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DERIVATIVE AND OPTIMIZATION

For PDEs applications, differential calculus is useful for

- elementary differential manipulations in PDEs;

- basis of optimization and constrained optimization possibly in infinite dimension
(1st course, SM). This topic will be developed further in the fundamental course
Introduction to non-linear PDEs;

- elementary differential geometry in the treatment of the boundary terms in PDEs
defined in a domain of Rd;
- applications of the Stokes/Gauss-Green formula and the mean value theorem to
PDEs.

1. Derivative

For two Banach spaces X,Y , we denote by L(X,Y ) the space of linear and con-
tinuous mapping between X and Y . We recall that L(X,Y ) is a Banach space
when endowed with the usual operator norm. We write L(X) := L(X,X).

Definition 1.1 (Fréchet). Consider two Banach spaces X and Y , an open set
Ω ⊂ X and a mapping f : Ω→ Y .

(i) We say that f is continuous in u ∈ Ω if

‖f(v)− f(u)‖ = o(1), when v → u.

We say that f is continuous on Ω if it is continuous in every point of Ω.

(ii) We say that f is Fréchet-differentiable in u ∈ Ω if there exists L ∈ L(X,Y ) s.t.

‖f(v)− f(u)− L(v − u)‖ = o(‖v − u‖), when v → u,

we note L = Df(u) = dfu. We say that f is Fréchet-differentiable on Ω if it is
Fréchet-differentiable in every point of Ω.

(iii) We say that f is C1 if f is Fréchet-differentiable on Ω and Df : Ω→ L(X,Y ),
u 7→ Df(u), is continuous on Ω.

Definition 1.2 (Gâteaux). Consider two Banach space X and Y , a subset A ⊂ X
(not necessarily open) and a mapping f : A→ Y .
(iv) We say that f is Gâteaux-differentiable in u ∈ A if there exists L ∈ L(X,Y )
and for any direction w ∈ X such that u+ tw ∈ A for any t > 0 small enough there
holds

‖f(u+ tw)− f(u)− tLw‖ = o(t), when t→ 0+,

we note L = f ′(u). We say that f is Gâteaux-differentiable on Ω if it is Gâteaux-
differentiable in every point of Ω.
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2 DERIVATIVE AND OPTIMIZATION

Lemma 1.3. Consider two Banach spaces X and Y , an open set Ω ⊂ X and a
mapping F : Ω→ Y . There holds:
(1) F is Fréchet-differentiable at some point implies that F is continuous and is
Gâteaux-differentiable at the same point with DF (u) = F ′(u).
(2) F is Gâteaux-differentiable on Ω, F and DF are continuous on Ω if, and only
if, F is C1.

Proof of Lemma 1.3. The point (1) being clear, we only establish the point (2), and
more precisely that F is Gâteaux-differentiable on Ω, F and DF are continuous on
Ω imply that F is Fréchet-differentiable on Ω, since then it is C1. We take u, v ∈ Ω
such that [u, v] := {u+ t(v − u); t ∈ [0, 1]} ∈ Ω, and we write

F (v)− F (u) =

∫ 1

0

d

dt
[F (u+ t(v − u))] dt =

∫ 1

0

DF (u+ t(v − u))(v − u) dt,

which classically makes sense when Y = R (and we accept here that the integral
makes sense also for Banach space valued functions). We deduce

F (v)− F (u)−DF (u)(v − u) =

=

∫ 1

0

[DF (u+ t(v − u))−DF (u)](v − u)dt

= O
(
‖v − u‖ sup

v′∈[u,v]

‖DF (v′)−DF (u)‖
)

= o(‖v − u‖),

so that F is Fréchet-differentiable in u. �

We wish to emphasize on the Taylor-Laplace expansion (of order one) for a C1

function F :

F (v) = F (u) +

∫ 1

0

DF (u+ t(v − u))(v − u) dt,

for any [u, v] ⊂ Ω. Since the integrand is continuous, the integral here may be
understood as a Riemann integral, i.e. defined as the limit of a Riemann sum.

We give now some examples.

• Exemple 1.1. When X ' Rm, Y ' Rn, we may introduce two basis (e1, . . . , em)
of X and (ε1, . . . , εn) of Y respectively and for a differentiable function f : Ω ⊂
X → Y , we may abuse notations by writing

f(x) =

n∑
i=1

fi(x)εi =

n∑
i=1

fi(x1, . . . , xm)εi, ∀x :=

m∑
j=1

xjej .

We then introduce the partial derivatives notation

∂jfi(x) =
∂fi
∂xj

(x) := Dfi(x)ej := lim
t→0+

fi(x+ tej)− fi(x)

t
,

and we can make the identification

Df(x) '
(
∂jfi(x)

)
ij
.

It is worth mentioning that point (2) in Lemma 1.3 is nothing but the classical
characterization of C1 functions thanks to the continuity property of its first order
partial derivatives.
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• Exemple 1.2. Consider X = H a Hilbert space with scalar product (·, ·), A ∈
L(H), and let us define f : H → R, f(u) := (Au, u). Defining the adjoint A∗ of
A through the relation (A∗u, v) = (u,Av) for any u, v ∈ H, we easily compute
Df(u) = A+A∗, or in other words

Df(u) ∈ H ′, Df(u)w = (Au,w) + (u,Aw).

To see this, we write

f(u+ w) = f(u) + (Au,w) + (u,Aw) + (Aw,w),

we observe that |(Aw,w)| = O(‖w‖2) and we come back to the very definition of
Df(u) in Definition 1.1-(ii).
In particular, Df(u) = 2A when A is self-adjoint. When H = L2(Ω), g(u) := ‖u‖2L2

and when H = H1
0 := {u ∈ L2; ∇u ∈ (L2)d, u = 0 a.e. on ∂Ω}, h(u) := ‖∇u‖2L2 ,

we aslo find

Dg(u)w =

∫
uw, Dh(u)w =

∫
∇u · ∇w,

by performing the same kind of expansion. Alternatively, H1
0 (Ω) may be defined

as the Hilbert space obtained by completion of the space C1
c (Ω) for the norm u 7→

‖u‖H1 , with ‖u‖2H1 := ‖u‖2L2 + ‖∇u‖2L2 . Anyway, in these notes, we manipulate a
H1

0 (Ω) function u as if it was a C1(Ω̄) function such that u = 0 on the boundary
∂Ω. We refer to the companion course A review of functional analysis tools for
PDEs for details.

• Exemple 1.3. Consider 1 ≤ p < ∞, f : Ω × R → R a continuous fonction such
that |f(x, s)| ≤ a(x) + b|s|p/q, with 1 ≤ q <∞, a ∈ Lq(Ω), b ≥ 0, and define

A : Lp(Ω)→ Lq(Ω), A(u)(x) := f(x, u(x)).

Then A is well-defined and continuous. Indeed, if un → u in Lp, we have un′ → u
a.e. and |un′ | ≤ u∗ ∈ Lp for some subsequence (un′) (from the partial reverse
of the Lebesgue convergence theorem), so that A(un′) → Au a.e. and |A(un′)| ≤
a+b|u∗|p/q and thus A(un′)→ Au in Lq (from the Lebesgue convergence theorem).
Since this true for any subsequence (un′), we have A(un)→ Au in Lq.

• Exemple 1.4. We consider f : Ω× R→ R a continuous fonction and we set

F (x, s) :=

∫ s

0

f(x, σ)dσ.

For p ∈ (1,∞) and p′ := p/(p− 1), we assume that

|f(x, s)| ≤ a0(x) + b0|s|p−1, a0 ∈ Lp
′
(Ω), b0 ≥ 0,

|F (x, s)| ≤ a1(x) + b1|s|p, a1 ∈ L1(Ω), b1 ≥ 0.

We consider in X = Lp(Ω), the mapping

F : X → R, F(u) :=

∫
Ω

F (x, u(x)) dx.

Then F is C1 and DF(u) = Au, where A is the operator defined in Example 1.3.

- On the one hand, F is continuous (from X into R) because the mapping B : Lp →
L1, u 7→ (Bu)(x) := F (x, u(x)), is continuous as proved in Example 1.3. Similarly,
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A : Lp → Lp
′

= (Lp)′ is continuous. On the other hand, for u,w ∈ Lp, we compute

F(u+ tw)−F(u)

t
=

∫
Ω

F (x, u(x) + tw(w))− F (x, u(x))

t
dx

=

∫
Ω

f(x, vt(x))w(w) dx,

for some vt(x) ∈ [u(x), u(x)+tw(x)] from the mean value theorem. We thus observe
that

f(x, vt(x))→ f(x, u(x)) when t→ 0,

|f(t, vt(x))| ≤ a0(x) + b0|vt(x)|p−1 ≤ a0(x) + b0(|u(x)|+ |w(x))|p−1 ∈ Lp
′
, ∀ t ∈ [0, 1].

We deduce

F(u+ tw)−F(u)

t
→
∫

Ω

f(x, u))w(x) dx, as t→ 0,

from the Lebesgue convergence theorem and the Holder inequality.

For later reference, we observe that if F : X → Y and G : Y → Z are C1 functions
(for instance), then

DuG ◦ F = DF (u)G ◦DuF,

with DuF ∈ L(X,Y ), DF (u)G ∈ L(Y,Z) and DuG ◦ F ∈ L(X,Z). In particular,
when X = R, u : R→ X, F : X → Y , we have

(1.1)
d

dt
F ◦ u(t) = DF (u(t))u′(t),

with (F ◦ u)′(t) ∈ Y = L(R, Y ), DF (u(t)) ∈ L(X,Y ) and u′(t) ∈ X = L(R, X).
We also observe that when F : X1 ×X2 → Y , we may write

(1.2) DF (u)(w1, w2) = D1F (u)w1 +D2F (u)w2,

with DiF (u) ∈ L(Xi, Y ) and wi ∈ Xi.

For two Banach spaces X,Y , we denote by B(X,Y ) the space of bilinear and
continuous mapping from X2 into Y . We recall that B(X,Y ) ' L(X,L(X,Y )).

Definition 1.4 (class C2). Consider two Banach spaces X and Y , an open set
Ω ⊂ X and a mapping f : Ω→ Y . We say that f is C2 if both f and Df are C1.
We note D2f := D(Df) ∈ B(X,Y ).

Lemma 1.5 (Schwarz theorem and Taylor-Laplace expansion). Consider a Banach
space X, an open set Ω ⊂ X and f : Ω→ R of class C2.
(1) - Then D2f is symmetric, or in other words

D2f(u)(v, w) = D2f(u)(v, w), ∀u ∈ Ω, ∀ v, w ∈ X.

In particular, in finite dimension X ' Rm, the Hessian D2f(u) := (∂2
ijf(u))ij is a

symmetric matrix.
The Taylor-Laplace expansion (of order two) for a C2 function f writes:

(1.3) f(u+ w) = f(u) + 〈Df(u), w〉+

∫ 1

0

(1− t)D2f(ut)(w,w)dt,

for any u ∈ Ω, w ∈ X such that [u, u+ w] ⊂ Ω and we denote ut := u+ tw.
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2. Optimization and convex functions

Lemma 2.1. Consider X a Banach space, K ⊂ X a compact set and F : K → R
a lsc function. Then, the associated minimizer problem has at least one solution,
namely:

(2.1) ∃u∗ ∈ K, F (u∗) = min
u∈K

F (u) ∈ R.

If F is Gâteaux-differentiable and u∗ ∈ K̊ 6= ∅ satisfies (2.1), then the following
Euler equation holds

(2.2) F ′(u∗) = 0.

If additionally F is C2, there holds

(2.3) D2F (u∗) ≥ 0.

Proof of Lemma 2.1. Take un ∈ K such that F (un)→ I := inf F ∈ R∪ {−∞}. By
compactness, there exists a subsequence (un′) such that un′ → u∗ ∈ K. Because F
is lsc, we find

−∞ < F (u∗) ≤ lim inf F (un′) = I.

Because u∗ ∈ K, we find F (u∗) ≥ I, and thus (2.1) holds. For proving (2.2), we
fixe arbitrarily w ∈ X, and we compute

〈F ′(u∗), w〉 = lim
t→0+

1

t
(F (u∗ + tw)− F (u∗)) ≥ 0.

We conclude to (2.2) by writing the same inequality for −w instead of w. When
furthermore F is C2, the Lagrange expansion (1.3) implies

0 ≤ 1

t2
(f(u∗ + tw)− f(u∗)) =

∫ 1

0

(1− s)D2f(u∗st)(w,w)ds

for any w ∈ X and t > 0 small enough, where u∗st := u∗ + stw. By passing to the
limit t→ 0, we get

0 ≤ 1

2
D2f(u∗)(w,w), ∀w ∈ X,

which precisely means that D2f(u∗) is positive. �

(Strong) compact set in infinity dimensional space are scarce. That explains the
importance of convex optimization in which framework we may overcome this dif-
ficulty.

Definition 2.2 (Convexity). Consider a Banach space X.

(i) We say that K ⊂ X is convex if

∀u, v ∈ K, [u, v] ⊂ K.

(ii) For a convex set K ⊂ X, we say that f : K → R is convex if

∀u, v ∈ K, ∀ t ∈ [0, 1], f(tu+ (1− t)v) ≤ tf(u) + (1− t)f(v).

Similarly, we say that f : K → R is strictly convex if

∀u, v ∈ K, u 6= v, ∀ t ∈]0, 1[, f(tu+ (1− t)v) < tf(u) + (1− t)f(v).

We have the following characterization of convex functions.
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Lemma 2.3 (Convex functions). Consider a Banach space X, a convex set K ⊂ X
and a Gâteaux-differentiable function F : K → R. The following properties are
equivalent:

(i) F is convex;

(ii) For any u, v ∈ K, F (v) ≥ F (u) + 〈F ′(u), v − u〉;
(iii) F ′ is monotonous, which means

〈F ′(v)− F ′(u), v − u〉 ≥ 0, ∀u, v ∈ K.

When furthermore K is an open set and F is C2, these properties are equivalent to

(iv) D2F (u) ≥ 0, ∀u ∈ K.

Proof of Lemma 2.3. (i) ⇒ (ii). We write the convexity inequality as

F (u+ t(v − u))− F (u) ≤ t(F (v)− F (u)),

we divide by t and we pass to the limit t→ 0.

(ii) ⇒ (iii). Exchanging the role of u and v in (ii), we have

F (v) ≥ F (u) + 〈F ′(u), v − u〉
F (u) ≥ F (v) + 〈F ′(v), u− v〉,

for any u, v ∈ K. We conclude by summing up these inequalities.

(iii) ⇒ (i). We define ϕ(t) := F (wt), wt := u+ t(v − u)). Because

ϕ′(t) = 〈F ′(wt), v − u〉,

the condition (iii) implies

ϕ′(t)− ϕ′(s) =
1

t− s
〈F ′(wt)− F ′(ws), wt − ws〉 ≥ 0,

for t > s. The mapping t 7→ ϕ′(t) is thus increasing, and in particular ϕ′(ts) ≤
ϕ′(s), for any t, s ∈ [0, 1]. As a consequence, we have

ϕ(t)− ϕ(0) = t

∫ 1

0

ϕ′(ts) ds ≤ t
∫ 1

0

ϕ′(s) ds = t(ϕ(1)− ϕ(0)),

which means that F is convex.

(iv) ⇒ (ii). From the Taylor-Laplace expansion (1.3), we have

F (u+ w) = F (u) + 〈DF (u), w〉+

∫ 1

0

(1− t)D2F (ut)(w,w)dt

≥ F (u) + 〈DF (u), w〉,

when (iv) holds.

(iii) ⇒ (iv). From the very definition

D2F (u)(w,w) = lim
t→0+

1

t2
〈DF (u+ tw)−DF (u), tw〉 ≥ 0,

when (iii) holds. �

Similarly, we have the following characterization of strictly convex functions.
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Lemma 2.4 (Strictly convex functions). Consider a Banach space X, a convex set
K ⊂ X and a Gâteaux-differentiable function F : K → R. The following properties
are equivalent:

(i) F is strictly convex;

(ii) For any u, v ∈ K, F (v) > F (u) + 〈F ′(u), v − u〉.
(iii) F ′ is strictly monotonous, which means

〈F ′(v)− F ′(u), v − u〉 > 0, ∀u, v ∈ K,u 6= v.

When we assume furthermore that K is an open set and F is C2, these properties
are a consequence of

(iv) D2F (u) > 0, ∀u ∈ K.

We accept the following result (for which we refer to a functional analysis course).

Theorem 2.5 (Banach-Alaoglu). Consider a bounded sequence (un) in a Hilbert
space H. Then, there exists a subsequence (un′) and u∗ ∈ H such that

∀ v ∈ H, (un′ , v)→ (u∗, v) as n′ →∞.

We say that (un′) converges weakly to u∗, we note un′ ⇀ u∗.

We formulate a simple form of optimization result in infinite dimension.

Theorem 2.6. Consider a Hilbert space H and a convex and Gâteaux-differentiable
function F : H → R such that F (u) → +∞ when |u| → ∞. Then, there exists at
least one u∗ ∈ H such that

(2.4) F (u∗) = min
u∈H

F (u) ∈ R, F ′(u∗) = 0.

When furthermore F is strictly convex, then u∗ is unique.

Proof of Theorem 2.6. By assumption, {u ∈ H; F (u) ≤ F (0)} ⊂ B(0, R) for some
R > 0. Consider next a sequence (un) such that

limF (un) = inf
u∈H

F (u) = inf
u∈BR

F (u).

We may thus assume (un) bounded and, from Theorem 2.5, there exists u∗ ∈ H
and a subsequence (un′) such that un′ ⇀ u∗. From Lemma 2.3-(ii), we have

F (u∗) ≤ F (un′)− 〈F ′(u∗), un′ − u∗〉,

and thus

F (u∗) ≤ lim inf F (un′) = I.

The equation F ′(u∗) = 0 comes from (2.2). When furthermore F is strictly convex,
Lemma 2.4-(iii) implies that F ′(v) 6= 0 if v 6= u∗, and thus F (v) 6= I if v 6= u∗. �

For f ∈ L2(Ω), Ω ⊂ Rd an open and bounded set, we consider the mapping
E : H1

0 (Ω)→ R defined by

E(u) :=
1

2

∫
Ω

|∇u|2 −
∫

Ω

uf.

The existence of a unique solution to the minimization problem

u ∈ H1
0 , E(u) = min

v∈H1
0

E(v)
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can be established thanks to Theorem 2.6 and a functional inequalities (called the
Poincaré inequality). We rather refer to the companion course “A review of func-
tional analysis tools for PDEs” for details. We just emphasize that the associated
Euler equation E ′(u) = 0 is nothing but

E ′(u)w =

∫
Ω

∇u · ∇w −
∫

Ω

wf = 0, ∀w ∈ H1
0 (Ω).

When u is smooth enough and taking advantage of the vanishing condition w = 0
on ∂Ω, the Stokes formula (which will be the subject of the next course) implies∫

Ω

∇u · ∇w =

∫
Ω

div(w∇u)−
∫

Ω

∆uw

=

∫
∂Ω

w∇u · ndσ −
∫

Ω

∆uw = −
∫

Ω

∆uw.

As a consequence, we equivalently have

E ′(u)w =

∫
Ω

(−∆u− f)w = 0, ∀w ∈ H1
0 (Ω),

so that the Euler equation is a weak formulation for the Laplace equation

−∆u = f in Ω, u = 0 on ∂Ω.

3. Constrained optimization

In many cases, we wish to minimize a functional on a part of a vectorial space which
writes as

(3.1) K := {v ∈ X; G(v) = 0},

for a given function G : X → Rm. A typical example is given by G(v) = ‖v‖2 − 1
when m = 1, so that K is nothing but the circle

K = {v ∈ X; ‖v‖ = 1}.

We start by recalling the implicit function theorem. First consider the simple
situation when f : R×X → Z and we want to find solutions to the equation

f(t, u) = 0.

We assume that f(t0, u0) = 0 for some (t0, u0) ∈ R×X and we look for a solution
(t, u) for any t in a neighborhood of t0. We may reformulate the problem as finding
a smooth mapping u : I → X, I ⊂ R, such that

f(t, u(t)) = 0, ∀ t ∈ I.

Differentiating and using (1.1) and (1.2), we find

D1F (t, u(t)) +D2F (t, u(t))u′(t) = 0, ∀ t ∈ I,

where D1F (t, u(t)) ∈ Z = L(R, Z) and D2F (t, u(t)) ∈ L(X,Z). In other word, the
problem reduces to the ODE

u′(t) = −[D2F (t, u(t))]−1D1F (t, u(t)), u(t0) = u0,

provided that D2F (t, u(t)) is invertible.
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Theorem 3.1 (implicit function). Consider three Banach spaces X, Y and Z,
Ω ⊂ X × Y an open set and f ∈ C1(Ω, Z). Assume that (u0, v0) ∈ Ω satisfies
f(u0, v0) = 0 and D2f(u0, v0) is invertible. Then, there exists an open set U ⊂ X
such that u0 ∈ U and a unique ϕ : U → Y of class C1 such that ϕ(u0) = v0 and

f(u, ϕ(u)) = 0, ∀u ∈ U.
Moreover, there exists an open set V ⊂ Y such that v0 ∈ V and if (u, v) ∈ U × V
satisfies f(u, v) = 0 then v = ϕ(u). Finally, we have

Dϕ(u) = −[D2f(u, ϕ(u))]−1 ◦D1f(u, ϕ(u)).

Theorem 3.2 (Lagrange multiplier). Consider a Banach space X and two smooth
mapping F : X → R, G : X → Rm. If u0 is a solution to the constrained mini-
mization problem

u0 ∈ K, F (u0) = min
v∈K

F (u),

where K is defined by (3.1) and G′1(u0), . . . , G′m(u0) are linearly independant, then
there exist λ1, . . . , λm ∈ R such that

(3.2) F ′(u0) =

m∑
i=1

λiG
′
i(u0).

In particular, when m = 1, that means G′(u0) 6= 0 and there exists λ ∈ R such that

(3.3) F ′(u0) = λG′(u0).

Proof of Theorem 3.2. We only consider the case m = 1. The condition G′(u0) 6= 0,
withG′(u0) ∈ L(X,R) ' X ′, implies that there exists a ∈ X such that 〈G′(u0), a〉 =
1, and thus X = X0 ⊗ Ra, with X0 := kerG′(u0). Consider the mapping

Φ : X0 × R→ R, Φ(t, v) := G(u0 + v + ta).

We see that Φ(0, 0) = G(u0) = 0 and

∂tΦ(0, 0) = 〈G′(u0), a〉 = 1, ∂vΦ(0, 0) = G′(u0)|X0
= 0.

The implicit function Theorem 3.1 implies that there exists a neighborhood ω ⊂ X0

such that 0 ∈ ω and a C1 function ψ : ω → R such that Φ(v, ψ(v)) = 0 for any
v ∈ ω. By construction ψ(0) = 0, ψ′(0) = 0. We thus can find a neighborhood
Ω ⊂ X of u0 and a neighborhood I ⊂ R of 0 such that

u ∈ Ω and G(u) = 0 ⇔ u = u0 + v + ta, v ∈ ω, t ∈ I, Φ(t, v) = 0

⇔ u = u0 + v + ψ(v)a, v ∈ ω.
Finally define J : ω ⊂ X0 → R by J(v) := F (u0 + v + aψ(v)) so that its minimum
on ω is reached in v = 0. We deduce that J ′(0) = 0, or in other words

〈J ′(0), w〉 = 0, ∀w ∈ X0.

From the definition of J and ψ, we have J ′(0) = F ′(u0)(I − aψ′(0)) = F ′(u0), so
that

〈F ′(u0), w〉 = 0, ∀w ∈ X0.

Since F ′(u0) ∈ L(X,R) = X ′ is a linear form on X with kerF ′(u0) ⊃ kerG′(u0),
there exists λ ∈ R such that (3.3) holds. �

The proof of Theorem 3.2 in the case m > 1 is similar to the proof and it uses the
classical algebraic lemma.
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Lemma 3.3. Consider a vector space X and f0, . . . , fm ∈ X∗ such that⋂
1≤i≤m

ker(fi) ⊂ ker(f0).

Then there exist λ1, . . . , λm ∈ R such that

f0 =

m∑
i=1

λifi.

• We consider the problem

min
|u|=1

(Au, u)

for a symmetric matrix A ∈Mn(R). We may apply Theorem 3.2 with G = Rn → R,
G(u) = |u|2 − 1, and F : Rn → R, F (u) = (Au, u), and we get G′(u) = 2u,
F ′(u) = 2Au. Thus any solution u1 to the above constrained problem satisfies

Au1 = λu1, |u1| = 1,

so that it is a solution to the first eigenvalue problem.

One can either proceed directly. By compacteness, there exists u1 ∈ S such that

λ1 := (Au1, u1) ≤ (Au, u), ∀u ∈ S.
For w ∈ Rn and t > 0 small enough, we have u := (u1 + tw)/|u1 + tw| ∈ S, and
thus

λ1|u1 + tw|2 ≤ (A(u1 + tw), u1 + tw), ∀ t.
Expanding, we get

λ1(1 + 2tu1 · w + t2|w|2) ≤ (Au1, u1) + 2t(Au1, w) + t2(Aw,w), ∀ t,
and thus

λ1(u1 · w +
t

2
|w|2) ≤ (Au1, w) +

t

2
(Aw,w), ∀ t,

Passing to the limit t→ 0, we get

λ1(u1, w) ≤ (Au1, w), ∀w ∈ Rn,

and finally

Au1 = λ1u1.

• The same can be done for the minimization problem

min
u∈H1

0 , ‖u‖L2=1

∫
Ω

|∇u|2.

Proceeding in the same way, we may define F (u) := ‖ ∇u‖2L2 , G(u) := ‖ u‖2L2 − 1,
and the Lagrange multiplier Theorem 3.2 implies that any solution u1 satisfies

λ1

∫
Ω

u1w =

∫
∇u · ∇w, ∀w ∈ H1

0 (Ω).

That is a weak formulation of the first eigenvalue problem

u1 ∈ H1
0 (Ω), −∆u1 = λ1u1.

• We now consider the minimization problem

min
f∈K
H(f),
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where H is the Boltzmann entropy

H(f) :=

∫
Rd

f log f dv

and K is the set of moments constraints

K := { f ≥ 0, M(f) :=

∫
Rd

f(1, v, |v|2)dv = (1, 0, d)}.

Without the first positivity constraint, the Lagrange multiplier Theorem 3.2 implies
that any solution f0 must satiisfy

H′(f0) = Λ · M′(f0), Λ ∈ Rd+2.

In other words, we have∫
Rd

[(1 + log f0)− Λ · (1, v, |v|2)]g dv = 0

for any g. That implies
1 + log f0 = Λ · (1, v, |v|2)

and thus
f0 = eλ0−1+λ·v−κ|v|2

with λ0, κ ∈ R, λ ∈ Rd. Since f0 ∈ K, we conclude that

f0 = (2π)−d/2e−|v|
2/2.
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