TD2. Mesures, Intégrales, Théorèmes de convergence

I - Mesures et intégration

Exercice 1. Soit δ_a la mesure de Dirac au point a définie sur les boréliens de \mathbb{R} par $\delta_a(B) = 1$ si $a \in B$, $\delta_a(B) = 0$ sinon.

- a) Vérifier que δ_a est une mesure sur la tribu des boréliens.
- b) Calculer l'intégrale d'une fonction mesurable positive par rapport à δ_a , puis par rapport à une combinaison $\mu = \sum_{i=1}^n \lambda_i \delta_{a_i}$ où $\forall i, \lambda_i \geq 0$.

Exercice 2. Démontrer qu'il n'existe pas de mesure μ finie et non nulle sur $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ invariante par translation, i.e. satisfaisant $\mu(p+A) = \mu(A)$ pour tout $p \in \mathbb{Z}$ et tout $A \subset \mathbb{Z}$.

Exercice 3. Soit (X, \mathcal{A}) un espace mesurable et soient μ , ν deux mesures finies sur (X, \mathcal{A}) . On suppose que, pour tout $A \in \mathcal{A}$, on a $\mu(A) = 0 \Rightarrow \nu(A) = 0$. Démontrer que, pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, $\forall A \in \mathcal{A}, \mu(A) < \eta \Rightarrow \nu(A) < \varepsilon$.

Exercice 4. Soient (X, \mathcal{A}, μ) un espace mesuré, et $f: X \to [0, +\infty]$ une fonction mesurable positive. Pour tout $A \in \mathcal{A}$ on définit

$$\mu_f(A) = \int_X \mathbb{1}_A f d\mu.$$

Montrer que μ_f est une mesure sur (X, \mathcal{A}) .

Exercice 5. Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to [0, +\infty]$ une application mesurable positive. Montrer que :

- a) Pour tout a > 0, $\mu(\{f > a\}) \le \frac{1}{a} \int_X f d\mu$.
- b) Si $\int_X f d\mu < +\infty$, alors f est finie μ -p.p.
- c) $\int_X f d\mu = 0$ si et seulement si f est nulle μ -p.p.
- d) Si $g: X \to [0, +\infty]$ est une fonction mesurable positive telle que $f = g \mu$ -p.p., alors $\int_{Y} f d\mu = \int_{Y} g d\mu$;

Exercice 6. Soit (X, \mathcal{A}, μ) un espace mesuré.

- a) Soit f une fonction $A \to \mathbb{R}$ μ -intégrable telle que, pour tout $A \in \mathcal{A}$, $\int_A f d\mu = 0$. Montrer que f = 0 μ -presque partout.
- b) Soit f une fonction $A \to \mathbb{R}$ μ -intégrable et F un fermé de \mathbb{R} tels que $\frac{1}{\mu(A)} \int_A f d\mu \in F$ pour tout $A \in \mathcal{A}$ tel que $\mu(A) > 0$.
 - i) Soit a < b tels que $]a, b[\subset F^c$. Montrer que $\mu(f^{-1}(]a, b[)) = 0$.

ii) En déduire que $f(x) \in F$ pour presque tout x.

II - Théorèmes de convergence

Exercice 7. Dans les quatre cas suivants (où $f_n : \mathbb{R}^+ \to \mathbb{R}$) montrer que la suite $(\int_{\mathbb{R}^+} f_n d\lambda)_{n \in \mathbb{N}}$ converge et déterminer sa limite.

a)
$$f_n(x) = \frac{ne^{-x}}{\sqrt{1 + n^2x^2}}$$
,

b)
$$f_n(x) = \frac{ne^{-nx}}{\sqrt{1 + n^2x^2}}$$
,

c)
$$f_n(x) = \sin(nx) \mathbb{1}_{[0,n]}(x),$$

d)
$$f_n(x) = |\cos(x)|^{1/n} e^{-x}$$
.

Exercice 8. Calculer la limite des suites suivantes :

$$\int_{\mathbb{R}} e^{-|x|/n} dx, \qquad \int_{\mathbb{R}} \frac{e^{-x^2}}{2\cos(\frac{x}{n}) - 1} \ \mathbb{1}_{\{3|\cos(\frac{x}{n})| \ge 2\}} \ dx, \qquad \sum_{m \ge 1} \frac{n}{m} \sin(\frac{1}{nm}).$$

Exercice 9. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur (X, \mathcal{A}, μ) , mesurables et positives. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f μ -p.p., et que

$$\int_X f_n d\mu \to \int_X f d\mu < +\infty.$$

Montrer que $\int_X |f_n - f| d\mu \to 0$.

Exercice 10. Soient (E, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n\geq 0}$ une suite décroissante de fonctions mesurables positives qui converge μ -p.p. vers une fonction f.

- a) On suppose qu'il existe n_0 tel que $\int_E f_{n_0} d\mu < \infty$. Montrer que $\lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$.
- b) Que peut-on dire sans l'hypothèse d'intégrabilité?

Exercice 11. Soit $f:]0,1[\to \mathbb{R}$ une fonction positive, monotone et intégrable. On définit pour tout $n \ge 1$, $g_n(x) = f(x^n)$. Calculer la limite de $\int_{]0,1[} g_n d\lambda$.

Exercice 12. Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction intégrable.

- a) Montrer que $\lim_{n} n\mu(\{|f| \ge n\}) = 0$.
- b) Montrer que

$$\sum_{n\geq 1} \frac{1}{n^2} \int_{|f|\leq n} |f|^2 d\mu < +\infty.$$

2

Exercice 13. [Application du lemme de Borel-Cantelli]

Soit (X, \mathcal{A}, μ) un espace mesuré et soit $(f_n)_{n\geq 1}$ une suite de fonctions mesurables telles qu'il existe M>0 vérifiant $\int_X |f_n|^2 d\mu \leq M$ pour tout $n\geq 1$. Montrer qu'il existe $A\in \mathcal{A}$ de mesure nulle tel que pour tout $x\in A^c$ on a que $|f_n(x)|< n$ à partir d'un certain rang.

Exercice 14.

a) Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\geq 0}$ une suite de fonctions mesurables positives qui converge simplement vers f. On suppose qu'il existe une constante K telle que :

$$\sup_{n>0} \int_X f_n d\mu \le K.$$

Montrer que $\int_X f d\mu \le K$.

- b) Sur $([0,1], \mathcal{B}([0,1], \lambda)$ on considère la suite de fonctions $(f_n)_{n\geq 0}$ définies par $f_{2n} = \mathbb{1}_{[0,1/2]}$ et $f_{2n+1} = \mathbb{1}_{[1/2,1]}$. Calculer $\int \limsup_n f_n d\lambda$ et $\limsup_n \int f_n d\lambda$.
- c) Soit $f_n := \frac{1}{n} \mathbb{1}_{[0,n]}$, calculer $\int \limsup_n f_n d\lambda$ et $\limsup_n \int f_n d\lambda$.

Exercice 15.

- a) Donner un exemple de suite de fonctions boréliennes positives $(f_n)_{n\geq 0}$ de \mathbb{R} dans \mathbb{R} telle que $\int_{\mathbb{R}} f_n d\lambda$ admet une limite c>0 et $\int_{\mathbb{R}} \liminf f_n d\lambda < c$.
- b) Si (E, \mathcal{A}, μ) est un espace mesuré, $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de signe quelconque telle que $\int_E |\liminf f_n| d\mu < +\infty$, a-t-on toujours $\int_E \liminf f_n d\mu \leq \liminf \int_E f_n d\mu$?
- c) Donner une suite $(f_n)_{n\geq 0}$ de fonctions continues sur [0,1] à valeurs dans [0,1] telle que pour tout $x\in [0,1]$ la suite $f_n(x)$ n'admet pas de limite et $\lim_{n\to\infty}\int_{[0,1]}f_nd\lambda=0$.
- d) Donner une suite $(f_n)_{n\geq 0}$ de fonctions continues positives sur [0,1] telle que $\lim_{n\to\infty} \int_{[0,1]} f_n d\lambda = 0$ et $\sup_{n\geq 0} f_n(x) = +\infty$ pour tout $x\in [0,1]$ (et donc $\int_{[0,1]} \sup_{n\geq 0} f_n = +\infty$).

Exercice 16. Soient (X, \mathcal{A}, μ) un espace mesuré, et f une fonction $A \to \mathbb{R}$ μ -intégrable.

a) Montrer que :

$$\int_X |f| \mathbb{1}_{\{|f| > n\}} d\mu \xrightarrow[n \to \infty]{} 0.$$

b) En déduire que : $\forall \varepsilon > 0, \exists \delta > 0, \forall A \in \mathcal{A},$

$$\mu(A) \le \delta \Rightarrow \int_A |f| d\mu \le \varepsilon$$

(Ceci exprime la continuité de l'intégrale par rapport à la mesure).

c) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ intégrable pour la mesure de Lebesgue et F définie sur \mathbb{R}_+ par

$$F(x) = \int_{[0,x]} f d\lambda$$

3

Montrer que F est uniformément continue sur \mathbb{R}_+ .

Exercice 17. Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < \infty$. Soient $(f_n)_{n \geq 1}$ et f des fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On suppose qu'il existe une fonction $g: X \to \mathbb{R}$ intégrable positive telle que $|f_n| \leq g$ μ -p.p. pour tout $n \geq 1$. On suppose en outre que la suite $(f_n)_{n \geq 1}$ converge vers f au sens suivant :

$$\forall \varepsilon > 0, \quad \mu(|f_n - f| > \varepsilon) \xrightarrow[n \to \infty]{} 0.$$

On dit que $(f_n)_n$ converge en mesure vers f.

- a) Montrer que $|f| \leq g \mu$ -p.p.
- b) À l'aide de la propriété d'uniforme continuité de l'intégrale, en déduire que

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0.$$

Exercice 18. Soit (E, \mathcal{A}, μ) un espace mesuré et f et $(f_n)_{n\geq 1}$ des fonctions intégrables telles que

$$\int_{E} |f_n - f| d\mu \xrightarrow[n \to \infty]{} 0.$$

Montrer qu'il existe une suite extraite $(f_{\phi(n)})_{n\geq 1}$ convergeant vers f μ -p.p., et une fonction B intégrable telle que $\sup_{n\geq 1}|f_{\phi(n)}|\leq B$ μ -p.p.

III - Mesures produit et théorème de Fubini

Exercice 19. Soit E_1 et E_2 deux ensembles et $\mathcal{A}_1 \subset \mathcal{P}(E_1)$, $\mathcal{A}_2 \subset \mathcal{P}(E_2)$. Notons $\mathcal{A}_1 \times \mathcal{A}_2 = \{A_1 \times A_2; A_i \in \mathcal{A}_i\}$. A-t-on l'égalité suivante, entre tribus de $E_1 \times E_2$,

$$\sigma(\mathcal{A}_1 \times \mathcal{A}_2) = \sigma(\mathcal{A}_1) \otimes \sigma(\mathcal{A}_2) ?$$

Exercice 20. Soit (E_1, \mathcal{B}_1) et (E_2, \mathcal{B}_2) deux espaces mesurables. On considère l'espace produit (E, \mathcal{B}) avec $E = E_1 \times E_2$ et $\mathcal{B} = \mathcal{B}_1 \otimes \mathcal{B}_2$. On pose

$$\mathcal{B}_1' = \{ B \times E_2 \; ; \; B \in \mathcal{B}_1 \}.$$

- a) Montrer que \mathcal{B}'_1 est une sous tribu de \mathcal{B} .
- b) Soit $F: E_1 \times E_2 \to \mathbb{R}$ une fonction \mathcal{B} -mesurable. Montrer que F est \mathcal{B}'_1 -mesurable si et seulement si il existe une fonction mesurable $f: E_1 \to \mathbb{R}$ telle que

$$F(x_1, x_2) = f(x_1).$$

Exercice 21.

- a) Montrer que $\mathscr{P}(\mathbb{N}) \otimes \mathscr{P}(\mathbb{N}) = \mathscr{P}(\mathbb{N}^2)$.
- b) Soit μ la mesure de comptage de \mathbb{N} . Montrer que $\mu \otimes \mu$ est la mesure de comptage de \mathbb{N}^2 .

Exercice 22. Montrer que le graphe d'une fonction borélienne de \mathbb{R}^d dans \mathbb{R} est de mesure nulle.

Exercice 23. Soit (X, \mathcal{B}, μ) un espace mesuré σ -fini.

a) Soit $u: X \to [0, +\infty[$ une fonction positive et mesurable. Montrer que

$$\int_X u \, d\mu = \int_0^{+\infty} \mu(\{x \in X : u(x) \ge t\}) dt.$$

b) Plus généralement, soit $p \ge 1$ et $u: X \to [0, +\infty]$ une fonction positive mesurable. Montrer que

$$\int_X u^p \, d\mu = p \int_0^{+\infty} t^{p-1} \mu(\{x \in X : u(x) \ge t\}) dt.$$

Exercice 24. Soit $(\mathbb{R}, \mathcal{A}, \mu)$ un espace probabilisé. Soit f et g deux fonctions de $L^1(\mathbb{R}, \mu)$, monotones de même sens et vérifiant $fg \in L^1(\mathbb{R}, \mu)$. Montrer que

$$\int_{\mathbb{R}} fg d\mu \geq \int_{\mathbb{R}} f d\mu \int_{\mathbb{R}} g d\mu.$$

(Indication : considérer la fonction $\varphi(x,y) = (f(x) - f(y))(g(x) - g(y))$)

Exercice 25. Soit $f:[0,1]\to [0,+\infty[$ borélienne et $A\subset\mathbb{R}^3$ l'ensemble

$$A = \{(x, y, z) \in \mathbb{R}^3 : x \in [0, 1], y^2 + z^2 \le f(x)\}.$$

a) Montrer que l'application

$$F: [0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad F(x,y,z) = y^2 + z^2 - f(x)$$

est borélienne et en déduire que $A \in \mathcal{B}(\mathbb{R}^3)$.

- b) Pour $x \in [0,1]$ déterminer la section $A_x = \{(y,z) \in \mathbb{R}^2 : (x,y,z) \in A\}$ et calculer sa mesure.
- c) Calculer le volume de A en fonction de f. Vérifier que $Vol(A) = \pi/3$ si $f = x^2$.

Exercice 26. Soit $\alpha \in \mathbb{R}$ et soit f définie sur $(\mathbb{R}_+)^2$ par $f(x,y) = \frac{1}{(1+x+y)^{\alpha}}$. Déterminer les valeurs de α pour lesquelles f est intégrable. Calculer alors son intégrale.

Exercice 27.

- a) Calculer de deux façons différentes $\int_{\mathbb{R}^2_+} \frac{dxdy}{(1+y)(1+x^2y)}$ pour obtenir la valeur de $\int_0^1 \frac{\ln x}{x^2-1} dx$.
- b) En déduire l'égalité $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$

Exercice 28. Soit $B \subset \mathbb{R}^2$. On définit l'ensemble $t(B) = \{x_1 \in \mathbb{R} / (x_1, 0) \in B\}$ et on considère

$$T = \{ B \subset \mathbb{R}^2 / t(B) \in \mathscr{B}(\mathbb{R}) \}.$$

a) Montrer que T est une tribu contenant $\mathscr{B}(\mathbb{R}^2)$.

Dans la suite, on suppose que $B = A \times \{0\}$, où A est une partie de \mathbb{R} telle que $A \notin \mathcal{B}(\mathbb{R})$.

- b) Montrer que $B \notin \mathscr{B}(\mathbb{R}^2)$.
- c) Soit $\theta \in]0, \pi/2[$ et ρ la rotation d'angle θ : pour tout $(x_1, x_2) \in \mathbb{R}^2$,

$$\rho(x_1, x_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta).$$

Notant 1_B la fonction indicatrice de B, on pose $f = 1_B \circ \rho$. Montrer que f n'est pas borélienne mais que les fonctions $f(., x_2)$, $f(x_1, .)$ sont fonctions boréliennes d'une variable.

Exercice 29. Soient μ et ν deux mesures σ -finies définies sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- a) Montrer que l'ensemble $D=\{x\in\mathbb{R}:\,\mu(\{x\})>0\}$ est dénombrable.
- b) Montrer que $(\mu \otimes \nu)(\Delta) = \sum_{x \in \mathbb{R}} \mu(\{x\}) \nu(\{x\})$ où Δ est la diagonale de \mathbb{R}^2 .