TD 4 : Théorèmes de Fubini et de changement de variables

On traitera en priorité les exercices notés d'un 록. On traitera en dernier (ou pas) les exercices (difficiles, redondants) notés d'un ♠.

Exercice 1. Soit E_1 et E_2 deux ensembles et $\mathcal{A}_1 \subset \mathcal{P}(E_1)$, $\mathcal{A}_2 \subset \mathcal{P}(E_2)$. Notons $\mathcal{A}_1 \times \mathcal{A}_2 = \{A_1 \times A_2; A_i \in \mathcal{A}_i\}$. A-t-on l'égalité suivante, entre tribus de $E_1 \times E_2$,

$$\sigma(\mathcal{A}_1 \times \mathcal{A}_2) = \sigma(\mathcal{A}_1) \otimes \sigma(\mathcal{A}_2) ?$$

Exercice 2. Soit (E_1, \mathcal{B}_1) et (E_2, \mathcal{B}_2) deux espaces mesurables. On considère l'espace produit (E, \mathcal{B}) avec $E = E_1 \times E_2$ et $\mathcal{B} = \mathcal{B}_1 \otimes \mathcal{B}_2$. On pose

$$\mathcal{B}_1' = \{ B \times E_2 ; B \in \mathcal{B}_1 \}.$$

- a) Montrer que \mathcal{B}_1' est une sous tribu de \mathcal{B} .
- b) Soit $F: E_1 \times E_2 \to \mathbb{R}$ une fonction \mathcal{B} -mesurable. Montrer que F est \mathcal{B}'_1 -mesurable si et seulement si il existe une fonction mesurable $f: E_1 \to \mathbb{R}$ telle que

$$F(x_1, x_2) = f(x_1).$$

Exercice 3.

- a) Montrer que $\mathscr{P}(\mathbb{N}) \otimes \mathscr{P}(\mathbb{N}) = \mathscr{P}(\mathbb{N}^2)$.
- b) Soit μ la mesure de comptage de \mathbb{N} . Montrer que $\mu \otimes \mu$ est la mesure de comptage de \mathbb{N}^2 .

Exercice 4. \spadesuit Montrer que le graphe d'une fonction borélienne de \mathbb{R}^d dans \mathbb{R} est de mesure nulle.

Exercice 5. \square Soit (E, \mathcal{A}, μ) un espace mesuré σ -fini.

a) Soit $u: E \to [0, +\infty[$ une fonction positive et mesurable. Montrer que

$$\int_E u \, d\mu = \int_0^{+\infty} \mu(\{x \in E : u(x) \ge t\}) dt.$$

b) Plus généralement, soit $p \geq 1$ et $u: E \to [0, +\infty]$ une fonction positive mesurable. Montrer que

$$\int_{E} u^{p} d\mu = p \int_{0}^{+\infty} t^{p-1} \mu(\{x \in E : u(x) \ge t\}) dt.$$

Exercice 6. [Principe de Cavalieri] Soient (E, \mathscr{A}, μ) est un espace mesuré σ -fini, $f : E \to [0, \infty]$ une fonction mesurable et $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ une fonction croissante, de classe C^1 et telle que $\Phi(0) = 0$. Montrer que

$$\int_{E} \Phi(f) d\mu = \int_{\mathbb{R}_{+}} \Phi'(\lambda) \, \rho_f(\lambda) d\lambda,$$

où $\rho_f(\lambda) := \mu(\{x \in E; |f(x)| > \lambda\})$ et $d\lambda$ désigne la mesure de Lebesgue sur \mathbb{R}_+ .

Exercice 7. Soit $(\mathbb{R}, \mathcal{A}, \mu)$ un espace probabilisé. Soit f et g deux fonctions de $L^1(\mathbb{R}, \mu)$, monotones de même sens et vérifiant $fg \in L^1(\mathbb{R}, \mu)$. Montrer que

$$\int_{\mathbb{R}} fg d\mu \geq \int_{\mathbb{R}} f d\mu \int_{\mathbb{R}} g d\mu.$$

(Indication : considérer la fonction $\varphi(x,y) = (f(x) - f(y))(g(x) - g(y))$)

Exercice 8. Soit $f:[0,1]\to [0,+\infty[$ borélienne et $A\subset\mathbb{R}^3$ l'ensemble

$$A = \{(x, y, z) \in \mathbb{R}^3 : x \in [0, 1], y^2 + z^2 \le f(x)\}.$$

a) Montrer que l'application

$$F: [0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad F(x,y,z) = y^2 + z^2 - f(x)$$

est borélienne et en déduire que $A \in \mathscr{B}(\mathbb{R}^3)$.

- b) Pour $x \in [0,1]$ déterminer la section $A_x = \{(y,z) \in \mathbb{R}^2 : (x,y,z) \in A\}$ et calculer sa mesure.
- c) Calculer le volume de A en fonction de f. Vérifier que $Vol(A) = \pi/3$ si $f = x^2$.

Exercice 9. Soit $\alpha \in \mathbb{R}$ et soit f définie sur $(\mathbb{R}_+)^2$ par $f(x,y) = \frac{1}{(1+x+y)^{\alpha}}$. Déterminer les valeurs de α pour lesquelles f est intégrable. Calculer alors son intégrale.

Exercice 10.

- a) Montrer que $\int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$ pour tout x > 0.
- b) Soit a > 0. Montrer que $\int_0^a \frac{\sin x}{x} dx = \int_0^{+\infty} \left(\int_0^a e^{-xt} \sin x dx \right) dt$.
- c) Calculer $\int_0^{+\infty} \frac{\sin x}{x} dx$.
- d) Montrer que la fonction $\frac{\sin x}{x}$ n'est pas intégrable sur $[0, +\infty[$.

Exercice 11.

- a) Calculer de deux façons différentes $\int_{\mathbb{R}^2_+} \frac{dxdy}{(1+y)(1+x^2y)}$ pour obtenir la valeur de $\int_0^1 \frac{\ln x}{x^2-1} dx$.
- b) En déduire l'égalité $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.

Exercice 12. \spadesuit Soit $B \subset \mathbb{R}^2$. On définit l'ensemble $t(B) = \{x_1 \in \mathbb{R}/(x_1, 0) \in B\}$ et on considère

$$T = \{ B \subset \mathbb{R}^2 / t(B) \in \mathscr{B}(\mathbb{R}) \}.$$

a) Montrer que T est une tribu contenant $\mathscr{B}(\mathbb{R}^2)$.

Dans la suite, on suppose que $B = A \times \{0\}$, où A est une partie A

Dans la suite, on suppose que $B = A \times \{0\}$, où A est une partie de \mathbb{R} telle que $A \notin \mathcal{B}(\mathbb{R})$.

- b) Montrer que $B \notin \mathscr{B}(\mathbb{R}^2)$.
- c) Soit $\theta \in]0, \pi/2[$ et ρ la rotation d'angle θ : pour tout $(x_1, x_2) \in \mathbb{R}^2$,

$$\rho(x_1, x_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta).$$

Notant 1_B la fonction indicatrice de B, on pose $f = 1_B \circ \rho$. Montrer que f n'est pas borélienne mais que les fonctions $f(., x_2)$, $f(x_1, .)$ sont fonctions boréliennes d'une variable.

Exercice 13. Soient μ et ν deux mesures σ -finies définies sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- a) Montrer que l'ensemble $D = \{x \in \mathbb{R} : \mu(\{x\}) > 0\}$ est dénombrable.
- b) Montrer que $(\mu \otimes \nu)(\Delta) = \sum_{x \in \mathbb{R}} \mu(\{x\}) \nu(\{x\})$ où Δ est la diagonale de \mathbb{R}^2 .

Exercice 14. Soit F une fonction càd-làg, croissante et tq $F(-\infty) = 0$, $F(+\infty) = 1$.

1) Montrer que la fonction $G:]0,1[\to \mathbb{R}$ définie par

$$G(u) := \inf\{x \in \mathbb{R}, F(x) \ge u\}$$

est càg-làd.

2) En notant λ la mesure de Lebesgue sur [0,1], montrer que la mesure image $G_{\sharp}\lambda$ a pour fonction de répartition F.

Exercice 15. On note $(\mathbb{R}^n, \|\cdot\|)$ l'espace euclidien usuel de dimension n et $B(0, r) = \{x \in \mathbb{R}^n, ||x|| < r\}$ la boule euclidienne de rayon r > 0. On va calculer le volume ω_n de la boule unité B(0, 1) en jouant avec la fonction Γ . On rappelle que pour s > 0, $\Gamma(s) = \int_0^{+\infty} t^{s-1} e^{-t} dt$.

- a) Montrer que $\int_{\mathbb{R}^n} e^{-\|x\|^2} d\lambda_n(x) = \pi^{\frac{n}{2}}$.
- b) Exprimer le volume de B(0,r) en fonction de ω_n .
- c) Montrer que

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} d\lambda_n(x) = \int_0^{+\infty} \lambda_n(\{x \in \mathbb{R}^n : e^{-\|x\|^2} > t\}) dt.$$

d) En utilisant l'homogénéité de la fonction volume, déduire de la formule ci-dessus que

$$\int_{\mathbb{R}^n} e^{-\|x\|^2} d\lambda_n(x) = \omega_n \int_0^1 (-\ln t)^{\frac{n}{2}} dt.$$

- e) En déduire que $\omega_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$.
- f) Montrer que pour s > 1, on a $\Gamma(s) = (s-1)\Gamma(s-1)$. En déduire par récurrence la valeur de $\Gamma(\frac{n}{2}+1)$, pour tout entier naturel n, puis le volume ω_n de la boule unité :

$$\omega_n = \begin{cases} \frac{\pi^k}{k!} & \text{si} \quad n = 2k \quad (k \in \mathbb{N}), \\ \frac{2^{k+1}\pi^k}{1 \cdot 3 \cdot 5 \cdots (2k+1)} & \text{si} \quad n = 2k+1 \quad (k \in \mathbb{N}). \end{cases}$$

Exercice 16. \blacktriangle Soit Δ et D deux ouverts de \mathbb{R}^d et $\varphi: \Delta \to D$ un C^1 -difféomorphisme de jacobien J_{φ} .

3

- a) Montrer que J_{φ} est intégrable sur Δ si et seulement si $\lambda_d(D) < +\infty$.
- b) Montrer que J_{φ} est borné sur Δ si et seulement si il existe c > 0 tel que, pour tout ouvert $\Omega \subset \Delta$, $\lambda_d(\varphi(\Omega)) < c\lambda_d(\Omega)$.

Exercice 17.

Soit $\Delta =]0, 1[^2 \times] - \pi, \pi[$ et $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par $\varphi(u, v, w) = (u, uv \cos w, v \sin w)$.

- a) Montrer que φ est un C^1 difféomorphisme de Δ sur son image.
- b) Calculer $\lambda_3(\varphi(\Delta))$.

Exercice 18.

- a) Montrer que l'application φ définie sur \mathbb{R}^2 par $\varphi(u,v)=(u^2+v^2,2uv)$ est un C^1 -difféomorphisme de $\Delta=\{(u,v)\in\mathbb{R}^2;u>v>0\}$ sur $D=\{(x,y)\in\mathbb{R}^2;x>y>0\}$.
- b) En déduire la valeur de $\int_{(\mathbb{R}_+)^2} |u^4 v^4| e^{-(u+v)^2} du dv$.

Exercice 19. 🖾

a) Montrer que l'application

$$\psi: [0,1] \times [0,\pi] \times [0,2\pi] \to \mathbb{R}^3, (r,\theta,\phi) \mapsto (r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta)$$

est un C^1 difféomorphisme de $]0,1[\times]0,\pi[\times]0,2\pi[$ sur son image, que l'on déterminera précisément.

- b) Calculer le volume de la boule B(0,R) de centre (0,0,0) et de rayon $0 \le R \le 1$ de \mathbb{R}^3 .
- c) Calculer la valeur de

$$\int_{B(0,1)} \frac{1}{\sqrt{x^2 + y^2 + z^2}} \, dx \, dy \, dz.$$

d) Calculer le volume d'une calotte, c'est-à-dire de l'intersection de la boule unité B(0,1) avec le demi-espace $r\cos\theta > a$ pour 0 < a < 1.

Exercice 20. Sa Calculer l'intégrale

$$I = \int_{y>x>0} e^{-y+x} \frac{\sqrt{y-x}}{y^2} d\lambda_2(x,y).$$

[Indication : on pourra considérer le changement de variable u = y - x, v = y/x.]