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The aim of this paper is to show that a large class of epidemic models, with both demography and non-
permanent immunity incorporated in a rather general manner, can be mathematically formulated as a scalar
renewal equation for the force of infection.
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1. Introduction

As early as 1927, Kermack and McKendrick published a paper ‘A contribution to the mathematical
theory of epidemics’ in the Proceedings of the Royal Society London Ser. A [31]. The paper
became a classic in infectious disease epidemiology and has been cited innumerable times. It was
reprinted, with a discussion by Roy Anderson, in a special issue ‘Classics of theoretical biology’
(part two) in the Bulletin of Mathematical Biology [34].

But how often is it actually read? Judging from an incessant misconception of its contents, one
is inclined to conclude: hardly ever! Indeed, even experienced experts often believe that the paper
is just about the system

dS

dt
= −βIS

dI

dt
= βIS − αI

dR

dt
= αI
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104 D. Breda et al.

of three ODEs. This system figures prominently in Section 3.2 of the paper, but there it is explicitly
described as a very special (yet important) case of a much more general model formulated in
Section 2. The key feature of the general model is that it incorporates a ‘per capita rate of infectivity
φ’ which depends on the time θ elapsed since the infection took place (below we use the notation
A and τ instead of φ and θ ). The mathematical incarnation of the general model is a nonlinear
renewal equation! A more detailed presentation of the underlying individual-based assumptions
and of the derivation of the renewal equation can be found in [45]. In Section 5, we provide an
incomplete list of papers dealing with epidemic models formulated in terms of delay equations.

The same issue of the Bulletin of Mathematical Biology has also reprinted two follow-up
papers:

• Contributions to the mathematical theory of epidemics-II. The problem of endemicity [32,35].
• Contributions to the mathematical theory of epidemics-III. Further studies of the problem of

endemicity [33,36].

These follow-up papers are not nearly as much cited as the 1927 paper [31,34]. A possible
explanation might be that the 1927 paper arrives at a general and robust conclusion (viz., the
Threshold Theorem), while, in contrast, the other two papers discuss a multitude of formulations
and partial results that do not culminate in one robust ‘law’. By the way, see [4] for a recent
critique of one particular aspect of the 1927 paper.

In the spirit of Inaba [29], the aim of the present paper is to take up ‘the problem of endemicity’
and to show that, actually, one can formulate it in a way that is very reminiscent of the general
epidemic model of 1927, provided one takes the force of infection as the primary unknown.
In particular, we show that one can derive a scalar nonlinear renewal equation for the force of
infection under rather general assumptions on both the demographic turnover and the waning
of immunity. In order to introduce this approach, we first rederive in Section 2 the main results
of the 1927 paper by employing the formulation in terms of the renewal equation for the force
of infection. In this ‘epidemic’ setting, the population is demographically closed and infection
leads to permanent immunity. In Section 3, we relax the first of these assumptions and introduce
newborn individuals, which are susceptible, at a constant rate B. Rather than introducing an age-
independent per capita death rate, we describe the survival probability till at least age a by a
general decreasing function F(a) in order to be able to incorporate the rather flat age distributions
that characterize modern developed countries. We derive the unsurprising result that there is a
unique endemic equilibrium when R0 > 1 and no endemic equilibrium when R0 < 1. For the
special case of a constant per capita death rate μ (so F(a) = e−μa), we show that the endemic
equilibrium is locally asymptotically stable, no matter how infectiousness depends on time since
infection. We are unable to extend this result to general survival functions and wonder whether
or not one might have the possibility of a Hopf bifurcation in that setting.

In Section 4, we drop the assumption of permanent immunity and allow for re-infection of the
same individual. We note that there are multiple options for describing partial protection but that,
whichever of these we choose, the force of infection is determined by a scalar renewal equation
(the difference is in the kernel). We briefly discuss the existence and uniqueness of an endemic
state, but essentially leave this as an open problem (for ourselves), and we do not even start to
discuss the question of local stability. Our plan is to investigate these issues in the near future.
Moreover, we would like to incorporate vaccination schedules and multiple strains (perhaps in
Adaptive Dynamics spirit) in order to study how (and on what time scale) vaccination may lead
to strain replacement in populations with realistic demographic structure.

In the appendix, we show how the SIS1 compartmental model fits into the framework described
in this paper.
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2. An epidemic in a closed population

We denote

F(t) := force of infection at time t

S(t) := density (number per unit area) of susceptibles at time t

and recall that the force of infection is, by definition, the probability per unit of time that a sus-
ceptible becomes infected. So, if numbers are large enough to warrant a deterministic description,
we have

incidence = F(t)S(t),

where ‘incidence’ is defined as the number of new cases per unit of time and area. In a demo-
graphically closed population, the variable S only changes due to the transmission of infection,
that is,

Ṡ(t) = −incidence,

if, as indeed we assume, the infection leads to permanent immunity. As the key modelling
ingredient, we now introduce

A(τ ) := expected contribution to the force of infection by an individual that was itself infected

τ units of time ago.

The constitutive equation

F(t) =
∫ ∞

0
F(t − τ)S(t − τ)A(τ ) dτ (1)

now tells us how the current force of infection depends on past incidence. By integrating

Ṡ(t) = −F(t)S(t),

we obtain

S(t) = S(−∞) e− ∫ t
−∞ F(σ ) dσ , (2)

and if we substitute Equation (2) into Equation (1), we obtain a nonlinear scalar renewal equation
for the unknown F.

Quite in general, a delay equation is a rule for extending a function of time towards the future
on the basis of the (assumed to be) known past. Such equations lead to dynamical systems by
considering the shift along the extended function, see [15,16]. The renewal equation (1), with (2)
substituted, fits into this framework!

But before we rederive the main conclusion of the Kermack–McKendrick 1927 paper from
Equation (1), let us briefly discuss how one would choose the function A of time-since-infection τ .

First of all, we emphasize that familiar compartmental epidemic models are included in the
present framework:

A(τ ) = βe−ατ ⇔ SIR

A(τ ) = β
γ

γ − α
(e−ατ − e−γ τ ) ⇔ SEIR

(we leave it to our readers to elaborate the ⇔; the general idea that delay equations with kernels
defined in terms of matrix exponentials correspond to systems of ODEs is called ‘Linear Chain
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106 D. Breda et al.

t

A(t)

Figure 1. A typical infectivity function A(τ ).

Trickery’, see e.g. [41]). So, certain parameterized families of A correspond to well-known ODE
models and the parameters can thus be interpreted as the mean duration of the infectious period,
etc. Quite generally, A has two components:

• contact intensity
• infectiousness (i.e. probability of transmission, given a contact with a susceptible).

Detailed medical information may yield an idea of relative infectiousness as a function of τ . The
specification of one scalar factor is then needed to turn this into a graphical specification of A
(Figure 1). As we will see below, some indicators of ‘severity’ (in particular, R0 and the final size)
depend only on the integral of A and not on the form of the graph of A.

In order to be mathematically precise, we assume

A(τ ) ≥ 0

A : [0, ∞) −→ [0, ∞) is integrable .

Our aim is now to derive a general conclusion from Equations (1) and (2). To do so, we introduce
the cumulative force of infection

y(t) :=
∫ t

−∞
F(σ ) dσ . (3)

By integrating Equation (1) from −∞ to t, interchanging the order of the integrals and using

F(t − τ)S(t − τ) = −Ṡ(t − τ)

and then Equation (2), we obtain the scalar nonlinear renewal equation

y(t) =
∫ ∞

0
(1 − e−y(t−τ))S(−∞)A(τ ) dτ (4)

(note, incidentally, that Equation (4) is of convolution type, whereas Equation (1), with
Equation (2) inserted, is not). Since F ≥ 0, we know that y should be an increasing function
of t and with a little bit of effort one can check that the rule for extension (4) does indeed preserve
this property; that is, if y is increasing on (−∞, 0), then y is increasing on (0, +∞) [11]. Moreover,
since 1 − e−y ≤ 1 for y ≥ 0 and A is integrable, y is bounded. So, the limit y(∞) = limt→∞ y(t)
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Journal of Biological Dynamics 107

exists. Using again the integrability of A, one shows that y(∞) has to satisfy the equation

y(∞) = R0(1 − e−y(∞)), (5)

where

R0 := S(−∞)

∫ ∞

0
A(τ ) dτ (6)

can be interpreted as the expected number of secondary cases caused by a primary case intro-
duced in a population with susceptible density S(−∞) or, in the standard jargon, R0 is the basic
reproduction ratio.

Using elementary properties of the function y �→ 1 − e−y and simple graphical arguments, one
proves that Equation (5) has a unique strictly positive solution if R0 > 1 and no strictly positive
solution if R0 ≤ 1. In order to translate this information into the Kermack–McKendrick threshold
theorem, we first observe that Equation (2) implies

1 − S(∞)

S(−∞)
= 1 − e−y(∞) = 1

R0
y(∞), (7)

where the left-hand side represents the final size of the epidemic, that is, the fraction of the
population that is infected, sooner or later, during an outbreak. (See Chapters 18–20 in [51] for an
encompassing discussion of the final size equation. And see Appendix B in [47] as well as [2,7]
for multi-type generalizations.) Thus, we are led to conclude that

(i) when R0 > 1, introduction of the infective agent leads to an outbreak with the final size given
by Equation (7), where y(∞) is the strictly positive solution of Equation (5)

(ii) when R0 ≤ 1, introduction of the infective agent leads to an outbreak with the final size close
to zero.

But several comments are essential for both the derivation of this conclusion and its interpretation:
Concerning (i): this is the deterministic formulation that takes as a starting point that a small but

positive fraction of the large population is infected. When we start with a small number of infected
individuals, we should describe the initial stages by a branching process. The condition R0 > 1
then amounts to the branching process being supercritical. As a branching process may go extinct,
even when supercritical, we may get a minor outbreak. Equation (7) describes the expected size
of a major outbreak. See, for instance, the textbook of Diekmann and Heesterbeek [13].

Concerning (ii): for R0 ≤ 1, the relevant solution of Equation (7) is zero, so where does the
‘close to zero’ come from? In deriving Equation (5), we assumed that y satisfied Equation (4) for
all t ∈ (−∞, ∞). When providing an initial condition that captures the introduction of a small
number of infectives, we essentially replace Equation (4) by

y(t) =
∫ t

0
(1 − e−y(t−τ))S(−∞)A(τ ) dτ + f (t), (8)

where f (t) is a given function. Thus, we obtain

y(∞) = R0(1 − e−y(∞)) + f (∞), (9)

and conclusion (ii) should be read as follows:

(ii′) when R0 ≤ 1, the positive solution y(∞) of Equation (9) converges to zero when f (∞) ↓ 0.

See Exercise 1.12.iv in [13] or [51] for details.
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108 D. Breda et al.

If transmission occurs on a time scale which is fast relative to the time scale of demographic
changes (birth, death and migration), we may conceive the host population as static during the
outbreak. If, moreover, infection confers permanent immunity, the fraction of the population that
is susceptible necessarily decreases monotonically and the concept of ‘final size’ makes sense. In
this section, we have shown that the expected final size can be characterized in terms of the scalar
equation (5) involving only one parameter, the basic reproduction number R0. In turn, R0 is defined
by Equation (6), that is, as the product of the original density of susceptibles and the expected total
contribution to the force of infection of one newly infected individual. Equation (5) was derived
from a nonlinear scalar renewal equation. The entire content of this section is presented in the
1927 paper of Kermack–McKendrick! The only thing we have done is to rewrite the derivation
in such a way that the transition to the next sections, dealing with demographic turnover and with
waning immunity, is as smooth as possible.

3. The endemic balance

Even if individuals remain immune for the rest of their life after an infection, new susceptibles
arise as a result of reproduction. In this section, we consider the situation where, at the population
level, there is a constant birth rate B. So from the point of view of the infectious agent, there is a
constant inflow at rate B of ‘resource’.

Individuals come and go: we now also need to specify how long would newborn individuals
live. We do so in terms of the probability F(a) that an individual stays alive for at least a units of
time (see [20] for a very early use of this description in terms of F in the context of an epidemic
model). In particular, we assume that this survival probability does not depend on whether or
not the individual becomes infected (so we investigate the influence of demographic turnover on
disease transmission and not the influence of a deadly infectious disease such as HIV on population
dynamics). We would like to keep F general and not restrict to the special family F(a) = e−μa

with μ > 0, simply since in modern developed countries the observed F is hugely different from
exponential. Note that we have introduced two more model ingredients (on top of A(τ )), viz., B
and F(a). We assume that F(0) = 1, that F is monotonically non-increasing and that F → 0
exponentially for a → ∞. We consider B > 0.

If no infectious disease is circulating, we observe the stable age distribution

S(t, a) = BF(a),

where S is now the number of susceptibles per unit of area and age. If we assume that ‘age’ has
no impact on susceptibility or on the force of infection that an individual experiences, we obtain

S(t, a) = BF(a) e− ∫ a
0 F(t−a+σ) dσ (10)

when F(t) is the prevailing force of infection at time t (indeed, an individual that has age a at time
t experienced a force of infection F(t − a + σ) at age σ ). If we substitute Equation (10) into

incidence = F(t)
∫ ∞

0
S(t, a) da,

we, exactly as before, express the incidence in terms of past values of the force of infection.
Instead of the constitutive equation (1), we now postulate

F(t) =
∫ ∞

0
F(t − τ)

∫ ∞

0
S(t − τ , a)

F(a + τ)

F(a)
daA(τ ) dτ (11)

since we interpret A as an expected contribution given survival, and so the true expected
contribution has the conditional survival probability F(a + τ)/F(a) as an extra factor.
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If we substitute Equation (10) into Equation (11), we arrive at a nonlinear scalar renewal
equation for the unknown F.Apart from the disease-free state F(t) ≡ 0, there might be an endemic
steady state. To find it, we need to solve

1 = B
∫ ∞

0

∫ ∞

0
e−FaF(a + τ) daA(τ ) dτ . (12)

The right-hand side is a monotonically decreasing function of F, converging to zero for F → ∞.
So, if we assume that the value at F = 0, which we denote by R0 (since it is indeed the expected
number of secondary cases caused by a primary case introduced in a susceptible population with
age distribution BF(a)), exceeds one, there exists exactly one steady endemic force of infection.
And if R0 < 1, no such steady endemic force of infection exists.

The Principle of Exchange of Stability [37] guarantees that the endemic steady state is stable
for R0 slightly greater than one. To ascertain the local stability for larger values of R0, we linearize
(11)–(10) and look for solutions of the form eλt for the linearized equation

u(t) = B
∫ ∞

0
u(t − τ)

∫ ∞

0
e−FaF(a + τ) daA(τ ) dτ

− BF
∫ ∞

0

∫ ∞

0
e−FaF(a + τ)

∫ a

0
u(t − τ − a + σ) dσ daA(τ ) dτ .

This leads to the characteristic equation

1 = B
∫ ∞

0

∫ ∞

0
e−FaF(a + τ)

(
1 − F

λ
(1 − e−aλ)

)
e−λτ daA(τ ) dτ , (13)

with F being the unique positive solution of Equation (12) for R0 > 1. It is an open problem to
determine whether or not Equation (13) has solutions with Re(λ) > 0 for general F . Remarkably,
we can show that when F(a) = e−μa, all roots satisfy Re(λ) < 0 (for any non-negative and
integrable function A!).

Notation: Ā is the Laplace transform of A, that is, Ā(z) := ∫ ∞
0 A(τ ) e−zτ dτ .

Theorem 3.1 Assume that F(a) = e−μa with μ > 0 and that R0 > 1 where

R0 = B

μ
Ā(μ).

The solution

F = BĀ(μ) − μ (14)

of (12) is locally asymptotically stable as a steady state of (11)–(10).

Proof By the theory developed in [12,16], it suffices to show that all roots of Equation (13)
have a negative real part. A straightforward computation, using also Equation (14), shows that
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110 D. Breda et al.

Equation (13) takes the form

1 = λ + μ

λ + BĀ(μ)

Ā(λ + μ)

Ā(μ)
(15)

when F(a) = e−μa. Since (recall that A(τ ) ≥ 0!)
|Ā(λ + μ)| ≤ Ā(Re(λ) + μ)

and for Re(λ) ≥ 0

Ā(Re(λ) + μ) ≤ Ā(μ),

the absolute value of the second factor on the right-hand side is bounded above by one. Since
R0 > 1, we have

BĀ(μ) + Re(λ) > μ + Re(λ) > 0

for Re(λ) ≥ 0 and hence

∣∣∣∣ λ + μ

λ + BĀ(μ)

∣∣∣∣ =
√

(μ + Re(λ))2 + (Im(λ))2√
(BĀ(μ) + Re(λ))2 + (Im(λ))2

< 1.

So for Re(λ) ≥ 0, the right-hand side of Equation (15) is in absolute value less than one and
consequently (15) cannot hold for such λ. �

Remark The proof given above is a much simplified version of the elaboration of [13, Exer-
cise 3.10]. See [52, Theorem 5] for a different proof and various generalizations. Global stability
has been shown in [42] and a text-book version of that proof can be found in [49, Section 9.9].

In this section, we have shown that when demographic turnover is described by a constant
population birth rate and a general survival function, we can still capture the infectious disease
dynamics by a scalar renewal equation for the force of infection. This equation has a positive
steady state if and only if R0 > 1 and there is at most one such steady state. For the special case
of a constant per capita death rate, we can find that this steady state is locally asymptotically
stable. Whether or not it is for general survival is an open problem. But note that Andreasen [1],
Magal and Ruan [43] and Thieme [50] found that instability is certainly possible if we allow the
susceptibility or the infectiousness of an individual to depend on its age.

4. Waning immunity

When immunity reduces susceptibility, but has no impact on infectiousness once the infection
occurs, we can stick to the already introduced A(τ ) to describe the expected contribution to the
force of infection at time τ after infection, given survival.

There are at least two ways to describe temporary partial immunity. One may assume that
all individuals, at time τ after the last infection took place, have their susceptibility reduced by
a factor Q(τ ), meaning that the probability of getting infected upon contact with an infectious
individual is Q(τ ) times what it is for a fully susceptible individual (so Q(τ ) = 0 corresponds to
full protection and Q(τ ) = 1 to full susceptibility). Another possibility is to allow only for full
protection or full susceptibility and to describe the probability that at time τ after the last infection
an individual is fully susceptible again by P(τ ). Note that SIS and SIRS compartment models
(see Appendix) are of this type. Note that Inaba [28–30] followed Kermack and McKendrick
[32,33,35,36] in assuming that a new clock starts when an event transforms an infected individual
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Journal of Biological Dynamics 111

into a recovered individual and that the reduction in susceptibility is a function of the time shown
by the second clock (see [54] for a similar approach; also see [18,43,46,53]). Also note that one
can, of course, introduce a compartment of intermediate protection (see e.g. [39] and [48] and
the references given there) and thus obtain a description that combines features of both gradual
return of susceptibility and variability in the length of the time window of protection. One might
also assume that susceptibility does not simply depend on the time since last infection, but also
depends on the history of previous infections [39].

Note that we have to make sure that an infected individual that contributes to the positivity of
P(τ ) should not contribute to the positivity of A(σ ) for σ ≥ τ , as otherwise the possibility of
re-infection does have an influence on expected infectiousness (for compartmental models of SIS
and SIRS type, etc., this is indeed guaranteed). When we work with Q, the safest assumption is
to require that Q(τ ) = 0 for τ ∈ supp(A). In any case, we can assume that Equation (11), which
we repeat here as

F(t) =
∫ ∞

0
F(t − τ)

∫ ∞

0
S(t − τ , a)

F(a + τ)

F(a)
daA(τ ) dτ , (16)

remains valid, interpreting (in case of reduced susceptibility) S(t, a) in terms of susceptible equiv-
alents, in the sense that one individual with reduced susceptibility Q(τ ) is counted as Q(τ )

susceptibles. But we have to change expression (10) for the number of susceptibles per unit of
area and age, in order to account for regained susceptibility (long) after infection.

Another important observation is that, implicitly, P and Q refer to an individual while condi-
tioning that this individual is not yet re-infected. The possibility of re-infection leads, in the case
of partial susceptibility, to the conclusion that of the individuals that become infected at time
t − τ , a fraction

e− ∫ τ

0 Q(σ )F(t−τ+σ) dσ

will not have been re-infected before time t. If we work in the P-framework and consider again
an individual infected at time t − τ , the probability that it is susceptible at time t is given by the
Stieltjes integral: ∫ τ

0
e− ∫ τ−σ

0 F(t−τ+σ+η) dηP(dσ)

(indeed, if the individual regains full susceptibility at time σ after infection, it has to escape
from re-infection on a time interval of length τ − σ beginning at t − τ + σ ). These observations
motivate us to define

G(τ , Ft) := either Q(τ ) e− ∫ τ

0 Q(σ )F(t−τ+σ) dσ

or
∫ τ

0 e− ∫ τ−σ

0 F(t−τ+σ+η) dηP(dσ)
(17)

in order to capture Q-models and P-models in one uniform notation. Here, we use the notational
convention

Ft(σ ) := F(t + σ), σ ≤ 0 (18)

of the theory of delay equations [15,21].
We are now ready to replace expression (10) by the equation

S(t, a) = BF(a) e− ∫ a
0 F(t−a+σ) dσ +

∫ a

0
F(t − τ)S(t − τ , a − τ)

F(a)

F(a − τ)
G(τ , Ft) dτ . (19)

Thus, the model is described by the two equations (16) and (19) for the two unknowns F(t)
and S(t, a) and it has as its ingredients B, F(a), A(τ ) and either Q(τ ) or P(τ ). For a given F,
Equation (19) is linear in S, so solving Equation (19) is in principle straightforward, and upon
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substitution of the result into Equation (16), we end up with a scalar nonlinear renewal equation
for F. In fact, one can solve Equation (19) by successive approximation, which amounts to
generation expansion: the term BF(a) e− ∫ a

0 F(t−a+σ) dσ corresponds to individuals that have never
been infected and the next term

BF(a)

∫ a

0
F(t − τ) e− ∫ a−τ

0 F(t−a+σ) dσG(τ , Ft) dτ

to individuals that have been infected once, etc. Whenever the support of Q or P is bounded
away from zero (meaning that the time window between two successive infections has a strictly
positive minimal length), there are, at any given finite age, only finitely many non-zero terms
in the generation expansion. So, if in addition F(a) = 0 for any a ≥ amax, we find in this way
an exact representation of the solution of Equation (19) as a finite sum of explicit expressions
involving the history of F. We conclude that the dynamics of an epidemic model that incorporates
a general survival function F(a) and various quite general forms of waning immunity is still fully
described by a scalar nonlinear renewal equation!

If we define q(t, a) by the relation

S(t, a) = BF(a)q(t, a), (20)

then q describes the relative susceptibility (Q-version) or the probability to be susceptible
(P-version) of an individual of age a at time t, given survival. Upon substitution of this relation
into Equation (19), we find for q the equation

q(t, a) = e− ∫ a
0 F(t−a+σ) dσ +

∫ a

0
F(t − τ)q(t − τ , a − τ)G(τ , Ft) dτ , (21)

while substitution into Equation (16) leads to

F(t) = B
∫ ∞

0
F(t − τ)

∫ ∞

0
q(t − τ , a)F(a + τ) daA(τ ) dτ . (22)

Clearly, F(t) ≡ 0, q(t, a) ≡ 1 corresponds to the disease-free steady state. An endemic steady
state is characterized by

q(a) = e−Fa + F
∫ a

0
q(a − τ)G(τ , F) dτ , (23)

1 = B
∫ ∞

0

∫ ∞

0
q(a)F(a + τ) daA(τ ) dτ . (24)

The right-hand side of Equation (24) for q(a) ≡ 1 is again equal to R0, just as it was in the
preceding section (the possibility of re-infection has no impact on R0 for the simple reason that
when infection is very rare, it can be excluded that the same individual is infected again). If, as
before, we solve the linear equation (23) by generation expansion and substitute the result into
Equation (24), we obtain the scalar equation from which we have to determine the unknown
F > 0.
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In the special case that F(a) = e−μa, Equation (24) reduces to

1 = BĀ(μ)q̄(μ). (25)

Equation (23) is a linear renewal equation, so it can be solved by Laplace transformation, leading to

q̄(μ) = 1

1 − FḠ(μ, F)

1

μ + F
. (26)

In the P-version, we have

Ḡ(μ, F) = 1

μ + F
P̄(μ), (27)

where P̄(μ) is the Laplace–Stieltjes transform of P:

P̄(μ) :=
∫ ∞

0
e−μτ P(dτ). (28)

So for the P-version, we find

q̄(μ) = 1

μ + F(1 − P̄(μ))
, (29)

and since P̄(μ) < 1, the right-hand side is a decreasing function of F. Accordingly, Equation (25)
has a unique positive solution whenever R0 > 1 and no such solution when R0 ≤ 1. We conjecture
that the same is true for the Q-version, but so far we did not manage to prove this.We also conjecture
that this conclusion holds for general F(a). In order to show this, we might rewrite the factor

∫ ∞

0
q(a)F(a + τ) da

in Equation (24) by integration by parts as

−
∫ ∞

0

∫ a

0
q(α) dαF ′(a + τ) da,

(where, for convenience, we have assumed that F is differentiable; since F is anyhow mono-
tone decreasing, the general case can be dealt with by using a Stieltjes integral). Now, note that∫ a

0 q(α) dα is the expected time that an individual that survived till age a spent being suscepti-
ble (weighed in the appropriate manner when we work with the Q-version). So, it seems very
reasonable to conjecture that

d

dF

∫ a

0
q(α) dα < 0

(note that q itself may depend in a more complicated way on F, as an increase in F leads first
to a decrease of the expected age of the first infection but next to an increase of return to the
susceptible class at an early age). It remains to study in detail how the solution of the renewal
equation (23) depends on the parameter F.

5. Concluding remarks

Often when epidemic models are formulated as delay equations, the aim is to derive conditions
for the (in)stability of the endemic steady state and to find out, by way of the Hopf bifurcation
theorem, when one should expect to find persistent oscillations [5,6,10,14,22–26,29,43,55,56].
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The trigger for the approach sketched in the present paper is somewhat different: our ultimate
goal is to find conditions for strain replacement as a result of mass vaccination [17,19,27,38,44].
In this context, the need arises to incorporate

(i) a realistic form of demographic turnover,
(ii) the waning of immunity and

(iii) cross-immunity.

The above text describes our approach for dealing with issues (i) and (ii). We realise that dealing
in an effective yet meaningful way with issue (iii) presents a major challenge. Since Simon Levin
has considerable expertise in this matter [3,8,9,40], his extremely valuable advice on this matter
will be highly appreciated.

Note

1. S = susceptible, I = infectious, R = removed and E = exposed.
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Appendix

Here, we show how the familiar SIS compartmental model described by the ODE system

dS

dt
= B − μS − βIS + αI

dI

dt
= −μI + βIS − αI

(A1)

fits into the framework described in this paper. Hopefully, our presentation is such that the reader is convinced that also
models with additional exposed and/or removed compartments, such as the SEIRS model described by

dS

dt
= B − μS − βIS + δR

dE

dt
= −μE + βIS − γ E

dI

dt
= −μI + γ E − αI

dR

dt
= −μR + αI − δR,

(A2)

are covered by our approach.
For a given function F = F(t), let Mi(t; s), i = 1, 2, be defined by

dM1

dt
(t; s) = −F(t)M1(t; s) + αM2(t; s), M1(s; s) = 1,

dM2

dt
(t; s) = F(t)M1(t; s) − αM2(t; s), M2(s; s) = 0.

(A3)

So, (M1, M2)
T is the first column of the fundamental matrix solution of the linear ODE system generated by the matrix(−F(t) α

F(t) −α

)
,

and if we define (
S
I

)
(t) =

∫ t

−∞
Be−μ(t−s)M(t; s) ds, (A4)

it follows that

dS

dt
(t) = B − μS(t) − F(t)S(t) + αI(t),

dI

dt
(t) = −μI(t) + F(t)S(t) − αI(t).

(A5)

Our task is to relate Equation (22) to the equation

F(t) = βI(t) (A6)

that allows us to identify (A5) and (A1). But in order to do so, we need to uncover first the relation between Equation (21)
and the definition of M.
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By using for each of the two equations of (A3) the variation-of-constants formula, we obtain

M1(t; s) = e− ∫ t
s F(σ ) dσ + α

∫ t

s
e− ∫ t

σ F(η) dηM2(σ ; s) dσ

M2(t; s) =
∫ t

s
e−α(t−σ)F(σ )M1(σ ; s) dσ ,

and upon substitution of the second of these into the first, we obtain

M1(t; s) = e− ∫ t
s F(σ ) dσ + α

∫ t

s
e− ∫ t

σ F(η) dη

∫ σ

s
e−α(σ−θ)F(θ)M1(θ ; s) dθ dσ

= e− ∫ t
s F(σ ) dσ +

∫ t

s

∫ t

θ

e− ∫ t
σ F(η) dηαe−α(σ−θ)F(θ)M1(θ ; s) dσ dθ

= e− ∫ t
s F(σ ) dσ +

∫ t−s

0
F(t − τ)M1(t − τ ; s)

∫ τ

0
e− ∫ t

t−τ−σ F(η) dηαe−ασ dσ dτ .

If we now put M1(t; s) = q(t, t − s) and s = t − a, we recover exactly Equation (21) for the special case that
P(τ ) = 1 − e−ατ (and hence P(dσ) = αe−ασ dσ ).

From Equation (A4), we have

I(t) = B
∫ ∞

0
e−μaM2(t; t − a) da,

and from the variation-of-constants formula, we have

M2(t; t − a) =
∫ t

t−a
e−α(t−σ)F(σ )M1(σ ; t − a) dσ =

∫ a

0
e−α(a−η)F(t − a + η)M1(t − a + η; t − a) dη.

If we insert the second of these into the first and write again M1(t; s) = q(t, t − s), we find upon changing the order of
integration

I(t) = B
∫ ∞

0

∫ ∞

η

e−μa−α(a−η)F(t − a + η)q(t − a + η, η) da dη

= B
∫ ∞

0

∫ ∞

0
e−μ(θ+η)−αθ F(t − θ)q(t − θ , η) dθ dη

= B
∫ ∞

0
F(t − θ)

∫ ∞

0
q(t − θ , η) e−μη dηe−(μ+α)θ dθ .

If we now multiply both sides by β and insert A(τ ) = βe−ατ and F (a) = e−μa into Equation (22), we find that the
right-hand side of Equation (22) coincides with the right-hand side of the identity for βI(t). In other words, starting from
Equation (A1), we have derived Equation (22) for F(t) defined by F(t) = βI(t), in the special case that A(τ ) = βe−ατ and

F (a) = e−μa and with q defined by Equation (21) in the special case that G(τ , Ft) = ∫ τ

0 e− ∫ τ−σ
0 F(t−τ+σ+η) dηαe−ασ dσ .
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