
Abstract Delay Equations Inspired
by Population Dynamics

Odo Diekmann and Mats Gyllenberg

To the memory of Günter Lumer, a source of inspiration to both of us.

Abstract. In this short note we show that delay equations can be reformu-
lated as abstract weak-∗-integral equations (AIE) involving dual semigroups,
even in the case of infinite delay and/or when the solution takes values in a
non-reflexive Banach space. The advantage is that for such (AIE) the stan-
dard local stability and bifurcation results are already available, see [7]. Our
motivation derives from models of physiologically structured populations, as
explained in more detail in [11].
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1. Introduction

The perturbation theory for dual semigroups, as developed in the series [2, 3, 4, 5, 6]
of papers, turned out to be a very powerful tool in the local stability and bifurcation
theory of delay differential equations (DDE) [7]. The key step is the reformulation
of the initial value problem for the DDE as an abstract integral equation

u(t) = T0(t)ϕ + j−1

(∫ t

0

T⊙∗
0 (t − s)G(u(s))ds

)

. (AIE)

Here T0 is a strongly continuous semigroup of bounded linear operators on a Ba-
nach space X with sun-dual space X⊙ (the subspace of the dual space X∗ on
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which the adjoint (or dual) semigroup T ∗
0 is strongly continuous), T⊙∗

0 is the ad-
joint semigroup of T⊙

0 := (T ∗
0 )∣

∣X⊙
, G is a nonlinear mapping from X into X⊙∗

and j is the natural injection of X into X⊙∗ defined by
〈

ϕ⊙, jϕ
〉

=
〈

ϕ, ϕ⊙
〉

, ϕ ∈ X, ϕ⊙ ∈ X⊙. (1.1)

We refer to [1, 2, 7, 16] for more background information about dual semigroups.

Recently, it has been shown [11] that the sun-star-calculus based on (AIE)
is equally efficient for treating delay equations (DE) which are functional equa-
tions of Volterra type prescribing the value of the function itself in the right end
point, rather than the value of its derivative. The only real difference between the
treatment of (DDE) and of (DE) is the choice of the underlying function space.

In order for (AIE) to make sense, the convolution integral (which by definition
is a weak∗-Riemann integral on X⊙∗) should take values in j(X). It is known [2]
that it takes values in X⊙⊙. So whenever X is sun-reflexive, that is, whenever
j(X) = X⊙⊙, this is automatically guaranteed.

The theory developed in [2, 3, 4, 7] concentrates on the sun-reflexive case.
As a consequence, the application to delay equations requires a finite delay and
that the functions take values in a reflexive space. The aim of the present note is
to show that delay equations with infinite delay and involving functions that take
values in arbitrary Banach spaces can still be written in the form of an abstract
integral equation of the form (AIE). Because in the non-sun-reflexive case the
convolution integral in (AIE) need not belong to j(X), we have instead to impose
a range condition that for functions f taking values in an appropriate subspace of
X⊙∗, which contains the range of the function G, it is true that

∫ t

0

T⊙∗
0 (t − s)f(s)ds ∈ j(X). (1.2)

It turns out that for delay equations it is easy to verify by direct computation
that (1.2) holds. Once (AIE) is justified, the methods and results of [7, 11] become
available and one obtains the principle of linearized stability, the centre manifold
theorem and the Hopf bifurcation theorem essentially for free (‘essentially’, because
the spectral analysis of T (t) is a bit more complicated in the case of infinite delay).

It was already noted in [2, 4, 7] that (AIE) also covers age-dependent popu-
lation models. More recently, Hans Metz and the present authors found a way to
formulate population models that incorporate more general physiological structure
(e.g. size structure) as abstract integral equations of type (AIE). This formulation
employs delay equations (DE) which do not involve any derivative. In a recent joint
work with Philipp Getto [11] we elaborated the details of the reformulation as an
(AIE) and its analysis in an L1-setting, assuming sun-reflexivity. In the present
paper we consider the same setting, but we neither impose an upper bound on
the delay (i.e., on the maximal attainable age), nor assume that the number of
possible states-at-birth is finite. Our results also allow the so-called interaction
variables [8, 9, 10] to take values in an infinite dimensional space.
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As a general reference concerning (DDE) with infinite delay we mention [14],
while for (DDE) in infinite dimensional spaces we refer to [19].

2. The abstract setting

Let Y be a Banach space and let ̺ ≥ 0. As the state space we choose the space
X = L1(R−; Y ) of all measurable functions ϕ : R− = (−∞, 0] → Y such that the
weighted Bochner integral

‖ϕ‖1 =

∫

R−

e̺θ ‖ϕ(θ)‖ dθ (2.1)

is finite. On X we consider the strongly continuous semigroup T0 defined by trans-
lation and extension by zero:

(T0(t)ϕ) (θ) =

{

ϕ(t + θ), −∞ < θ ≤ −t,

0, −t < θ ≤ 0,
ϕ ∈ X, t ≥ 0. (2.2)

The reason that we chose X = L1(R−; Y ) and not a space of continuous functions
as state space is that in applications to delay equations the semigroup T0 occurs
and it does not leave the continuous functions invariant. It is also the right choice
for our biological applications, which is not the case of Lp, 1 < p < ∞, which from
a purely mathematical point of view could have been used.

It does not seem possible to give the dual space X∗ a representation in terms
of familiar functions or measures unless Y ∗ has the Radon-Nikodym property, in
which case X∗ is isometrically isomorphic to L∞(R+; Y ∗) [12, Theorem 1, p.98].
And for the function spaces Y that most frequently occur in our applications,
viz. C and L1, the dual space Y ∗ does not possess the Radon-Nikodym property.
However, this is no problem because Greiner and van Neerven [13] (see also [16,
Theorem 7.3.11, p.135]) have characterized the sun-dual X⊙ = L1(R−; Y )⊙ with
respect to the translation semigroup (2.2).

Proposition 2.1. Let Y be a Banach space and let the semigroup T0 be defined on
X = L1(R−; Y ) by (2.2). Then X⊙ is isometrically isomorphic to the space of
all functions ϕ⊙ : R+ → Y ∗ such that θ 7→ eρθϕ⊙(θ) is bounded and uniformly
continuous with the norm

∥

∥ϕ⊙
∥

∥

∞
= sup

θ∈R+

e̺θ
∥

∥ϕ⊙(θ)
∥

∥ < ∞ (2.3)

and the pairing
〈

ϕ, ϕ⊙
〉

=

∫

R+

〈

ϕ(−θ), ϕ⊙(θ)
〉

dθ. (2.4)

The sun-dual semigroup T⊙ is given by
(

T⊙
0 (t)ϕ⊙

)

(θ) = ϕ⊙(t + θ), 0 ≤ θ < ∞, ϕ⊙ ∈ X⊙, t ≥ 0. (2.5)

Note that on the right hand side of (2.4) we have the duality pairing between
the spaces Y and Y ∗.
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Proof. In [13] and [16] it was proven (without weights, ̺ = 0) that L1(R; Y )⊙ =
BUC(R; Y ∗) with respect to the translation semigroup on the whole real line. The
proof for the half line case is identical. Because we work on weighted spaces, the
exponential weight enters in the characterization of X⊙. �

Because by Proposition 2.1 the elements of X⊙ are represented by continuous
functions, we can unambiguously talk about the value ϕ⊙(θ), θ ∈ R+, of any
element ϕ⊙ ∈ X⊙. In particular, the evaluation-in-zero map δ : X⊙ → Y ∗ is
well-defined through

δϕ⊙ = ϕ⊙(0), ϕ⊙ ∈ X⊙. (2.6)

The adjoint δ∗ of δ maps Y ∗∗ into X⊙∗. By restricting δ∗ to Y (using the canonical
embedding of a Banach space into its second dual) we obtain a linear mapping
ℓ : Y → X⊙∗. Explicitly, it is defined via

〈

ϕ⊙, ℓy
〉

=
〈

y, ϕ⊙(0)
〉

, y ∈ Y, ϕ⊙ ∈ X⊙. (2.7)

Obviously, ℓ is an isometric isomorphism of Y onto a closed subspace of X⊙∗.

Lemma 2.2. For every y ∈ Y and ϕ⊙ ∈ X⊙ one has
〈

T⊙∗
0 (t)ℓy, ϕ⊙

〉

=
〈

y, ϕ⊙(t)
〉

, t ≥ 0.

Proof.
〈

T⊙∗
0 (t)ℓy, ϕ⊙

〉

=
〈

ℓy, T⊙
0 (t)ϕ⊙

〉

=
〈

y,
(

T⊙
0 (t)ϕ⊙

)

(0)
〉

=
〈

y, ϕ⊙(t)
〉

.

�

Lemma 2.3. Let h : R+ → Y be a continuous function. Then, for every ϕ⊙ ∈ X⊙

one has
〈∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ, ϕ⊙

〉

=

∫ t

0

〈

h(t − τ), ϕ⊙(τ)
〉

dτ, t ≥ 0.

Proof. Using Lemma 2.2 one gets
〈∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ, ϕ⊙

〉

=

∫ t

0

〈

T⊙∗
0 (t − τ)ℓh(τ), ϕ⊙

〉

dτ =

∫ t

0

〈

ℓh(τ), T⊙
0 (t − τ)ϕ⊙

〉

dτ =

∫ t

0

〈

h(τ), ϕ⊙(t − τ)
〉

dτ

∫ t

0

〈

h(t − τ), ϕ⊙(τ)
〉

dτ.

�

As a corollary, we get the result alluded to in the introduction: the convolu-

tion integral
∫ t

0 T⊙∗
0 (t − τ)f(τ) dτ belongs to j(X), whenever f : R+ → X⊙∗ is

continuous with values in ℓ(Y ).
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Corollary 2.4. Let h : R+ → Y be a continuous function and define ϕ ∈ X =
L1(R−; Y ) by

ϕ(θ) =

{

h(t + θ) −t ≤ θ ≤ 0,

0, −∞ < θ < −t.
(2.8)

Then
∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ = jϕ. (2.9)

In particular,
∫ t

0 T⊙∗
0 (t − τ)ℓh(τ) dτ ∈ j(X) and

∥

∥

∥

∥

j−1

(∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ

)∥

∥

∥

∥

1

≤
1

̺

(

1 − e−̺t
)

sup
0≤τ≤t

‖h(τ)‖ , t ≥ 0. (2.10)

(If ̺ = 0, the factor (1 − e−̺t) /̺ has to be interpreted as the limiting value t.)

Proof. For each ϕ⊙ ∈ X⊙ we have by the definition of ϕ and Lemma 2.3:

〈

ϕ, ϕ⊙
〉

=

∫ 0

−∞

〈

ϕ(θ), ϕ⊙(−θ)
〉

dθ =

∫ 0

−t

〈

h(t + θ), ϕ⊙(−θ)
〉

dθ

∫ t

0

〈

h(t − θ), ϕ⊙(θ)
〉

dθ =

〈∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ, ϕ⊙

〉

.

The definition (1.1) of the embedding j : X → X⊙∗ now yields (2.9). The estimate
(2.10) follows readily:

∥

∥

∥

∥

j−1

(
∫ t

0

T⊙∗
0 (t − τ)ℓh(τ) dτ

)∥

∥

∥

∥

1

= ‖ϕ‖1 =

∫ 0

−∞

eρθ ‖ϕ(θ)‖ dθ =

∫ 0

−t

e̺θ ‖h(t + θ)‖ dθ = e−̺t

∫ t

0

e̺τ ‖h(τ)‖ dτ ≤
1

̺

(

1 − e−̺t
)

sup
0≤τ≤t

‖h(τ)‖ .

�

Theorem 2.5. Let F : X → Y be Lipschitz continuous. Then the abstract integral
equation

u(t) = T0(t)ϕ + j−1

(∫ t

0

T⊙∗
0 (t − s)G(u(s))ds

)

, (AIE)

with T0 defined by (2.2) and G = ℓ ◦ F , has a unique solution on [0,∞).

Proof. With Corollary 2.4 at hand, the proof is identical to the proof of the cor-
responding result in the sun-reflexive case [4, 7]. �

Next we consider steady states of the dynamical system Σ(t) induced by
(AIE) by declaring Σ(t)ϕ to be the solution u(t) of (AIE). We now realize why we
have to use weighted L1-spaces: Without a weight, nonzero constant functions on
an infinite interval do not belong to L1. Linearization around a steady state works
exactly as in the sun-reflexive case [4]:
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Theorem 2.6. Let Σ(t)ϕ = ϕ and assume that the nonlinear operator F : X → Y
is continuously Fréchet differentiable. Then for every t > 0 the nonlinear operator
Σ(t) is Fréchet differentiable at ϕ. Its Fréchet derivative

T (t) = (DΣ(t))(ϕ) (2.11)

defines a strongly continuous semigroup of bounded linear operators with generator
A given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A⊙∗
0 ), A⊙∗

0 jϕ + ℓF ′(ϕ)ϕ ∈ j(X)},

Aϕ = j−1(A⊙∗
0 jϕ + ℓF ′(ϕ)ϕ).

Moreover, for every ϕ ∈ X, T (t)ϕ is the unique solution of the linear abstract
integral equation

T (t)ϕ = T0(t)ϕ + j−1

(∫ t

0

T⊙∗
0 (t − s)ℓF ′(ϕ)T (s)ϕds

)

. (LAIE)

The proofs of the principle of linearized stability, the centre manifold theorem
and the Hopf bifurcation theorem depend essentially on the linearization described
in Theorem 2.6.

3. Delay equations as abstract integral equations

We consider the initial value problem

x(t) = F (xt), t > 0 (DE)

x0(θ) = ϕ(θ), θ ∈ (−∞, 0], (IC)

consisting of a delay equation (DE) specifying the rule for extending the unknown
function x from the history given by (IC). Here the unknown function x takes
values in a Banach space Y and xt denotes for each t ≥ 0 the translated function
defined by

xt(θ) := x(t + θ), −∞ < t ≤ 0. (3.1)

As state space (history space) we choose the space X = L1(R−; Y ) of Bochner
integrable (with respect to the weight function θ 7→ eρθ) functions on R−, see
Section 2. We therefore assume that F maps X into Y and that the initial value ϕ
belongs to X . In this section we show that the problem (DE) & (IC) is equivalent
to (AIE) with G = ℓ ◦ F and T0 defined by (2.2). We shall always assume that T0

and G are chosen in this way.
An application of Corollary 2.4 to the function h = F ◦ u for a continuous

function u : R+ → X immediately gives the following result:

Lemma 3.1.
(

j−1

∫ t

0

T⊙∗
0 (t − s)ℓF (u(s))ds

)

(θ) =

{

F (u(t + θ)), −t ≤ θ ≤ 0,

0, −∞ < θ < −t.
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We are now ready to state and prove the equivalence of (DE) & (IC) and
(AIE).

Theorem 3.2. Let ϕ ∈ X = L1 (R−; Y ) be given.
(a) Suppose that x ∈ L1

loc ((−∞,∞); Y ) satisfies (DE) & (IC). Then the function
u : [0,∞) → X defined by u(t) := xt is continuous and satisfies (AIE).
(b) If u : [0,∞) → X is continuous and satisfies (AIE), then the function x defined
by

x(t) :=

{

ϕ(t) for −∞ < t < 0,

u(t)(0) for t ≥ 0
(3.2)

is an element of L1
loc ((−∞,∞); Y ) and satisfies (DE) & (IC).

Proof. (a) The continuity of u(t) = xt follows from the continuity of translation
in L1. Fix t ≥ 0. By the definition of T0 one has for −t ≤ θ ≤ 0

u(t)(θ) − (T0(t)ϕ)( θ) = x(t + θ) − 0 = F (xt+θ) = F (u(t + θ))

and for −∞ < θ < −t

u(t)(θ) − (T0(t)ϕ)( θ) = x(t + θ) − ϕ(t + θ) = ϕ(t + θ) − ϕ(t + θ) = 0

Lemma 3.1 shows that in both cases u(t)(θ) − (T0(t)ϕ)( θ) equals
(

j−1
∫ t

0 T⊙∗
0 (t − s)ℓF (u(s))ds

)

(θ) and thus u satisfies (AIE).

(b) Lemma 3.1 shows that for t > 0,

x(t) = u(t)(0) = (T0(t)ϕ)(0) +

(

j−1

∫ t

0

T⊙∗
0 (t − s)ℓF (u(s))ds

)

(0)

= F (u(t)). (3.3)

It thus remains to be shown that u(t) = xt. For −t < θ ≤ 0, (3.3) gives

xt(θ) = x(t + θ) = u(t + θ)(0) = F (u(t + θ)) = u(t)(θ)

and for −∞ < θ < −t, Lemma 3.1 gives

xt(θ) = x(t + θ) = ϕ(t + θ) = (T0(t)ϕ)(θ) = u(t)(θ)

so indeed u(t) = xt. �

4. A model involving cannibalistic behaviour

Consider a population structured by the size of individuals. We assume that in-
dividuals eat their conspecifics and that this cannibalistic behaviour is modelled
through the attack rate α(ξ, η), which is the rate at which individuals of size η kill
and eat individuals of size ξ. Usually the victim of cannibalism is smaller than the
attacker, so a(ξ, η) should be zero for ξ > η, but we will make no explicit use of
this assumption in what follows. We assume that all individuals are born with the
same size ξb.
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Cannibalism leads to an extra mortality in the population. If n(t, ·) denotes
the density of the size-distribution of the population at time t, then the extra
size-specific mortality rate due to cannibalism at time t is

M(t, ξ) =

∫ ∞

ξb

α(ξ, η)n(t, η)dη. (4.1)

Let c(η) be the energetic value of an individual of size η. Then the extra energy
intake due to cannibalism per unit of time of an individual of size ξ is

E(t, ξ) =

∫ ∞

ξb

c(η)α(η, ξ)n(t, η)dη. (4.2)

We assume that E is channelled into growth and affects “ordinary” mortality, that
is, mortality not due to cannibalism but due e.g. to starvation. The traditional PDE
formulation then takes the form of the boundary value problem

∂

∂t
n(t, ξ) +

∂

∂ξ
(g(ξ, E(t, ξ))n(t, ξ)) =

− (µ(ξ, E(t, ξ)) + M(t, ξ))n(t, ξ), ξ > ξb (4.3)

g(ξb, E(t, ξb))n(t, ξb) =

∫ ∞

ξb

β(ξ)n(t, ξ)dξ,

where β(ξ) is the size-specific fecundity. If some of the extra energy intake is also
channeled into reproduction, then β depends also on E(t, ξ). Nothing essential
would change in the sequel, only the notation would be more cumbersome.

Next we want to write the model as a delay equation (DE) for the unknown

x(t) =

(

b(t)
I(t)

)

,

where b(t) is the population birth rate and I(t) is some conveniently chosen inter-
action variable. To this end, let I1(t, a) be the total per capita death rate and let
I2(t, a) be the individual growth rate of an individual of age a at time t:

I1(t, a) = µ(ξ, E(t, ξ)) + M(t, ξ), (4.4)

I2(t, a) = g(ξ, E(t, ξ)). (4.5)

Note that we use superscripts as indices because subscripts are reserved for trans-
lation, cf. (3.1).

We emphasize that age does not occur in the original model formulation and
that Eqs. (4.4) and (4.5) are meaningless as they stand. So for the time being
we assume that I1(t, a) and I2(t, a) are given. More precisely, we consider the
mappings t 7→ I1(t, ·) and t 7→ I2(t, ·) as mappings from R− to C(R+), the
Banach space of bounded continuous scalar valued functions on R+. Later, when
we close the feedback loop, we shall see how the original ingredients, given in terms
of size, transform into quantities defined in terms of age.
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Consider an individual of age a at time t. It was born at time t − a. By
definition, it has grown according to

dξ

dτ
= I2(t − a + τ, τ), 0 < τ ≤ a, (4.6)

ξ(0) = ξb. (4.7)

The solution evaluated at τ = a gives the size of the individual at time t:

ξ(a) = ξb +

∫ a

0

I2(t − a + τ, τ)dτ = ξb +

∫ a

0

I2
t (τ − a, τ)dτ =: X2

(

I2
t

)

(a). (4.8)

Notice that the size of an individual of age a at time t is an affine (that is, constant
plus linear) mapping X2 of L1(R−; C(R+)) into C(R+).

The probability that an individual that was born at time t − a survives to
age a, given the history of I, is

e−
R

a

0
I1(t−a+τ,τ)dτ = e−X1(I1

t )(a),

where, in analogy with the definition of X2, we have defined the linear mapping
X1 : L1(R−; C(R+)) → C(R+) by

X1
(

I1
t

)

(a) :=

∫ a

0

I1
t (τ − a, τ)dτ.

Therefore the birth rate

b(t) := g(ξb, E(t, ξb))n(t, ξb)

satisfies the renewal equation

b(t) =

∫ a

0

β
(

X2
(

I2
t

)

(a)
)

e−X1(I1
t )(a)bt(−a)da. (4.9)

Alternatively and equivalently, the renewal equation (4.9) could have been ob-
tained from the boundary condition in (4.3) by the change ξ = X2

(

I2
t

)

(a) of
variables. Similarly, we get from (4.1) and (4.2), respectively:

M(t, ξ) =

∫ ∞

0

α
(

ξ, X2
(

I2
t

)

(a)
)

e−X1(I1
t )(a)bt(−a)da (4.10)

and

E(t, ξ) =

∫ ∞

0

c
(

X2
(

I2
t

)

(a)
)

α
(

X2
(

I2
t

)

(a), ξ
)

e−X1(I1
t )(a)bt(−a)da. (4.11)
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We now substitute (4.8), (4.10) and (4.11) into (4.4) and (4.5) and obtain

I1(t, a) =

µ

(

X2
(

I2
t

)

(a),

∫ ∞

0

c
(

X2
(

I2
t

)

(τ)
)

α
(

X2
(

I2
t

)

(τ), X2
(

I2
t

)

(a)
)

e−X1(I1
t )(τ)bt(−τ)dτ

)

+

∫ ∞

0

α
(

X2
(

I2
t

)

(a), X2
(

I2
t

)

(τ)
)

e−X1(I1
t )(τ)bt(−τ)dτ (4.12)

I2(t, a) =

g

(

X2
(

I2
t

)

(a),

∫ ∞

0

c
(

X2
(

I2
t

)

(τ)
)

α
(

X2
(

I2
t

)

(τ), X2
(

I2
t

)

(a)
)

e−X1(I1
t )(τ)bt(−τ)dτ

)

(4.13)

Equations (4.9), (4.12) and (4.13) form a delay equation (DE) for the unknown

x(t) =





b(t)
I1(t)
I2(t)



 ,

with F : L1(R−; Y ) → Y and Y = R × C(R+) × C(R+). The function F is of
course defined by declaring

F





bt

I1
t

I2
t



 (a)

to be the vector with the right hand sides of (4.9), (4.12) and (4.13) as components.
The formulation of the principle of linearized stability, the centre manifold

theorem and the Hopf bifurcation theorem involves the linearization described
in Theorem 2.6 as well as the location of the spectrum of the generator of the
linearized semigroup. Linearization is possible only if F is continuously Fréchet
differentiable. It is a pleasant fact that F is indeed continuously differentiable
under very natural conditions.

Theorem 4.1. Let g, β, µ, α and c have continuous partial derivatives with respect
to all variables. Then the mapping F : L1(R−; Y ) → Y is continuously Fréchet
differentiable.

Proof. F is linear in bt and hence continuously differentiable in bt. As noted above,
X1 and X2 are affine mappings, and hence continuously differentiable with values
in the continuous functions. X1(I1

t ) and X2(I2
t ) appear everywhere as arguments

of continuously differentiable mappings. Because the Nemytskĭı operator Ng : f 7→
g ◦ f is continuously differentiable from C to C if g is continuously differentiable,
the conclusion follows. �

5. Conclusions

The reformulation of delay differential equations [7] and delay equations [11] as
abstract integral equations has proven to be useful because standard results from
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the theory of ordinary differential equations such as linearized (in)stability and
Hopf bifurcation can easily be extended to this class of problems using the so-called
sun-star calculus of adjoint semigroups. In the references mentioned above, the
analysis was restricted to the case of delay (differential) equations with finite delay
and unknowns taking values in finite dimensional spaces. The reason is that in this
case the state space is sun-reflexive with respect to the unperturbed semigroup and
standard results concerning adjoint semigroups show that the abstract integral
equation makes sense and has a unique solution. In this paper we have shown
that the assumption of sun-reflexivity can be relaxed. Indeed, we have shown that
the abstract integral equation (AIE) is well-posed if the nonlinear operator G is
restricted to take on values in a certain subspace of X⊙∗. This is a very natural
approach because when the delay is infinite, one cannot give an easy representation
of X⊙∗, so one is anyhow forced to define the operator G as taking values in a
subspace that can be given a representation.

The natural state space is the space X = L1(R−; Y ) of suitably weighted
Bochner integrable functions. One cannot work with continuous functions because
they are not invariant under the unperturbed semigroup, which is translation and
extension by zero. A weight is needed to have nonzero steady states in the state
space. In applications to population problems, the components of the unknown are
typically rates, which integrated over a finite time interval yield finite numbers.
So L1 (and not e.g. Lp) is the right state space.

From certain points of view the space L1 is not particularly nice. One com-
plication is that the Nemytskĭı (or substitution) operator Ng : f 7→ g ◦ f is differ-
entiable in L1 if and only if g is affine, that is, a constant plus a linear map [15].
This appears to be a severe restriction, at least when the space Y is chosen in what
at first thought seems the most natural way. For instance, in [11] the principle of
linearized stability for the well-known Gurtin-MacCamy model

b(t) =

∫ ∞

0

β(a, N(t))e−
R

a

0
µ(N(t−a+τ,τ)dτb(t − a)da, (5.1)

N(t) =

∫ ∞

0

e−
R

a

0
µ(N(t−a+τ,τ)dτb(t − a)da (5.2)

with one dimensional interaction variable N , could be established only if the per
capita death rate µ was affine: µ(a, N) = µ0(a) + µ1(N). This is somewhat un-
satisfactory because the principle of linearized stability has been proven in much
greater generality in [17, 18].

But in the present paper we allow for infinite dimensional Y and hence the
Gurtin-MacCamy model (5.1) & (5.2) can be rewritten using the infinite dimen-
sional interaction variable

I(t, a) = µ(a, N(t))
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as

b(t) =

∫ ∞

0

β

(

a,

∫ ∞

0

e−
R

σ

0
It(τ−σ,τ)dτbt(−σ)dσ

)

e−
R

a

0
It(τ−a,τ)dτbt(−a)da,

(5.3)

I(t, a) = µ

(∫ ∞

0

e−
R

σ

0
It(τ−σ,τ)dτbt(−σ)dσ, a

)

. (5.4)

If β and µ are continuously differentiable, then the right hand sides of (5.3) and
(5.4) are continuously differentiable in It as compositions of continuously differ-
entiable mappings on C and affine mappings L1 → C. For the Gurtin-MacCamy
model the shift from one-dimensional to infinite-dimensional interaction variable,
just to make the abstract framework functioning, may seem artificial because the
problem can be, and has been, solved by other means. But for the cannibalism
model treated in Section 4, in which the more obvious candidates for interaction
variables, viz. M(t, x) and E(t, x), already are infinite-dimensional, the choice of
I1(t, a) and I2(t, a) as interaction variables is very natural.

The setting of this paper with an infinite-dimensional Y also allows for in-
finitely many states at birth in contrast to the assumption of only finitely many
states at birth made in [11].
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