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In order to maximize the information that a linearized stability analysis provides, one should work with
two free parameters rather than one. Moreover, it is recommended to first consider coefficients in the
characteristic equation as parameters and in a second step (try to) invert the map that defines the coefficients
in terms of the parameters as they occur in the original equation. Our aim is to substantiate these claims
by way of a delay equation example taken from the literature.

Keywords: stability boundary; Hopf bifurcation; long periods; two parameters

AMS Subject Classification: 34K18; 34K20; 34K60; 92C99

1. Introduction

A delay equation is a rule for extending a function of time towards the future on the basis of
the (assumed to be) known past. For differential delay equations the rule specifies the derivative
at the current time point [13,17,19,28], whilst for renewal equations the rule specifies the value
of the function itself in the current time point [3,11,14,20]. Many physiologically structured
population models lead to systems of equations that have differential delay as well as renewal
components [15].

The literature on delay equations is overrun with papers in which a one-parameter Hopf
bifurcation analysis is presented for differential equations with discrete delay like

ẋ(t) = f (x(t), x(t − τ)).

And indeed, the Hopf bifurcation theorem itself is usually and conveniently formulated in a one-
parameter setting, see, for example, [13, Theorem X.2.7]. The aim of this short note is to advocate
the use of two parameters rather than one in the following way: first one finds the boundary of
the stable region in parameter space characterized by a root of the characteristic equation lying
exactly on the imaginary axis (more precisely, a pair of complex conjugate roots). Next, one can
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2 O. Diekmann and K. Korvasová

apply the Hopf bifurcation theorem to whatever one-dimensional path in the two-parameter plane
one is interested in, provided the path intersects the stability boundary transversally.

Our plea, like the one in [4], applies to dynamical systems in general, not just to delay equations.
But the approach is somehow more powerful if we deal with a scalar equation (see, e.g. [27] for
a similar observation). And first order scalar delay equations can exhibit oscillations whereas
first order scalar ordinary differential equations cannot. Likewise the approach is, as a rule, more
powerful in case of point delays than when delay is distributed, see the text around Equation (21).

The characteristic equation is one complex equation, so two real equations if we look for roots
λ = iω on the imaginary axis. So if we have a k-dimensional parameter, the equation defines
generically a (k + 1 − 2)-dimensional manifold in (parameter, frequency)-space. When k > 2
we cannot possibly parametrize this manifold by just ω, but if k = 2 we may indeed attempt to
use ω to parametrize a curve in the two-dimensional parameter space. For instance, whenever
the parameters occur linearly in the equation one can indeed solve for the parameters in terms
of the frequency ω. Also note that this yields not just a convenient parametrization but that it
does in fact provide very useful information, as the period of the bifurcating periodic solutions is
close to 2π/ω. And there is an additional bonus: human beings are particularly good at absorbing
two-dimensional visual information!

The coefficients in the characteristic equation are often composite parameters, in the sense that
they may relate in complicated, and sometimes implicit, ways to the parameters in the original
delay equation. It then makes sense to follow a two-step procedure:

Step 1: Characterize the stability boundary in coefficient-space.
Step 2: Try to invert the map from original parameters to coefficients.

The second step is often cumbersome, as there may easily be more parameters than coefficients
and hence the inverse is, in general, multi-valued.

In [13, Chapter XI] several examples of this approach are presented. We refer to [29] for general
results on characteristic equations. In [10] a numerical variant of our approach is presented. See
[2] for a quite different numerical approach and a very nice tool. In [16] the importance of the
second step is illustrated by way of an example (showing that a wrong conclusion can arise if
one neglects this step). Finally, we note that some time ago Jim Cushing in a sequence of papers
[5–9] proved a series of theoretical results showing that one can actually find periodic solutions
of the nonlinear problem of fixed period by exploiting the availability of two parameters. Thus the
two-parameter plane becomes locally foliated by level curves of the period. Now that numerical
bifurcation analysis is becoming more and more powerful, it seems feasible to develop a tool that
yields a picture of this foliation.

We aim to substantiate the above general considerations in the next sections by elaborating a
well-known example: population dynamics with delayed negative feedback. Here we are moti-
vated by the quest for long period oscillations in the inspiring paper [26] about a model for
hematopoietic stem cells. Section 2 deals with Step 1. In essence, we just note that the informa-
tion we are after is already available in the literature. Section 3 is concerned with a special and
rather qualitative variant of Step 2: since we are interested in long periods we want small frequen-
cies, and so we investigate the inverse image of the point on the stability boundary corresponding
to ω = 0, i.e. we aim to characterize the conditions on the original parameters such that one may
expect periodic solutions with long periods. In other words, we perform a systematic search for
regions in parameter space where one can expect to see long period oscillations (either damped
or sustained). We obtain a diagram showing a transcritical bifurcation curve corresponding to the
nontrivial steady state becoming positive, and hence biologically meaningful, as well as a Hopf
bifurcation curve at which the nontrivial steady state loses stability and a periodic solution arises.
The intersection of these curves is a so-called Takens-Bogdanov singularity.
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Journal of Biological Dynamics 3

2. The prototype of delayed negative feedback

In this paper we first of all follow Pujo-Menjouet et al. [26] and consider the delay differential
equation

dN

dt
(t) = −δN(t) − β(N(t))N(t) + 2 e−γ τ β(N(t − τ))N(t − τ), (1)

for the concentration N of blood production stem cells in the resting phase. Here δ is the rate at
which stem cells differentiate into precursor cells of the various types of mature blood cells. At a
rate β, which depends smoothly on the prevailing concentration N(t), stem cells enter a prolifera-
tion phase of duration τ . As during this phase apoptosis occurs at rate γ , only a fraction exp(−γ τ)

of the cells that start the proliferation phase reaches its end. At the end of the proliferation phase
the cell divides into two daughter cells, which enter the resting phase.

We assume that feedback is negative: β is a decreasing function of N . It is well-known that the
combination of negative feedback and delay can lead to destabilization of a steady state and to
oscillations. Often, and also here, this is shown by a Hopf bifurcation analysis.

In Pujo-Menjouet et al. [26], they raise the question: how do short cell cycles give rise to long
period oscillations? The aim of the present short note is to show that some of their answers can be
obtained rather easily and efficiently by performing a two-parameter analysis of the characteristic
equation

λ = α1 + α2 e−λ, (2)

corresponding to the linearization of Equation (1) around its nontrivial steady state (explicit
formulas for α1 and α2 are given in the next section). In fact Equation (2) is well-understood, see
[13, Chapter XI] for a textbook treatment.And the understanding can be conveniently summarized
in the form of the diagram of Figure 1, showing how the (α1, α2)-plane is partitioned into regions
according to how many roots of Equation (2) lie in the right half-plane.

The stability region is characterized by no root at all lying in the right half-plane. Its boundary
has two parts:

• The line α1 + α2 = 0 with α1 ≤ 1 (λ = 0 is a root of Equation (2)).
• The curve

α1 = ω cos ω

sin ω
and α2 = − ω

sin ω
(3)

for 0 < ω < π , corresponding to λ = iω being a root of Equation (2).

The line and the curve intersect at (α1, α2) = (1, −1) for which λ = 0 is a double root of
Equation (2).

A fortunate feature is that the curve is parametrized by the frequency ω of the oscillations of
the linearized system at the critical parameter combination. The theory of the Hopf bifurcation,
see [13, Chapter X], guarantees that oscillations of the nonlinear system for nearby parameter
values have roughly the same frequency. So if we are interested in long periods, we should focus
on the curve (3) for small values of ω. For instance, if we consider the part of the curve with
α1 ≥ 0, we consider 0 ≤ ω ≤ π/2, so periods between 4 and ∞. The nearer we get to (1, −1), the
longer the period will be. This point itself is a co-dimension two bifurcation point called ‘double
zero eigenvalue’ or Takens-Bogdanov singularity. The unfolding under natural non-degeneracy
conditions can be found in [21, Section 8.4]. Also see [13, Section IX.10].

But what is the unit of time that we use when we derive Equation (2)? And how do the
stylized parameters α1 and α2 relate to the parameters occurring in Equation (1)? How do we
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4 O. Diekmann and K. Korvasová
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Figure 1. Bifurcation diagram in the (α1, α2)-plane showing a transcritical bifurcation curve (red) and Hopf bifurcation
curves (blue) for kπ < ω < (k + 1)π with k = 0, 1, 2. The numbers of eigenvalues in the right half of the complex plane
are indicated in the boxes. Each number (box) corresponds to a region bounded by the bifurcation curves.

translate the information contained in Figure 1 and Equation (3) into information about solutions
of Equation (1)?

We shall answer these questions in the next section. But before doing so, we draw attention to
the fact that exactly the same Equation (2) governs the stability character of a nontrivial steady
state of equations corresponding to quite different population dynamical settings. Indeed, the data
from the famous blowfly experiments of [23,24] are, as far as known today [18], best reproduced
by solutions of the delay differential equation

dN

dt
(t) = R(N(t − TD)) − δN(t), (4)

where N is the size of the subpopulation of adults (= reproducing individuals), TD corresponds
to the maturation delay, R to reproduction and δ is a per capita adult death rate (note that juvenile
survival has to be incorporated in R). In his experiments Nicholson provided limited amount
of proteins, an essential ingredient for egg production by adult females. Scramble competition
then leads to egg production that is proportional to N for small N , but goes to zero for large N .
A convenient function to describe such overcompensation is

R(N) = PN exp

(−N

N0

)
, (5)

where P is the maximal per capita egg production rate, corrected for mortality during the juvenile
period, and N0 is a scale parameter for the population level as determined by density dependence.
For fish populations one can use the same equation, but interpret the negative density dependence
as resulting from ‘egg’ cannibalism [12] (this is reminiscent of the discrete time Ricker equation;
see Section VI.3 of http://webarchive.iiasa.ac.at/Research/EEP/Metz2Book.html for a renewal
equation variant).
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3. Parameter maps

The main aim of this section is to derive the relationship between, on the one hand, α1, α2 appearing
in Equation (2) and, on the other hand, the parameters δ, γ , τ and the function β appearing in
Equation (1).

By introducing

tnew = told

τold
,

we achieve that we can take τnew = 1 and

γnew = γoldτold,

δnew = δoldτold,

βnew(N) = βold(N)τold.

The upshot is that Equation (1) now reads

dN

dt
(t) = −δN(t) − β(N(t))N(t) + 2 e−γ β(N(t − 1))N(t − 1), (6)

with δ, γ and β(N) dimensionless.
We now deduce Equation (2) from Equation (6). Of course we do so in order to go in a next

step in the other direction, i.e. from Equation (2) to Equation (6).
The conditions

2 e−γ > 1 (7)

and

β(0) >
δ

2 e−γ − 1
(8)

guarantee that the zero steady state of Equation (6) is unstable and also that Equation (6) has,
provided δ > 0 and β decreases to a low enough level for large N , a strictly positive steady state
N̄ characterized by the equation

β(N̄) = δ

2 e−γ − 1
. (9)

From Equation (9) we conclude that Equations (7) and (8) are also necessary conditions for the
existence of a strictly positive steady state.

We now substitute N(t) = N̄ + x(t) into Equation (6), Taylor expands β(N)N for small x and
ignores higher order terms. This leads to the linearized equation

dx

dt
(t) = α1x(t) + α2x(t − 1) (10)

with

α1 = −δ − β̄,

α2 = 2 e−γ β̄,
(11)

with

β̄ = β(N̄) + β ′(N̄)N̄ . (12)
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6 O. Diekmann and K. Korvasová

Equation (10) admits a solution of the form x(t) = C eλt if and only if λ satisfies Equation (2).
General theory (see, e.g. [13, Corollary VII.5.12]) then guarantees that N̄ is stable if all
roots of Equation (2) have negative real part and unstable if at least one root has positive
real part.

Is it possible to have (α1, α2) = (1, −1) when α1 and α2 are given by Equation (11)? This would
require β̄ = −δ − 1 and −1 = 2 e−γ β̄ = −2 e−γ − 2 e−γ δ and hence 2 e−γ = 1 − 2 e−γ δ < 1,
which violates Equation (7). So this is not possible when 2 e−γ > 1. But this very same calculation
also shows that we can come arbitrarily close by letting δ ↓ 0 and 2 e−γ ↓ 1 whilst making sure
that β̄ → −1. Or, in other words, a necessary condition for obtaining a Hopf bifurcation of a
periodic solution with very long period is that the rate at which stem cells differentiate is very
small (when we use the length of the proliferation phase as unit of time) and that the fraction
of cells that survives the proliferation phase is only slightly larger than 0.5. In retrospect these
are very natural conditions: if we use the length of the proliferation phase as the unit of time,
the time scale of population turnover is set by the differentiation rate δ and the reproduction rate
β(N̄)(2 e−γ − 1).

Thus far the function β is an infinite-dimensional parameter. Sooner or later we need to limit
ourselves to a parametrized family such as

β(N) = β0

1 + (N/N0)n
(13)

or

β(N) = β0 e−(N/N0)
n

(14)

with parameters N0, β0 and n. (Note that N0 is called θ in [25,26] and note once again that N0

only sets the scale of N and has no influence on the dynamics. The mathematical requirements
on β as well as the biochemical reasons for choosing the decreasing Hill function defined by
Equation (13) for this particular model are discussed in [22].)

In any case, we have enough freedom to require, for the time being, that

β̄ = −1. (15)

This choice allows us to invert Equation (11) and write

δ = 1 − ω cos ω

sin ω
,

2 e−γ = ω

sin ω
.

(16)

By making a Taylor expansion we deduce that for small ω

δ = 1
3ω2 + O(ω4),

2 e−γ = 1 + 1
6ω2 + O(ω4).

(17)

Substituting Equation (16) into Equation (9) we find

β(N̄) = sin ω − ω cos ω

ω − sin ω
= 2 + O(ω2). (18)
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Journal of Biological Dynamics 7

It remains to satisfy the condition β̄ = −1. For definiteness, let us focus on the family (13) whilst
taking without loss of generality N0 = 1. One can easily verify that for β given by Equation (13)
we have

β(N̄) + β ′(N̄)N̄ = β(N̄)

(
1 − n + nβ(N̄)

β0

)
. (19)

This identity allows us to rewrite β̄ = −1 in the form

β0 = βc
0 = n(β(N̄))2

(n − 1)β(N̄) − 1
, (20)

which upon substitution of Equation (18) becomes an explicit expression for βc
0 in terms of ω.

For ω = 0 we have βc
0 = 4n/(2n − 3).

Let us step back and survey the situation. For small values of ω we may choose δ and 2e−γ

according to Equation (16). If we next consider β0 as a bifurcation parameter, then a Hopf bifur-
cation with limiting period 2π/ω takes place when β0 passes the critical value βc

0 specified by the
right hand-side of Equation (20) with β(N̄) given by Equation (18). A graphical representation
of the results for n = 3 is provided in Figure 2.

In the case of distributed delay as studied in [1], the characteristic equation reads

λ + δ + β̄ − 2β̄

∫ τ̄

τ

e−(λ+γ )τ f (τ ) dτ = 0, (21)

T = 4.19, b0
c= 2.66

unstable

stable

0.0 0.2 0.4 0.6 0.8 1.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
2e-g

T = 4.83, b0
c= 2.75

T = 5.71, b0
c= 2.82

T = 6.98, b0
c= 2.88

T = 8.98, b0
c= 2.93

T = 12.6, b0
c= 2.96

T = 20.9, b0
c= 2.987

T = 62.8, b0
c= 2.99

d

Figure 2. Critical values of the parameters δ, 2 e−γ , and β0 and the Hopf period T for n = 3. The transition from a
stable steady state to an unstable steady state happens when we pass from below the curve to above the curve or when β0
increases from below the critical value βc

0 to above βc
0 . For ω = 0 we have βc

0 = 4.
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8 O. Diekmann and K. Korvasová

where the density f (τ ) replaces the Dirac measure concentrated, after scaling, in 1. Putting λ = iω
and separating real and imaginary parts, we can rewrite this as

β̄ = − ω

2
∫ τ̄

τ
sin (ωτ) e−γ τ f (τ ) dτ

, (22)

δ

β̄
= 2

∫ τ̄

τ

cos(ωτ) e−γ τ f (τ ) dτ − 1. (23)

So for given γ and f we can still parametrize a curve in a two-parameter plane by ω, provided
we have at our disposal a numerical procedure that evaluates the integrals. (If we do want to
consider γ as one of the ‘free’ parameters, there does not seem to be an easy way to organize the
calculations.)

For the blowfly (alias egg cannibalism) model the relation between (α1 , α2) and the parameters
P, δ and TD is given by

PTD = −α1 exp

(
1 + α2

α1

)
, (24)

δTD = −α1, (25)

and we conclude that α1 needs to be negative in order to correspond to positive P, δ and TD. This, in
turn, corresponds to ω > π/2 and hence the period is at most 4TD at Hopf bifurcation. We conclude
that, even though both the hematopoietic and the ecological problems lead to Equation (2), there
is an essential difference in the range of periods at Hopf bifurcation. This clearly illustrates that
one cannot just focus on Equation (2), one needs to study the parameter map as well.

0
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–15

–15

–10

–10
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–5

5 10 15

5

10

15
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a1

Figure 3. Figure 1 repeated with a superimposed curve parametrized by δ in the (α1, α2)-plane corresponding to
δ ∈ (0, 3), β0 = 1.77, γ = 0.2 and n = 12.
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4. Conclusion

Figures 2 and 3 become much more informative if along the stability boundary it is indicated
whether the Hopf bifurcation is supercritical (implying that the bifurcating periodic solution
is stable for parameters close to the bifurcation) or subcritical (implying it is unstable). To
decide, one needs to compute the first Lyapunov coefficient and this computation involves
higher order terms of the Taylor expansion. So the information is problem specific and it can-
not be deduced from just Equation (2). In [13, Section X.3] it is formulated how to compute
the direction from linear, second and third order terms. As a rule, the computations require
considerable effort, even in the case of a scalar delay equation. To follow the periodic solu-
tions when parameters vary outside a small neighbourhood of the Hopf bifurcation point, one
needs sophisticated tools for numerical continuation and bifurcation studies, such as DDE-Biftool
(http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml).

To conclude, let us compare our results with the results presented by Pujo Menjouet et al. in [26]
and Pujo-Menjouet and Mackey in [25]. First of all we should mention that our analysis is confined
to linearized stability and Hopf bifurcation. Consequently it does not give any information about
periodic solutions away from the bifurcation point, such as in contrast to the numerical study of
[25,26]. As far as linearized stability and Hopf bifurcation are concerned, our analysis in essence
confirms the results of [25,26]. The gain of our graphical representation of the stability domain in
parameter space is that it provides a unifying template. This helps to reveal the precise conditions
for long periods. To illustrate this, we show in Figure 3 how the parameters α1 and α2 change
when, as in [25], we fix β0 = 1.77, γ = 0.2 (i.e. 2 e−γ = 1.637) and n = 12, and consider δ

as a bifurcation parameter. The orange δ-parametrized curve is defined by Equation (11) with
δ ∈ (0, 3), β0 = 1.77, γ = 0.2 and n = 12. We can clearly see that it crosses the Hopf curve with
ω ∈ (0, π/2). At this point, δ =̇ 0.302 and the relatively long period oscillations are born. When
δ =̇ 2.2, the nontrivial steady state regains stability and remains stable until the δ-parametrized
curve reaches the line α1 = −α2 where the nontrivial steady state ceases to exist. That happens
at approximately δ =̇ 2.343.

Since one can plot such a curve in the (α1, α2)-plane for any values of the fixed parameters, the
method of two-parameter bifurcation analysis using a graphical representation provides a fast and
easy way to obtain practical information from the model. Moreover, this approach yields exact
information about the linearized model, as opposed to the numerical simulations in [25,26]. On
the other hand, numerical simulations give of course an approximation of the actual solution to
the nonlinear equation.

Whenever one studies a complicated problem by implementing numerical solvers, there is the
danger of bugs going unnoticed. By implementing both numerical methods to determine stability
boundaries and to experimentally determine the dynamical behaviour of solutions of the initial
value problem and by confronting the results, one can test the reliability of both.
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