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Chapter 1 - Variational solution for parabolic equation

1 Introduction (September 25th, 2013)

In this first lesson we will focus on the question of existence (and uniqueness) of a solution f =
f(t, x) to the evolution PDE of “parabolic type”

(1.1) ∂tf = Λ f on (0,∞)× Rd,

where Λ is the following integro-differential operator

(1.2) (Λf)(x) = ∆f(x) + a(x) · ∇f(x) + c(x) f(x) +

∫
Rd

b(y, x) f(y) dy,

that we complement by an initial condition

(1.3) f(0, x) = f0(x) in Rd.

Here t ≥ 0 stands for the “time” variable, x ∈ Rd, d ∈ N∗, stands for the “position” variable.

In order to develop the variational approach for the equation (1.1)-(1.2), we make the strong
assumption that

f0 ∈ L2(Rd) =: H, which is an Hilbert space,

and that the coefficients satisfy

a ∈W 1,∞(Rd), c ∈ L∞(Rd), b ∈ L2(Rd × Rd).

The main result we will present in this chapter is the existence of a weak (variational) solution
(which sense will be specified bellow)

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1), ∀T,

to the evolution equation (1.1), (1.3). We mean variational solution because the space of “test
functions” is the same as the space in which the solution lives. It also refers to the associated
stationary problem which is of “variational type” (see Chapter VIII & IX in the book “Functional
Analysis” by H. Brézis).

The existence of solutions issue is tackled by following a scheme of proof that we will repeat for all
the other evolution equations that we will consider in the next chapters.

(1) We look for a priori estimates by performing (formal) differential and integral calculus.

(2) We deduce a possible natural functional space in which lives a solution and we propose
a definition of a solution, that it a (weak) sense in which we may understand the evolution
equation.

(3) We state and prove the associated existence theorem. For the existence proof we typically
argue as follows : we introduce a “regularized problem” for which we are able to construct a solution
and we are allowed to rigorously perform the calculus leading to the “a priori estimates” and then
we pass to the limit in the sequence of regularized solutions.
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2 A priori estimates

Define V = H1(Rd). We first observe that for any f ∈ V

〈Λf, f〉 = −
∫
|∇f |2 +

∫
a · ∇x

f2

2
+

∫
c f2 +

∫ ∫
b(y, x) f(x)f(y) dxdy.

≤ −‖f‖2V +
(

1 +
1

2
‖(div a)+‖L∞ + ‖c+‖L∞ + ‖b+‖L2

)
‖f‖2H .

We also observe that for any f, g ∈ V

|〈Λf, g〉| ≤ ‖∇f‖L2 ‖∇g‖L2 + ‖a‖L∞ ‖∇f‖L2 ‖g‖L2 + (‖c‖∞ + ‖b‖L2)) ‖f‖L2 ‖g‖L2

≤ (1 + ‖a‖∞ + ‖c‖∞ + ‖b‖L2

)
‖f‖V ‖g‖V .

We easily deduce from the two preceding estimates that our parabolic operator falls in the following
abstract variational framework.

Abstract variational framework. We consider an Hilbert space H endowed with the scalar
product (·, ·) and the norm | · |. We identify H with its dual H ′ = H. We consider another Hilbert
space V endowed with a norm ‖ · ‖V and we denote 〈., .〉 the duality product on V . We assume
V ⊂ H with dense and bounded embedding so that V ⊂ H ⊂ V ′.
We consider a linear operator Λ : V → V ′ which is bounded (or continuous), which means

(i) ∃M > 0 such that
|〈Λg, h〉| ≤M ‖g‖ ‖h‖ ∀ g, h ∈ V ;

and which is “(strongly/variationally) dissipative” in the sense

(ii) ∃α > 0, b ∈ R such that

〈Λg, g〉 ≤ −α ‖g‖2 + b |g|2 ∀ g ∈ V ;

and we consider the abstract evolution equation

(2.1)
dg

dt
= Λg in (0, T ),

for a solution g : [0, T )→ H, with prescribed initial value

(2.2) g(0) = g0 ∈ H.

A priori bound in the abstract variational framework. With the above assumptions and
notations, any solution g to the abstract evolution equation (2.1) (formally) satisfies the following
estimate

(2.3) |g(T )|2H + 2α

∫ T

0

‖g(s)‖2V ds ≤ e2bT |g0|2H ∀T.

We (formally) prove (2.3). Using just the dissipativity assumption (ii), we have

d

dt

|g(t)|2H
2

= 〈Λg, g〉 ≤ −α‖g(t)‖2V + b |g(t)|2H ,

and we conclude thanks to the Gronwall lemma, that we recall now.

Lemma 2.1 (Gronwall) Consider 0 ≤ u ∈ C1([0, T ]), 0 ≤ v ∈ C([0, T ]) and α, b ≥ 0 such that

(2.4) u′ + 2αv ≤ 2bu in a point wise sense on (0, T ),
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or more generally 0 ≤ u ∈ C([0, T ]) and 0 ≤ v ∈ L1(0, T ) which satisfies (2.4) in the distributional
sense, namely

(2.5) u(t) + 2α

∫ t

0

v(s) ds ≤ 2b

∫ t

0

u(s) ds+ u(0) ∀ t ∈ (0, T ).

Then, the following estimate holds true

(2.6) u(t) + 2α

∫ t

0

v(s) ds ≤ e2bt u(0) ∀ t ∈ (0, T ).

Proof of Lemma 2.1. Since (2.4) clearly implies (2.5), we just have to prove that (2.5) implies
(2.6). We introduce the C1 function

w(t) := 2b

∫ t

0

u(s) ds+ u(0).

Differentiate w, we get thanks to (2.5)

w′(t) = 2bu(t) ≤ 2bw(t)

so that
w(t) ≤ e2bt w(0) = e2bt u(0).

We conclude by coming back to (2.5). ut
From the formal/natural/physics estimate (2.3) together with equation (2.1) and the continuity
estimate (i) on Λ, we deduce∥∥∥dg

dt

∥∥∥
V ′

= ‖Λg‖V ′ ≤M ‖g‖V ∈ L2(0, T ),

and we conclude with

(2.7) g ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).

3 Variational solutions

Definition 3.1 For any given g0 ∈ H, T > 0, we say that

g = g(t) ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′)

is a variational solution to the Cauchy problem (2.1), (2.2) on the time interval [0, T ] if it is a
solution in the following weak sense

(3.1) (g(t), ϕ(t))H = (g0, ϕ(0))H +

∫ t

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds

for any ϕ ∈ XT and any 0 ≤ t1 ≤ t2 ≤ T .
We say that g is a global solution if it is a solution on [0, T ] for any T > 0.

Theorem 3.2 (J.L. Lions) With the above notations and assumptions for any g0 ∈ H, there
exists a unique global variational solution to the Cauchy problem (2.1), (2.2).
As a consequence, any solution satisfies (2.3) and the application g0 7→ g(t) defines a C0-semigroup
on H.

We start with some remarks and we postpone the proof of the existence part of Theorem 3.2 to
the next section.
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3.1 Parabolic equation.

As a consequence of Theorem 3.2, for any f0 ∈ L2(Rd) there exists a unique function

f = f(t) ∈ C([0, T ];L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1), ∀T > 0,

which is a solution to the parabolic equation (1.1)-(1.2) in the variational sense.

3.2 About the functional space.

The space obtained thanks to the a priori estimates established on g is nothing but XT as conse-
quence of the following result.

Lemma 3.3 The following inclusion

L2(0, T ;V ) ∩H1(0, T ;V ′) ⊂ C([0, T ];H)

holds true. Moreover, for any g ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) there holds

t 7→ |g(t)|2H ∈W 1,1(0, T )

and
d

dt
|g(t)|2H = 2 〈g′(t), g(t)〉V ′,V a.e. on (0, T ).

Proof of Lemma 3.3. Step 1. We define gε(t) := g ∗t ρε for a mollifier (ρε) with compact support
included in (0,∞) so that gε ∈ C1([0, T − δ];V ) for any δ ∈ (0, T ) and for any ε > 0 small enough.
We fix ε, ε′ > 0 and we compute

d

dt
|gε(t)− gε′(t)|2H = 2 〈g′ε − g′ε′ , gε − gε′〉V ′,V ,

so that for any t1, t2 ∈ [0, T )

(3.2) |gε(t2)− gε′(t2)|2H = |gε(t1)− gε′(t1)|2H + 2

∫ t2

t1

〈g′ε − g′ε′ , gε − gε′〉ds.

Since gε → g in L2(0, T ;V ) and in V a.e. on [0, T ), we may fix t1 ∈ [0, T ) such that

(3.3) gε(t1)→ g(t1) in H.

As a consequence of (3.2), (3.3) as well as gε → g in L2(0, T ;V ) and g′ε → g′ in L2(0, T ;V ′), we
have

lim sup
ε,ε′→0

sup
[0,T )

|gε(t)− gε′(t)|2H ≤ lim
ε,ε′→0

∫ T

0

‖g′ε − g′ε′‖V ′ ‖gε − gε′‖V ds = 0,

so that (gε) is a Cauchy sequence in C([0, T );H), and then gε converges in C([0, T );H) to a limit
ḡ ∈ C([0, T );H). That proves g = ḡ a.e. and g ∈ C([0, T );H).

Step 2. Similarly as for (3.2), we have

|gε(t2)|2H = |gε(t1)|2H + 2

∫ t2

t1

〈g′ε, gε〉ds,

and passing to the limit ε→ 0 we get

|g(t2)|2H = |g(t1)|2H + 2

∫ t2

t1

〈g′, g〉ds.

Using again that 〈g′, g〉 ∈ L1(0, T ), we easily deduce from the above identity the two remaining
claims of the Lemma. ut
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3.3 A posteriori estimate, uniqueness and C0-semigroup.

Taking ϕ = g ∈ XT as a test function in (3.1), we deduce from Lemma 3.3,

1

2
|g(t)|2H −

1

2
|g0|2H = |g(t)|2H − |g0|2H −

∫ t

0

〈g′(s), g(s)〉 ds

=

∫ t

0

〈Λg, g〉 ds

≤
∫ t

0

(−α ‖g‖2V + b |g|2H) ds,

and we then obtain (2.3) as an a posteriori estimate thanks to the Gronwall lemma 2.1.

Let us prove now the uniqueness of the variational solution g associated to a given initial
datum g0 ∈ H. In order to do so, we consider two variational solutions g and f associated to the
same initial datum. Since the equation (2.1), (2.2) is linear, or more precisely, the variational for-
mulation (3.1) is linear in the solution, the function g−f satisfies the same variational formulation
(3.1) but associated to the initial datum g0 − f0 = 0. The a posteriori estimate (2.3) then holds
for g − f and implies that g − f = 0.

We finally explain how we may associate a C0-semigroup to the evolution equation (2.1), (2.2) as
a mere consequence of the linearity of the equation and of the existence and uniqueness result.

Definition 3.4 Consider X a Banach space, and denote by B(X) the set of linear and bounded
operators on X. We say that S = (St)t≥0 is a strongly continuous semigroup of linear operators
on X, or just a C0-semigroup on X, we also write S(t) = St, if

(i) ∀t ≥ 0, St ∈ B(X) (one parameter family of operators) ;

(ii) ∀f ∈ X, t 7→ St f ∈ C([0,∞), X) (continuous trajectories) ;

(iii) S0 = I ; ∀ s, t ≥ 0 St+s = St Ss (semigroup property).

For any g0 ∈ H, we define Stg := g(t) where g(t) is the unique variational solution associated to g0.

• S satisfies (i). By linearity of the equation and uniqueness of the solution, we clearly have

St(g0 + λf0) = g(t) + λf(t) = Stg0 + λStf0

for any g0, f0 ∈ H, λ ∈ R and t ≥ 0. Thanks to estimate (2.3) we also have |Stg0| ≤ ebt |g0| for any
g0 ∈ H and t ≥ 0. As a consequence, St ∈ B(H) for any t ≥ 0.

• S satisfies (ii). Thanks to lemma 3.3 we have t 7→ Stg0 ∈ C(R+;H) for any g0 ∈ H.

• S satisfies (iii). For g0 ∈ H and t1, t2 ≥ 0 denote g(t) = Stg0 and g̃(t) := g(t + t1). Making the
difference of the two equations (3.1) written for t = t1 and t = t1 + t2, we see that g̃ satisfies

(g̃(t2), ϕ̃(t2)) = (g(t1), ϕ(t1)) +

∫ t1+t2

t1

{
〈Λg(s), ϕ(s)〉+ 〈ϕ′(s), g(s)〉

}
ds

= (g̃(0), ϕ̃(0)) +

∫ t2

0

{
〈Λg̃(s), ϕ̃(s)〉+ 〈ϕ̃′(s), g̃(s)〉

}
ds,

for any ϕ ∈ Xt1+t2 with the notation ϕ̃(t) := ϕ(t+ t1) ∈ Xt2 . Since the equation on the functions g̃
and ϕ̃ is nothing but the variational formulation associated to the equation (2.1), (2.2), we obtain

St1+t2g0 = g(t1 + t2) = g̃(t2) = St2 g̃(0) = St2g(t1) = St2St1g0.
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4 Proof of the existence part of Theorem 3.2.

We first prove thanks to a compactness argument in step 1 to step 3 that there exists a function
g ∈ L2(0, T ;V ) such that

(4.1) 〈g0, ϕ(0)〉+

∫ t

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds = 0

for any ϕ ∈ C1
c ([0, T );V ). We then deduce by some “regularization tricks” in step 4 and step 5

that the above weak solution is a variational solution.

Step 1. For a given g0 ∈ H and ε > 0, we seek g1 ∈ V such that

(4.2) g1 − εΛg1 = g0.

We introduce the bilinear form a : V × V → R defined by

a(u, v) := (u, v)− ε 〈Λu, v〉.

Thanks to the assumptions made on Λ, we have

|a(u, v)| ≤ |u| |v|+ εM ‖u‖ ‖v‖,

and
a(u, u) ≥ |u|2 + ε α ‖u‖2 − ε b |u|2 ≥ ε α ‖u‖2,

whenever ε b < 1, what we assume from now. On the other hand, the mapping v ∈ V 7→ (g0, v) is
a linear and continuous form. We may thus apply the Lax-Milgram theorem, and we get

∃! g1 ∈ V (g1, v)− ε〈Λg1, v〉 = (g0, v) ∀ v ∈ V.

Step 2. Fix ε > 0 as in the preceding step and build by induction the sequence (gk) in V ⊂ H
defined by the family of equations

(4.3) ∀ k gk+1 − gk
ε

= Λ gk+1.

Observe that from the identity

(gk+1, gk+1)− ε 〈Λgk+1, gk+1〉 = (gk, gk+1),

we deduce
|gk+1|2 + ε α ‖gk+1‖2 − ε b |gk+1|2 ≤ |gk| |gk+1|.

As a consequence, we have

|gk| ≤
1

1− εb
|gk−1| ≤

1

(1− εb)k
|g0| ≤ Ak ε |g0| ∀ k ≥ 0,

with A := e2b if εb ≤ 1/2, and then

α

k∑
j=1

ε ‖gj‖2 ≤
k∑

j=1

1

2
(|gj−1|2 − |gj |2) + b

k∑
j=1

ε |gj |2

≤ 1

2
|gk−1|2 + b

k∑
j=1

ε |gj |2

≤ A2(k−1)ε

2
|g0|2 + ε b

A2ε(k+1) − 1

A2ε − 1
|g0|2 ∀ k ≥ 0.

We fix T > 0, n ∈ N∗ and we define

ε := T/n, tk = k ε, gε(t) := gk on [tk, tk+1).

6



The two precedent estimates write then

(4.4) sup
[0,T ]

|gε|2H + α

∫ T

0

‖gε‖2V dt ≤
b

2
A2(T+1) +

3

2
A2T .

Step 3. Consider a test function ϕ ∈ C1
c ([0, T );V ) and define ϕk := ϕ(tk). Multiplying the equation

(4.3) by ϕk and summing up from k = 0 to k = n, we get

−〈ϕ0, g0〉 −
n∑

k=1

〈ϕk − ϕk−1, gk〉 =

n∑
k=0

ε 〈ϕk,Λgk+1〉.

Introducing the two functions ϕε, ϕε : [0, T )→ V defined by

ϕε(t) := ϕk−1 and ϕε(t) :=
tk+1 − t

ε
ϕk +

t− tk
ε

ϕk+1 for t ∈ [tk, tk+1),

in such a way that

ϕ′ε(t) =
ϕk+1 − ϕk

ε
for t ∈ (tk, tk+1),

the above equation also writes

(4.5) − 〈ϕ(0), g0〉 −
∫ T

0

〈ϕ′ε, gε〉 dt =

∫ T

0

〈ϕε,Λgε〉 dt.

On the one hand, from (4.4) we know that up to the extraction of a subsequence, there exists
g ∈ YT such that gε → g weakly in L2(0, T ;V ). On the other hand, from the above construction,
we have ϕ′ε → ϕ′ and ϕε → ϕ both strongly in L2(0, T ;V ). We may then pass to the limit as ε→ 0
in (4.5) and we get (4.1).

Step 4. We prove that g ∈ XT . Taking ϕ := χ(t)ψ with χ ∈ C1
c ((0, T )) and ψ ∈ V in equation

(4.1), we get〈∫ T

0

gχ′dt, ψ
〉

=

∫ T

0

〈g, ψ〉χ′ dt = −
∫ T

0

〈Λg, ψ〉χdt =
〈
−
∫ T

0

Λgχ dt, ψ
〉
.

This equation holding true for any ψ ∈ V , it is equivalent to∫ T

0

gχ′dt = −
∫ T

0

Λgχ dt in V ′ for any χ ∈ D(0, T ),

or in other words
g′ = Λg in the sense of distributions in V ′.

Since g ∈ L2(0, T ;V ), we get that Λg ∈ L2(0, T ;V ′) and the above relation precisely means that
g ∈ H1(0, T ;V ′). We conclude thanks to Lemma 3.3 that g ∈ XT .

Step 5. Assume first ϕ ∈ Cc([0, T );H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′). We define ϕε(t) := ϕ ∗t ρε for
a mollifier (ρε) with compact support included in (0,∞) so that ϕε ∈ C1

c ([0, T );V ) for any ε > 0
small enough and

ϕε → ϕ in C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).

Writing the equation (4.1) for ϕε and passing to the limit ε→ 0 we get that (4.1) also holds true
for ϕ.

Assume next that ϕ ∈ XT . We fix χ ∈ C1(R) such that suppχ ⊂ (−∞, 0), χ′ ≤ 0, χ′ ∈ Cc(]−1, 0[)

and
∫ 0

−1
χ′ = −1, and we define χε(t) := χ((t − T )/ε) so that ϕε := ϕχε ∈ Cc([0, T );H) and

χε → 1[0,T ], χ
′
ε → −δT as ε→ 0. Equation (4.1) for the test function ϕε writes

−〈g0, ϕ(0)〉 −
∫ t

0

χ′ε〈ϕ, g〉 ds =

∫ T

0

χε

{
〈Λg, ϕ〉+ 〈ϕ′, g〉

}
ds,

and we obtain the variational formulation (3.1) for t1 = 0 and t2 = T by passing to the limit ε→ 0
in the above equation. ut
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5 Exercises

Exercice 5.1 Prove that f ≥ 0 if f0 ≥ 0. (Hint. Show that the sequence (gk) defined in step 2 of
the proof of the existence part is such that gk ≥ 0 for any k ∈ N).

Exercice 5.2 Prove the existence of a solution g ∈ XT to the equation

(5.1)
dg

dt
= Λg +G in (0, T ), g(0) = g0,

for any initial datum g0 ∈ H and any source term G ∈ L2(0, T ;V ′).
(Ind. Repeat the same proof as for the Theorem 3.2 where for the a priori bound one can use∫ T

0

〈g,G〉 dt ≤ α

2

∫ T

0

‖g(t)‖2V dt+
1

2α

∫ T

0

‖G(t)‖2V ′ dt,

and for the approximation scheme one can define

ε−1 (gk+1 − gk) = Λgk+1 +Gk, Gk :=

∫ tk+1

tk

G(s) ds).

Exercice 5.3 Generalize the existence and uniqueness result to the PDE equation

∂tg = aij ∂ijg + bi ∂ig + cg +

∫
k(t, x, y) g(t, y) dy

where aij, bi, c and k are times dependent coefficients and where aij is uniformly elliptic in the
sense that

∀ t ∈ (0, T ), ∀ ξ ∈ Rd aijξiξj ≥ α |ξ|2, α > 0.

Exercice 5.4 Let Ω ⊂ Rd an open connected set or the torus. We define

H := {u ∈ L2(Rd)d; divu = 0}, V := {u ∈ H1(Rd)d; divu = 0}.

1) - Prove that for any u0 ∈ H there existe a unique fonction u ∈ XT solution of the variationnal
equation

(5.2)

∫
Ω

u(T ) · ϕ(T )−
∫

Ω

u0 · ϕ(0) =

∫ T

0

∫
Ω

Du : Dϕdx ∀ϕ ∈ XT .

2) (a) - Prove that T ∈ D′(Ω), ∇T = 0 implies T = C.
(b) - Prove the Poincaré-Wirtinger inequality

∀ v ∈ H1(Ω) ‖u− ū‖L2 ≤ C ‖∇u‖L2 , ū :=

∫
Ω

u dx.

(c) - Assume Ω bounded and deduce the following inequality

∀T ∈ H−1(Ω), T ⊥ H, ∃p ∈ L2(Ω), T = ∇p, ‖p‖L2 ≤ C ‖T‖H−1 .

3) (a) - Assume that Ω is the torus and prove that the solution u of (5.2) satisfies∫
Ω

u(T ) · ϕ(T )−
∫

Ω

u0 · ϕ(0) =

∫ T

0

∫
Ω

Du : Dϕdx ∀ϕ ∈ L2(0, T ;H1) ∩ C([0, T ];L2).

(Ind. Define Π := I +∇ (−∆)−1 div the projector on divergence-free vectors and observe that for
any ϕ ∈ H1(Ω) and any u ∈ H there holds 〈u, ϕ〉 = 〈u,Πϕ〉).
(b) Deduce that there exists a fonction p ∈ L2((0, T )× Ω) such that u satisfies

∂tu = ∆u+∇p in (0, T )× Ω.
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