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Abstract. The present paper deals with the parabolic-elliptic Keller-Segel equation in the plane

in the general framework of weak (or “free energy”) solutions associated to initial datum with
finite mass M , finite second moment and finite entropy. The aim of the paper is threefold:

(1) We prove the uniqueness of the “free energy” solution on the maximal interval of existence

[0, T ∗) with T ∗ = ∞ in the case when M ≤ 8π and T ∗ < ∞ in the case when M > 8π. The
proof uses a DiPerna-Lions renormalizing argument which makes possible to get the “optimal

regularity” as well as an estimate of the difference of two possible solutions in the critical L4/3

Lebesgue norm similarly as for the 2d vorticity Navier-Stokes equation.
(2) We prove immediate smoothing effect and, in the case M < 8π, we prove Sobolev norm

bound uniformly in time for the rescaled solution (corresponding to the self-similar variables).

(3) In the case M < 8π, we also prove weighted L4/3 linearized stability of the self-similar
profile and then universal optimal rate of convergence of the solution to the self-similar profile.

The proof is mainly based on an argument of enlargement of the functional space for semigroup

spectral gap.
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1. Introduction

The aim of the paper is to prove uniqueness of “free energy” weak solutions to the the so-called
parabolic-elliptic Keller-Segel equation in the plane associated to initial datum with finite mass
M ≥ 0, finite polynomial moment and finite entropy, and in the subcritical case M < 8π to prove
optimal rate of convergence to self-similarity of these solutions. In [19] our analysis will be extended
to the parabolic-parabolic Keller-Segel equation in a similar context.

The Keller-Segel (KS) system for chemotaxis describes the collective motion of cells that are
attracted by a chemical substance that they are able to emit ([34, 27]). We refer to [8] and the
references quoted therein for biological motivation and mathematical introduction. In this paper
we are concerned with the parabolic-elliptic KS model in the plane which takes the form

∂tf = ∆f −∇(f ∇c) in (0,∞)× R2,(1.1)

c := −κ̄ = −κ ∗ f in (0,∞)× R2,
1
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with κ := 1
2π log |z|, so that in particular

−∇c = K̄ := K ∗ f, K := ∇κ =
1

2π

z

|z|2
.

Here t ≥ 0 is the time variable, x ∈ R2 is the space variable, f = f(t, x) ≥ 0 stands for the
mass density of cells while c = c(t, x) ∈ R is the chemo-attractant concentration which solves the
(elliptic) Poisson equation −∆c = f in (0,∞)× R2.

The evolution equation (1.1) is complemented with an initial condition

(1.2) f(0, .) = f0 in R2,

where throughout this paper, we shall assume that

(1.3) 0 ≤ f0 ∈ L1
2(R2), f0 log f0 ∈ L1(R2).

Here and below we define the weight function 〈x〉 := (1+ |x|2)1/2 and the weighted Lebesgue space
Lpk(R2) for 1 ≤ p ≤ ∞, k ≥ 0, by

Lpk(R2) := {f ∈ L1
loc(R2); ‖f‖Lpk := ‖f 〈x〉k‖Lp <∞},

as well as L1
+(R2) the cone of nonnegative functions of L1(R2).

The fundamental identities are that any solution to the Keller-Segel equation (1.1) satisfies at
least formally the conservation of mass

(1.4) M(t) :=

∫
R2

f(t, x) dx =

∫
R2

f0(x) dx =: M,

the second moment equation

(1.5) M2(t) :=

∫
R2

f(t, x) |x|2 dx = C1(M) t+M2,0, M2,0 :=

∫
R2

f0(x) |x|2 dx,

C1(M) := 4M
(
1− M

8π

)
, and the free energy-dissipation of the free energy identity

(1.6) F(t) +

∫ t

0

DF (s) ds = F0,

where the free energy F(t) = F(f(t)), F0 = F(f0) is defined by

F = F(f) :=

∫
R2

f log fdx+
1

2

∫
R2

f κ̄ dx,

and the dissipation of free energy is defined by

DF = DF (f) :=

∫
R2

f |∇(log f) +∇κ̄|2 dx.

It is worth emphasizing that the critical mass M∗ := 8π is a threshold because one sees from
(1.5) that there does not exist nonnegative and mass preserving solution when M > 8π (the
identity (1.5) would imply that the second moment becomes negative in a finite time shorter than
T ∗∗ := 2πM2,0/[M(8π −M)]).

On the one hand, in the subcritical case M < 8π, thanks to the logarithmic Hardy-Littlewood
Sobolev inequality (see e.g. [3, 18])

(1.7) ∀ f ≥ 0,

∫
R2

f(x) log f(x) dx+
2

M

∫ ∫
R2×R2

f(x) f(y) log |x− y| dxdy ≥ C2(M),

with C2(M) := M (1 + log π − logM), one can easily check (see [8, Lemma 7]) that for subcritical
mass M < 8π, there holds

(1.8) H := H(f) =

∫
f log f ≤ C3(M)F + C4(M),
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with C3(M) := 1/
(
1 − M

8π

)
, C4(M) := C3(M)C2(M)M/(8π). Then from (1.8) and the very

classical functional inequality (see for instance [8, Lemma 8])

(1.9) H+ := H+(f) =

∫
f(log f)+ ≤ H+

1

4
M2 + C5(M),

with C5(M) := 2M log(2π) + 2/e, one concludes that (1.4), (1.5) and (1.6) provide a convenient
family of a priori estimates in order to define weak solutions, namely

H+(f(t)) +M2(f(t)) + C3(M)

∫ t

0

DF (f(s)) ds ≤(1.10)

≤ C3(M)F0 +
5

4
M2,0 + 2C1(M)t+ C4(M) + C5(M),

where the RHS term is finite under assumption (1.3) on f0, since

F0 ≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) (log |x− y|)+ dxdy(1.11)

≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) |x− y|2 dxdy ≤ H0 +

1

π
M M2,0,

with H0 := H(f0). In other words, we have

(1.12) AT (f) := sup
t∈[0,T ]

{
H+(f(t)) +M2(f(t))}+

∫ T

0

DF (f(s)) ds ≤ C(T ) ∀T ∈ (0, T ∗)

with T ∗ = +∞ and a constant C(T ) which depends on M , M2,0, H0 and the final time T .

On the other hand, in the critical case M = 8π and the supercritical case M > 8π, the
above argument using the logarithmic Hardy-Littlewood Sobolev inequality (1.7) fails, but one can
however prove that (1.12) holds with T ∗ = +∞ when M = 8π and that (1.12) holds with some
T ∗ ∈ (0, T ∗∗] when M > 8π (see [6] for details as well as Remark 2.3 below).

Definition 1.1. For any initial datum f0 satisfying (1.3) and any final time T ∗ > 0, we say that

(1.13) 0 ≤ f ∈ L∞(0, T ;L1(R2)) ∩ C([0, T );D′(R2)), ∀T ∈ (0, T ∗),

is a weak solution to the Keller-Segel equation in the time interval (0, T ∗) associated to the initial
condition f0 whenever f satisfies (1.4), (1.5) and

(1.14) F(t) +

∫ t

0

DF (s) ds ≤ F0 ∀ t ∈ (0, T ∗),

as well as the Keller-Segel equation (1.1)-(1.2) in the distributional sense, namely

(1.15)

∫
R2

f0(x)ϕ(0, x) dx =

∫ T∗

0

∫
R2

f(t, x)
{

(∇x(log f) + K̄) · ∇xϕ− ∂tϕ
}
dxdt

for any ϕ ∈ C2
c ([0, T )× R2).

It is worth emphasizing that thanks to the Cauchy-Schwarz inequality, we have∫
R2

f |∇x(log f) + K̄| dx ≤M1/2D1/2
F ,

and the RHS of (1.15) is then well defined thanks to (1.10).

This framework is well adapted for the existence theory.

Theorem 1.2. For any initial datum f0 satisfying (1.3) there exists at least one weak solution on
the time interval (0, T ∗) in the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2) with
T ∗ = +∞ when M ≤ 8π and T ∗ < +∞ when M > 8π.
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We refer to [8, Theorem 1] for the subcritical case M ∈ (0, 8π) and to [6] for the critical and
supercritical cases M ≥ 8π.

Our first main result establishes that this framework is also well adapted for the well-posedness
issue.

Theorem 1.3. For any initial datum f0 satisfying (1.3) there exists at most one weak solution in
the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2).

Theorem 1.3 improves the uniqueness result proved in [20] in the class of solutions f ∈ C([0, T ];
L1

2(R2)) ∩ L∞((0, T )× R2) which can be built under the additional assumption f0 ∈ L∞(R2) (see
also [24] where a uniqueness result is established for a related model). Our proof follows a strategy
introduced in [23] for the 2D viscous vortex model. It is based on a DiPerna-Lions renormalization
trick (see [21]) which makes possible to get the optimal regularity of solutions for small time and
then to follow the uniqueness argument introduced by Ben-Artzi for the 2D viscous vortex model
(see [4, 10]).

Next we consider the smoothness issue and the long time behaviour of solution for subcritical
mass issue. For that last purpose it is convenient to work with self-similar variables. We introduce
the rescaled functions g and u defined by

(1.16) g(t, x) := R(t)−2f(logR(t), R(t)−1x), u(t, x) := c(logR(t), R(t)−1x),

with R(t) := (1 + 2t)1/2. The rescaled parabolic-elliptic KS system reads

∂tg = ∆g +∇(gx− g∇u) in (0,∞)× R2,(1.17)

u = −κ ∗ g in (0,∞)× R2.

Our second main result concerns the regularity of the solutions.

Theorem 1.4. For any initial datum f0 satisfying (1.3) the associated solution f is smooth for
positive time, namely f ∈ C∞((0, T ∗)×R2), and satisfies the identity (1.6) on (0, T ∗). Moreover,
when M < 8π, the rescaled solution g defined by (1.16) satisfies

(1.18) sup
t≥0

Mk(g(t)) ≤ max((k − 1)k/2M,Mk(f0)) ∀ k ≥ 2,

as well as

(1.19) sup
t≥ε
‖g(t, .)‖W 2,∞ ≤ C ∀ ε > 0,

for some explicit constant C which depends on ε, M , F0 and M2,0.

It is worth mentioning that Lp bound on g for positive time and for p ∈ [1,∞) was known but non
uniformly in time and as an a priori bound, while (1.19) is proved as an a posteriori estimate. Our
proof is merely based on the same estimates as those established in [8], on a bootstrap argument
and on the remark that the rescaled free energy provides uniform in time estimates.

From now on in this introduction, we definitively restrict ourself to the subcritical case M < 8π
and we focus on the long time asymptotic of the solutions. It has been proved in [8, Theorem 1.2]
that the solution given by Theorem 1.2 satisfies

(1.20) g(t, .)→ G in L1(R2) as t→∞,

where G is a solution to the rescaled stationary problem

∆G+∇(Gx−G∇U) = 0 in R2,(1.21)

0 ≤ G,
∫
R2

Gdx = M, U = −K ∗G.

Moreover, the uniqueness of the solution G to (1.21) has been proved in [8, 5], see also [15, 16, 17],
so that G = GM stands for the unique self-similar profile with same mass M as f0 and it is given
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in implicit form by

(1.22) G = M
e−G∗κ−|x|

2/2∫
R2 e−G∗κ−|x|

2/2 dx

and that U = −G ∗ κ satisfies

(1.23) ∆U +
M∫

R2 eU−|x|
2/2 dx

eU−|x|
2/2 = 0.

Our third main result is about the convergence to self-similarity.

Theorem 1.5. For any M ∈ (0, 8π), and any finite real numbers F0, M4,0, there exists a (non
explicit) constant C such that for any initial datum f0 satisfying (1.3) with

M0(f0) = M, M4(f0) ≤M4,0, F(f0) ≤ F0,

the associated solution in self-similar variables g defined by (1.16)-(1.1) satisfies the optimal rate
convergence

‖g(t, .)−G‖L4/3 ≤ C e−t ∀ t ≥ 1,

where G stands for the self-similar profile with same mass M as f0.

Let us emphasize that the strong assumption M4(f0) < ∞ can be weaken. For instance,
assuming only Mk′(f0) < ∞ for some k′ > 3, the same proof leads to the same optimal rate,
and with the sole assumption M2(f0) < ∞, one can get a not optimal rate of convergence to the
self-similar profile in the sense that ‖g(t, .)−G‖L4/3 ≤ Cη e−ηt for all t ≥ 1 and for some η ∈ (0, 1),
Cη ∈ (0,∞).

For some particular class of initial data (essentially for an initial datum f0 which is close enough

to the self-similar profile G in the sense of the strongly confining norm L2(eν |x|
2

dx), ν > 0) it
has been proved that the associated solution converges with exponential rate when M is small
enough in [7] and for any M ∈ (0, 8π) in [16, 17]. In these last works, the linear stability of the
linearized rescaled equation around the self-similar profile is established and that is the cornerstone
of these nonlinear stability results. Our proof follows a strategy of “enlarging the functional space
of semigroup spectral gap” initiated in [32] for studying long time convergence to the equilibrium
for the homogeneous Boltzmann equation, and then developed in [30, 25, 12, 11, 29] (see also [31])
in the framework of kinetic equations and growth-fragmentation equations. More precisely, taking
advantage of the linear stability of the linearized rescaled equation established in [17] in the small

space L2(eν |x|
2

dx) we prove that the same result holds in the more larger space L
4/3
k , k > 3/2.

Then gathering the long time convergence (without rate) to self-similarity (1.20) with the estimates

of Theorem 1.4, we get that any solution reaches a small L
4/3
k -neighborhood of G in finite time

and we conclude to Theorem 1.5 by nonlinear stability in L
4/3
k ∩ L1

4.

Let us end the introduction by describing the plan of the paper. In Section 2 we present
some functional inequalities which will be useful in the sequel of the paper, we establish several a
posteriori bounds satisfied by any weak solution, and we prove Theorem 1.4. Section 3 is dedicated
to the proof of the uniqueness result stated in Theorem 1.3. In Section 4 we prove the long time
behaviour result as stated in Theorem 1.5.

Acknowledgments. The authors gratefully acknowledge the support of the MADCOF ANR
project (ANR-08-BLAN-0220). E.G. would like to thank the CEREMADE at Université Paris-
Dauphine for its kind hospitality in 2012 and 2013 where the work has been initiated and mostly
written. He is also grateful to the MADCOF ANR project for the two several months grants that
it provided to him. S.M. would like to thank the mathematics department of the Universidad de
La Habana for its hospitality in summer 2013 where the work has been concluded.
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2. A posteriori estimates - Proof of Theorem 1.4

We start by presenting some elementary functional inequalities which will be of main importance
in the sequel. The two first estimates are picked up from [23, Lemma 3.2] but are probably classical
and the third one is a variant of the Gagliardo-Niremberg-Sobolev inequality.

Lemma 2.1. For any 0 ≤ f ∈ L1(R2) with finite mass M and finite Fisher information

I = I(f) :=

∫
R2

|∇f |2

f
,

there holds

∀ p ∈ [1,∞), ‖f‖Lp(R2) ≤ CpM1/p I(f)1−1/p,(2.1)

∀ q ∈ [1, 2), ‖∇f‖Lq(R2) ≤ CqM1/q−1/2 I(f)3/2−1/q.(2.2)

For any 0 ≤ f ∈ L1(R2) with finite mass M , there holds

∀ p ∈ [2,∞) ‖f‖Lp+1(R2) ≤ CpM1/(p+1) ‖∇(fp/2)‖2/(p+1)
L2 .(2.3)

For the sake of completeness we give the proof below.

Proof of Lemma 2.1. We start with (2.2). Let q ∈ [1, 2) and use the Hölder inequality:

‖∇f‖qLq =

∫ ∣∣∣∣∇f√f
∣∣∣∣q fq/2 ≤ (∫ |∇f |2f

)q/2(∫
fq/(2−q)

)(2−q)/2

= I(f)q/2 ‖f‖q/2
Lq/(2−q)

.

Denoting by q∗ = 2q/(2 − q) ∈ [2,∞) the Sobolev exponent associated to q in dimension 2, we
have, thanks to a standard interpolation inequality and to the Sobolev inequality,

‖f‖Lq/(2−q) = ‖f‖Lq∗/2 ≤ ‖f‖
1/(q∗−1)
L1 ‖f‖(q

∗−2)/(q∗−1)

Lq∗
(2.4)

≤ Cq ‖f‖1/(q
∗−1)

L1 ‖∇f‖(q
∗−2)/(q∗−1)

Lq .

Gathering these two inequalities, it comes

‖∇f‖Lq ≤ Cq I(f)1/2 ‖f‖1/(2(q∗−1))
L1 ‖∇f‖(q

∗−2)/(2(q∗−1))
Lq ,

from which we deduce (2.2).

We now establish (2.1). For p ∈ (1,∞), write p = q∗/2 = q/(2− q) with q := 2p/(1 + p) ∈ [1, 2)
and use (2.4) and (2.2):

‖f‖Lp ≤ Cp ‖f‖
1

q∗−1
+ q∗−2
q∗−1

( 1
q−

1
2 )

L1 I(f)
q∗−2
q∗−1

( 3
2−

1
q ),

from which one easily concludes.

We verify (2.3). From the Sobolev inequality and the Cauchy-Schwarz inequality, we have

‖w2(1+1/p)‖L1(R2) = ‖w1+1/p‖2L2(R2) ≤ ‖∇(w1+1/p)‖2L1(R2)

≤ (1 + 1/p)2 ‖w1/p‖2L2 ‖∇w‖2L2(R2)(2.5)

and we conclude to (2.3) by taking w := fp/2. �
The proof of (1.19) in Theorem 1.4 is split in several steps that we present as some intermediate

autonomous a posteriori bounds.

Lemma 2.2. For any weak solution f and any finale time T ∈ (0, T ∗) there exists a constant
C := C(M,AT (f)) such that

(2.6)
1

2

∫ T

0

I(f(t)) dt ≤ C.

In particular, in the subcritical case M < 8π the constant C only depends on M , H0, M2,0 and
T ∈ (0,∞).
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Proof of Lemma 2.2. We write

DF (f) =

∫
f |∇(log f + κ̄)|2

≥
∫
f |∇ log f |2 + 2

∫
∇f · ∇κ̄ = I(f)− 2

∫
f2.

On the other hand, for any A > 1, using the Cauchy-Schwarz inequality and the inequality (2.1)
for p = 3, we have ∫

f2 1f≥A ≤
(∫

f 1f≥A

)1/2(∫
f3
)1/2

≤
(∫

f
(log f)+

logA

)1/2(
C3

3 M I(f)2
)1/2

,

from what we deduce for A = A(M,H+(f)) large enough, and more precisely taking A such that
logA = 16H+(f)C3

3 M ,

(2.7)

∫
f2 1f≥A ≤ C3/2

3 M1/2 H+(f)1/2

(logA)1/2
I(f) ≤ 1

4
I(f).

Together with the first estimate, we find

1

2
I(f) ≤ DF (f) + 2

∫
f2 1f≤A

≤ DF (f) + 2M exp(16H+(f)C3
3 M),

and we conclude thanks to (1.12) in the general case and thanks to (1.4)–(1.11) in the subcritical
case M < 8π. �

Remark 2.3. As we have already mentioned we are not able to use the logarithmic Hardy-
Littlewood Sobolev inequality (1.7) in the critical and supercritical cases. However, introducing
the Maxwell function M := M (2π)−1 exp(−|x|2/2) of mass M and the relative entropy

H(h|M ) :=

∫
R2

(h log(h/M )− h+ M ) dx

one classically shows that any solution f to the Keller-Segel equation (1.1) formally satisfies

d

dt
H(f(t)|M ) = −I(f(t)) +

∫
f(t)2 + 2M

≤ −I(f(t)) +MA+ C
3/2
3 M1/2 H+(f(t))1/2

(logA)1/2
I(f(t)) + 2M (∀A > 0)

= −I(f(t)) +M exp
(
4C3

3 M H+(f(t))) + 2M

= −I(f(t)) +M exp
{
C6H(f(t)|M )

}
+ 2M,

for a constant C6 = C6(M), where we have used (2.7), we have made the choice logA :=
4C3

3 M H+(f(t)) and we have used a variant of inequality (1.9). This differential inequality pro-
vides a local a priori estimate on the relative entropy which is the key estimate in order to prove
local existence result for supercritical mass as well as global existence result for critical mass in [6].

As an immediate consequence of Lemmas 2.1 and 2.2, we have

Lemma 2.4. For any T ∈ (0, T ∗), any weak solution f satisfies

f ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (1,∞),(2.8)

K̄ ∈ Lp/(p−1)(0, T ;L2p/(2−p)(R2)), ∀ p ∈ (1, 2),(2.9)

∇xK̄ ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (2,∞).(2.10)
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Proof of Lemma 2.4. The bound (2.8) is a direct consequence of (2.6) and (2.1). The bound
(2.9) then follows from the definition of K, the Hardy-Littlewood-Sobolev inequality (see e.g. [28,
Theorem 4.3])

(2.11)
∥∥∥ 1

|z|
∗ f
∥∥∥
L2r/(2−r)(R2)

≤ Cr ‖f‖Lr(R2), ∀ r ∈ (1, 2),

with r = p and (2.8). Finally, from (2.6) and (2.2) we have

∇f ∈ L
2q

3q−2 (0, T ;Lq(R2)), ∀ q ∈ (1, 2).

Applying the above Hardy-Littlewood-Sobolev inequality to ∇xK̄ = K ∗ (∇xf) with r = q, we get

∇xK̄ ∈ L
2q

3q−2 (0, T ;L
2q

2−q (R2)), ∀ q ∈ (1, 2),

which is nothing but (2.10). �

Lemma 2.5. Any weak solution f satisfies∫
R2

β(ft1) dx+

∫ t1

t0

∫
R2

β′′(fs) |∇fs|2 dxds(2.12)

≤
∫
R2

β(ft0) dx+

∫ t1

t0

∫
R2

(β′(fs) f
2
s − β(fs) fs)+ dxds,

for any times 0 ≤ t0 ≤ t1 < T ∗ and any renormalizing function β : R → R which is convex,
piecewise of class C1 and such that

|β(u)| ≤ C (1 + u (log u)+), (β′(u)u2 − β(u)u)+ ≤ C (1 + u2) ∀u ∈ R.

Proof of Lemma 2.5. We write

∂tf −∆xf = K̄ · ∇xf + f2,

and we split the proof into three steps.

Step 1. Continuity. Consider a mollifier sequence (ρn) on R2, that is ρn(x) := n2ρ(nx), 0 ≤ ρ ∈
D(R2),

∫
ρ = 1, and introduce the mollified function fnt := ft∗xρn. Clearly, fn ∈ C([0, T ), L1(R2)).

Using (2.8) and (2.10), a variant of the commutation Lemma [21, Lemma II.1 and Remark 4] tells
us that

(2.13) ∂tf
n − K̄ · ∇xfn −∆xf

n = rn,

with

rn := (f2) ∗ ρn + (K̄ · ∇xf) ∗ ρn − K̄ · ∇xfn → f2 in L1(0, T ;L1
loc(R2)).

The important point here is that f2, |∇xK̄| f ∈ L1((0, T )× R2), thanks to (2.10) and (2.8).
As a consequence, the chain rule applied to the smooth function fn reads

(2.14) ∂tβ(fn) = K̄ · ∇xβ(fn) + ∆xβ(fn)− β′′(fn) |∇xfn|2 + β′(fn) rn,

for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a

compact set. Because the equation (2.13) with K̄ fixed is linear, the difference fn,k := fn − fk
satisfies (2.13) with rn replaced by rn,k := rn − rk → 0 in L1(0, T ;L1

loc(R2) and then also (2.14)
(with again fn and rn changed in fn,k and rn,k). In that last equation, we choose β(s) = β1(s)
where βA(s) = s2/2 for |s| ≤ A, βA(s) = A |s|−A2/2 for |s| ≥ A and we obtain for any non-negative
function χ ∈ C2

c (Rd),∫
R2

β1(fn,k(t, x))χ(x) dx ≤

≤
∫
R2

β1(fn,k(0, x))χ(x) dx+

∫ t

0

∫
R2

|rn,k(s, x)|χ(x) dxds

+

∫ t

0

∫
R2

β1(fn,k(s, x))
∣∣∣−f χ+ ∆χ(x)− K̄(s, x) · ∇χ(x)

∣∣∣ dxds,
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where we have used that divx K̄ = f , that |β′1| ≤ 1 and that β′′1 ≥ 0. Because f0 ∈ L1, we have
fn,k(0) → 0 in L1(R2), and we deduce from the previous inequality, the convergence rn,k → 0
in L1(0, T ;L1

loc(R2)), the convergence β1(fn,k)K̄ → 0 in L1(0, T ;L1
loc(R2)) (because β1(s) ≤ |s|,

because fn,k → 0 in L3(0, T, L3/2(R2)) by (2.8) with p = 3/2 and because K̄ ∈ L6(0, T ;L3(R2)) ⊂
L3/2(0, T ;L3(R2)) by (2.9) with p = 6/5) and the convergence β1(fn,k)f → 0 in L1(0, T ;L1(R2))
that

sup
t∈[0,T ]

∫
R2

β1(fn,k(t, x))χ(x) dx −→
n,k→∞

0.

Since χ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R2)) so that fn → f̄ in

C([0, T ];L1
loc(R2)), ∀T > 0. Together with the convergence fn → f in C([0,∞);D′(R2)) and the

a priori bound (1.10), we deduce that f = f̄ and

(2.15) fn → f in C([0, T ];L1(R2)), ∀T > 0.

Step 2. Linear estimates. We come back to (2.14), which implies, for all 0 ≤ t0 < t1, all
χ ∈ C2

c (R2), ∫
R2

β(fnt1)χdx+

∫ t1

t0

∫
R2

β′′(fns ) |∇xfns |2 χdxds =

∫
R2

β(fnt0)χdx(2.16)

+

∫ t1

t0

∫
R2

{
β′(fns ) rn χ+ β(fns ) ∆χ− β(fns ) divx(K̄χ)

}
dxds.

Choosing 0 ≤ χ ∈ C2
c (R2) and β ∈ C1(R) ∩W 2,∞

loc (R) such that β′′ is non-negative and vanishes
outside of a compact set, and passing to the limit as n→∞, we get∫

R2

β(ft1)χdx+

∫ t1

t0

∫
R2

β′′(fs) |∇xfs|2 χdxds ≤
∫
R2

β(ft0)χdx(2.17)

+

∫ t1

t0

∫
R2

{[
β′(f) f2 − β(f) f

]
χ+ β(f)

[
∆χ− K̄ · ∇χ

]}
dxds.

By approximating χ ≡ 1 by the sequence (χR) with χR(x) = χ(x/R), 0 ≤ χ ∈ D(R2), we see
that the last term in (2.17) vanishes and we get (2.12) in the limit R →∞ for any renormalizing
function β with linear growth at infinity.

Step 3. superlinear estimates. Finally, for any β satisfying the growth condition as in the statement
of the Lemma, we just approximate β by an increasing sequence of smooth renormalizing functions
βR with linear growth at infinity, and pass to the limit in (2.12) in order to conclude. �

Lemma 2.6. For any weak solution f , any time T ∈ (0, T ∗) and any p ≥ 2, there exists a constant
C := C(M,AT , T, p) such that for any 0 ≤ t0 < t2 ≤ T

(2.18) ‖f(t1)‖pLp +
1

2

∫ t1

t0

‖∇x(fp/2)‖2L2 dt ≤ ‖f(t0)‖pLp + C.

Proof of Lemma 2.6. We define the renormalizing function βK : R+ → R+, K ≥ 2, by

βK(u) := up if u ≤ K, βK(u) :=
Kp−1

logK
u log u if u ≥ K,

so that βK is convex and piecewise of class C1, and moreover there holds

β′K(u)u2 − βK(u)u = (p− 1)up+1 1u<K +
Kp−1

logK
u2 1u>K ,

and

β′′K(u) = p(p− 1)up−2 1u<K +
Kp−1

logK

1

u
1u>K .
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Thanks to Lemma 2.5, we may write∫
R2

βK(ft1) dx+
4

p′

∫ t1

t0

∫
R2

|∇x(fp/2)|2 1f≤K dxds+
Kp−1

logK

∫ t1

t0

∫
R2

|∇xf |2

f
1f≥K dxds

≤
∫
R2

βK(ft0) dx+ (p− 1)

∫ t1

t0

∫
R2

fp+1 1f≤K dxds+
Kp−1

logK

∫ t1

t0

∫
R2

f2 1f≥K dxds,

where p′ ∈ [1,∞] stands for the conjugate exponent associated to p ∈ [1,∞] and defined by
1/p+ 1/p′ = 1.

On the one hand, using the splitting f = (f ∧A) + (f −A)+, we have

T1 := (p− 1)

∫ t1

t0

∫
R2

fp+1 1f≤K dxds

≤ (p− 1) 2pApM T + (p− 1) 2p
∫ t1

t0

∫
R2

fp+1
A,K dxds,

where we have defined fA,K := min((f −A)+,K−A), K > A > 0. Moreover, thanks to inequality
(2.3) and the same trick as in the proof of Lemma 2.2, we have∫

R2

fp+1
A,K dx ≤ Cp

∫
R2

fA,K dx

∫
R2

|∇(f
p/2
A,K)|2 dx

≤ Cp
H+(f)

logA

∫
R2

|∇x(fp/2)|2 1f≤K dx.

As a consequence, we obtain

T1 ≤ (p− 1) 2pApM T +
1

p′

∫ t1

t0

∫
R2

|∇x(fp/2)|2 1f≤K dxds,

for A = A(p,AT ) > 1 large enough.

On the other hand, thanks to the Sobolev inequality (line 2) and the Cauchy-Schwarz inequality
(line 3), we have

T2 :=
Kp−1

logK

∫
R2

f2 1f≥K dx ≤ 4
Kp−1

logK

∫
R2

(f −K/2)2
+ dx

≤ 4
Kp−1

logK

(∫
R2

|∇(f −K/2)+| dx
)2

= 4
Kp−1

logK

(∫
R2

|∇f |1f≥K/2 dx
)2

≤ 4
Kp−1

logK

∫
R2

|∇f |2

f
1f≥K/2 dx

∫
f 1f≥K/2 dx

≤ 4
Kp−1

logK

{ 4

p2

∫
R2

|∇(fp/2)|2
( 2

K

)p−1
1f≤K +

∫
R2

|∇f |2

f
1f≥K

} H+(f)

log(K/2)

≤ 1

p′

∫
R2

|∇(fp/2)|2 1f≤K dx+
1

2

Kp−1

logK

∫
R2

|∇f |2

f
1f≥K dx,

for any K ≥ K∗ = K∗(p,AT ) > max(A, 2) large enough.

All together, we have proved that for some constant A and K∗ only depending on p, T and the
initial datum f0, and for any K ≥ K∗ there holds∫

R2

βK(ft1) dx+
2

p′

∫ t1

t0

∫
R2

|∇x(fp/2)|2 1f≤K dxds ≤
∫
R2

βK(ft0) dx+ (p− 1) 2pApM T.

We conclude to (2.18) by passing to the limit K →∞. �

Lemma 2.7. Any weak solution f is smooth, that is

f ∈ C∞b ((ε, T )× R2), ∀ ε, T, 0 < ε < T < T ∗,

so that in particular it is a “classical solution” for positive time.
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Proof of Lemma 2.7. For any time t0 ∈ (0, T ) and any exponent p ∈ (1,∞), there exists t′0 ∈ (0, t0)
such that f(t′0) ∈ Lp(R2) thanks to (2.8), from what we deduce using (2.18) on the time interval
(t′0, T ) that

(2.19) f ∈ L∞(t0, T ;Lp(R2)) and ∇xf ∈ L2((t0, T )× R2).

Next, by writing K = K 1|z|≤1 +K 1|z|≥1 ∈ L3/2 +L∞, it is easily checked ‖K∗f‖L∞ ≤ C (‖f‖L3 +

‖f‖L1), and then K̄ ∈ L∞(t0, T ;L∞(R2)) because of (2.19) and (1.13). We thus have

(2.20) ∂tf + ∆xf = f2 + K̄ · ∇xf ∈ L2((t0, T )× R2), ∀ t0 > 0,

so that the maximal regularity of the heat equation in L2-spaces (see Theorem X.11 stated in [9]
and the quoted reference) provides the bound

(2.21) f ∈ L2(t0, T ;H2(R2)) ∩ L∞(t0, T ;H1(R2)), ∀ t0 > 0.

Thanks to (2.21), an interpolation inequality and the Sobolev inequality, we deduce that ∇xf ∈
Lp((t0, T ) × R2) for any 1 < p < ∞, whence K̄ · ∇xf ∈ Lp((t0, T ) × R2), for all t0 > 0. Then
the maximal regularity of the heat equation in Lp-spaces (see Theorem X.12 stated in [9] and the
quoted references) provides the bound

(2.22) ∂tf,∇xf ∈ Lp((t0, T )× R2), ∀ t0 > 0

and then the Morrey inequality implies the Holderian regularity f ∈ C0,α((t0, T ) × R2) for any
0 < α < 1, and any t0 > 0. Observing that the RHS term in (2.20) has then also an Holderian
regularity, we deduce that

∂tf, ∂xf, ∂
2
xixjf ∈ C

0,α
b ((t0, T )× R2), ∀T, t0; 0 < t0 < T < T ∗,

thanks to the classical Holderian regularity result for the heat equation (see Theorem X.13 stated
in [9] and the quoted references). We conclude by (weakly) differentiating in time and space the
equation (2.20), observing that the resulting RHS term is still a function with Holderian regularity,
applying again [9, Theorem X.13] and iterating the argument. �

Proof of Theorem 1.4. We split the proof into seven steps.

Step 1. The regularity of f has been yet established in Lemma 2.7.

Step 2. First, we claim that the free energy functional F is lsc in the sense that for any bounded
sequence (fn) of nonnegative functions of L1

2(R2) with same mass M < 8π and such that F(fn) ≤ A
and fn ⇀ f in D′(R2), there holds

(2.23) 0 ≤ f ∈ L1
2(R2) and F(f) ≤ lim inf F(fn).

The proof of (2.23) is classical (see [13, 14, 8]) and we just sketch it for the sake of completeness.
Because of (1.8) and (1.9), we have H+(fn) +M2(fn) ≤ AT for any n ≥ 1, and we may apply the
Dunford-Pettis lemma which implies that fn ⇀ f in L1(R2) weak. Now, introducing the splitting
F = Fε +Rε, Fε = H+ Vε, with

Vε(g) :=
1

2

∫ ∫
R2×R2

g(x) g(y)κ(x− y) 1|x−y|≥ε,

Rε(g) :=
1

2

∫ ∫
R2×R2

g(x) g(y)κ(x− y) 1|x−y|≤ε,

we clearly have that Fε(f) ≤ lim inf Fε(fn) because H is lsc and Vε is continuous for the L1 weak
convergence. On the other hand, using the convexity inequality uv ≤ u log u + ev ∀u > 0, v ∈ R



12 G. EGAÑA, S. MISCHLER

and the elementary inequality (log u)− ≤ u−1/2 ∀u ∈ (0, 1), we have for ε ∈ (0, 1) and λ > 1

|Rε(g)| =
1

4π

∫ ∫
R2×R2

g(x) 1g(x)≤λ g(y) (log |x− y|)− 1|x−y|≤ε

+
1

4π

∫ ∫
R2×R2

g(x) 1g(x)≥λ g(y) log(|x− y|−1) 1|x−y|≤ε

≤ λ

4π

∫
R2

g(y) dy

∫
|z|≤ε

(log |z|)− dz

+
1

4π

∫
R2

g(x) 1g(x)≥λ

∫ {
g(y) log g(y) + |x− y|−1

}
dy

≤ λ

3
M ε3/2 +

1

4π

H+(g)

log λ

{
H+(g) + 2πε

}
,

and we get that supn |Rε(fn)| → 0 as ε→ 0 from which we conclude that F is lsc. Now, we easily
deduce that the free energy identity (1.6) holds. Indeed, since f is smooth for positive time, for
any fixed t ∈ (0, T ∗) and any given sequence (tn) of positive real numbers which decreases to 0, we
clearly have

F(f(tn)) = F(t) +

∫ t

tn

DF (f(s)) ds.

Then, thanks to the Lebesgue convergence theorem, the lsc property of F and the fact that
f(tn) ⇀ f0 weakly in D′(R2), we deduce from the above free energy identity for positive time that

F(f0) ≤ lim inf
n→∞

F(f(tn)) ≤ lim
n→∞

{
F(t) +

∫ t

tn

DF (f(s)) ds
}

= F(t) +

∫ t

0

DF (f(s)) ds.

Together with the reverse inequality (1.14) we conclude to (1.6).

Step 3. From now on, we assume that M < 8π is subcritical and we prove the uniform in time
estimates (1.18) and (1.19). We start with the a priori additional moment estimate (1.18). Because
we will show the uniqueness of solution without using that additional moment estimates, these ones
are rigorously justified thanks to a standard approximation argument, see [8] for details. Denoting
g the rescaled solution (1.16) and

Mk :=

∫
R2

g(x) |x|k dx

we compute with Φ(x) = |x|k, k ≥ 2, thanks to the antisymmetry of the kernel and the Holder
inequality

d

dt
Mk = k2Mk−2 − kMk −

1

2π

∫
R2

Φ′(x)g(t, x)

∫
R2

g(t, y)
x− y
|x− y|2

dydx

= k2Mk−2 − kMk

− 1

4π

∫
R2

∫
R2

g(t, y)g(t, x) (Φ′(x)− Φ′(y))
x− y
|x− y|2

dydx

≤ k2M2/kM
1−2/k
k − kMk,

from which we easily conclude that (1.18) holds.

Step 4. Defining the rescaled free energy E(g) and the associated dissipativity of rescaled free
energy D(g) by

E(g) :=

∫
g(1 + log g) +

1

2

∫
g|x|2 +

1

4π

∫ ∫
g(x)g(y) log |x− y| dxdy

DE(g) :=

∫
g|∇(log g +

|x|2

2
+ κ ∗ g)|2,
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we have that any solution g to the rescaled equation (1.17) satisfies

(2.24)
d

dt
E(g) +DE(g) = 0 on [0,∞).

On the one hand, as for (1.8), the following functional inequality

(2.25)

∫
g log g +

1

2

∫
g|x|2 ≤ C3(M) E(g) + C4(M) ∀ g ∈ L1

+(R2)

holds, and together with (1.9), we find

(2.26)

∫
g(log g)+ +

1

4

∫
g|x|2 ≤ C3(M) E(g) + C7 ∀ g ∈ L1

+(R2),

where C7 := C4 + C5. As a consequence of (2.24) and (2.26), we get the uniform in time upper
bound on the rescaled free energy for the solution g of (1.17)

(2.27) sup
t≥0

∫
gt(log gt)+ +

1

4

∫
gt|x|2 ≤ C3(M) E(f0) + C7(M).

Step 5. As in the proof of Lemma 2.6, we easily get that the rescalled solution g of the rescaled
equation (1.17) satisfies for any p ∈ [2,∞)

d

dt
‖g‖pLp +

4

p′
‖∇(gp/2)‖2L2 = 2 (p− 1) ‖g‖pLp + (p− 1)‖g‖p+1

Lp+1

≤ 2 (p− 1)M + 3(p− 1)‖g‖p+1
Lp+1 .

Writing s = s ∧ A + (s − A)+, so that sp+1 ≤ 2p+1(s ∧ A)p+1 + 2p+1(s − A)p+1
+ , and using the

Gagliardo-Nirenberg-Sobolev type inequality (2.5) in order to get∫
(g −A)p+1

+ ≤ Cp

∫
|∇(g −A)

p/2
+ |2

∫
(g −A)+

≤ Cp

∫
|∇(gp/2)|2 H

+(g)

logA

for any A > 1, we deduce

d

dt
‖g‖pLp + ‖∇(gp/2)‖2L2 ≤ 2pM + 3p2p+1ApM + 3p2p+1

∫
(g −A)p+1

+

≤ C8(M,p,A) + Cp
H+(g)

logA
‖∇(gp/2)‖2L2 .

Taking A large enough, we obtain

(2.28)
d

dt
‖g‖pLp +

1

2
‖∇(gp/2)‖2L2 ≤ C9(M,p, E0).

Using the Nash inequality

‖w‖2L2(R2) ≤ CN ‖w‖L1(R2) ‖∇w‖L2(R2)

with w := gp/2, we conclude with

d

dt
‖g‖pLp +

1

C2
N

‖g‖−p
Lp/2
‖g‖2pLp ≤ C9(M,p, E0).

Defining u(t) := ‖g(t)‖pLp first with p = 2, so that ‖g(t)‖p/2
Lp/2

= M , we recognize the classical
nonlinear ordinary differential inequality

u′ + c u2 ≤ C on (0,∞),

for some constants c and C (which only depend on M and E0) from which we deduce the bound

(2.29) ∀ ε > 0 ∃ C = C(ε, c, C) sup
t≥ε
‖g(t)‖pLp ≤ C,
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with p = 2. In order to get the same uniform estimate (2.29) in all the Lebesgue spaces Lp,
p ∈ (2,∞), we may proceed by iterating the same argument as above with the choice p = 2k,
k ∈ N∗. Coming back to (2.28) with p = 2, we also deduce that for any ε, T > 0 there exists
C = C(ε, T, E0) so that

sup
t0≥ε

∫ t0+T

t0

‖∇g(s)‖2L2(R2) ds ≤ C.

Step 6. The function gi := ∂xig satisfies

∂tgi −∆gi −∇(xgi) = gi + 2 g gi − ∂xi(∇u · ∇g),

from which we deduce that

d

dt

∫
|gi|p + p(p− 1)

∫
|∇gi|2|gi|p−2 ≤(2.30)

≤ (3p− 2)

∫
|gi|p + 2p

∫
g |gi|p + p

∫
∂xi(∇u · ∇g) gi |gi|p−2.

For p = 2, we have for any t ≥ ε

T (t) := 4

∫
g |gi|2 + 2

∫
∂xi(∇u · ∇g) gi

≤ 4‖g‖L3 ‖gi‖2L3 + 2 ‖∇u · ∇g‖2L2 +
1

2
‖∂igi‖2L2

thanks to the Holder inequality, an integration by part and the Young inequality. Next, we have
for any t ≥ ε

T (t) ≤ C1 ‖gi‖4/3L2 ‖∇gi‖2/3L2 + C2‖∇g‖2L2 +
1

2
‖∇gi‖2L2

where we have used the classical Gagliardo-Niremberg inequality (see (85) in [9, Chapter IX] and
the quoted references)

(2.31) ‖w‖Lr(R2) ≤ CGN ‖w‖1−aLq(R2) ‖∇w‖
a
L2(R2), a = 1− q

r
, 1 ≤ q ≤ r <∞,

with w := gi, r = 3, q = 2, the uniform bound established in step 5 and the fact that ∇u =
−K ∗ g ∈ L∞((ε,∞) × R2) thanks to the same argument as in the proof of Lemma 2.7. Last, by
the Young inequality we get for any t ≥ ε

T (t) ≤ 2

3
C

3/2
1 ‖gi‖2L2 +

1

3
‖∇gi‖2L2 + C2‖∇g‖2L2 +

1

2
‖∇gi‖2L2 ,

from which we deduce from (2.30)

d

dt

∫
|gi|2 +

∫
|∇gi|2 ≤ C3 ‖∇g‖2L2 on (ε,∞),

with C3 := 4 + 2
3 C

3/2
1 + C2. Remarking that for any fixed ε ∈ (0, 1) and any t1 ≥ 2ε, we may

define t0 ∈ (t1 − ε, t1) so that

‖∇g(t0)‖2L2 = inf
(t1−ε,t1)

‖∇g‖2L2 ≤
2

ε

∫ t1

t1−ε
‖∇g(s)‖2L2 ds ≤ C4

thanks to the bound established at the end of step 5, we deduce from the above differential
inequality that

‖gi(t1)‖2L2 ≤ ‖gi(t0)‖2L2 + C3

∫ t1

t0

‖∇g(s)‖2L2 ds ≤ C5,

where again C5 := C4 + C3 C4 ε/2 only depends on ε, M and E0. Coming back to the above
differential inequality again, we easily conclude that for any ε > 0, there exists a constant Cε =
C(ε,M, E0) so that

(2.32) sup
t≥ε

{
‖∇g(t)‖2L2 +

∫ t+1

t

‖D2g(s)‖2L2

}
≤ Cε.
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Step 7. Starting from the differential inequality (2.30) for p ∈ (2,∞) and using the Morrey-Sobolev
inequalities

‖g‖L∞ ≤ C ‖g‖H2 and ‖D2u‖L∞ ≤ C ‖D2u‖H2 ≤ C ‖g‖H2 ,

we easily get

1

p

d

dt

∫
|∇g|p ≤ C (1 + ‖g‖L∞ + ‖D2u‖L∞)

∫
|∇g|p

≤ C (1 + ‖g‖H2)

∫
|∇g|p on (ε,∞),

from which we deduce for any t1 ≥ t0 ≥ ε

‖∇g(t1)‖Lp ≤ ‖∇g(t0)‖Lp exp
(∫ t1

t0

C (1 + ‖g(s)‖H2) ds
)
.

Now, arguing similarly as in step 6, we deduce from the above time integral inequality, the Sobolev
inequality ‖∇g‖Lp ≤ Cp ‖g‖H2 for p ∈ [2,∞) and the already established bound (2.32), that for
any ε > 0, there exists a constant Cε = C(ε,M, E0, p) so that

(2.33) sup
t≥ε
‖∇g(t)‖Lp ≤ Cε.

Step 8. Iterating twice the arguments we have presented in steps 6 and 7, it is no difficult to
prove

sup
t≥ε
‖g(t, .)‖W 3,p ≤ C ∀ ε > 0, p ∈ [2,∞),

for some constant C = C(ε, p,M,F0,M2,0) from which (1.19) immediately follows. �

3. Uniqueness - Proof of Theorem 1.3

We split the proof into two steps. We recall that from Theorem 1.5 we already know that
‖f‖L2 ∈ C1(0, T ) and ‖f‖Lp ∈ L∞(t0, T ) for any 0 < t0 < T < T ∗ and any p ∈ [1,∞].

Step 1. We establish our new main estimate, namely that any weak solution satisfies

(3.1) t1/4‖f(t, .)‖L4/3 → 0 as t→ 0.

First, from (1.1) and the regularity of the solution, we have

d

dt
‖f‖2L2 + 2‖∇xf‖2L2 = ‖f‖3L3 on (0, T ).

As in the proof of Lemma 2.6, we deduce that

d

dt
‖f‖2L2 +

1

2
‖∇xf‖2L2 ≤ A2M on (0, T )

for A large enough. Thanks to Nash inequality

‖f‖2L2 ≤ CM ‖∇f‖L2 ,

we thus obtain
d

dt
‖f‖2L2 + cM‖f‖4L2 ≤ A2M on (0, T ).

It is a classical trick of ordinary differential inequality to deduce that there exists a constant C
(which only depends on cM , A2M and T ) so that

(3.2) t ‖f(t, .)‖2L2 ≤ C ∀ t ∈ (0, T ).

We now prove (3.1) from (3.2) and an interpolation argument. On the one hand, we use the Holder
inequality in order to get∫

f4/3 =

∫
f2/3 〈log f〉2/3 f2/3 〈log f〉−2/3

≤
(∫

f 〈log f〉
)2/3 (∫

f2 〈log f〉−2
)1/3

,
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or in other words

(3.3) ‖f‖L4/3 ≤ C
(∫

f2 〈log f〉−2
)1/4

.

On the other hand, we observe that

t

∫
f2 〈log f〉−2 ≤ t

∫
f≤R

f2 〈log f〉−2 + t

∫
f≥R

f2 〈log f〉−2

≤ t
R

〈logR〉2

∫
f≤R

f +
t

〈logR〉2

∫
f≥R

f2

≤ t
MR

〈logR〉2
+

K

〈logR〉2
≤ M +K

〈log 1/t〉2
s→ 0,(3.4)

where we have used the mass conservation and the estimate (3.2) in the third line and we have
chosen R := t−1 in order to get the last inequality. We conclude to (3.1) by gathering (3.3) and
(3.4).

Step 3. Conclusion. We consider two weak solutions f1 and f2 to the Keller-Segel equation (1.1)
that we write in the mild form

fi(t) = et∆fi(0) +

∫ t

0

e(t−s)∆∇(Vi(s) fi(s)) ds, Vi = K ∗ fi,

where et∆ stands for the heat semigroup defined in R2 by et∆f := γt∗f , γt(x) := (2πt)−1 exp(−|x|2/(2t)).
When we assume f1(0) = f2(0), the difference F := f2 − f1 satisfies

F (t) =

∫ t

0

∇ · e(t−s)∆(V2(s)F (s)) ds+

∫ t

0

∇ · e(t−s)∆(W (s) f1(s)) ds = I1 + I2,

with W := V2 − V1. For any t > 0, we define

Zi(t) := sup
0<s≤t

s1/4 ‖fi(s)‖L4/3 , ∆(t) := sup
0<s≤t

s1/4 ‖F (s)‖L4/3 .

We observe that thanks to the Hardy-Littlewood-Sobolev inequality (2.11), we have

(3.5) ‖K ∗ g‖L4 ≤ C ‖g‖L4/3 ,

and that the regularizing effect of the heat equation reads

(3.6) ‖∇(et∆g)‖L4/3 ≤ ‖∇γt‖L4/3 ‖g‖L1 ≤ C

t3/4
‖g‖L1 .

We then compute

J1 := t1/4 ‖I1(t)‖L4/3

≤ t1/4
∫ t

0

‖∇ · e(t−s)∆(V2(s)F (s))‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖V2(s)F (s)‖L1 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖V2(s)‖L4 ‖F (s)‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖f2(s)‖L4/3 ‖F (s)‖L4/3 ds

≤
∫ t

0

C

(t− s)3/4

t1/4

s1/2
dsZ2(t) ∆(t)

=

∫ 1

0

C

(1− u)3/4

du

u1/2
Z2(t) ∆(t),

where we have used the regularizing effect of the heat equation (3.6) at the third line, the Holder
inequality at the fourth line, the Hardy-Littlewood-Sobolev inequality (3.5) at the fifth line.
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Similarly, we have

J2 := t1/4 ‖I2(t)‖L4/3

≤
∫ 1

0

C

(1− u)3/4

du

u1/2
∆(t)Z1(t).

All together, we conclude thanks to (3.1) with the inequality

∆(t) ≤ (Z1(t) + Z2(t))

∫ 1

0

du

(1− u)3/4
∆(t) ≤ 1

2
∆(t)

for t ∈ (0, T ), T > 0 small enough, which in turn implies ∆(t) ≡ 0 on [0, T ). �

4. Self-similar behaviour - Proof of Theorem 1.5

In this section we restrict ourself to the subcritical case M < 8π and we investigate the self-
similar long time behaviour of generic solutions to the KS equation or more precisely, and equiv-
alently, we investigate the long time convergence to the self-similar profile of the rescaled solution
g defined through (1.16). We start by recalling some known results on the self-similar profile and
its stability. First, we consider the stationary problem (1.21).

Theorem 4.1. For any M ∈ (0, 8π), there exists a unique nonnegative self-similar profile G = GM
of mass M with finite second moment and finite entropy of the KS equation (1.1), it is the unique
solution to the stationary problem (1.21) and it satisfies

G ∈ C∞(R2), e−(1+ε)|x|2/2+C1,ε ≤ G ≤ e−(1−ε)|x|2/2+C2,ε ,

for any ε ∈ (0, 1) and some constants Ci,ε ∈ (0,∞). Moreover, the self-similar profile G is
characterized as the unique solution to the optimization problem

(4.1) g̃ ∈ ZM , E(g̃) = min
g∈ZM

E(g),

where ZM := {g ∈ L1
+ ∩ L1

2; M0(g) = M}, as well as the unique function g ∈ ZM such that
DE(g) = 0.

That theorem follows by a combination of known results. First, as a consequence of the fact
that U := −K ∗G satisfies (1.23) together with the elementary inequality

(4.2) ∀x ∈ R2
∣∣U(x) +

M

2π
(log |x|)+

∣∣ ≤ C,
where C only depends on M , M2(G) and H(G) (see [8, Lemma 23] and the argument presented
in order to bound Rε(g) in step 2 of the proof of Theorem 1.4), and the Naito’s variant [33] of the
famous Gidas, Ni, Niremberg radial symmetry result on solutions to Poisson type equations, it has
been established in [8, Lemma 25] that U is radially symmetric. It follows that any self-similar
profile G is radially symmetric. On the other hand, the uniqueness of radially symmetric self-
similar profiles has been proved in [5, Theorem 3.1] (see also [15, Theorem 1.2]) and that concludes
the proof of the uniqueness of the solution to the stationary problem (1.21). The smoothness
property is established in [8, Lemma 25] and the behaviour for large values of |x| is a immediate
consequence of (4.2). It is clear from (2.24) that any solution to the minimization problem (4.1)
also satisfies DE(g̃) = 0 which in turns implies that log g̃+ |x|2/2+κ∗ g̃ = 0 and then g̃ is a solution
to the stationary problem (1.21).

Second, the profile G is a stationary solution to the evolution equation (1.17) and the associated
linearized equation reads

∂th = Λh := divx
(
∇h+ xh+ (K ∗G)h+ (K ∗ h)G).

We briefly explain the spectral analysis of Λ in the Hilbert space E of self-adjointeness performed
in [17]. To be consistent with our notations on weighted Lebesgue space, we define E = L2(G−1/2)



18 G. EGAÑA, S. MISCHLER

as the Hilbert space associated to scalar product (·, ·)E defined by

(f, g)E :=

∫
R2

f ḡ G−1 dx, ‖f‖2E := (f, f)E .

We also define h0,0 := ∂GM/∂M and

E⊥0 := {f ∈ E; (f, h0,0)E = 0}.

It has been shown in [17, Lemma 8] that h0,0 is the first eigenfunction of the operator Λ associated
to the first eigenvalue λ = 0. Moreover, defining the quadratic form

Q1[f ] :=

∫
R2

f2G−1 dx+

∫
R2

∫
R2

f(x) f(y)κ(x− y) dxdy,

it has been shown in [17, Lemma 10] that Q1 is nonnegative, that Q1[h0,0] = 0 and that

Q1[f ] = 0 and (f, h0,0)E = 0 imply f = 0.

As a consequence Q1[·] defines an Hilbert norm on E⊥0 which is equivalent to the initial norm
‖ · ‖E , we denote by 〈·, ·〉 the associated scalar product. That new norm is suitable for exhibiting a
spectral gap for the operator Λ and to make the stability analysis of the associated semigroup etΛ.

Theorem 4.2 ([17]). For any g ∈ E⊥0 which belongs to the domain of Λ, there holds

(4.3) 〈Λg, g〉 ≤ −Q1[g].

Moreover, there exists a∗ < −1 and C > 0 so that

(4.4) ‖etΛh− e−t Π1h−Π0h‖E ≤ C ea
∗t ‖h− (Π1 + Π0)h‖E ∀ t ≥ 0, ∀h ∈ E,

where Π0 is the (orthogonal) projection on Vect(h0,0) and Π1 is the (orthogonal) projection on
Vect(h1,1, h1,2) where h1,i := ∂xiG.

Inequality (4.3) is nothing but [17, Theorem 15] and (4.4) is a consequence of the fact the
spectrum of Λ is discrete and included in the real line and that the second (larger) eigenvalue of Λ
is −1, see [17, Section 4].

Our first main result in this section is an linearized stability result in a large space E , namely
we consider

E := L
4/3
k (R2), k > 3/2.

We consider that space because it is the larger space in terms of moment decay in which we are able
to prove a (optimal) spectral gap on the linearized semigroup. For such a general Banach space
framework and the associated spectral analysis issue, we adopt the classical notations of [35, 26]
used in [25], for more details we refer to [25, Section 2.1] and the references therein (in particular
[26, 35, 22]).

Theorem 4.3. For any k > 3/2 and any a > ā := max(a∗, a(k)), a(k) := 1/2 − k (so that
a(k) < −1) there exists a constant Ck,a so that

‖etΛh− e−t Π1h−Π0h‖E ≤ C eat ‖h−Π1h−Π0h‖E ∀ t ≥ 0, ∀h ∈ E ,

where again Π0 stands for projection on the eigenspace Vect(h0,0) associated to the eigenvalue 0
and Π1 stands for projection on the eigenspace Vect(h1,1, h1,2) associated to the eigenvalue −1.
Both operators are defined through the formula (see [25, Section 2.1] or better [26, III-(6.19)])

Πξ := − 1

2iπ

∫
|z−ξ|=r

(Λ− z)−1 dz, ξ = 0,−1, r > 0 (small enough).

The proof is a straightforward adaptation of arguments of “functional extension of semigroup
spectral gap estimates” developed in [25] for the Fokker-Planck equation.
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Lemma 4.4. For any k ≥ 0 fixed, there exists a constant Ck such that for any g ∈ D(Λ), there
holds

(4.5) 〈Λg, g†〉E ≤ Ck
∫
|g|4/3 〈x〉 43k−1 +

(1

2
− k
) ∫
|g|4/3 〈x〉 43k,

where g† := ḡ |g|−2/3 (here ḡ stands for the complex conjugate of g).

Proof of Lemma 4.4. For the sake of simplicity we assume g ≥ 0 so that g∗ = g1/3, we set ` := 4k/3,
we write

〈Λg, g†〉E =

∫
R2

(Λg) g1/3 〈x〉` = T1 + ...+ T4,

and we compute each term Ti separately. First, performing two integrations by part, we have

T1 :=

∫
R2

(∆g) g1/3 〈x〉` dx

= −1

3

∫
R2

|∇g|2 g−2/3 〈x〉` dx+
3

4

∫
R2

g4/3 ∆〈x〉` dx.

Second, performing one integration by part, we have

T2 :=

∫
R2

(2g + x · ∇g) g1/3 〈x〉` dx

=

∫
R2

{1

2
〈x〉`−2 +

(1

2
− k
)
〈x〉`

}
g4/3 dx.

Third, performing one integration by part, we have

T3 :=

∫
R2

(
2Gg + (K ∗G) · ∇g

)
g1/3 〈x〉` dx

=
5

4

∫
R2

Gg4/3 〈x〉` dx− 3

4

∫
R2

g4/3 (K ∗G) · ∇x〈x〉` dx

≤ C

∫
R2

g4/3 〈x〉`−1 dx,

for some constant C ∈ (0,∞).
Fourth and last, thanks to the Holder inequality and the Hardy-Littlewood-Sobolev inequality
(3.5), we have

T4 :=

∫
R2

(K ∗ g) · ∇Gg1/3 〈x〉` dx

≤ ‖∇G 〈x〉k‖∞ ‖g‖1/3L4/3 ‖K ∗ g‖L4 ≤ C ‖g‖4/3
L4/3 .

Gathering all these estimates, we get (4.5). �

We define

Ag := NχR g and Bg = Λg −A g.
From lemma 4.4 we easily have that for any a > a(k) there exists M and R large enough so

that B − a is dissipative in E (see [35, Chapter I, Definition 4.1]) in the sense that

〈(B − a) g, g∗〉E ≤ 0,

where g∗ := ḡ |g|−2/3 ‖g‖2/3E .

Lemma 4.5. There exists some constants C > 0 and b ∈ R so that

(4.6) ‖etBh‖L2
1
≤ C ebt

t1/2
‖h‖

L
4/3
1

∀h ∈ L4/31 , ∀ t > 0.
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Proof of Lemma 4.5. The proof of the hypercontractivity property as stated in Lemma 4.5 is
a classical consequence of the Gagliardo-Niremberg inequality. For the sake of completeness we
sketch it. Arguing similarly as in the proof of Lemma 2.6 and Lemma 4.4 and denoting ht := etBh,
we compute

1

2

d

dt

∫
|ht|2〈x〉2 = −

∫
|∇ht〈x〉|2 +

∫
ht (K ∗ ht) · ∇G〈x〉2

+

∫
|ht|2

{
1− |∇〈x〉|2 + 〈x〉2

(3

2
G−N χR

)
+ 〈x〉K ∗G · ∇〈x〉

}
.

On the one hand, thanks to the Gagliardo-Niremberg inequality (2.31) with q = 4/3, r = 2 and
a = 1/3, we know that∫

|∇(h〈x〉)|2 ≥ C−6
GN

(∫
|h 〈x〉|2

)3 (∫
|h 〈x〉|4/3

)−3

.

On the other hand, introducing the splitting K = K0+K∞ with K0 := K 1|z|≤1 and K∞ := K 1|z|≥1

and using the Holder inequality and the Young inequality, we have∫
ht (K ∗ ht) · ∇G〈x〉2 ≤ ‖∇G 〈x〉2‖L∞ ‖h‖2 ‖K0 ∗ h‖L2 + ‖∇G 〈x〉2‖L2 ‖h‖L2 ‖K∞ ∗ h‖L∞

≤ C (‖K0‖L1 ‖h‖2L2 + ‖h‖L2 ‖K0‖L3‖h‖L3/2)

≤ C ‖h‖2L2
1
.

We also bound the last term by C ‖ht‖2L2
1
. All together and using the notations X(t) := ‖ht‖2L2

1

and Y (t) := ‖ht‖4/3
L

4/3
1

and the fact that Y (t) ≤ Y (0) thanks to Lemma 4.4, we get

X ′ ≤ −α (X/Y (0))3 + β X

for some constants α, β > 0. The estimate (4.6) is then a classical consequence to the above
differential inequality. �

Proof of Theorem 4.3. The proof follows by a straightforward application of [25, Theorem 2.13]
using Theorem 4.2, Lemma 4.4, Lemma 4.5 and [29, Lemma 2.4]. �

Before going to the proof of Theorem 1.5 we present two results that will be useful during the
proof of that Theorem.

Lemma 4.6. For any M ∈ (0, 8π), k′ > 2 ≥ k > 3/2, Mk′ ≥ (k′ − 1)k
′/2M and C > 0, there

exists an increasing function η : [0,∞)→ [0,∞), η(0) = 0, η(u) > 0 for any u > 0, such that

(4.7) ∀ g ∈ Z D(g) ≥ η(‖g −G‖
L

4/3
k

)

where

Z := {g ∈ L1
+(R2),

∫
g = M,

∫
g|x|k

′
≤Mk′ , ‖g‖W 2,∞ ≤ C}.

Proof of Lemma 4.6. We proceed by contradiction. If (4.7) does not hold, there exists a sequence
(gn) in Z and a real δ > 0 such that

D(gn)→ 0 as n→ 0 and ‖g −G‖
L

4/3
k

≥ δ.

Therefore, on the one hand, there exists ḡ ∈ Z such that, up to the extraction of the subsequence,

there holds gn → ḡ strongly in L
4/3
k , so that ‖ḡ − G‖

L
4/3
k

≥ δ. One the other hand, using that

(∇√gn+
√
gnK∗ gn) is bounded in L2, that implies that 2∇√gn+

√
gnK∗ gn ⇀ 2∇

√
ḡ+
√
ḡK∗ ḡ

weakly in L2(R2) and then

D(ḡ) := ‖2∇
√
ḡ +
√
ḡK ∗ ḡ‖2L2 ≤ lim inf D(gn) = 0.

We easily conclude thanks to the mass condition M0(ḡ) = M and the uniqueness Theorem 4.1 that
ḡ = G. That is our contradiction. �
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Lemma 4.7. Define E2 := R(I−Π0−Π1) the supplementary linear submanifold to the eigenspaces
associated to the eigenvalues 0 and −1. There exists a norm ||| · ||| on E2 equivalent to the initial
one ‖ · ‖E so that

(4.8)
d

dt
|||etΛf |||2 ≤ −2 |||etΛf |||2 ∀ t ≥ 0, ∀ f ∈ E2.

Proof of Lemma 4.7. This result is nothing but [25, Proposition 5.14]. For the sake of completeness
and because we will need to use the same computation at the nonlinear level, we just check it below.
First recall that from Theorem 4.3, we know that for any a ∈ (ā,−1) there exists C = C(a) such
that

‖eΛt f‖E ≤ C ea t ‖f‖E , ∀ t ≥ 0, ∀ f ∈ E2,
and on the other hand, from Lemma 4.4 there exists some constant b ∈ R such that

〈Λf, f∗〉 ≤ b ‖f‖2E .
We define

(4.9) |||f |||2 := η ‖f‖2E +

∫ ∞
0

‖eτΛ eτ f‖2E dτ

with η ∈ (0, (b+ 1)−1) , the norm ||| · ||| is clearly well defined and it is equivalent to ‖ · ‖E because

∀ f ∈ E2, η ‖f‖2E ≤ η ‖f‖2E +

∫ ∞
0

‖eΛτ eτ f‖2E dτ ≤
(
η +

∫ ∞
0

C2 e2 (a+1)τ dτ
)
‖f‖2E

Next, for f ∈ E2 and with the notation ft := eΛtf , we compute

d

dt
|||eΛtf |||2 = η

d

dt
‖ft‖2 +

∫ ∞
0

d

dt
‖eΛ (t+τ)+τ f‖2 dτ

= 2η 〈f∗t ,Λft〉+

∫ ∞
0

{ d

dτ
‖eΛ (t+τ)+τ f‖2 − 2 ‖eΛ (t+τ)+τ f‖2

}
dτ

≤ 2η b ‖ft‖2 +
[
‖eΛ (t+τ)+τ f‖2

]∞
0
− 2

∫ ∞
0

‖eΛτ eτ ft‖2 dτ

=
{

2η (b− a)− 1
}
‖ft‖2 − 2

{
η‖ft‖2 +

∫ ∞
0

‖eΛτ eτ ft‖2 dτ
}

≤ −2 |||eΛtf |||2,
so that (4.8) is proved. �

We conclude with the proof of the long time convergence Theorem.

Proof of Theorem 1.5. The proof follows the same strategy as in [32, 30, 25] (see also [2, 1, 36]
where similar proof is carried on in the context of the Boltzmann equation). We split the proof
into four steps.

Step 1. We consider a solution g to the rescaled equation (1.17) with initial datum f0 6= G. Thanks
to Theorem 1.4 there holds g(t) ∈ Z for any t ≥ 1. For any δ > 0 and T := (E(f0)−E(G))/η−1(δ)+1
there exists t0 ∈ [1, T ] so that

(4.10) DE(g(t0)) ≤ η−1(δ)

because on the contrary we would have

d

dt
(E(g(t))− E(G)) ≤ −η−1(δ) on (1, T )

and then
E(g(T ))− E(G) ≤ −(E(f0)− E(G)) < 0

which is in contradiction with the fact that G satisfies E(G) < E(f) ∀ f ∈ Z\{G} from Theorem 4.1.
We deduce from (4.10) and Lemma 4.6 that

‖g(t0)−G‖
L

4/3

k′
≤ δ.
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Step 2. The function h := g −G satisfies the equation

∂th = Λh+ div(hK ∗ h).

We introduce the splitting

h = h0 + h1 + h2, h12 = h1 + h2

with

h0 := Π0h = α0 h0,0, h1 = Π1h,

so that the evolution of h1 and h2 are given by

(4.11) ∂th1 = −h1 + Π1[div(hK ∗ h)]

and

(4.12) ∂th2 = Λh2 +Q2, Q2 := Π2[div(hK ∗ h)].

From the definition of h0,0, which implies that the mass of h0,0 is 1, and thanks to the mass
conservation, we have

0 =

∫
h = α0 +

∫
h12

so that

(4.13) ‖h0‖E = |α0| ‖h0,0‖E ≤ C ‖h12‖E .

Moreover, from (4.11) and with the notation h∗1 = h1 |h1|−1/3 ‖h1‖2/3
L

4/3
k

, we clearly have

d

dt
‖h1‖2L4/3

k

= 2 〈−h1 + Π1[div(hK ∗ h)], h∗1〉

≤ −2 ‖h1‖2L4/3
k

+ 2 ‖h1‖L4/3
k

‖Π1[div(hK ∗ h)]‖
L

4/3
k

= −2 ‖h1‖2L4/3
k

+ C ‖h1‖L4/3
k

‖div(hK ∗ h)‖
L

4/3
k

.(4.14)

Step 3. Estimate on the nonlinear term. We make the splitting

‖div(hK ∗ h)‖
L

4/3
k

≤ I1 + I2, I1 := ‖h2‖
L

4/3
k

, I2 := ‖∇h · K ∗ h‖
L

4/3
k

,

and we compute each term separately. On the one hand, using the Holder inequality and the
Galgliardo-Niremberg inequality (see [9, Chapter IX, inequality (86)]) in dimension 2

‖u‖Lp ≤ C ‖u‖1−aLq ‖u‖
a
W 1,r , a =

1
q −

1
p

1
q + 1

2 −
1
r

,

with r = p =∞, q = 4/3 and a = 3/5, we have

I1 ≤ ‖h‖L∞ ‖h‖L4/3
k

≤ C ‖h‖7/5
L

4/3
k

‖h‖3/5W 1,∞ .

On the other hand, thanks to the Hardy-Littlewood-Sobolev inequality

‖K ∗ u‖L4 ≤ C ‖u‖L4/3 ,

the elementary inequality

‖∇u‖2L2
k

= −
∫
R2

udiv(〈x〉2k∇u) ≤ C ‖u‖W 2,∞ ‖u‖L1
2k
,

and the Holder inequality

‖u‖L1
2k
≤ ‖〈x〉−1‖1/γ

L4γ/α ‖u‖αL4/3
k

‖u‖1−α
L1
k′

with 0 < α < 1, 2γ > α and k′ = k′(α, γ) := ((2− α)k + γ)/(1− α), we have

I2 ≤ ‖∇h‖L2
k
‖K ∗ h‖L4 ≤ Cα,γ ‖h‖1+α/2

L
4/3
k

‖h‖1/2W 2,∞ ‖h‖(1−α)/2

L1
k′

.
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When k′ = 4, we can take k = 8/5 > 3/2, γ/α = 5/8 > 1/2 and we get α = 32/121 ∈ (0, 1) and
α/2 < 2/5. All together we find

∀h ∈ Z, ‖div(hK ∗ h)‖
L

4/3
k

≤ C ‖h‖1+α/2

L
4/3
k

,

and thanks to Theorem 1.4 h(t) ∈ Z for all t ≥ 1 (where in the definition Z the constant C is given
by (1.19)), we conclude with

(4.15) ∀ t ≥ 1, ‖div(h(t)K ∗ h(t))‖
L

4/3
k

≤ C ‖h(t)‖1+α/2

L
4/3
k

.

It is worth noticing that in the limit k → 3/2, γ/α → 1/2 and α → 0, we find k′ = 3 which is a
strict lower bound in order that estimate (4.15) holds with α > 0.

Step 4. Estimate on the remaining term and conclusion. From (4.12), using the norm ||| · ||| defined
in (4.9) and the notation Sτ := eτΛ eτ , we compute

d

dt
|||h2|||2 = η 〈h∗2,Λh2〉+

∫ ∞
0

〈(Sτh2)∗, SτΛh2〉 dτ

+η 〈h∗2,Q2〉+

∫ ∞
0

〈(Sτh2)∗,Q2〉 dτ

≤ −2 |||h2|||2 + C ‖h2‖L4/2
k

‖div(hK ∗ h)‖
L

4/2
k

,(4.16)

where we have used Lemma 4.7 in order to bound the first (linear) term and the equivalence
between the two norms ||| · ||| and ‖ · ‖

L
4/2
k

in order to estimate the second one (which involves the

nonlinear quantity). Gathering (4.14), (4.16), (4.15), we clearly see that

u(t) := ‖h1‖2E + |||h2|||2

satisfies the differential inequality

u′ ≤ −2u+ C ‖h‖2+α on (0,∞)

and then thanks to and (4.13) and to the first step

(4.17) u′ ≤ −2u+ C u1+α/2 on (t0,∞), u(t0) ≤ K2 δ.

Taking δ > 0 small enough in the first step, we classically deduce that

(4.18) u(t) ≤ Ca e2a t ∀ t ≥ t0
for any a > −1, so that for a close enough to −1, we deduce from (4.17)-(4.18) that

u′ ≤ −2u+K2 e
−2t on (t0,∞),

from which we easily obtain u ≤ C e−2t. We conclude the proof using once more (4.13). �
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