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Chapter 4 - Relative entropy

This short chapter is an introduction to entropy (or Liapunov) methods for the scattering (or linear
Boltzmann) equation first and a general class of evolution PDEs next.

1 Weighted L2 inequality for the scattering equation

The linear Boltzmann (or scattering) equation of the density function f = f(t, v) ≥ 0, t ≥ 0,
v ∈ V ⊂ Rd, writes

(1.1) ∂tf = L f :=

∫
V

(b∗f∗ − b f) dv∗,

where b = b(v, v∗) and b∗ = b(v∗, v), b ≥ 0 is a given function (the rate of collisions), or more
generally

(1.2) ∂tf = L f :=

∫
V
b∗f∗ dv∗ −B(v) f,

and we assume that there exists a function φ > 0 such that

L∗φ :=

∫
V
b φ∗ dv∗ −B φ = 0, in other words B(v) :=

∫
V

φ∗
φ
b dv∗,

with gain φ = φ(v) and φ∗ = φ(v∗). The first equation (1.1) corresponds to the choice

B(v) =

∫
V
b dv∗, φ ≡ 1,

in the second equation (1.2).

Example 1. We assume V ⊂ Rd, b∗ = k(v, v∗)F (v), for a symmetric function k(v, v∗) = k(v∗, v) >
0 and a given function 0 < F ∈ L1(V) ∩P(V). The equation (1.1) becomes

(1.3) ∂tf = L f :=

∫
V
k (F f∗ − F∗ f) dv∗.

It is worth noticing that F = F (v) is a stationary solution to the equation (1.5) since

(1.4) ∂tF = 0 = LF.

Example 2. We assume V = (0,∞), b∗ = b∗ 1v∗>v, φ(v) = v, and then the equation (1.2) becomes
the fragmentation equation

(1.5) ∂tf = L f :=

∫ ∞
0

b∗ f∗ dv∗ −B(v) f(v), B(v) :=

∫ v

0

v∗
v
b dv∗.
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Conservation law. Without any additional assumption, we immediately deduce that the equa-
tion (1.2) has one law of conservation : any solution satisfies (at least formally)∫

V
f(t, v)φ(v) dv =

∫
V
f(0, v)φ(v) dv,

because
d

dt

∫
V
f φ dv =

∫
V

(Lf)φdv =

∫
V
f (L∗φ) dv = 0.

Liapunov/entropy functional. We assume that there exists a function 0 < F ∈ L1(V)∩P(V)
which is a stationary solution

LF =

∫
V
b∗F∗ dv∗ −

∫
V

φ∗
φ
b dv∗ F = 0,

what it is the situation in Example 1. Then any solution f to the equation (1.2) satisfies (at least
formally)

(1.6)
d

dt

∫
V
f2

φ

F
dv = 2

∫
V

(L f)
f φ

F
dv = −D2(f)

with

(1.7) D2(f) :=

∫
V

∫
V
b∗ F φ

( f∗
F∗
− f

F

)2
dvdv∗.

We then say that

H2(f) :=

∫
V
f2

φ

F
dv

is a Liapunov (or generalized relative entropy) for the equation (1.2).

To prove (1.6) in the case φ = 1, we perform the following computations

(Lf, f/F ) =

∫ ∫
b∗F∗

f∗
F∗

f

F
− 1

2

∫ ∫
b F

f2

F 2
− 1

2

∫ ∫
b F

f2

F 2

=

∫ ∫
b∗F∗

f∗
F∗

f

F
− 1

2

∫ ∫
b∗ F∗

(f∗)
2

(F∗)2
− 1

2

∫ ∫
b∗ F∗

f2

F 2

= −1

2

∫ ∫
b∗F∗

(
f∗
F∗
− f

F

)2

,

where in order to pass from the first to the second line we have just changed the name of the
variables in the second term ∫ ∫

b F
f2

F 2
=

∫ ∫
b∗ F∗

(f∗)
2

(F∗)2

and we have used the fact that F is a stationary solution in the third term∫
b F dv∗ =

∫
b∗ F∗ dv∗.

For a general law of conservation φ, the computation is almost the same

(Lf, φ f/F ) =

∫ ∫
b∗ φF∗

f∗

F∗

f

F
−

1

2

∫ ∫
b φ∗ F

f2

F 2
−

1

2

∫ ∫
b φ∗ F

f2

F 2

=

∫ ∫
b∗ φF∗

f∗

F∗

f

F
−

1

2

∫ ∫
b∗ φF∗

(f∗)2

(F∗)2
−

1

2

∫ ∫
b∗ φF∗

f2

F 2

= −
1

2

∫ ∫
b∗ φF∗

(
f∗

F∗
−
f

F

)2

.
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A theorem. We now consider the same situation as in example 1, and we assume furthermore
that there exist some constants 0 < k0 ≤ k1 <∞ such that

∀ v, v∗ ∈ V, k0 ≤ k(v, v∗) ≤ k1.

We consider the scattering equation (1.1) in that case, that we complement with an initial condition

f(0, v) = f0(v) ∀ v ∈ V.

Theorem 1.1 Assume f0 ∈ L1(V), V = Rd.
(1) There exists a unique global solution f ∈ C([0,∞);L1(V)) to the scattering equation (1.1). That
solution is mass conserving ∫

V
f(t, v) dv =

∫
V
f0(v) dv =: 〈f0〉

and satisfies the maximum principle

f0 ≥ 0 ⇒ f(t, .) ≥ 0 ∀ t ≥ 0.

(2) In the large time asymptotic, the solution converges to the unique stationary solution with same
mass

‖f(t, .)− 〈f0〉F‖E ≤ e−k0t/2 ‖f0 − 〈f0〉F‖E ,

where ‖ · ‖E is the Hilbert norm defined by

‖f‖2E :=

∫
V
f2 F−1 dv.

For the proof of point (1) we refer to the precedent chapters where the needed arguments have
been introduced. We are going to give now the (formal) proof of point (2).

Functional inequality and long time behaviour. The following functional inequality holds
true : for any function f ∈ E, we have

(1.8) D2(f) ≥ k0‖f − 〈f〉F‖2E .

It is worth observing that the Cauchy-Schwarz inequality implies

|〈f〉| ≤
∫
V

(|f |F−1/2)F 1/2 ≤
(∫
V
f2F−1

)1/2(∫
V
F
)1/2

= ‖f‖E ,

so that the mass 〈f〉 is well defined if f ∈ E. Let us accept for a while the inequality (1.8) and
let us prove then the convergence result (2) in Theorem 1.1. Thanks to (1.6), the fact that F is a
stationary solution, the fact that f is mass conserving and (1.8), we have

d

dt
‖f − 〈f〉F‖2E = −D2(f) ≤ −k0‖f − 〈f〉F‖2E ,

and we conclude by applying the Gronwall lemma.

Let us prove now the functional inequality (1.8). From the lower bound assumption made on k,
the following first inequality holds

D2(f) :=

∫ ∫
b∗ F∗

(
f∗
F∗
− f

F

)2

≥ k0
∫ ∫

F F∗

(
f∗
F∗
− f

F

)2

.

On the other hand, by integrating (in the v∗ variable) the identity

f F∗ − f∗ F =

(
f

F
− f∗
F∗

)
F F∗,

we get

g = F

∫
V

(
f

F
− f∗
F∗

)
F∗ dv∗
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with g = f − 〈f〉F . Thanks to the Cauchy-Schwarz inequality, we deduce

g2 ≤
∫
V

(
f

F
− f∗
F∗

)2

F F∗ dv∗ ×
∫
V
F F∗ dv∗,

so that we get the second inequality∫
V

g2

F
dv ≤

∫
V

∫
V

(
f

F
− f∗
F∗

)2

F F∗ dv∗ dv.

We conclude by gathering these two estimates.

2 Relative entropy for linear and positive PDE

We consider the general PDE evolution equation

∂tf = ∆f − a · ∇f + cf +

∫
b f∗,

∫
b f∗ :=

∫
b(x, x∗)f(x∗) dx∗, b ≥ 0,

and we establish that if g > 0 is another solution

∂tg = ∆g − a · ∇g + cg +

∫
b g∗

and if φ ≥ 0 is a solution to the dual evolution problem

−∂tφ = ∆φ+ div(aφ) + c φ+

∫
b∗ φ∗,

∫
b∗ φ∗ :=

∫
b(x∗, x)φ(x∗) dx∗,

then we can exhibit a family of entropies on the form

H(f) :=

∫
Rd

H(f/g) g φ

for any convex function H.

Step 1. First order PDE. We assume that

∂tf = −a · ∇f + cf

∂tg = −a · ∇g + cg

−∂tφ = div(aφ) + c φ,

and we show that
∂t(H(X)gφ) + div(aH(X)gφ) = 0, X = f/g.

We compute

∂t(H(X)gφ) + div(aH(X)gφ)

= H ′(X)gφ [∂tX + a∇X] +H(x) [∂t(gφ) + div(agφ)]

The first term vanishes because

∂tX + a∇X =
1

g
(∂tf + a∇f)− f

g2
(∂tg + a∇g) =

1

g
(cf)− f

g2
(cg) = 0.

The second term also vanishes because

∂t(gφ) + div(agφ) = φ [∂tg + a∇g] + g [∂tφ+ div(aφ)] = φ [− cg] + g [ + cφ] = 0.
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Step 2. Second order PDE. We assume that

∂tf = ∆f + cf

∂tg = ∆g + cg

−∂tφ = ∆φ+ c φ,

and we show

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) = −H ′′(X)gφ|∇X|2.

We first observe that

∆X = div
(∇f
g
− f 1

g2
∇g
)

=
∆f

g
− 2∇f ∇g

g2
+ 2 f

|∇g|2

g3
− f

g2
∆g

=
∆f

g
− f ∆g

g2
− 2
∇g
g
· ∇X,

which in turn implies

∂tX −∆X = 2
∇g
g
· ∇X.

We then compute

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) =

= (∂tH(X)) gφ+H(X) ∂t(gφ)− φ div[gH ′(X)∇X +H(X)∇g] + gH(X)∆φ

= H ′(X)gφ
{
∂tX −∆X − 2

∇g
g
· ∇X

}
− gφH ′′(X) |∇X|2 +H(X) [∂t(gφ)− φ∆g + g∆φ]

= −gφH ′′(X) |∇X|2,

since the first term and the last term independently vanish.

Step 3. Integral equation. We assume that

∂tf = cf +

∫
bf∗

∂tg = cg +

∫
bg∗

−∂tφ = c φ+

∫
b∗φ∗,

with the notations∫
bψ∗ :=

∫
b(x, x∗)ψ(x∗) dx∗,

∫
b∗ψ∗ :=

∫
b(x∗, x)ψ(x∗) dx∗,

and we show

∂t(H(X)gφ) +

∫
H(X)gb∗φ∗ −

∫
bH(X∗)g∗φ = −

∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X ∗ −X)

}
We compute indeed

∂t(gφH(X)) = H(X)g∂tφ+H(X)φ∂tg +H ′(X)φ(∂tf −X∂tg)

= −
∫
H(X)gb∗φ∗ +

∫
bH(X∗)g∗φ

+

∫
bg∗φ

{
−H(X∗) +H(X) +H ′(X)X∗ −H ′(X)X

}
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Step 4. Conclusion. For any solutions (f, g, φ) to the system of (full) equations, we have summing
up the three computations

∂t(gφH(X)) +

+div(aH(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) +

∫
bH(X∗)g∗φ−

∫
H(X)gb∗φ∗

= −gφH ′′(X) |∇X|2 −
∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X ∗ −X)

}
.

Since when we integrate in the x variable the term on the second line vanishes, we find out

d

dt
H(f) = −DH(f)

with

DH(f) :=

∫
gφH ′′(X) |∇X|2 +

∫ ∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X ∗ −X)

}
≥ 0.
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