(θ) = A(θ), θ ≤ 0). It clearly is impossible, however, to
go in the other direction: one cannot recover b(θ) and A(θ) from n(0, a) by
using (1.6.13). So initial conditions of the form (1.6.10) or of the form (1.6.12)
constitute a restriction on the initial age distribution n(0, a). Hopefully the
discussion above made clear that we do not miss anything related to large
time dynamical behaviour if we accept such a restriction.

We conclude this section by computing steady states. For constant A we
have

(1.6.14) R0(A) = β
1

µ
e−µτ−HA

where

(1.6.15) H :=

τ∫
0

h(σ)dσ.

The equation

(1.6.16) R0(A) = 1

has the solution

(1.6.17) A = A =
1

H
ln

(
β

µ
e−µτ

)
.

The biological interpretation requires A to be non-negative, so requires

β ≥ µeµτ .

Note that
b = βA

is a steady state for the Renewal Equation (1.6.11).
The analogue of Figure 3 is Figure 5, which shows a prototypical trans-

critical bifurcation. The Principle of the Exchange of Stability implies that
the nontrivial steady state is stable for β a bit larger than µeµτ (see [1] and
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the references given there; note once again that A needs to be positive to
have biological relevance and that, if we concentrate on the branch of positive
values of A, we may call the bifurcation supercritical). The question mark
in Figure 5 indicates that we do not know whether stability is, or is not,
retained if β is increased. In Section 1.8 below we shall investigate this in
detail. For now we just observe that negative feedback prevents exponential
growth and that a steady state exists.

Figure 5

Side remark 1.6.1. The observation that the total population size N
equals the rate of ”inflow” b times the sojourn time, usually called the life
expectancy, is often helpful. The latter equals

∞∫
0

F (a,A)da.

Indeed, omitting the parameter A from the notation, we have as distribution
function 1−F (a) and partial integration leads to

−
∞∫

0

aF (da) =

∞∫
0

F (α)dα.

1.7 Cannibalism, with positive effects incor-

porated

Next, let’s incorporate that cannibalistic food increases reproduction and
change (1.6.5) into

(1.7.1) b(t) = (β +B(t))

∞∫
τ

F (a,At)b(t− a)da
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with

(1.7.2) B(t) :=

τ∫
0

E(α)h(α)F (α,At)b(t− α)dα.

So E(α) converts the food value of a juvenile of age a into the ability to
produce offspring. The dynamical system is now defined in terms of solutions
of (1.7.1) and (1.6.8), here repeated as

(1.7.3)
dA

dt
(t) = b(t− τ)F (τ , At)− µA(t)

with B given by (1.7.2) and F by (1.6.4). A peculiarity is that if we rewrite
(1.7.1) in the form

(1.7.4) b(t) = (β +B(t))A(t)

we can work with initial conditions of the form

b(θ) = ϕ(θ),

A(θ) = ψ(θ),
− τ ≤ θ ≤ 0(1.7.5)

(this means that if we are prepared to assume that A on the interval −τ ≤
θ ≤ 0 is related to b in the distant past as one would expect on the basis of
the model, then the information about the distant past of b is redundant as
far as future dynamics is concerned). To find steady states, we first of all
require that the steady environmental condition is such that R0 = 1, i.e.,

(1.7.6) 1 = R0(A,B) = (β +B)
1

µ
e−µτ−HA.

We supplement this equation by the feedback conditions

A = b
1

µ
e−µτ−HA

B = b

τ∫
0

E(α)h(α)e
−µα−A

α∫
0

h(σ)dσ
dα

(1.7.7)

Together these are three equations in the three unknowns A,B and b. But
by writing the first equation of (1.7.7) as

(1.7.8) b = µAeµτ+HA
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and next substituting this into the second equation of (1.7.7) and finally the
resulting expression for B into (1.7.6), one reduces the system to the single
equation

(1.7.9) β = µeµτ+HA − µAeµτ+HA

τ∫
0

E(α)h(α)e
−µα−A

α∫
0

h(σ)dσ
dα

for A. For given β, this is an equation for A and we call the solution A. But
inversely it is an explicit expression for β as a function of A = A, making it
rather easy to make a picture like Figure 5. Note that A = 0 corresponds to
β = µeµτ , as is to be expected. A natural question now is: will the bifurcation
at this critical value of β be supercritical or subcritical? In other words, will
positive values of A correspond to β > µeµτ or to β < µeµτ?

To answer this question, we simply differentiate the expression on the
right in (1.7.9) with respect to A and then put A = 0 (so we can be lazy and
not even compute certain terms in the derivative of the second term, since
these will have a factor A and so become zero upon putting A = 0). The
result is

dβ

dA
∣∣∣
A=0

= Hµeµτ

1− 1

H

τ∫
0

E(α)h(α)e−µαdα


and we conclude that the bifurcation is supercritical if

(1.7.10)
1

H

τ∫
0

E(α)h(α)e−µαdα < 1

and subcritical if

(1.7.11)
1

H

τ∫
0

E(α)h(α)e−µαdα > 1

Interlude 1.7.1 Biological interpretation of the condition for the direction
of bifurcation.

For A negligibly small, the age distribution of victims has density ∼
h(a)e−µa. In terms of newborns, a victim of age a means a loss eµa and a
gain E(a). Therefore the gain exceeds the loss if and only if∫ τ

0

(E(a)− eµa)h(a)e−µada > 0,
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that is, if and only if the condition (1.7.11) for subcritical bifurcation holds.

But if the branch of non-trivial steady states starts as a subcritical bi-
furcation, how does it continue? To get some insight, we take the caricature
to its extreme by letting h depend on a parameter in such a way that, in
the sense of distributions, hε(a)→ δ(a− τ̂)H for ε ↓ 0, where δ is the Dirac
“function”. In fact this amounts to assuming that, as ε ↓ 0,

F (a,At)→

{
e−µa, a < τ̂

e−µa−HA(t−a+τ̂), a > τ̂

and

A

τ∫
0

E(α)h(α)e
µα−A

α∫
0

h(σ)dσ
dα = −

τ∫
0

E(α)e−µαdαe
−A

α∫
0

h(σ)dσ

→ E(τ̂)e−µτ̂ (1− e−HA)

so that (1.7.9) can, in the limit ε ↓ 0, be written as

(1.7.12) β = µeµτ+HA
(
1− E(τ̂)e−µτ̂

(
1− e−HA

))
.

It follows that

(1.7.13)
dβ

dA
(A) = Hµeµτ+HA

(
1− E(τ̂)e−µτ̂

)
and we see that the local condition E(τ̂)e−µτ̂ > 1 is also the global condition
for the branch to “go to the left”. A striking consequence is that we have

(1.7.14) A = − 1

H
ln
(
1− eµτ (E(τ̂))−1

)
> 0

for β = 0: the population can persist if adults have nothing but juveniles
of their own kind to eat! (And indeed, there are lakes in Northern Europe
which have perch as the only fish [2, 25] . So all energy comes from the
juveniles eating zooplankton.)

We conclude that the bifurcation diagram may look like Figure 6,

Figure 6
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and that, accordingly, there may be the dichotomy that either the population
goes extinct or it grows exponentially. This is a form of the Allee effect and
one may as well call it positive density dependence.

If the support of h is larger than just a point, it may be that the larger/older
individuals bring more than they cost while the smaller/younger individuals
cost more than they yield. An increase in A shifts the distribution of the age
of victims towards younger ages. As a result, the branch of nontrivial steady
states may wiggle, as shown in Figure 7 (see [2]).

Figure 7

The argument just given suggests that a branch, which starts by going to
the right, continues to the right. But actually this need not be the case [2].
The key point is once more that victims of cannibalism, which would anyhow
not have made it into adulthood, come for free: if the distribution of the age
of victims shifts towards younger ages, the energetic drawback may be more
than compensated by the increase of victims among those that were anyhow
bound to die before reaching age τ .

1.8 Stability boundaries in parameter space

In the preceding two sections we have found that, for our particular kind
of dynamical systems, finding steady states is not too difficult. But how do
we find out whether or not they are stable? Near a transcritical bifurcation
the Principle of the Exchange of Stability may help, but, as indicated by the
question mark in the diagram at the end of Section 1.6, this doesn’t bring us
very far.

The standard technique is to linearize and to use the Principle of Lin-
earized Stability, which asserts that if we have exponential stability for the
linearized system, we have it for the original nonlinear system as well, while
if we find that the linearized system admits exponentially growing solutions,
the steady state is unstable for the nonlinear system too (the second part is
harder to prove than the first). Often one can, in particular for delay equa-
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tions, decide about stability for the linearized system in terms of the position
of the roots in the complex plane of a characteristic equation. The aim of
the present section is to introduce these ideas in the context of a very sim-
ple example that can be analyzed in great detail (and therefore is, perhaps,
misleadingly simple).

Remark 1.8.1. In our discussion so far we suggested that the (in)stability
of a steady state is completely determined by the position of the roots of the
corresponding characteristic equation in the complex plane. This is indeed
true, but needs proof. We come back to this in Chapter ?.

We return to the cannibalism model with only negative effects taken into
account and consider the delay differential equation (1.6.9) with F given by
(1.6.4). To reduce the notational burden, we scale A to make H, the integral
of h, equal to 1 and we scale time to make τ = 1 (the latter means that
when we write µ and β below, these correspond to µτ and βτ in terms of the
original parameters). So we consider

(1.8.1)
dA

dt
(t) = βA(t− 1)e

−µ−
1∫
0

h(σ)A(t−1+σ)dσ
− µA(t)

and note that the nontrivial steady state is given by

(1.8.2) A = ln(
β

µ
e−µ).

If we put

(1.8.3) A(t) = A+ z(t)

and assume that z is small, we can rewrite (1.8.1) as

dz

dt
(t) =β(A+ z(t− 1))e−µ−A(1−

1∫
0

h(σ)z(t− 1 + σ)dσ + h.o.t

− µA− µz(t)

and hence, omitting the higher order terms (h.o.t.) and using βe−µ−A = µ,
as

(1.8.4)
dz

dt
(t) = µz(t− 1)− µA

1∫
0

h(σ)z(t− 1 + σ)dσ − µz(t).



28 CHAPTER 1. AGE STRUCTURE

By substituting a trial solution z(t) = eλt into (1.8.4) we obtain the
characteristing equation

(1.8.5) λ = −µ+ µe−λ(1− Aĥ(−λ))

where the Laplace transform is now indicated by ̂. Note that λ = 0 is
never a root for A > 0. This reflects that no steady states bifurcate along
the branch of nontrivial steady states, neither by saddle-node bifurcations
corresponding to turning points of the branch as in the diagram at the end
of Section 1.7, nor by transcritical bifurcations corresponding to the crossing
of another branch, as for β = µeµ and A = 0. So if destabilization occurs,
it has to occur by way of a pair of complex conjugated roots crossing the
imaginary axis from left to right, and the corresponding bifurcation is a

Hopf bifurcation: the birth of a periodic solution (with period-at-birth
2π

ω
if

the roots cross at ±iω).
By putting λ = iω in (1.8.5) and letting ω vary, while considering the

equation as conditions on the parameters (note that one complex equation
amounts to two real equations), we may trace out the set in parameter space
such that (1.8.5) has a root exactly on the imaginary axis. This works best
if we single out two parameters (i.e., keep other parameters fixed), for then
the set is a curve in a plane and humans are well-suited for the up-take and
digestion of information that comes in the form of a two-dimensional picture!
To illustrate this methodology, we now focus on egg-cannibalism. That is,
we assume that hε converges for ε ↓ 0 to the Dirac delta in τ̃ = 0 (recall the

last part of the last section). In that case we have ĥ(−λ) = ĥ(0) = 1 and
(1.8.5) reduces to

(1.8.6) λ = −µ+ µ(1− A)e−λ

which has exactly two dimensionless (due to the scaling) parameters µ and
β/µ (recall that A = ln(β

µ
e−µ)). But still we are going to use a two-step

procedure: we first analyse

(1.8.7) λ = α1 + α2e
−λ

corresponding to

(1.8.8)
dz

dt
(t) = α1z(t) + α2z(t− 1)

and next let the results apply to (1.8.6) and the version

(1.8.9)
dz

dt
(t) = −µz(t) + µ(1− A)z(t− 1)
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of (1.8.4) by means of

µ = −α1 α1 = −µ
β

µ
= e

1+
α2
α1
−α1 α2 = µ(1− ln(

β

µ
e−µ))

(1.8.10)

(and finally we have to undo the scaling by replacing µ and β by µτ and βτ
respectively; note that this has no effect on the quotient β/µ).

If we put λ = iω into (1.8.7) and split into real and imaginary part, we
obtain two linear equations in the unknowns α1 and α2. The linearity allows
us to find the explicit solution

(1.8.11) α1 =
ω cosω

sinω
α2 = − ω

sinω

which has singularities for ω = kπ, k ∈ Z. An interval from kπ to (k + 1)π,
with k = 0, 1, 2, . . ., yields a curve that connects ∞ in the (α1, α2)-plane to
itself,

Figure 8
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In [6, Section XI.2] one finds a description of the simple computations
that establish at which side of a curve the roots are in the right half plane.
A summary is: if you follow a curve in the direction of increasing ω, then the
critical roots are in the right half-plane in the parameter region to the left of
the curve when det M < 0 and to the right when det M > 0, where

M =


∂G1

∂α1

∂G1

∂α2

∂G2

∂α1

∂G2

∂α2


with the entries of M evaluated for (α1, α2) on the curve and with the cor-
responding value of ω and µ = 0. Here

G1(α1, α2, µ, ω) = Re F (α1, α2, µ+ iω)

G2(α1, α2, µ, ω) = Im F (α1, α2, µ+ iω)

and the characteristic equation corresponds to F = 0. In this manner we
obtain the picture above, where the numbers indicate the total number of
roots in the right half plane for a particular region in parameter space.

An important insight can be deduced from this picture. If we put α2 = 0,
we see that negative feedback is stabilizing: the region of stability on the α1-
axis is precisely α1 < 0. But if we put α1 = 0, we see that delayed negative
feedback may actually destabilize: if we make α2 sufficiently negative, the
steady state becomes unstable! The reason is overshoot, see Figure 9:

Figure 9

after z has passed the value 0, the decrease or increase continues for one unit
of time and so oscillations occur with peaks that may (if |α2| is small enough)
or may not die out. Using (1.8.10) and undoing the scaling we obtain the
diagram depicted in Figure 10.



1.8. STABILITY BOUNDARIES IN PARAMETER SPACE 31

Figure 10

Note that for
β

µ
e−µ > 1 we have α1 + α2 < 0, so the curves with odd k are

irrelevant for (1.8.6). Moreover, µ > 0 gives α1 < 0, so only part of each
curve with even k is relevant (also note that α1 = 0 is a singularity in the
expression for β/µ in (1.8.10)). G.A. Enciso & E.D. Sontag [9] observed that
such restrictions on parameters are sometimes overlooked in published work,
leading to wrong conclusions.

We emphasize that the two-parameter analysis yields, in the end, essential
information about the way the stability depends on a single parameter. For
instance, varying τ amounts to taking a horizontal section and one sees at
once that, depending on the level of β/µ, there may be a number of pairs
(possibly zero) that enter the right half plane but they all return to the left
half plane if τ is further increased (there are many papers in which such
conclusions are reached in a far more complicated manner!). Varying β, on
the other hand, amounts to taking a vertical section and one sees that now
stability is bound to get lost and will never be regained.

In conclusion of this section we note that along the stability boundary (i.e.,
the curve separating the region of stability from the region of instability) ω
varies from π/2 to π and hence the period from 2 to 4. If we undo the
scaling we find 2τ < period < 4τ . Gurney, Nisbet and co-workers [23] found
that such kind of inequalities can be seen as traces of how exactly density
dependence acts. We shall return to this point in Section 2.7.

If only juveniles of exactly age τ̃ are cannibalized (with 0 ≤ τ̃ ≤ 1),
(1.8.5) reads

(1.8.12) λ = −µ+ µe−λ − µAe−λ(1−τ̃).

For τ̃ = 1 (“almost adult” cannibalism) this is again of the form (1.8.7),
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but with α2 = µ > 0 and α1 + α2 = −µA < 0, showing that stability is
guaranteed. This illustrates our earlier observation that negative feedback
needs to come with a delay in order to be destabilizing. If we increase τ̃ ,
the stability boundary in the (µτ, β/µ) plane shifts upwards and eventually
disappears at infinity when τ̃ = 1.



Chapter 2

Size structure

2.1 The case of Daphnia

Waterfleas mature when they reach a certain size (to be indicated by ξA in
the following). So the length of their juvenile period equals the time they
need to grow from size-at-birth (to be indicated by ξb in the following) to ξA.
Accordingly the lenght of the juvenile period depends on food supply, which
in turn is influenced by consumption. This raises the following question:
what is the impact of density dependent maturation delay on the dynamics
at the p-level?

Long ago the question of how to extrapolate the measured effects of toxic
substances on Daphnia population dynamics under lab conditions to field
conditions, motivated the development of energy budget models [21]; see [24]
for the state-of-the-art. Such models specify rules for the i-level partitioning
of the energy derived from ingested food to growth, reserves, maintenance and
reproduction. Two aspects require special attention and remain somewhat
controversial: 1) what does exactly happen at the juvenile-adult transition?
2) what happens under starvation conditions, i.e., when the food supply
is insufficient to cover maintenance, in particular the energy costs of basic
metabolism? Here we will not go into these modelling issues. Instead we
focus on the influence of variable maturation delay on consumer resource
interaction, in the spirit of de Roos et al. [27]. In particular we will not
consider a reserve compartment but declare that the size ξ of an individual
serves as the i-state. If we think of ‘size’ as length, then the surface is
proportional to ξ2 and the volume to ξ3. Since waterflies are filter feeders,
the uptake of food (algae) is proportional to ξ2. Maintenance costs, on
the other hand, are proportional to ξ3 and as a result individuals will grow
slower and slower towards a maximal size that depends on the prevailing algae

33
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concentration (assumed here to be constant, just to explain this particular
phenomenon of a maximal individual size).

Mechanistic considerations of this kind should provide us with the follow-
ing ingredients for a model of the behaviour of individual Daphnia, given its
size ξ and given that the algae concentration equals S:

• g(ξ, S) the rate of growth

• β(ξ, S) the probability per unit of time of giving birth

• µ(ξ, S) the probability per unit of time of dying

• γ(ξ, S) the rate of food consumption.

Throughout this chapter we assume that the size-at-birth is fixed at ξb. To
complete a consumer-resource model we need as a fifth ingredient

• f(S) the rate of change of S in the absence of consumers.

It should be clear that, even though we shall keep speaking about Daphia
and algae, the model applies to any size-structured population that consumes
an unstructured resource.

2.2 Programmed instruction: how to build a

“Daphnia” population model?

Step 1 specify g, µ as functions of ξ and S

Step 2 for any a ≥ 0 and any non-negative continuous function ψ defined
on at least [−a, 0] construct Ξ(a, ψ) and F (a, ψ) as follows: compute
ξ(τ) = ξ(τ ; a, ψ) and f(τ) = f(τ ; a, ψ) by solving the system of ode’s

dξ

dτ
(τ) = g(ξ(τ), ψ(−a+ τ))

ξ(0) = ξb
df

dτ
(τ) = −µ(ξ(τ), ψ(−a+ τ))f(τ)

f(0) = 1

(2.2.1)

and then put

(2.2.2) Ξ(a, ψ) = ξ(a), F (a, ψ) = f(a)
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(Note that the equation for ξ is decoupled from the one for f.) The
interpretation is that Ξ(a, ψ) is the size of an individual of age a, given
the food history as described by ψ and given that it survived till age
a. The probability that an individual born a time units ago survived
till now, given the food history ψ, is F (a, ψ).

Step 3 specify β, γ as functions of ξ and S as well as f as function of S.

Step 4 Let b(t) denote the population level birth rate of Daphnia at time t,
then the p-level equations are

b(t) =

∞∫
0

β(Ξ(a, St), S(t))F (a, St)b(t− a)da

dS

dt
(t) = f(S(t))−

∞∫
0

γ(Ξ(a, St), S(t))F (a, St)b(t− a)da.

(2.2.3)

(These follow straight from the interpretation; note that we do the
bookkeeping in terms of age and that we need the history of the envi-
ronmental interaction variable S in order to know how age determines
size, also note the linearity in b, which reflects that all dependence is
mediated by S.)

Initial conditions are a subtle issue. One option is to prescribe

b(θ) = ϕ(θ),

S(θ) = ψ(θ),
θ ≤ 0(2.2.4)

and to consider (2.2.3) as a system of delay equations, i.e., as rules to extend
the functions b and S into the future, given their past. It is natural to
think of ϕ as an L1-function (since one needs to integrate the birth rate to
obtain a number) and of ψ as a continuous function. But if the model does
not guarantee that F (a, ψ) becomes zero for a ≥ amax for all feasible food
histories ψ, we are dealing with infinite delay and the behaviour at −∞ needs
special attention. For instance, in steady state b is constant, so we definitely
want that constant functions belong to the space of functions from which we
take ϕ. We shall achieve this by incorporating an exponential weight function
in the L1-norm (and likewise in the supremum norm, when we consider ψ).

The second option is to prescribe

n(0, ξ) the size-density at time zero

S(0)
(2.2.5)
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and to modify (2.2.3) on the basis of a modified version of (2.2.1) for individ-
uals that have a given size at a given time. (We here restrict our attention
to an initial size distribution described by a density, but see [4, 7, 29] for
formulations in terms of measures.) We present details below.

The advantage of option 1 is technical: it leads to many results since
�∗-calculus can be used, see [6, 8, 5].

The advantage of option 2 is conceptual: it corresponds exactly to the
description of a population as a distribution over the i-state space specifying
the size and composition of that population.

Fortunately one can relate the two options to each other and have the
best of both. First note that an initial condition of the form (2.2.4) yields
a size-density at time zero and, of course, a value of S at time zero, so an
initial condition of the form (2.2.5). However, conditions of the form (2.2.4)
correspond to a restricted class of initial conditions of the form (2.2.5), as
it is in general impossible to reconstruct the history of both b and S from
n(0, ξ) and S(0). If we solve (2.2.3) with (2.2.4) then the up-dated histories
(bt, St) also belong to this class, which is more fancy terminology means
that the class is forward invariant. If there happens to be a maximal age
amax and we solve the variant of (2.2.3) corresponding to (2.2.5), we find
(n(t, ·), S(t)) that belongs to the class for t ≥ amax. In general, the distance
of (n(t, ·), S(t)) to the class will go to zero exponentially for t→∞, with an
exponent that relates to a lower bound for the per capita death rate µ for
large ages, uniformly in S. In more fancy terminology: the class is globally
attracting.

So when studying stability and bifurcation issues, we shall adopt (2.2.4),
but keep in mind that the conclusions also pertain to (2.2.5).

For completeness we show how to modify (2.2.3) when using (2.2.5). De-
fine H(t) = H(t; ξ) and G(t) = G(t; ξ) by solving the system of ode

dH

dt
(t) = g(H(t), S(t))

H(0) = ξ

dG

dt
(t) = −µ(H(t), S(t))G(t)

G(0) = 1

(2.2.6)

then H(t; ξ) is the size of an individual at time t, given that it had size ξ
at time zero and it is still alive, while G(t; ξ) is the probability that that
individual is indeed still alive. We now split the integrals over [0,∞) into an
integral over [0, t) and an integral over the sizes of the individuals that were
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already present at time zero:

b(t) =

t∫
0

β(Ξ(a, St), S(t))F (a, St)b(t− a)da

+

∞∫
ξb

β(H(t; ξ), S(t))G(t; ξ)n(0, ξ)dξ

dS

dt
(t) =f(S(t))−

t∫
0

γ(Ξ(a, St), S(t))F (a, St)b(t− a)da

−
∞∫
ξb

γ(H(t; ξ), S(t))G(t; ξ)n(0, ξ)dξ

(2.2.7)

(see also [29, (3.7), (3.8)]; in that paper the author also shows that solutions
of (2.2.7) can be used to obtain solutions, in the distributional sense, of
the partial differential equation with boundary condition coupled with an
ordinary differential equation.

∂

∂t
n(t, ξ) +

∂

∂ξ
(g(ξ, S(t), n(t, ξ)) = −µ(ξ, S(t))n(t, ξ),

g(ξb)n(t, ξb) =

∫
β(ξ, S(t))n(t, ξ)dξ,

dS

dt
(t) = f(S(t))−

∫
γ(ξ, S(t))n(t, ξ)dξ.

2.3 Steady states

From the first equation of (2.2.3) we infer that steady state requires

(2.3.1) 1 = R0(S) :=

∞∫
0

β(Ξ(a, S), S)F (a, S)da

where S twice denotes a positive number and twice the constant function
having that number as its only value. As in Sections 1.6 and 1.7 we find
that the steady environmental condition should be such that R0 = 1 or,
equivalently, r = 0. Under very reasonable conditions one has that R0 is
an increasing function of S, assuming values less than one for small S and
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bigger than one for large S, so that (2.3.1) has a unique root (which we shall
sometimes denote by S and sometimes simply by S; when the substrate S
is toxic for large concentrations, the monotonicity gets lost and there may
exist multiple roots of (2.3.1)).

Once S is known, the second equation of (2.2.3) yields an explicit expres-
sion for the steady population birth rate

(2.3.2) b =
f(S)

∞∫
0

γ(Ξ(a, S), S)F (a, S)da

.

Of course we should have f(S) > 0 for this to be biologically meaningful.
Very often (but not always) f is positive for S between 0 and Scc (where the
subscript cc stands for carrying capacity) and negative for S > Scc. Then
the condition f(S) > 0 can be translated into the interpretable condition
R0(Scc) > 1: the consumer population should be able to grow exponentially
if the food concentration is held fixed at its carrying capacity level in the
absence of consumers.

Under constant conditions, there is a fixed age-size relation and, in order
to limit the notational burden as much as possible, we denote it by ξ(a). So

(2.3.3) ξ(a) = Ξ(a, S)

with S the root of (2.3.1). Likewise we put

(2.3.4) f(a) = F (a, S)

(note that this is not inconsistent with (2.2.1)). The stable age distribution
has density f divided by the integral of f. The corresponding stable size
distribution has density ξ 7→ f(a(ξ))/g(ξ, S) divided by the integral of f.
This can most easily be seen by transformation of the integration variable:

a2∫
a1

f(a)da =

ξ2∫
ξ1

f(a(ξ))
da

dξ
(ξ)dξ =

ξ2∫
ξ1

f(a(ξ))

g(ξ, S)
dξ

where ξ 7→ a(ξ) is the inverse function of a 7→ ξ(a).

2.4 Stage structure à la Gurney & Nisbet

In order to reduce the number of parameters, one may assume that
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• juveniles grow at a rate that depends only on S, not on their size;
likewise their per capita death and consumption rate depends only on
S

• the size of adults is irrelevant: their per capita reproduction, death, and
consumption rate depends only on S (one may, for instance, assume
that adults don’t grow at all).

In the following we provide µ and γ with an index 1 when juveniles are
concerned and with an index 2 when they pertain to adults. The symbol g
denotes the growth rate of juveniles and the symbol β the reproduction rate
of adults, see Figure 11.

Figure 11

As our bookkeeping will be based on age, it is obviously important to be
able to tell from the age whether an individual is, or is not, an adult. The
answer depends on the food history. The word ”history” already indicates
that we can only look back (if we don’t know the food supply, we cannot
predict the maturation delay).

Let τ = τ(ψ) be the age of the individuals that mature at the present
time, given food history ψ, then

(2.4.1)

0∫
−τ

g(ψ(θ))dθ = ξA − ξb.

(Note that the existence and uniqueness of a solution for τ , given ψ, is
guaranteed if g is bounded away from zero.) If ψ is of the form St we
may consider τ(St) as a function of time. For the purpose of numerical
computation it may now help to formulate an up-dating rule for τ(St) in the
form of a differential equation. With ψ = St we can rewrite (2.4.1) as

(2.4.2)

t∫
t−τ(St

g(S(σ))dσ = ξA − ξb
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which upon differentiation with respect to t and reorganization yields the
delay differential equation

(2.4.3)
d

dt
τ(St) = 1− g(S(t))

g(S(t− τ(St)))
.

Note that
dτ

dt
< 1 so that, reassuringly, individuals can never lose the adult

status!
In order to compute survival probabilities, we also need to know how long

ago an adult acquired that status. Let, for a ≥ τ(ψ), τ̃ = τ̃(ψ, a) be the
time it took an adult of age a to mature, given the food history ψ. Then

(2.4.4)

τ̃∫
0

g(ψ(−a+ θ))dθ = ξa − ξb.

There are two things to be noted:

τ̃(ψ, τ(ψ)) = τ(ψ)(2.4.5)

τ̃(St, a+ t) does not depend on t(2.4.6)

(here a is the age the individual has at t = 0).
Under these assumptions and with this notation in place we can write

(2.2.3) in the form

b(t) = β(S(t))

∞∫
τ(St)

b(t− a)e−µ1τ̃(St,a)−µ2(a−τ̃(St,a))da

dS

dt
(t) = f(S(t))− γ1(S(t))

τ(St)∫
0

b(t− a)e−µ1ada

− γ2(S(t))

∞∫
τ(St)

b(t− a)e−µ1τ̃(St,a)−µ2(a−τ̃(St,a))da.

(2.4.7)

If we want to use available and well tested software (eg., SOLVER [reference])
for the numerical solution of delay differential equations or for numerical bi-
furcation analysis of such equations (e.g., DDE-biftool Engelborghs, http://www.cs.
kuleuven.ac.be/cwis/research/twr/research/software/delay/ddebiftool.shtml)
(list of software at this website) we may reformulate (2.4.7) by first introduc-
ing the sizes A and J of the subpopulations of adults, respectively, juveniles:
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A(t) :=

∞∫
τ(St)

b(t− a)e−µ1τ̃(St,a)−µ2(a−τ̃(St,a))da

J(t) :=

τ(St)∫
0

b(t− a)e−µ1ada.

(2.4.8)

If we transform the integration variable a into σ = t− a and next differ-
entiate we obtain (using that τ̃(St, t− σ) does not depend on t)

dA

dt
(t) = b(t− τ(St))e

−µ,τ(St)
g(S(t))

g(S(t− τ(St)))
− µ2A(t)

dJ

dt
(t) = b(t)− b(t− τ(St))e

−µ1τ(St)
g(S(t))

g(S(t− τ(St)))
− µ1J(t).

(2.4.9)

Finally, we may substitute in these differential equations the identity

(2.4.10) b(t) = β(S(t))A(t)

and supplement them by

(2.4.11)
dS

dt
= f(S)− γ1(S)J − γ2(S)A

and (2.4.3) to obtain a closed system of four delay differential equations. But
a word of warning is needed: in order to avoid artefacts one has to make sure
that the initial condition for τ , say τ0, and the initial condition for S, say ψ,
satisfy the compatibility condition

(2.4.12)

0∫
−τ0

g(ψ(σ))dσ = ξA − ξb

(a related phenomenon is that the linearization has a spurious eigenvalue
zero, which is introduced by the differentation of (2.4.2), and which gives
problems when solving the system numerically.)

2.5 Quasi-steady-state-approximation (QSSA)

With reference to the second equation of (2.2.3), we note that sometimes
both f and γ have a multiplicative parameter that is large relative to β, g
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and µ, implying that food dynamics is fast relative to consumer maturation
and demography. In an attempt to make the analysis simpler, one may then
replace the differential equation for S by the constraint

(2.5.1) f(S(t)) =

∞∫
0

γ(Ξ(a, St), S(t))F (a, St)b(t− a)da

provided this constraint can serve as an up-date rule, which isn’t guaranteed
since both sides depend in a nonlinear way on S(t). Things become easier if

(2.5.2) γ(ξ, S) = h(S)γ̃(ξ)

and, in addition, the equation

(2.5.3)
f(S)

h(S)
= c

has a unique solution S = S̃(c). Indeed, then we can replace (2.5.1) by

(2.5.4) S(t) = S̃(

∞∫
0

γ̃(Ξ(a, St))F (a, St)b(t− a)da).

For example, if f(S) = D − εS and h(S) = S we find

(2.5.5) S(t) =
S0

ε+
∞∫
0

γ̃(Ξ(a, St))F (a, St)b(t− a)da

while if f(S) = rS(1− S
K

) and h(S) = S we obtain

(2.5.6) S(t) = K(1− 1

r

∞∫
0

γ̃(Ξ(a, St))F (a, St)b(t− a)da).

Note that in the case of stage structure we have

(2.5.7)

∞∫
0

γ̃(Ξ(a, St))F (a, St)b(t− a)da = γ̃1J + γ̃2A
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2.6 The linearized system

If we substitute into (2.2.3)

b(t) = b+ y(t),

S(t) = S + z(t)
(2.6.1)

with S the solution of (2.3.1) and b given by (2.3.2), perform Taylor expansion
around (y, z) = (0, 0) and neglect higher order terms, we obtain a system of
the form

y(t) = c1z(t) +

∞∫
0

(k11(a)y(t− a) + k12(a)z(t− a))da

dz

dt
(t) = c2z(t) +

∞∫
0

(k21(a)y(t− a) + k22(a)z(t− a))da.

(2.6.2)

The coefficients ci reflect the dependence of the right hand side of (2.2.3)
on the value of S in the point t. They are given by

c1 = b

∞∫
0

∂β

∂S
(ξ(a), S)f(a)da,

c2 = f ′(S)− b
∞∫

0

∂γ

∂S
(ξ(a), S)f(a)da.

(2.6.3)

The components k11 and k21 of the kernel k(a) reflect the dependence on
the history of b. Since the right hand side of (2.2.3) is linear in bt, we don’t
have to do any computations to conclude that

k11(a) = β(ξ(a), S)f(a)

k22(a) = −γ(ξ(a), S)f(a).
(2.6.4)

The difficult part is to compute the components k12 and k22, since these
reflect the rather implicit dependence on the history of S via the solutions
of (2.2.1). We shall first deal with the case where g, µ, β and γ are smooth
functions of ξ and S and next with the case that these functions do have a
jump discontinuity at ξ = ξA, but are otherwise smooth.

Let, as in Section 2.2, the functions ξ(τ ; a, ψ) and f(τ ; a, ψ) be defined by
(2.2.1). Let

(2.6.5) η(τ) := D3ξ(τ ; a, S)ψ
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be the derivative with respect to the third variable, evaluated at the constant
function S and acting on some function ψ. Then we can compute η by solving
the ode

dη

dτ
(τ) =

∂g

∂ξ
(ξ(τ), S)η(τ) +

∂g

∂S
(ξ(τ), S)ψ(−a+ τ)

η(0) = 0.

(2.6.6)

We find that

(2.6.7) η(τ) =

τ∫
0

K(τ, α)ψ(−a+ α)dα

with

(2.6.8) K(τ, α) := e

τ∫
α

∂g
∂ξ

(ξ(θ),S)dθ ∂g

∂S
(ξ(α), S).

Now recall (2.2.2) (but be aware of the fact that there ξ(a) = ξ(a; a, ψ) while
in (2.6.6) and (2.6.7) above ξ denotes this function for the special case that ψ
is constant and equal to S, the solution of (2.3.1)) and take τ = a to obtain

(2.6.9) D2Ξ(a, S)ψ = η(a) =

a∫
0

K(a, α)ψ(−a+ α)dα.

Similarly we find that

(2.6.10) ζ(τ) := D3f(τ ; a, S)ψ

satisfies

dζ

dτ
(τ) = −µ(ξ(τ), S)ζ(τ)− ρ(τ),

ζ(0) = 0
(2.6.11)

with

(2.6.12) ρ(τ) :=
∂µ

∂ξ
(ξ(τ), S)η(τ)f(τ) +

∂µ

∂S
(ξ(τ), S)ψ(−a+ τ)f(τ).

Using the expression (2.6.7) for η and a bit of formula manipulation we
deduce that

(2.6.13) ζ(τ) =

τ∫
0

L(τ, θ)ψ(−a+ θ)dθ
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with

(2.6.14) L(τ, θ) := −f(τ){
τ∫
θ

∂µ

∂ξ
(ξ(α), S)K(α, θ)dα +

∂µ

∂S
(ξ(θ), S)}.

In view of (2.2.2) we conclude that

(2.6.15) D2F (a, S)ψ = ζ(a) =

a∫
0

L(a, θ)ψ(−a+ θ)dθ.

The final results
(2.6.16)

k12(a) = b

∞∫
0

{β(ξ(a+θ), S)L(a+θ, θ)+
∂β

∂ξ
(ξ(a+θ), S)K(a+θ, θ)f(a+θ)}dθ

and
(2.6.17)

k22(a) = −b
∞∫

0

{γ(ξ(a+θ), S)L(a+θ, θ)+
∂γ

∂ξ
(ξ(a+θ), S)K(a+θ, θ)f(a+θ)}dθ

are obtained from (2.2.3) by differentation while using the chain rule, (2.6.9),
(2.6.15) and a change in the order of integration.

We next investigate how these expressions should be adapted if the ingre-
dients are allowed to have, as a function of ξ, a jump discontinuity at ξA. If
individuals are allowed to linger at this juvenile-adult transition, where their
behaviour is ill-defined, one runs into technical difficulties that reflect mod-
elling ambiguities, as explained in detail in [29]. To avoid such difficulties,
we want that the size of an individual passes the critical size ξA with positive
speed. If we assume that

(2.6.18) g(ξA−, S) > 0 and g(ξA+, S) > 0

this is guaranteed in the steady state situation and hence, by continuity,
for nearby values of the food concentration. To discuss linearization at the
steady state, this suffices.

The analogue of (2.4.1) is the equation

(2.6.19) Ξ(a, ψ) = ξA

and we shall denote the solution by a = τ(ψ), to confirm to the notation
that is already in use. We define τ = τ(S). If we assume that juveniles don’t
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reproduce, i.e., β(ξ, S) = 0 for ξ < ξA, then the first equation of (2.2.3) can
be written in the form

(2.6.20) b(t) =

∞∫
τ(St)

b(t− a)β(Ξ(a, St), S(t)F (a, St)da.

The lower integration boundary yields in the linearized equation an extra
term (recall (2.6.1))

(2.6.21) −bβ(ξA+, S)f(τ)Dτ(S)zt.

Similarly we find for the second equation of (2.2.3) an extra term

(2.6.22) b(γ(ξA+, S)− γ(ξA−, S))f(τ)Dτ(S)zt.

In order to compute Dτ(S)ψ we differentiate the identity

Ξ(τ(ψ), ψ) = ξA.

This yields
D1Ξ(τ , S)Dτ(S)ψ +D2Ξ(τ , S)ψ = 0

which amounts to (recall (2.6.9))

g(ξA−, S)Dτ(S)ψ + η(τ) = 0

and hence to

(2.6.23) Dτ(S)ψ = − η(τ)

g(ξA−, S)
.

The terms (2.6.21) and (2.6.22) capture the effect of, respectively, the
jump in β and the jump in γ. We still need to determine the effect of the
jump in g and the effect of the jump in µ. We first deal with the jump in g.

We choose to let η be defined by (2.6.7), with
∂g

∂ξ
and

∂g

∂S
in (2.6.8) taken

as piece-wise smooth functions. Then, as we will show below, (2.6.5) should
be replaced by

(2.6.24) D3ξ(τ ; a, S)ψ = η(τ) + (
g(ξa+, S)

g(ξA−, S)
− 1)η(τ)H(τ − τ)

where H denotes the Heaviside function, i.e., H(σ) = 0 for σ < 0 and
H(σ) = 1 for σ ≥ 0. To justify (2.6.24), we first observe that (2.6.5) remains
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valid for τ < τ . For τ > τ let, for a given ψ, ε be so small that τ > τ̃(a, S+εψ)
as well, where, in analogy with (2.4.4), we denote the solution (whenever it
exists, so for a > τ(ψ)) of

(2.6.25) ξ(σ; a, ψ) = ξA

by σ = τ̃(a, ψ). Then

ξ(τ ; a, S + εψ)− ξ(τ ; a, S)

=

τ∫
τ̃(a,S+εψ)

g(ξ(σ; a, S + εψ), S + εψ(−a+ σ))dσ −
τ∫
τ

g(ξ(σ; a, S), S)dσ

=

τ∫
τ̃(a,S+εψ)

g(ξ(σ; a, S), S)dσ

+

τ∫
τ̃(a,S+εψ)

{g(ξ(σ; a, S + εψ), S + εψ(−a+ σ))− g(ξ(σ; a, S), S)}dσ

= −εg(ξA+, S)D2τ̃(a, S)ψ + o(ε) + ε{η(τ)− η(τ)}+ o(ε).

Dividing by ε and taking the limit ε ↓ 0 we obtain

D3ξ(τ ; a, S)ψ = η(τ)− η(τ)− g(ξA+, S)D2τ̃(a, S)ψ.

By differentation of the identity

ξ(τ̃(a, ψ); a, ψ) = ξA

with respect to ψ and evaluation of the result in S we find

D1ξ(τ ; a, S)D2τ̃(a, S)ψ +D3ξ(τ ; a, S)ψ = 0

and therefore

(2.6.26) D2τ̃(a, S)ψ = − η(τ)

g(ξA−, S)

Inserting this result into the formula for D3ξ(τ ; a, S)ψ above we arrive at
(2.6.24) for τ > τ .

It remains to determine the effect of the jump in µ. Again nothing changes
for τ < τ , so we focus on τ > τ . For (a, ψ) with a < τ(ψ) we can write

F (a, ψ) = e
−
τ̃(a,ψ)∫

0

µ(ξ(σ;a,ψ),ψ(−a+σ))dσ−
a∫

τ̃(a,ψ)

µ(ξ(σ;a,ψ),ψ(−a+σ))dσ
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and conclude that, relative to the smooth situation, there is an extra term

(2.6.27) (µ(ξA+, S)− µ(ξA−, S))f(a)D2τ̃(a, S)zt.

Gathering the bits and pieces we arrive at

(2.6.28)
k12(a) =

b

∫ ∞
max{0,τ−a}

{
β(ξ(a+ θ), S)L(a+ θ, θ) +

∂β

∂ξ
(ξ(a+ θ), S)K(a+ θ, θ)F (a+ θ)

}
dθ

+ χ[0,τ ](a)b

∫ ∞
τ

∂β

∂ξ
(ξ(σ), S)F (σ)dσ

(
g(ξA+, S)

g(ξA−, S)
− 1

)
K(τ , τ − a)

+ b
µ(ξA−, S)− µ(ξA+, S)

g(ξA−, S)

∫ τ

max{0,τ−a}
β(ξ(a+ θ), S)F (a+ θ)K(τ , θ)dθ

+ χ[0,τ ](a)b
β(ξA+, S)F (τ)

g(ξA−, S)
K(τ , τ − a).

(2.6.29)
k22(a) =

− b̄
∫ ∞

0

{
γ(ξ̄(a+ θ), S̄)L(a+ θ, θ) +

∂γ

∂ξ
(ξ̄(a+ θ), S̄)K(a+ θ, θ)F̄ (a+ θ)

}
dθ

− χ[0,τ̄ ](a)b̄

∫ ∞
τ̄

∂γ

∂ξ
(ξ̄(σ), S̄)F̄ (σ)dσ

(
g(ξA+, S̄)

g(ξA−, S̄)
− 1

)
K(τ̄ , τ̄ − a)

− b̄µ(ξA−, S̄)− µ(ξA+, S̄)

g(ξA−, S̄)

∫ τ̄

max{0,τ̄−a}
γ(ξ̄(a+ θ), S̄)F̄ (a+ θ)K(τ̄ , θ)dθ

− χ[0,τ̄ ](a)b̄
γ(ξ̄A+, S̄)− γ(ξ̄A−, S̄)

g(ξA−, S̄)
F̄ (τ̄)K(τ̄ , τ̄ − a).

Now that we know how to compute the vector c and the matrix kernel k(a),
we return to the linearized system (2.6.2) and ask ourselves how we should
analyse it. As before the key information is obtained by looking for λ ∈ C
such that (2.6.2) admits a solution of the special separation-of-variables form

(2.6.30)

(
y(t)
z(t)

)
= eλt

(
y0

z0

)
Substitution of (2.6.30) into (2.6.2) yields the linear algebra problem

y0 = c1z0 + k̂11(λ)y0 + k̂12(λ)z0

λz0 = c2z0 + k̂21(λ)y0 + k̂22(λ)z0



2.7. STABILITY CRITERIA FOR STAGE STRUCTURED MODELS 49

which has a non-trivial solution iff the determinant of the matrix(
1− k̂11(λ) −c1 − k̂12(λ)

−k̂21(λ) λ− c2 − k̂22(λ)

)
equals zero. So λ should be a root of

(2.6.31) (1− k̂11(λ))(λ− c2 − k̂22(λ))− k̂21(λ)(c1 + k̂12(λ)) = 0

which is called the characteristic equation of (2.6.2). In the next section
we shall take a closer look at this characteristic equation in the setting of a
stage structured population, as described in Section 2.4.

2.7 Stability criteria for stage structured mod-

els

In this section we shall assume that the per capita death rates µ1 and µ2 are
independent of the resource concentration S. In case of stage structure, the
steady maturation delay τ and the steady state food concentration S relate
to each other according to (cf. (2.4.1))

(2.7.1) g(S)τ = ξA − ξb.

From (2.4.7) we infer that the R0 = 1 condition can be written as

(2.7.2)
β(S)

µ2

e−µ1τ = 1

and that the steady population birth rate b is given by

(2.7.3) b =
f(S)

γ1(S)1−e−µ1τ
µ1

+ γ2(S) e
−µ1τ

µ2

=
f(S)

γ1(S)
β(S)

β(S)−µ2
µ1

+ γ2(S)
β(S)

.

Using (2.7.1) we can rewrite (2.7.2) as

(2.7.4)
β(S)

µ2

e−µ1
ξA−ξb
g(S) = 1

and if both β and g are increasing functions of S, the left hand side is an
increasing function of S as well. So if this function is smaller than one for
small S and bigger than one for large S, there is a unique root which, with
some abuse of notation, we simply denote by S. In order to make (2.7.3)
meaningful we assume that f(S) > 0.
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The steady state survival probability is given by

(2.7.5) f(a) =

{
e−µ1a, a ≤ τ

e−µ1τ−µ2(a−τ), a ≥ τ .

Directly from (2.6.3) we deduce, using (2.7.2)

c1 = b
β′(S)

β(S)

c2 = f ′(S)− b{γ
′
1(S)

β(S)

β(S)− µ2

µ1

+
γ′2(S)

β(S)
}.

(2.7.6)

Likewise we obtain from (2.6.4), by computing the Laplace transform of
f defined by (2.7.5), that

k̂11(λ) =
µ2

λ+ µ2

e−λτ

k̂21(λ) = −γ1(S)

β(S)

β(S)− µ2e
−λτ

λ+ µ1

− γ2(S)

β(S)

µ2

λ+ µ2

e−λτ .
(2.7.7)

From (2.6.8) we deduce that

(2.7.8) K(τ, α) = g′(S) if 0 ≤ α < τ and zero otherwise

and from (2.6.14) that

(2.7.9) L(τ, θ) = 0.

With a bit of effort one can now compute that (2.6.28) and (2.6.29) lead to

k̂12(λ) = b
g′(S)

g(S)
(1− e−λτ )

(
µ1

λ
− µ2 − µ1

µ2 + λ

)
k̂22(λ) = b

g′(S)

g(S)

(
1− e−λτ

)(µ2γ1(S)− µ1γ2(S)

λβ(S)
− (µ2 − µ1)γ2(S)

(µ2 + λ)β(S)

)
(2.7.10)

We now first collect a number of assumptions that help to simplify some
of these expressions:

i) if the γi are linear in S which we shall, with abuse of notation, write as

(2.7.11) γi(S) = γiS, i = 1, 2,

then

(2.7.12) c2 = f ′(S)− f(S)

S
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ii) if we adopt the QSSA as described in Section 2.5, the term λ in the
second factor in (2.6.31) disappears and the characteristic equation becomes

(2.7.13) (1− k̂11(λ))(−c2 − k̂22(λ))− k̂21(λ)(c1 + k̂12(λ)) = 0

iii) if g is constant, i.e., the i-growth does not depend on S, then both

k̂12(λ) and k̂22(λ) reduce to zero. Note that in this case τ is the fixed matu-
ration delay for all food concentrations (and not just the steady state value
for a particular food concentration)

iv) if β is constant, i.e., the per capita reproduction rate does not depend
on S, then c1 = 0

v) if µ1 = µ2 = µ and γ1(S) = γ2(S) = γ(S) then

b = µ
f(S)

γ(S)
c2 = f ′(S)− γ′(S)

γ(S)
f(S)

k̂21(λ) = − γ(S)

λ+ µ
k̂12(λ) =

bg′(S)

g(S)
µ

1− e−λτ

λ
k̂22(λ) = 0.

To illustrate how one can use the characteristic equation in order to con-
trast the effects of various forms of density dependence (once more inspired
by work of Gurney & Nisbet [14]) we now consider a few special cases.

1. No destabilization with fixed maturation delay

We assume that the growth rate g is independent of S and, for consistency,
that the juveniles have a different (and constant) food source and do not
consume S. So we assume g′ = 0 and γ1 = 0. Then

b =
β(S)f(S)

γ2(S)
, c1 =

β′(S)f(S)

γ2(S)
, c2 = f ′(S)− γ′2(S)f(S)

γ2(S)

and the characteristic equation is given by(
1− µ2

λ+ µ2

e−λτ
)(

λ− f ′(S) +
γ′2(S)

γ2(S)
f(S)

)
+

µ2

λ+ µ2

β′(S)

β(S)
f(S)e−λτ = 0.

If we multiply by λ+ µ2 and re-organize, we can bring the characteristic
equation in the form

µ2

λ+ µ2

e−λτ
λ− f ′(S) +

γ′2(S)

γ2(S)
f(S)− β′(S)

β(S)
f(S)

λ− f ′(S) +
γ′2(S)

γ2(S)
f(S)

= 1.
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We now consider each of the three factors at the left hand side for λ = iω.
Clearly for ω 6= 0∣∣∣∣ µ2

iω + µ2

∣∣∣∣ =
µ2√
µ2

2 + ω2
< 1 and |e−iωτ | = 1.

So if also the absolute value of the third factor is less than one, then
there will never be a root on the imaginary axis and destabilization by Hopf
bifurcation does not occur. The condition is that∣∣∣∣−f ′(S) +

γ′2(S)

γ2(S)
f(S)− β′(S)

β(S)
f(S)

∣∣∣∣ < ∣∣∣∣−f ′(S) +
γ′2(S)

γ2(S)
f(S)

∣∣∣∣
and if we make the plausible assumptions that

f ′(S) < 0, γ′2(S) > 0, β′(S) > 0,

this condition is fullfilled.

2. Destabilization with variable maturation delay

Let us now assume that the birth rate β is independent of S and, for
consistency, that the adults have a different (and constant) food source and
do not consume S. So we assume that β′ = 0 and γ2 = 0. On top of that we
make the QSSA .

Then

τ =
ln β − lnµ2

µ1

and S = g−1

(
ξA − ξb
τ

)
.

Moreover

b =
µ1βf(S)

γ1(S)(β − µ2)
, c1 = 0, c2 = f ′(S)− γ′1(S)

γ1(S)
f(S)

and the characteristic equation is given by(
1− µ2

λ+ µ2

e−λτ
)(

λ− f ′(S) +
γ′1(S)

γ1(S)
f(S)− µ1µ2f(S)

β − µ2

g′(S)

g(S)

1− e−λτ

λ

)
+
β − µ2e

−λτ

λ+ µ1

µ1f(S)

β − µ2

g′(S)

g(S)
(1− e−λτ )

(
µ1

λ
+
µ2 − µ1

µ2 + λ

)
= 0.

If we multiply by λ + µ2 and re-organize, we can bring the characteristic
equation in the form

λ+ α1(1− e−λτ ) + α2
1− e−λτ

λ
= 0
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with

α1 = µ2 −
µ1µ2

β − µ2

g′(S)

g(S)

γ1(S)f(S)

γ′1(S)f(S)− f ′(S)γ1(S)
(2.7.14)

α2 = µ1µ2
g′(S)

g(S)

γ1(S)f(S)

γ′1(S)f(S)− f ′(S)γ1(S)
.(2.7.15)

For λ = iω we can rewrite (2.7.14) as the two real equations

0 = ω + α1 sinωτ − α2
1− cosωτ

ω

0 = α1(1− cosωτ) + α2
sinωτ

ω
.

(2.7.16)

Solving for the parameters in terms of the frequency ω we find(
α1

α2

)
=

( ω sinωτ
2(cosωτ−1)

ω2/2

)
=

1

2

(
−ω cos ωτ

2

sinωτ/2

ω2

)

Note: If (2.7.14) implies that necessarily α1 > 0, then τ < period < 2τ [19].
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Chapter 3

Size structured cell populations

3.1 A continuum of possibilities for state–at–

birth

The difference between the preceding chapter and this one is not so much
the biological nature of the organisms that constitute the population (though
the peculiarities of multiplication by division will play a role in this chapter)
but rather the variation among the organisms of state–at–birth: in Chapter
2 we assumed that newborns had one and the same size, while here we shall
consider the situation that there is a continuum of possibilities for state–at–
birth. So we need to work with b(t, x), where t is time, x is size–at–birth and
b is the rate at which newborn individuals enter the population. And our
task is, as before, to derive the renewal equation for b from model ingredients
and to analyse it. One can still think of b as a function of time, but now this
function of time takes on values which are functions of x and in that sense
we deal with an infinite–dimensional renewal equation.

In Section 3.2 we introduce the model ingredients describing, respectively,
the growth of cells, there propensity to divide, the force of mortality and the
size of the two daughters, given the size of the mother. In Section 3.3 we
derive the renewal equation for b. In Section 3.4 we establish the connection
between the renewal equation and the more traditional formulation in terms
of a partial differential equation (PDE). At the same time we also show how
the interpretation may help to construct solutions of the PDE. Readers not
interested in PDE may skip Section 3.4. In general, infinite dimensional
renewal equations are rather prohibitive when it comes to their analysis, so
it is important to find meaningful simplifications. In Section 3.5 we shall
make extra assumptions that allow us to do the bookkeeping in terms of the
traffic of cells at a so–called renewal point. The happy outcome is a scalar

55
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renewal equation! In Section 3.6 we shall introduce a very special type of
nonlinearity by assuming that cells may be either quiescent or proliferating,
with the rate of going from one state to the other depending on the (weighted)
total population.

3.2 Model ingredients (for the case of a con-

stant environment)

We consider a population of cells and assume that the state of a cell is fully
characterized by its size (realising that this is a gross oversimplification).
Here size may mean the radius of a spherically cell or the length of a rod–
shaped cell or the total amount of some crucial chemical substance or ....
Size is a real number. The set of all possible sizes we denote by Ω and the
set of all possible sizes of daughters that just arose by division of the mother
we denote by Ωb.

We assume that the growth of a cell is deterministic and descibed by the
ODE

(3.2.1)
dy

da
= g(y).

The solution of this equation with initial condition y(0) = ξ we denote by
X(a, ξ) so

X(t, ξ) is the size of a cell at time t if at time zero(3.2.2)

it had size ξ (and it did neither die nor divide

in the time interval [0, t))

We also define

(3.2.3) A(x, ξ) :=

x∫
ξ

dσ

g(σ)
,

which is the time a cell needs in order to grow from size ξ to size x. Note
that

(3.2.4) X(A(x, ξ), ξ) = x and A(X(t, ξ), ξ) = t

or, in other words, for given ξ the functions t 7→ X(t, ξ) and x 7→ A(x, ξ) are
inverse to each other.
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Next we look at the chances that a cell of a certain size divides. Here
there are two options. We can introduce

(3.2.5) γ(y) is the probability per unit of time that a cell of size y divides,

but instead we may also work with

(3.2.6)
γ(y)

g(y)
is the probability per unit of size that a cell of size y divides.

Before explaining more precisely what we mean by two options, we clarify the
notion of “probability per unit of size” by considering the survival function

(3.2.7) exp

− t∫
0

γ(X(τ, ξ))dτ


which gives the probability that a cell with size ξ at time zero does not
divide in the time interval [0, t], given that it does not die. If we change
the integration variable τ to the integratiom variable y, where τ and y are
related through

(3.2.8) τ = A(y, ξ)

then (3.2.7) transforms into

(3.2.9) exp

− X(t,ξ)∫
ξ

γ(y)

g(y)
dy


and we conclude that the probability that a cell with size ξ, given that it
does not die, does not divide before reaching size x is

(3.2.10) exp

− x∫
ξ

γ(y)

g(y)
dy


and this is the precise meaning of the statement (3.2.6).

By “two options” we meant that one can either take survival functions
of time–intervals or survival functions of size–intervals as fundamental ingre-
dient. In the present case of constant conditions and deterministic growth
one can, as we did above, relate one to the other by a simple transformation.
But if conditions are not constant, one has to make a modelling decision [22]!
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(A far-fetched analogy is the rule for determining the tariff of a taxicab: by
distance, by time, or by a combination of these).

Similarly we can introduce

(3.2.11) µ(y) is the probability per unit of time that a cell of size y dies

and the overall survival function

(3.2.12) F (x, ξ) := exp

− x∫
ξ

µ(y) + γ(y)

g(y)
dy

 ,

which gives the probability that a cell grows from size ξ to size x without
dying or dividing.

It remains to specify the sizes of the two daughters of a mother of size y. If
“size” is a conserved quantity and the two daughters are exactly equal, both
necessarily have size 1

2
y. But more generally one may imagine that the size

of a daughter follows some probability distribution (with strong dependence
between the two daughters). For instance, one may postulate that, for y ∈ Ω
and ω a (measurable) subset of Ωb

P (ω, y) is the probability that a daughter of a(3.2.13)

mother of size y has a size that belongs to ω

(note that consistency with size–conservation then requires that P (fy(ω), y) =
P (ω, y) where fy(x) = y − x).

The special case of division into two equal halves corresponds to

(3.2.14) P (ω, y) = δ 1
2
y(ω) = δ(ω − 1

2
y),

where δz is the point mass (Dirac measure) concentrated at z. Apart from
this special case, we shall consider only the situation in which for each y the
probability measure P (·, y) has a density π(·, y), i.e.,

(3.2.15) P (ω, y) =

∫
ω

π(x, y)dx

with π(y − x, y) = π(x, y) and, as a consequence,

(3.2.16)

∫
Ωb

xπ(x, y)dx =
1

2
y,

meaning that the expected size of a daughter is half the size of the mother.
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3.3 The renewal equation

We shall first formulate the renewal equation for the case in which the proba-
bility distribution P of the size of daughters has a density π and next for the
special situation of two exactly equal daughters. To facilitate the description
we shall use words like ”survive” and ”alive” to indicate that neither death
nor division has occurred.

Consider a cell of age a which was born with size ξ. Its current size is
X(a, ξ) if it is still alive, which is the case with probability F (X(a, ξ), ξ). It
divides with probability per unit of time γ(X(a, ξ)) to produce two daughters,
each of which has size x with probability density π(x,X(a, ξ)).

To obtain the rate at which newly produced daughters enter the popu-
lation, we classify their mothers in terms of age a and their size–at–birth ξ
and then simply add all contributions. Hence

(3.3.1) b(t, x) = 2

∞∫
0

∫
Ωb

b(t−a, ξ)F (X(a, ξ), ξ)γ(X(a, ξ))π(x,X(a, ξ))dξda.

If, alternatively, we classify mothers in terms of their size–at–birth ξ and
their current size η, and make the transformation

(3.3.2) a = A(η, ξ)⇔ X(a, ξ) = η

we obtain that (3.3.1) transforms into

(3.3.3) b(t, x) = 2

∫
Ωb

∫
{η:η≥ξ}

b(t− A(η, ξ), ξ)F (η, ξ)γ(η)π(x, η)
1

g(η)
dηdξ.

The renewal equation for the case of division into two equal halves reads

(3.3.4) b(t, x) = 4
γ(2x)

g(2x)

∫
Ωb∩{ξ:ξ≤2x}

b(t− A(2x, ξ), ξ)F (2x, ξ)dξ

and one can understand almost all of the logic behind it by looking at (3.3.3)
and realising that in order for the daughter to have size x, the mother must
have exactly size 2x. The puzzling aspect is the factor 4 instead of 2. But
once one observes that mothers with size in the interval [x, x + dx] produce
daughters in the interval

[
1
2
x, 1

2
x+ 1

2
dx
]
, which is only half as long, one can

understand that this shrinking of the interval must be compensated by a
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doubling of the density in order to keep numbers right, And indeed, if we
integrate (3.3.4) with respect to x we find the identity∫

Ωb

b(t, x)dx = 4

∫
Ωb

γ(2x)

g(2x)

∫
Ωb∩{ξ:ξ≤2x}

b(t− A(2x, ξ), ξ)F (2x, ξ)dξdx(3.3.5)

= 2

∫
Ω

γ(η)

g(η)

∫
Ωb∩{ξ:ξ≤η}

b(t− A(η, ξ), ξ)F (η, ξ)dξdη

= 2

∞∫
0

∫
Ωb

b(t− a, ξ)F (X(a, ξ), ξ)γ(X(a, ξ))dξ

which has a factor 2, just as it should.
Note that alternatively we may write (3.3.4) as

(3.3.6)

b(t, x) = 4
γ(2x)

g(2x)

∞∫
0

b(t− a,X(−a, 2x))F (2x,X(−a, 2x))g(X(−a, 2x))da

since a cell which has size 2x at age a must have been born with size
X(−a, 2x).

3.4 The connection with the PDE formula-

tion (a short interlude)

Since the more traditional formulation of size–structured cell population
models is in terms of a partial differential equation for the size–density n(t, x),
we shall explain in this section the bookkeeping operations that relate n and
b. Readers who have no affinity with the PDE formulation may skip this
section. We restrict our attention to the special case of division into two
daughters that each have exactly half the size of the mother.

The PDE
(3.4.1)
∂n

∂t
(t, x) +

∂

∂x
(g(x)n(t, x)) = −µ(x)n(t, x)− γ(x)n(t, x) + 4γ(2x)n(t, 2x)

takes into account that the growth of cells does not change the number of
cells but that death and division do. The factor 4 should as before be read
as 2 times 2 where one factor 2 accounts for the two daughters and the other
for the shrinking of intervals which, since numbers are conserved, should be
compensated by an increase in the density.
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The quantity g(x)n(t, x) is the flux, i.e., the “traffic” of cells through x.
If we define

(3.4.2) m(t.x) = g(x)n(t, x)

put the right hand size of (3.4.1) equal to zero and next multiply the equation
by g(x), we obtain

(3.4.3)
∂m

∂t
(t, x) + g(x)

∂m

∂x
(t, x) = 0.

The solutions of (3.4.3) should satisfy (recall (3.2.3))

(3.4.4) m(t, x) = m(t− A(x, y), y).

This identity just states that the cells that have size x at time t are, if we
ignore death and division, exactly those that had size y at time t− A(x, y).
Using (3.4.2) we can rewrite (3.4.4) as

(3.4.5) n(t, x) =
g(y)

g(x)
n(t− A(x, y), y).

The factor g(y)/g(x) takes care of adjusting the density when velocities
change, in order to conserve the number, see [22]. In other words, we have
just verified the well-known fact that the left hand side of (3.4.1) is an in-
finitesimal formulation of the conversation of numbers of growing cells.

If we only remove the last term at the right hand side of (3.4.1), we need
to replace (3.4.4) with (recall (3.2.12))

(3.4.6) m(t, x) = m(t− A(x, y), y)F (x, y)

to take into account that, for x > y, the cells that have size x at time t are
those that had size y at time t − A(x, y) and did neither die nor divide on
their way to x.

Directly from the interpretation we conclude that

(3.4.7) b(t, x) = 4γ(2x)n(t, 2x).

In general, the flux at x at time t consists of contributions of cells that
were already present at the starting time and of cells that arose from divisions
since the starting time. If we supplement the PDE (3.4.1) with the boundary
condition that the flux at some conveniently chosen small size is zero, the
first contribution will, if g is bounded away from zero, vanish after a finite
time (which does not depend on x). This motivates us to ignore the first
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contribution altogether (which amounts to putting the starting time at −∞).
Then

m(t, x) =

x∫
b(t− A(x, ξ), ξ)F (x, ξ)dξ

and hence

(3.4.8) n(t, x) =
1

g(x)

x∫
b(t− A(x, ξ), ξ)F (x, ξ)dξ,

where we leave the lower integration boundary unspecified since we have not
yet introduced any notation for the lowest size at which cells are born.

Now note that (3.4.7) expresses b in terms of n, while (3.4.8) expresses n
in terms of b, allowing us to go back and forth between the two formulations.
Also note that if we use (3.4.8) to rewrite the right hand side of (3.4.7), we
recover the renewal equation (3.3.4). So if we solve the renewal equation, we
can use (3.4.8) to obtain a solution of the PDE. The only difference between
(3.3.4) and (3.4.1) + boundary condition is in the way we impose an initial
condition. In this respect the renewal equation is more restricted, but in a
way that only matters for the transient behaviour of solutions. Concerning
long time behaviour, (3.4.1) and (3.3.4) are equivalent!

3.5 Reducing the renewal equation by taking

advantage of the existence of a renewal

point

Suppose there exists a size, say x = α, such that a newborn cell necessarily
has size x < α while also a dividing cell necessarily has size x > α, i.e.,
γ(x) = 0 for x < α (so in particular it is impossible that a newborn cell
does immediately divide). The implication is that every cell attains size α
in between being born and dividing. We call α a renewal point, to express
that by concentrating on the traffic of cells at α we capture, quite literally,
those aspects of the life cycle that drive the population dynamics. We may
even go so far as to call the passing of α the “birth”, taking for granted that
then there is life, and even death, before birth.

We shall illustrate this reduction method (and the way in which the vari-
ous bookkeeping schemes relate to each other) in the context of division into
two equal halves, so for the infinite-dimensional renewal equation (3.3.4). To
begin with, we assume that cells have a maximal size, say x = 1 (this may
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either be achieved by letting g(x) go to zero for x ↑ 1 of by letting γ(x) ↑ ∞
in a non-integrable manner for x ↑ 1, since the key point is that the survival
probability F (x, ξ) defined in (3.2.12) goes to zero for x ↑ 1). Then Ωb ex-
tends to x = 1

2
. Next assume that γ(x) = 0 for x < α with α > 1

2
, and that

γ(x) > 0 for x > α. Then Ωb =
(
α
2
, 1

2

]
or Ωb =

[
α
2
, 1

2

]
, depending on whether

γ(α) = 0 or γ(α) > 0, but the difference does not matter at all. We copy
(3.3.4) here in the form

(3.5.1) b(t, x) = 4
γ(2x)

g(2x)

1/2∫
α/2

b(t− A(2x, ξ), ξ)F (2x, ξ)dξ,
α

2
≤ x ≤ 1

2
.

Now observe that for ξ ≤ 1
2

and 2x > α we may write

(3.5.2) F (2x, ξ) = F (2x, α)F (α, ξ)

and put the factor F (2x, α) outside the integral. The only remaining x–
dependence inside the integral is then in the time argument of b. This sug-
gests that we might be able to separate variables and reduce the problem to
a scalar equation for the time dependence. And indeed, this is possible! But
the easiest way to find out how to do it, is to first derive the scalar renewal
equation from first principles. So that is what we do next.

Consider a cell of size α. It reaches size x > α with probability F (x, α).
It divides at this size with probability per unit of time γ(x) and hence with
probability per unit of size γ(x)/g(x). After division the daughters have size
x
2
. They reach size α with probability F

(
α, x

2

)
. The time needed for this

cycle is

(3.5.3) A(x, α) + A
(
α,
x

2

)
= A

(
x,
x

2

)
and the encompassing survival probability is

(3.5.4) F (x, α)F
(
α,
x

2

)
= F

(
x,
x

2

)
.

Now we lift these considerations to the p–level. Let bα(t) denote the flux at
size α. Then

(3.5.5) bα(t) = 2

1∫
α

bα

(
t− A

(
x,
x

2

))
F
(
x,
x

2

) γ(x)

g(x)
dx.

The same considerations show, in addition, that

(3.5.6) b(t, x) = 4bα(t− A(2x, α))F (2x, α)
γ(2x)

g(2x)
.
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And indeed, if we substitute (3.5.6) as an Ansatz into (3.5.1) we find that
the equation is indeed satisfied provided bα satisfies (3.5.5). In orther words,
by way of (3.5.6) we obtain solutions of (3.5.1) in terms of the much simpler
scalar renewal equation (3.5.5). The only difference is once again in the way
we impose an initial condition. In this respect the scalar renewal equation is
more restricted, but in a way that only matters for the transient behaviour of
solutions. Concerning long time behaviour, (3.5.1) and (3.5.5) are equivalent
when α is a renewal point.

Equation (3.5.5) has solutions of the form bα(t) = eλt if and only if λ
satisfies the characteristic equation

(3.5.7) 1 = 2

1∫
α

e−λA(x,x
2

)F
(
x,
x

2

) γ(x)

g(x)
dx.

As usual, we denote the real root of this equation by r and call it the Malthu-
sian parameter. Likewise we define

(3.5.8) R0 = 2

1∫
α

F
(
x,
x

2

) γ(x)

g(x)
dx

since the right hand side is indeed the expected number of daughters that
reach size α of a cell that has size α. The identity

(3.5.9) sign r = sign (R0 − 1)

holds.
Just as we rewrote (3.3.4) in the form (3.3.5) by using age rather than

size as label, we may attempt to perform the change of integration variable

(3.5.10) a = A
(
x,
x

2

)
in (3.5.5). But we are in for a surprise:

(3.5.11)
d

dx
A
(
x,
x

2

)
=

d

dx

x∫
x/2

dσ

g(σ)
=

1

g(x)
− 1

2g
(x

2

)
and if 2g

(
x
2

)
= g(x), as it is whenever g(x) = cx for some c > 0, this is

identically zero. So in that situation (3.5.5) is actually the difference equation

(3.5.12) bα(t) = R0bα(t− T )



3.6. LIMITS TOGROWTH: INCORPORATING THE EFFECTS OF HYPOXIA–INDUCED ARREST/QUIESCENCE65

(with T the constant value of A
(
x, x

2

)
), since the time a full cycle takes

is independent of the exact size at which the cell divides! So in this case

r =
ln R0

T
and there are countably many roots of (3.5.7) on the line Re λ = r,

viz. λ = r + k
2π

T
i, k ∈ Z. See [22, 12].

3.6 Limits to growth: incorporating the ef-

fects of hypoxia–induced arrest/quiescence

We continue to work with the setting of the preceding section: α is a renewal
point and cells divide into two equal halves. Inspired by literature on the cell
cycle, we call α a restriction point and interpret growth from the birth size
to α as the G1 phase and growth from α to the division size as the combined
S and G2 phase and, finally, the division itself as the M phase of negligible
duration.

Let E denote the oxygen concentration. We assume that

– a fraction p(E) of the cells that reach size α from below become quies-
cent

– quiescent cells don’t grow

– quiescent cells return at rate q(E) to the poliferating state, with size α
but beyond the restriction point

Note that q is a rate, not a probability, and that in general p+ q 6= 1.
Let

b−(t) denote the flux towards α,

b+(t) denote the flux away from α.

Then

b+(t) = (1− p(E(t)))b−(t) + q(E(t))Q(t),

dQ

dt
(t) = p(E(t)))b−(t)− q(E(t))Q(t)− µQ(t),(3.6.1)

b−(t) = 2

1∫
α

b+

(
t− A

(
x,
x

2

))
F
(
x,
x

2

) γ(x)

g(x)
dx,
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where Q(t) is the concentration of quiescent cells which have, by assumption,
death rate µ.

To derive an expression for E, we first introduce

dE

dt
= 1− E − EC,

where EC corresponds to oxygen consumption by the cells, but next make the
quasi–steady–state assumption, which amounts to replacing the differential
equation for E by the explicit expression

(3.6.2) E =
1

1 + C
.

We complete the model formulation by putting

(3.6.3) C =

1∫
α/2

ϕ(y)n(t, y)dy + cQ(t),

where n is the cell size density and cells of size y are assumed to consume
oxygen at the rate ϕ(y)E if they are not quiescent, while quiescent cells
consume oxygen at rate c. One may of course take c = ϕ(α), but it is
also conceivable that quiescent cells consume substantially less oxygen than
proliferating cells of the same size. One may take ϕ(y) proportional to g(y),
to relate oxygen consumption to growth. Note, however, that we did not
incorporate any effect of the oxygen availability on growth. The influence
of the oxygen concentration is assumed to be restricted to the probability of
going quiescent when reaching the restriction point and the rate of return to
the proliferating state (we realise that this is a debatable restriction).

Directly from the interpretation we obtain the identities
(3.6.4)

n(t, x) =


1

g(x)
b+(t− A(x, α))F (x, α), x > α,

2

g(x)

max(2x,1)∫
α

b+

(
t− A(ξ, α)− A

(
x,
ξ

2

))
F (ξ, α)F

(
x,
ξ

2

)
γ(ξ)

g(ξ)
dξ, x < α.

Consult the last two sections for more detailed explanation if you don’t “see”
this. Using (3.6.4) we can express C in terms of past values of b+ and Q.
So, since the last equation of (3.6.1) is an explicit expression for b− in terms
of past values of b+, we may consider (3.6.1) as a coupled system of delay
equations for the variables b+ and Q.

Our next step is to look for steady states. We shall do this in two steps:
We first consider the case of a constant environment characterized by E as a
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constant parameter and derive and anayse the equation R0(E) = 1; secondly,
we consider the feedback condition (3.6.2) with C given by (3.6.3).

To facilitate the formulation we abbreviate, for the time being, p(E) to p
and q(E) to q and we introduce

(3.6.5) K(x) := 2
γ(x)

g(x)
F
(
x,
x

2

)
.

With these notational conventions we can write (3.6.1) as

b+(t) = (1− p)
1∫

α

b+

(
t− A

(
x,
x

2

))
K(x)dx+ qQ(t)(3.6.6)

dQ

dt
(t) = p

1∫
α

b+

(
t− A

(
x,
x

2

))
K(x)dx− (q + µ)Q(t).

Consider a cell growing away from α. It will produce an expected number
1∫
α

K(x)dx of daughters that reach α from below. Of these a fraction 1 − p

will grow immediately away from α and a fraction p will go quiescent. Of

those that go quiescent a fraction
q

q + µ
will return to the proliferating state

and then grow away from α. So

(3.6.7) R0 = (1− p+ p
q

q + µ
)

1∫
α

K(x)dx.

Note that for p = 0 we do indeed recover the expression (3.5.8) for R0.
The equation R0 = 1 amounts to

(3.6.8)
µ

q(E) + µ
p(E) = 1− 1∫ 1

α
K(x)dx

.

A first requirement for having a solution is that the right hand side should
be positive, which translates into the condition

(3.6.9)

1∫
α

K(x)dx > 1,

meaning that in the total absence of quiesence we should have an exponen-
tially growing population. So assume that (3.6.9) holds.
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It is natural to assume that p′(E) < 0 and q′(E) > 0 and under these
conditions the left hand side of (3.6.8) is a monotone decreasing function of
E, implying that there is at most one solution. There will indeed be a unique
solution if and only if

(3.6.10)
µ

q(∞) + µ
p(∞) < 1− 1∫ 1

α
K(x)dx

<
µ

q(0) + µ
p(0).

Note that (3.6.10) cannot hold if (3.6.9) does not hold.

We arrived at the intermediate conclusion that, under natural monotonic-
ity conditions for the dependence of p and q on E, there is a unique solution
of the equation R0(E) = 1 if (3.6.10) holds and no solution if this condition
is strictly violated.

We have derived the expression (3.6.7) for R0 by using the interpretation
and likewise we have used the interpretation to argue that, in order to have
a steady state, we should have R0(E) = 1. Readers of the Doubting Thomas
kind may now want to check that constant solutions (b+, Q) of system (3.6.6)
are found by solving(

(1− p)
∫ 1

α
K(x)dx− 1 q

p
∫ 1

α
K(x)dx −(q + µ)

)(
b+

Q

)
=

(
0
0

)

and that the coefficient matrix in this equation is singular if and only if
R0 = 1. If indeed R0 = 1, the null space of the coefficient matrix consists of
(b+, Q) with

(3.6.11) Q =
p
∫ 1

α
K(x)dx

q + µ
b+ =

∫ 1

α
K(x)dx− 1

µ
b+.

The idea is now to combine this relation with (3.6.4) and (3.6.3) to express
C in terms of the constant b+. As a final step we then determine b+ such
that the feedback condition (3.6.2) holds when we take for E the solution of
R0(E) = 1. Thus the (unique) steady state is, if it exists, found by solving
twice one equation in one unknown!

For constant b+ the identities (3.6.4) reduce to

(3.6.12) n(x) =


b+

F (x, α)

g(x)
, x > α,

b+
2

g(x)

max(2x,1)∫
α

F (ξ, α)F

(
x,
ξ

2

)
γ(ξ)

g(ξ)
dξ, x < α.
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If we substitute (3.6.11) and (3.6.12) into (3.6.3) and then the equation
so obtained into (3.6.2) we arrive at the equation
(3.6.13)

1

E
= 1+b+

2

α∫
α/2

ϕ(y)

g(y)

max(2y,1)∫
α

F (ξ, α)F

(
y,
ξ

2

)
γ(ξ)

g(ξ)
dξdy +

1∫
α

ϕ(y)

g(y)
F (y, α)dy + c

∫ 1

α
K(x)dx− 1

µ


for b+. Clearly this equation has a unique solution if E < 1 and no nontrivial
solution if E ≥ 1. So in retrospect we see that the condition (3.6.10) needs
to be strengthened in order to let E belong to the range of the feedback map.
To achieve E < 1 we replace (3.6.10) by

(3.6.14)
µ

q(1) + µ
p(1) < 1− 1∫ 1

α
K(x)dx

<
µ

q(0) + µ
p(0).

Conclusion Assume that p is a strictly decreasing function of E and q a
strictly increasing function. If (3.6.14) is not satisfied, there is no nontrivial
steady state of (3.6.6). If (3.6.14) is satisfied, there is a unique nontrivial
steady state. It is found by first solving (3.6.8) for E and next (3.6.13) for
b+ and by using (3.6.11) to express Q in terms of b+. The steady state size
density is given by (3.6.12).

Remark If (3.6.14) is violated by way of

µp(1)

q(1) + µ
> 1− 1∫ 1

α
K(x)dx

then the cell population will go extinct. If, on the other hand, (3.6.14) is
violated by way of

µp(0)

q(0) + µ
< 1− 1∫ 1

α
K(x)dx

,

then the quiescence mechanism is not able to prevent exponential growth of
the cell population.
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