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THE KELLER-SEGEL EQUATION

- STILL A DRAFT -

These notes are devoted to the analysis of the solutions to the Keller-Segel equation.
It is a famous equation modelling physic and biology which is both quite simple in
its formulation and has a rather rich mathematical bahaviour.
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2 THE KELLER-SEGEL EQUATION

1. Introduction

1.1. The Keller-Segel equation. The Keller-Segel (KS), or Patlak-Keller-Segel,
system for chemotaxis describes the collective motion of cells that are attracted by
a chemical substance that they are able to emit. It writes

∂tf = ∆f −∇(f ∇c) in (0,∞)× Rd,(1.1)

τ∂tc = ∆c− αc+ f in (0,∞)× Rd,(1.2)

for some real parameters α, τ ≥ 0. Here t ≥ 0 is the time variable, x ∈ Rd is the space
variable, f = f(t, x) ≥ 0 stands for the mass density of cells while c = c(t, x) ∈ R
is the chemo-attractant concentration.

In the sequel, we will focus on the two dimensional case d = 2 without damping term
(α = 0) and in the quasi-static regime (τ = 0). In other words, the Keller-Segel
system (1.1)-(1.2) is a parabolic-elliptic system in which the equation (1.1) on the
mass density of cells is unchanged and the chemo-attractant concentration c solves
the (elliptic) Poisson equation

(1.3) −∆c = f in (0,∞)× R2.

The solution c to the Poisson equation is given by the representation formula

−c := κ̄ = κ ∗ f, κ :=
1

2π
log |z|.

In particular, we have

−∇c = K̄ := K ∗ f, K := ∇κ =
1

2π

z

|z|2
,

and that is our definition of the gradient of chemo-attractant concentration in (1.1).
In other words, the parabolic-elliptic Keller-Segel system (1.1)-(1.3) also writes as
the Keller-Segel equation

(1.4) ∂tf = ∆f +∇(K̄ f) in (0,∞)× R2.

The evolution equation (1.4) is complemented with an initial condition

(1.5) f(0, .) = f0 in R2.

1.2. Remarkable features. We present now several remarkable identities satisfied
(at least formally) by any solution f to the Keller-Segel equation (1.4).

• Conservation of mass. Because the RHS term is in divergence form, we (formally)
have

d

dt

∫
f dx =

∫
R2

divx(∇f + f K̄) dx = 0,

so that the mass is conserved

(1.6)

∫
R2

f(t, x) dx =

∫
R2

f0(x) dx =: M, ∀ t ≥ 0.

• Center of mass. Similarly, we (formally) have

d

dt

∫
f x dx = −

∫
R2

(∇f + f K̄) dx =
1

2π

∫
R2

∫
R2

x− y
|x− y|2

f(x) f(y) dx = 0,
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because the function (x, y) 7→ φ(x, y) = K(x−y)f(x)f(y) in the last integral satisfies
φ(y, x) = −φ(x, y). Again, the center of mass is conserved∫

R2

f(t, x)x dx =

∫
R2

f0(x)x dx, ∀ t ≥ 0.

• Energy. We again (formally) compute

d

dt

∫
f |x|2 dx =

∫
R2

f ∆|x|2 dx− 2

∫
R2

f K̄ · x dx

= 4

∫
R2

f dx− 1

2π

∫
R2

∫
R2

x− y
|x− y|2

· (x− y) f(x) f(y) dx

= 4M − M2

2π
=: C1(M).

We deduce the linear growth of the second moment

(1.7) M2(t) :=

∫
R2

f(t, x) |x|2 dx = C1(M) t+M2,0, M2,0 :=

∫
R2

f0(x) |x|2 dx,

for any t ≥ 0.

• Free energy. We write the Keller-Segel equation in a “gradient flow” form

∂tf = div
[
∇f + f∇κ ∗ f

]
= div

[
f∇(log f + κ̄)

]
,

and we define the entropy functional H and the free energy functional F by

H = H(f) :=

∫
R2

f log fdx,

F = F(f) := H(f) +
1

2

∫ ∫
f(x)f(y)κ(x− y) dxdy.

Denoting F(t) = F(f(t)), we compute

d

dt
F(t) =

∫
{ 1 + log f + κ ∗ f} ∂tf

=

∫
{log f + κ ∗ f} div

[
f∇(log f + κ ∗ f)

]
= −DF(t),

where DF(t) = DF(f(t)) and DF stands for the dissipation of free energy defined by

DF = DF(f) :=

∫
R2

f | ∇(log f + κ̄)|2 dx.

We deduce the (formal) free energy-dissipation of the free energy identity

(1.8) F(t) +

∫ t

0

DF(s) ds = F0 := F(f0), ∀ t ≥ 0.

• Positivity. In order to justify the positivity assumption, we may argue as follows.
We denote β(s) := s− and we (formally) compute

β′(f)∆f = ∆β(f)− β′′(f)|∇f |2
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and

β′(f) div(K̄ f) = β′(f)f div K̄ + β′(f)∇f · K̄
= β(f) div K̄ +∇β(f) · K̄ = div

[
K̄ β(f)

]
.

We deduce

d

dt

∫
β(f) = −

∫
β′′(f)|∇f |2 +

∫
div(∇β(f) + K̄ β(f)) ≤ 0,

and finally ∫
β(f(t, .)) ≤

∫
β(f0), t ≥ 0.

Observing that β(g) = 0 iff g ≥ 0, we conclude that f(t, .) ≥ 0 for any t > 0, because
f0 ≥ 0.

Let us make some comments about the Keller-Segel equation and the already for-
mally established properties of its solutions.
The most important feature of the parabolic-elliptic Keller-Segel equation is prob-
ably the fact that the critical mass M∗ := 8π is a threshold: solutions are global
for subcritical initial mass M ≤ M∗ but there does not exist global nonnegative
and mass preserving solution when M > 8π. In other words, one can prove the
existence and the uniqueness of (weak) solutions to the Keller-Segel equation on a
time interval (0, T ∗) with T ∗ =∞ if M∗ ≤ 8π and T ∗ <∞ if M∗ > 8π.

On the one hand, one can easily figure out this last property by observing that
identity (1.7) would imply that the second moment becomes negative at least after
the finite time T ∗∗ := −M2,0/C1(M) for a global and mass preserving solution with
mass M > 8π, what is in contradiction with the positivity of that solution after the
same time T ∗∗.

On the other hand, the RHS term in (1.3) is a well-defined as the divergence of a
L1 function whenever DF ∈ L1(0, T ) because

(1.9)

∫
R2

|f ( ∇(log f + κ̄)| ≤M1/2D1/2
F ,

thanks to the Cauchy-Schwarz, and that information is strong enough in order to
build a solution. It turns out that one can get that bound on DF for any time
T > 0 when M < M∗ as a consequence of the logarithmic Hardy-Littlewood Sobolev
inequality. On the contrary, in the critical case M = 8π and the supercritical
case M > 8π, the above argument using the logarithmic Hardy-Littlewood Sobolev
inequality fails.

A next issue is about the time asymptotic of f(t, .) as t ↗ T ∗. The supercritical
case M > 8π and T ∗ < ∞ is still far to be completely understood but very much
can be said about the cases M < 8π and M = 8π.

Let us recall that to understand the behavior of the solution f ] to the heat equation

(1.10) ∂tf
] = ∆f ],

a classical trick is to perform the self-similar change of variables

g](t, x) := e2t f ](
e2t − 1

2
, et x)
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and to observe that g] is then a solution to the Fokker-Planck equation

(1.11) ∂tg
] = ∆g] + div(xg]).

We immediately see that G](x) := (2π)−1 exp(−|x|2/2) is the unique positive and
with mass one stationary solution to the Fokker-Planck equation. Because mass
is conserved and the Fokker-Planck equation is still dissipative, it is likely that
g](t) → M(g0)G] as t → ∞ (a convergence result which can be indeed rigorously
established). Such a convergence can be translated as an information about the
self-similar behavior of the solutions to the heat equation, namely

f ](t, x) ∼ R(t)−2M(g0)G](R(t)−1x) as t→∞.
In the subcritical case M < 8π, we may obtain a very similar result by performing
the same self-similar change of variables

g(t, x) := e2t f(
e2t − 1

2
, et x) = e2t f(τ, w),

and by analyzing the resulting equation which writes

(1.12) ∂tg = ∆g +∇((x+ K̄) g),

with now K̄ := K ∗ g.

2. A priori estimates in the subcritical case M < 8π

We shall assume that

(2.1) 0 ≤ f0 ∈ L1
2(R2), f0 log f0 ∈ L1(R2),

as well as

M := 〈f0〉 =

∫
R2

f0 dx ∈ (0, 8π), 〈f0 x〉 = 0,

excepted when it is explicitly mentioned the contrary. Here and below, for any
weight function $ : R2 → R+, we define the weighted Lebesgue space Lp($) for
1 ≤ p ≤ ∞ by

Lp($) := { f ∈ L1
loc(R2); ‖ f‖Lp($) := ‖ f $‖Lp <∞},

as well as L1
+(R2) the cone of nonnegative functions of L1(R2). We use the shorthand

Lpk, k ≥ 0, for the weighted Lebesgue space associated to the polynomial growth
weight function $(x) := 〈x〉k, where 〈x〉 := (1 + |x|2)1/2. We also introduce the
notation (with no risk of confusion)

〈g〉 =

∫
R2

g dx, ∀ g ∈ L1.

We recall and accept the following inequality.

Lemma 2.1 (logarithmic Hardy-Littlewood Sobolev inequality). For any function
0 ≤ f ∈ L1(R2) with mass M = 〈f〉 ≥ 0, there holds
(2.2)

∀ f ≥ 0,

∫
R2

f(x) log f(x) dx+
2

M

∫ ∫
R2×R2

f(x) f(y) log |x− y| dxdy ≥ C2(M),

with C2(M) := M (1 + log π − logM).
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Using the logarithmic Hardy-Littlewood Sobolev inequality (2.2) and the subcritical
mass hypothesis M ∈ (0, 8π), we have

F(f) = H(f) +
1

4π

∫ ∫
f(x)f(y) log |x− y|

=
(
1− M

8π

)
H(f) +

M

8π

(
H(f) +

2

M

∫ ∫
f(x)f(y) log |x− y|

)
≥

(
1− M

8π

)
H(f) +

M

8π
C2(M),

so that

(2.3) H(f) ≤ C3(M)F(f) + C4(M),

with C3(M) := 1/
(
1− M

8π

)
, C4(M) := C3(M)C2(M)M/(8π).

Exercise 2.2. Establish the convex inequality uv ≤ u log u−u+ev, for any u, v > 0,
and deduce∫

|x−y| ≤1

f(y) log
1

|x− y|
dy ≤ 1

α
H(f) +K(α,M), ∀α ∈ (0, 2).

Recover (2.3) (possibly, for different constants). (Hint. One can take for instance
α := 1 +M/(8π)).

We also recall the following classical functional inequality

Lemma 2.3 (positive part of the entropy). For any 0 ≤ f ∈ L1
2, there holds∫

f(log f)− ≤
1

2
M2(f) + C(d).

In particular,

(2.4) H+ := H+(f) =

∫
R2

f(log f)+dx ≤ H +
1

2
M2 + C5(M),

Exercise 2.4. Prove Lemma 2.3. (Hint. One may prove and use the estimate

s (log s)− ≤
√
s1

0≤s≤e−a|x|k + s a|x|k 1
e−a|x|k≤s≤1

, ∀ s ≥ 0,

with k = 2 and a = 1/2).

From (2.3) and Lemma 2.3, one concludes that (1.6), (1.7) and (1.8) provide a
convenient family of a priori estimates in order to define weak solutions. More
precisely, we get

H+(t) +
1

2
M2(t) + C3(M)

∫ t

0

DF(s) ds(2.5)

≤ C3(M)
{
F(t) +

∫ t

0

DF(s) ds
}

+M2(t) + C4(M) + C(d)

≤ C3(M)F0 +M2,0 + C1(M)t+ C4(M) + C(d),

where the RHS term is finite under assumption (2.1) on f0, since

F0 ≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) (log |x− y|)+ dxdy(2.6)

≤ H0 +
1

4π

∫ ∫
f0(x) f0(y) |x− y|2 dxdy ≤ H0 +

1

π
M M2,0,
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with H0 := H(f0). In other words, we have

(2.7) AT (f) := sup
t∈[0,T ]

{
H+(f(t)) +M2(f(t))} +

∫ T

0

DF(f(s)) ds ≤ C(T ),

for any T ∈ (0, T ∗). It is worth emphasizing that in the subcritical case M < 8π
we are considering, we have T ∗ = +∞ and the constant C(T ) only depends on M ,
M2,0, H0 and the final time T .

With the sole information (2.7) it is possible to directly define a notion of weak
solution. We rather present additional and (apparently) stronger a priori estimates
on the solutions that we may deduce from (2.7) and which will make the definition
more classical and will be also useful during the further analysis of the equation
(existence, uniqueness, large time behavior).

We start presenting some elementary functional (Gagliardo-Nirenberg-Sobolev type)
inequalities which will be of main importance in the sequel.

Lemma 2.5. For any 0 ≤ f ∈ L1(R2) with finite mass M and finite Fisher infor-
mation

I = I(f) :=

∫
R2

|∇f |2

f
,

there hold

∀ p ∈ [1,∞), ‖f‖Lp(R2) ≤ CpM
1/p I(f)1−1/p,(2.8)

∀ q ∈ [1, 2), ‖∇f‖Lq(R2) ≤ CqM
1/q−1/2 I(f)3/2−1/q.(2.9)

For any 0 ≤ f ∈ L1(R2) with finite mass M , there holds

∀ p ∈ [2,∞) ‖f‖Lp+1(R2) ≤ CpM
1/(p+1) ‖ ∇(fp/2)‖2/(p+1)

L2 .(2.10)

Proof of Lemma 2.5. We start with (2.9). Let q ∈ [1, 2) and use the Hölder
inequality:

‖∇f‖qLq =

∫ ∣∣∣∣∇f√f
∣∣∣∣q f q/2 ≤ (∫ |∇f |2f

)q/2(∫
f q/(2−q)

)(2−q)/2

= I(f)q/2 ‖f‖q/2
Lq/(2−q) .

Denoting by q∗ = 2q/(2−q) ∈ [2,∞) the Sobolev exponent associated to q in dimen-
sion 2, thanks to a standard interpolation (Holder) inequality and to the Sobolev
inequality, we have

‖f‖Lq/(2−q) = ‖f‖Lq∗/2 ≤ ‖f‖1/(q∗−1)

L1 ‖f‖(q∗−2)/(q∗−1)

Lq∗(2.11)

≤ Cq ‖f‖1/(q∗−1)

L1 ‖∇f‖(q∗−2)/(q∗−1)
Lq .

Gathering these two inequalities, it comes

‖∇f‖Lq ≤ Cq I(f)1/2 ‖f‖1/(2(q∗−1))

L1 ‖∇f‖(q∗−2)/(2(q∗−1))
Lq ,

from which we deduce (2.9).

We now establish (2.8). For p ∈ (1,∞), we may write p = q∗/2 = q/(2 − q) with
q := 2p/(1 + p) ∈ [1, 2) and we may use (2.11) and (2.9) to get

‖f‖Lp ≤ Cp ‖f‖
1

q∗−1
+ q∗−2

q∗−1
( 1
q
− 1

2
)

L1 I(f)
q∗−2
q∗−1

( 3
2
− 1

q
),

from which one easily concludes.
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We verify (2.10). From the Sobolev inequality and the Cauchy-Schwarz inequality,
we have

‖ w2(1+1/p)‖L1(R2) = ‖ w1+1/p‖2
L2(R2) ≤ ‖ ∇(w1+1/p)‖2

L1(R2)

≤ (1 + 1/p)2 ‖ w1/p‖2
L2 ‖ ∇w‖2

L2(R2)(2.12)

and we conclude to (2.10) by taking w := fp/2. �

We deduce a first key estimate on the solutions to the Keller-Segel equation as a
consequence of (2.7) and Lemma 2.5.

Lemma 2.6. For any solution f to the Keller-Segel equation (1.3)-(1.5)-(2.1) and
any final time T ∈ (0, T ∗), there exists a constant C := C(M,AT (f)) such that

(2.13)
1

2

∫ T

0

I(f(t)) dt ≤ C.

In particular, in the subcritical case M < 8π the constant C only depends on M ,
H0, M2,0 and T ∈ (0,∞).

Proof of Lemma 2.6. On the one hand, we write

DF(f) =

∫
f |∇(log f + κ̄)|2

≥
∫
f |∇ log f |2 + 2

∫
∇f · ∇κ̄ = I(f)− 2

∫
f 2.

On the other hand, for any A > 1, using the Cauchy-Schwarz inequality and the
inequality (2.8) for p = 3, we have∫

f 2 1f≥A ≤
(∫

f 1f≥A

)1/2(∫
f 3
)1/2

≤
(∫

f
(log f)+

logA

)1/2(
C3

3 M I(f)2
)1/2

,

from what we get for A = A(M,H+(f)) large enough, and more precisely taking A
such that logA = 16H+(f)C3

3 M , the bound

(2.14)

∫
f 2 1f≥A ≤ C

3/2
3 M1/2 H+(f)1/2

(logA)1/2
I(f) ≤ 1

4
I(f).

Together with the first estimate, we find

1

2
I(f) ≤ DF(f) + 2

∫
f 2 1f≤A

≤ DF(f) + 2M exp(16H+(f)C3
3 M),

and we conclude thanks to (2.7). �

Remark 2.7. As we have already mentioned, we are not able to use the logarith-
mic Hardy-Littlewood-Sobolev inequality (2.2) in the critical and supercritical cases.
However, introducing the Maxwell function M := M (2π)−1 exp(−|x|2/2) of mass
M and the relative entropy

H(h|M ) :=

∫
R2

(h log(h/M )− h+ M ) dx,
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one may show that any solution f to the Keller-Segel equation (1.4) formally satisfies

d

dt
H(f(t)|M ) = −I(f(t)) +

∫
f(t)2 + C1/2

≤ −I(f(t)) +MA+ C
3/2
3 M1/2 H+(f(t))1/2

(logA)1/2
I(f(t)) + C1/2 (∀A > 0)

= −I(f(t)) +M exp
(
4C3

3 M H+(f(t))) + C1/2

= −I(f(t)) +M exp
{
C6H(f(t)|M )

}
+ C1/2,

for a constant C6 = C6(M) and where C1 = C1(M) is defined in (1.7). In the above
estimates, we have used (2.14), we have made the choice logA := 4C3

3 M H+(f(t))
and we have used a variant of inequality (2.4). This differential inequality provides
a local a priori estimate on the relative entropy which is the key estimate in order
to get the same estimate as in subcritcal case (but thus only locally in time).

As an immediate consequence of Lemmas 2.5 and 2.6, we have

Lemma 2.8. For any T ∈ (0, T ∗), any solution f to the Keller-Segel equation (1.3)-
(1.5)-(2.1) satisfies

f ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (1,∞),(2.15)

K̄ ∈ Lp/(p−1)(0, T ;L2p/(2−p)(R2)), ∀ p ∈ (1, 2),(2.16)

∇xK̄ ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (2,∞).(2.17)

Proof of Lemma 2.8. The bound (2.15) is a direct consequence of (2.13) and (2.8).
The bound (2.16) then follows from the definition of K, the Hardy-Littlewood-
Sobolev inequality

(2.18)
∥∥∥ 1

|z|
∗ f
∥∥∥
L2r/(2−r)(R2)

≤ Cr ‖ f‖Lr(R2), ∀ r ∈ (1, 2),

with r = p and (2.15). Finally, from (2.13) and (2.9) we have

∇f ∈ L
2q

3q−2 (0, T ;Lq(R2)), ∀ q ∈ (1, 2).

Applying the Hardy-Littlewood-Sobolev inequality (2.18) to ∇xK̄ = K∗ (∇xf) with
r = q, we get

∇xK̄ ∈ L
2q

3q−2 (0, T ;L
2q
2−q (R2)), ∀ q ∈ (1, 2),

which is nothing but (2.17). �

Exercise 2.9. Prove that fK̄ ∈ L4/3((0, T ) × R2). (Hint. Use the estimates
f ∈ Lp

′
(0, T ;Lp), K̄ ∈ Lq

′
(0, T ;L2q/(2−q)) together with the (generalized) Holder

inequality and optimize the values of p ∈ (1,∞), r ∈ (1, 2)).

3. Existence theory

Definition 3.1. For any initial datum f0 satisfying (2.1) and any final time T ∗ > 0,
we say that

(3.1) 0 ≤ f ∈ C([0, T );D′(R2)), ∀T ∈ (0, T ∗),
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which satisfies the bound (2.7), is a weak solution to the Keller-Segel equation on
the time interval (0, T ∗) associated to the initial condition f0 whenever f satisfies
the mass conservation identity (1.6), the relaxed second moment (in)equation

(3.2) M2(t) ≤ C1(M) t+M2,0, ∀ t ∈ (0, T ∗),

and the relaxed free energy-dissipation of energy (in)equation

(3.3) F(t) +

∫ t

0

DF(s) ds ≤ F0, ∀ t ∈ (0, T ∗),

as well as the Keller-Segel equation (1.4)-(1.5) in the distributional sense, namely

(3.4)

∫
R2

f0(x)ϕ(0, x) dx =

∫ T ∗

0

∫
R2

f
{

(∇x(log f) + K̄) · ∇xϕ− ∂tϕ
}
dxdt,

for any ϕ ∈ C2
c ([0, T ∗)× R2).

It is worth emphasizing again that (2.7) is a consequence (the arguments are pre-
sented in Section 2) of (1.6), (1.7) and (3.3) in the subcritical case M ∈ (0, 8π) and
that the RHS of (3.4) is well defined thanks to (1.9) and (2.7). As we will explain
in Section 3.1 (see also Exercise 2.9), we can prove

∃ r ≥ 1, f K̄ ∈ Lr((0, T )×BR), ∀R > 0,

so that equation (3.4) may be expressed in the simpler way

(3.5)

∫
R2

f0(x)ϕ(0, x) dx =

∫ T ∗

0

∫
R2

f
{
K̄ · ∇xϕ− ∂tϕ−∆ϕ

}
dxdt

for any ϕ ∈ C2
c ([0, T ∗) × R2). We rather take this relation as the definition of the

distributional formulation of the Keller-Segel equation (1.4)-(1.5) (instead of (3.4)).

This framework is well adapted for the existence theory.

Theorem 3.2. For any initial datum f0 satisfying (2.1), there exists at least one
weak and maximal solution on a time interval (0, T ∗) in the sense of Definition 3.1
to the Keller-Segel equation (1.4)-(1.5) with

• T ∗ = +∞, when M ≤ 8π;
• T ∗ < +∞ and H(f(t)|M )→∞ as t→ T ∗, when M > 8π.

In the sequel we will only prove the existence result in the case when M ∈ (0, 8π)
and we leave as an exercise the case M ≥ 8π, for which the proof follows the same
lines.

Exercise 3.3. Use Remark 2.7 in order to prove the existence of at least local in
time solutions to the Keller-Segel equations (1.3)-(1.5)-(2.1) in the critical and su-
percritical cases M ≥ 8π.

3.1. A stability result. Before passing to the proof of Theorem 3.2, we present
a stability result which is the key argument in the cornerstone and last step of the
existence result. We consider a sequence of functions (fn) such that

0 ≤ fn ∈ C([0,∞);D′(R2))
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and fn is a weak solution to the Keller-Segel equation in the sense of Definition 3.1.
More precisely, we assume

M(fn(t)) = M ∈ (0, 8π),(3.6)

M2(fn(t)) ≤M2(fn(0)) + tC1(M),(3.7)

F(fn(t)) +

∫ t

0

DF(fn(s)) ds ≤ F(fn(0)),(3.8)

for any t ∈ (0, T ) and the Keller-Segel equation

∂tfn = ∆fn −∇(fn K̄n), K̄n := K ∗ fn,(3.9)

has to be understood in the distributional sense D′([0,∞)×R2). We finally assume
that fn(0)→ f0 strongly in L1, M2(fn(0))→M2(f0) and F(fn(0))→ F(f0).

Proposition 3.4. Under the above assumptions, there exists a subsequence still
denoted as (fn) such that fn ⇀ f weakly in L2 and f is a solution to the Keller-
Segel equation associated to the initial datum f0 in the sense of Definition 3.1.

Because of the estimates established in section 2, we know that (fn) satisfies (uni-
formly in n)

(3.10) sup
[0,T ]

∫
R2

fn (1 + |x|2 + (log fn)+) dx+

∫ T

0

∫
R2

|∇fn|2

fn
dxdt ≤ CT .

We then deduce that (up to the extraction of a subsequence)

(3.11) fn ⇀ f weakly in L2((0, T )× R2),

because the Cauchy-Schwarz inequality and the Sobolev inequality imply∫
R2

f 2
ndx ≤ C

(∫
R2

|∇fn|dx
)2

≤ C

∫
R2

fndx×
∫
R2

|∇fn|2

fn
dx,

so that (fn) is bounded in L2((0, T )× R2) thanks to the Fisher information bound
(3.10). The above estimate is also a particular case of the first point in Lemma 2.5
(with p = 2).

We aim to explain now why the following strong convergence result holds true, this
one allows then to pass to the limit in the weak formulation of (1.4).

Lemma 3.5. Under the above assumptions, there holds

(3.12) K̄n → K̄ := K ∗ f strongly in L2((0, T )×BR) ∀R > 0.

Proof of Lemma 3.5. In order to get a more elementary and self-contained argu-
ment, we introduce a splitting of the kernel K which make possible to use the more
classical Young inequality instead of the (very subtle) Hardy-Littlewood-Sobolev
inequality (2.18).

Step 1. Using estimate (3.10) and repeating the proof of Lemma 2.8, we have

(fn) is bounded in Lp
′
(0, T ;Lp(R2)) ∀ p ∈ [1,∞),

and in particular
(fn) is bounded in L3(0, T ;L3/2(R2)).

Introducing the splitting

K = K0 +K∞, K0 := K 1B1 ∈ L3/2, K∞ := K 1Bc
1
∈ L5/2,
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and using twice the Young inequality

‖ u ∗ v‖Lr ≤ ‖ u‖Lp ‖ v‖Lq ,
1

r
=

1

p
+

1

q
− 1,

with (p, q) := (3/2, 3/2) and (p, q) := (3/2, 5/2), we obtain

g ∈ L3
tL

3/2
x ⇒ K ∗ g ∈ L3

t (L
3
x + L15

x ),

or in other words

‖ K ∗ g‖L3((0,T )×BR) ≤ CR ‖ g‖L3
tL

3/2
x
, ∀R > 0.

We deduce then

(3.13) (K ∗ fn) is bounded in L3((0, T )×BR), ∀R > 0.

Together with (3.11) and the (generalized) Holder inequality, we get

(3.14) (fnK ∗ fn) is bounded in L6/5((0, T )×BR).

Step 2. We next observe that for any ϕ ∈ D(R2), we have

d

dt

∫
R2

fn(t, x)ϕ(x) dx =

∫
R2

fn (∆ϕ− K̄n · ∇ϕ) dx,

where the RHS term is bounded in L6/5(0, T ) thanks to the first step. We deduce
that 〈fnϕ〉 is bounded in W 1,6/5(0, T ) ⊂ C0,1/6([0, T ]), thanks to Morrey’s inequality,
and

〈fnϕ〉 → 〈fϕ〉 strongly in L∞(0, T ),

thanks to the Ascoli Lemma. We immediately deduce that for any ϕ ∈ D(R2) ⊗
D(R2), the space of linear combinations of functions of separable variables φ(x, y) =
φ1(x)φ2(y), we also have

(3.15)

∫
R2

fn(t, y)ϕ(x, y) dx→
∫
R2

f(t, y)ϕ(x, y) dx in L2((0, T )×BR),

for any R > 0.

Step 3. We fix now ϕ ∈ L2(BR×R2) and we recall the (Stone-Weierstrass) density
result: there exists a sequence (ϕk) of functions of D(R2)⊗D(R2) such that

ϕk → ϕ in L2(BR × R2).

We write∫
fnϕ−

∫
fϕ =

∫
fn(ϕ− ϕk) +

∫
fnϕk −

∫
fϕk +

∫
f(ϕk − ϕ).

We observe that by the Cauchy-Schwarz inequality∥∥∥ ∫ f(ϕk − ϕ)
∥∥∥2

L2((0,T )×BR

≤
∫ T

0

∫
BR

(∫
R2

f(t, y)(ϕk(x, y)− ϕ(x, y)) dy
)2

dxdt

≤
∫ T

0

∫
BR

∫
R2

f 2(t, y) dydxdt×
∫ T

0

∫
BR

∫
R2

(ϕk(x, y)− ϕ(x, y))2 dydxdt

≤ T |BR| ‖ f‖2
L2 ‖ ϕk − ϕ‖2

L2 → 0,

and that we have a similar result (uniformly in n) for the first term. We then
classically deduce that (3.15) also holds for such a function ϕ.
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Step 4. We define

ϕε(x, y) := K(x− y) 1ε<|x−y|<1/ε

so that ϕε ∈ L2(BR × R2) for any ε ∈ (0, 1). We write

K̄n − K̄ =

∫
fn(k(x− y)− ϕε(x, y)) +

∫
fnϕε −

∫
fϕε +

∫
f(ϕε(x, y)− k(x− y)).

We note Ω := (0, T ) × BR and we define K0,ε := K 1Bε , K∞,ε := K 1Bc
1/ε

. For the

last term we have∥∥∥ ∫ f(ϕε(x, y)− k(x− y))
∥∥∥
L2(Ω)

≤ ‖ k0,ε ∗ f‖L2(Ω) + ‖ k∞,ε ∗ f‖L2(Ω)

≤ C (‖ K0,ε‖3/2 + ‖ K∞,ε‖5/2) ‖ f‖
L3
t (L

3/2
x )
→ 0,

and we conclude to (3.12) in the same way as in the preceding step. �

Exercise 3.6. Prove (3.12) without making use of Lemma 2.8 (which is based on
the Hardy-Littlewood-Sobolev inequality) but by only using the Young inequality (and
the splitting of K) as we have done in the proof above.

As announced, the convergence result of Lemma 3.5 together with (3.14) imply that

(K ∗ fn)fn ⇀ (K ∗ f)f weakly in L6/5((0, T )×BR).

Using that convergence result and (3.11) there is no difficulty to pass to the limit
in the distributional formulation of the Keller-Segel equation (3.5) satisfied by fn.
We deduce that f also satisfied the distributional formulation of the Keller-Segel
equation, namely that (3.5) holds.

In order to conclude the proof of Proposition 3.4, we need a somehow stronger
convergence result, that we present bellow. We split it into two pieces.

Lemma 3.7. Under the above assumptions, there holds

(3.16) fn → f strongly in Lp((0, T )×BR), ∀ p ∈ [1, 2), ∀R > 0.

Proof of Lemma 3.7. Step 1. We argue similarly as in the proof of Lemma 3.5.
We introduce a sequence of mollifiers (ρε), that is ρε(x) := ε−2ρ(ε−1x) with 0 ≤ ρ ∈
D(R2), 〈ρ〉 = 1. We observe that

∂

∂t

∫
R2

fn(t, y) ρε(x− y) dx =

∫
R2

fn (∆ρε − K̄n · ∇ρε) dy,

where the RHS term is bounded in L6/5((0, T ) × BR) uniformly in n for any fixed
ε > 0, thanks to the first step in Lemma 3.5. We also clearly have

∇x

∫
R2

fn(t, y) ρε(x− y) dx = −
∫
R2

fn∇yρε(x− y) dy,

where again the RHS term is bounded in L6/5((0, T ) × BR) uniformly in n for any
fixed ε > 0, thanks to (3.11). In other words, fn∗ρε is bounded inW 1,6/5((0, T )×BR).
Thanks to the Rellich-Kondrachov Theorem, we get that (up to the extraction of a
subsequence) (fn ∗ρε)n is strongly convergent in L6/5((0, T )×BR). Thanks to (3.11)
and for any fixed ε > 0, we then get

fn ∗ ρε → f ∗ ρε strongly in L1((0, T )×BR) as n→∞.
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Step 2. Now, we observe that∫
(0,T )×R2

|g − g ∗ ρε| dxdt =

∫
(0,T )×R2

∣∣∣∫
R2

(g(t, x)− g(t, x− y))ρε(y) dy
∣∣∣ dxdt

=

∫
(0,T )×R2

∣∣∣∫
R2

∫ 1

0

∇xg(t, zs) · yρε(y) dsdy
∣∣∣ dxdt,

with zs := x+ sy. As a consequence, we have∫
(0,T )×R2

|g − g ∗ ρε| dxdt ≤ ε

∫
(0,T )×R2

∣∣∣∫
R2

∫ 1

0

|∇xg(t, zs)|
1

ε2

|y|
ε
ρ
(y
ε

)
dsdydxdt

≤ ε

∫
(0,T )×R2

|∇xg(t, z)|dtdz
∫
R2

|z|ρ(z) dy

≤ εC

∫ T

0

M1/2I(g(t, .))1/2dt.

We conclude that fn → f in L1((0, T )×BR) by writing

fn − f = (fn − fn ∗ ρε) + (fn ∗ ρ− f ∗ ρ) + (f ∗ ρε − f)

and using the previous convergence and estimates. Together with (3.11), we conclude
to (3.16). �

Lemma 3.8. Under the above assumptions, there holds fn, f ∈ C([0, T );L1-weak)
in the following sense

(3.17)

∫
g(t)ϕdx→

∫
g(t)ϕdx as t→ s,

for g = fn, f and any ϕ ∈ L∞−1, as well as fn → f for the convergence in C([0, T );L1
1-weak)

in the following sense

(3.18)

∫
fn(t)ϕdx→

∫
f(t)ϕdx as n→∞

uniformly in t ∈ [0, T ] and for any ϕ ∈ L∞−1.

Proof of Lemma 3.8. We only prove (3.18) since the proof of (3.17) is similar (and
even simpler). Th eproof is split into three steps.

Step 1. We prove fn → f for the C([0, T ); (C0)′-weak) topology. Coming back to
Step 2 in the proof of Lemma 3.5, we have∫

R2

fn(t, x)ϕ(x) dx is bounded in C0,1/6([0, T ])

for any ϕ ∈ D(R2). Since there exists a countable subset U ⊂ D(R2) which is
dense in C0(R2), the space of continuous and vanish at the infinity functions, the
Ascoli theorem and a Cantor’s diagonalisation argument tell us that there exists a
subsequence (fn′) such such that (〈fn′(t)ϕ〉) uniformly converges in C([0, T ]) for any
ϕ ∈ U and then for any ϕ ∈ C0(R2). Denoting `ϕ(t) its limit, we have |`ϕ(t)| ≤
M ‖ ϕ‖∞ for any ϕ ∈ C0(R2), and we may identify it as a Borel measure f̃(t) ∈
(C0(R2))′. In other words, there exists f̃ ∈ C([0, T ); (C0)′-weak) such that fn′ → f̃
for the C([0, T ); (C0)′-weak) topology, and thus also in D′((0, T ) × R2). Since the

convergence fn → f also holds in D′((0, T )×R2), we have f = f̃ a.e., and from now
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on, we we make the identification with the continuous representent f = f̃ . The all
sequence (fn) convergences by the standard “uniqueness of the limit” argument.

Step 2. We prove that f satsifies the same mass, moment and entropy bounds as
the sequence (fn). Let us define ϕR(x) := ϕ(x/R), for ϕ ∈ D(R2), 1B1 ≤ ϕ ≤ 1.
From (3.7), we have ∫

fn(t)|x|2ϕR dx ≤M2(fn(0)) + tC1(M).

Passing to the limit first as n→∞ and next as R→∞, we deduce that f satisfies
the second moment inequality (3.2).

Denoting ϕcR := 1− ϕR, we compute∣∣∣∫ f(t)−M
∣∣∣ =

∣∣∣∫ (f − fn)ϕR +

∫
(f − fn)ϕcR

∣∣∣
≤

∣∣∣∫ (f − fn)ϕR

∣∣∣+
1

R2

∫
(f(t) + fn(t))|x|2 1|x|≥R,

and the RHS term is as small as we wish by taking R large enough (and using
the second moment estimates) and then n large enough (and using the convergence
fn(t) ⇀ f(t) weakly in (C0)′). We deduce that f satisfies the mass conservation
identity (1.6). With a similar argument, we get

(3.19)

∫
fn(t)|x| →

∫
f(t)|x| as n→∞,

for any fixed t ∈ [0, T ].

We observe next that

g log g = j(g/q)q + g log q,

with q = e−|x| and j(s) = s log s− s+ 1 = supσ∈R(sσ − eσ + 1) for any s > 0. For a
sequence (gn) such that gn ⇀ g in (C0)′, we deduce that∫

(σg/q − eσ + 1)q = lim

∫
(σgn/q − eσ + 1)q

≤ lim inf

∫
gn log gn −

∫
gn log q,

for any σ ∈ C0(R2). Taking the supremum over σ ∈ C0, we obtain∫
g log g −

∫
g log q ≤ lim inf

∫
gn log gn −

∫
gn log q.

Together with (3.19), we get∫
f(t) log f(t) ≤ lim inf

∫
fn(t) log fn(t),

for any t ∈ [0, T ].

Step 3. We establish (3.18). For any fixed ϕ ∈ L∞−1, we may introdce a sequence
(ϕε) of C0(R2) such that ϕε → ϕ a.e. and ‖ϕε‖L∞−1

≤ ‖ϕ‖L∞−1
. We then split∣∣∣∫ fn(t)ϕ− f(t)ϕ

∣∣∣ ≤ ∣∣∣∫ (f(t)− fn(t))ϕε

∣∣∣+

∫
(fn(t) + f(t))|ϕ− ϕε|
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and we use the inequality

(3.20) 0 ≤ g ≤ 1BR
A+ 1BR

g 1g≥A + 1Bc
R
g

in order to control the last term. �

We leave as an exercise the next convergence result.

Exercise 3.9. Consider a sequence (gn) such that gn → g in the C([0, T );L1-weak)
sense and ϕ ∈ L∞−1, then

gn ∗ ϕ→ g ∗ ϕ in C([0, T );L1
−4), bounded in L∞(0, T ;L∞−1)

Consider moreover a sequence (an) such that an → a in the C([0, T );L1
−4) sense,

bounded in L∞(0, T ;L∞−1), then

(3.21)

∫
gn an dx→

∫
g a dx in C([0, T ]).

(Hint. For (3.21), one may use the Egorov lemma).

We are now ready to prove relaxed free energy-dissipation of energy inequality (3.3)
for the limit function. We define

κε(z) := κ(z) 1|z|≤ε, κcε(z) := κ(z) 1|z|≥ε, ∀ ε > 0.

On the one hand, we have κcε ∈ L∞−1 and we easilly deduce∫
fn(t)(fn(t) ∗ κcε) dx→

∫
f(t)(f(t) ∗ κcε) dx, ∀ t ∈ [0, T ],

by using the two results stated in Exercise 3.9

On the other hand, using the convexity inequality u v ≤ u log v + ev, ∀u, v > 0, we
have ∫

|x−y|<ε
g(y) log

1

|x− y|
dy ≤

∫
|x−y|≤ε

{ 1

|x− y|)
+ g(y) log g(y)

}
dy.

We deduce∫
g(g ∗ κε) dx ≤ 2ε

∫
g +

1

2π

∫
g(y) log g(y)

∫
1|x−y|<εg(x)→ 0

as ε → 0, uniformly in g bounded in L1
2 ∩ L1 logL1, where we may use (3.20) to

estimate the second term. In other words, we have∫
fn(t)(fn(t) ∗ κε) dx,

∫
f(t)(f(t) ∗ κε) dx→ 0

as ε → 0, uniformly in n ≥ 1. Together with the above convergence on the term
associated to κcε, we get∫

fn(t)(fn(t) ∗ κ) dx→
∫
f(t)(f(t) ∗ κ) dx, ∀ t ∈ [0, T ].

Using the lsc of H established in Lemma 3.8, we conclude to

F(f(t)) ≤ lim inf F(fn(t)), ∀ t ∈ [0, T ].

Finally, we observe that∫ T

0

DF(fn) dt =
∥∥ 2∇

√
fn −Knfn

∥∥2

L2((0,T )×R2)
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and that

2∇
√
fn −Knfn ⇀ 2∇

√
f −Kf,

as n → ∞ in the distributional sense D′((0, T ) × R2), thanks to (3.12) and (3.16).
From the lsc of the L2((0, T )× R2) norm, we deduce that∫ T

0

DF(f) dt ≤ lim inf

∫ T

0

DF(fn) dt.

We summarize some previous result in the following theorem.

Lemma 3.10. The entropy functional H, the free energy functional F and the dis-
sipation of free energy functional DF are lower semi continuous for the convergence
gn ⇀ g in the weak sense σ(L1, L∞) together with (H(gn)) and (M2(gn)) are bounded
sequences.

We conclude to (3.3) by passing to the limit in (3.8) thanks to the above pieces of
information, and more precisely combining (3.18) and Lemma 3.10.

3.2. Strategies of proof. In the rest of the section we will explain how to establish
the existence of a solution to the Keller-Segel equation (1.4). The general idea
consists in introducing a truncated nonlinear problem for which we get the existence
in several quite standard steps. We then remove the truncation and we use the
previous stability/weak compactness argument in order to conclude.

For the truncated nonlinear problem we may proceed along the following strategies:

(1) A semigroup approach taking advantage that the Keller-Segel equation is a
(nonlinear) perturbation of the heat equation. Using a Banach fixed point theorem,
we may obtain a local in time solution f ∈ C([0, T );L2

k) for any f0 ∈ L2
k, K ∈ L∞.

We then need to prove that f ≥ 0, f is mass conservative, T = ∞, f is smooth
enough in order to justify the computation of the free energy and that f is a weak
solution to the (truncated) Keller-Segel equation.

(2) A Hille-Yosida approach or almost equivalently a semigroup approach in a func-
tional space with more regularity. The advantage is that all the additional properties
are simpler to established, except the global existence.

(3) A variational approach at the level of an associated linear problem and next to
perform a Banach fixed point theorem for the nonlinear problem. The advantage of
this approach is that we easily prove the global existence but the construction is a
bit more abstract than with the semigroup approach.

In the sequel, we mix these strategies in order to get a rather direct and almost
self-contained proof.

3.3. Linear problem in H1
k . We consider the linear problem

∂

∂t
f = ∆f +∇ · (E f) in (0,∞)× Rd(3.22)

f(0, x) = f0(x) in Rd,(3.23)

with

E = E(t, x) ∈ L∞(0, T ;W 1,∞)

and

0 ≤ f0 ∈ H1
k := {f ∈ L2

k,∇f ∈ L2
k}, k > 3.
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We prove the existence and uniqueness of a solution to (3.22)-(3.23) in several steps.
The precise result will be stated at the end of the section.

• We introduce the heat semigroup

Stψ(x) = (γt ∗ ψ)(x) =

∫
R2

γt(x− y)ψ(y) dy, γs(z) :=
1

2πs
e−
|z|2
2s .

Observing that

‖ γt‖L1
`
≤ C, ‖ ∇γt‖L1

`
≤ C√

t
, ∀ t > 0,

for any ` ≥ 0, we deduce that

‖ St‖Hs
`→H

s
`
≤ C, s = 0, 1, ‖ St‖L2

`→H
1
`
≤ C√

t
, ∀ t > 0.

For g ∈ L∞(0, T ;H1
k), we define the function

ht := Stf0 +

∫ t

0

St−sdiv(Esgs) ds.

We clearly have

div(Esgs) = (divEs) gs + Es · ∇gs ∈ L∞(0, T ;L2
k),

and then ht ∈ C([0, T ];H1
k). For two functions g1, g2 ∈ C([0, T ];H1

k) and the two
associated h1, h2 ∈ C([0, T ];H1

k), we write

ht =

∫ t

0

St−sdiv(Esgs) ds,

with g = g2 − g1 and h = h2 − h1. We compute

‖ht‖L2
k
≤

∫ t

0

C‖div(Esgs)‖L2
k
ds

≤
∫ t

0

C‖ Es‖W 1,∞ ‖ gs‖H1
k
ds ≤ CT ‖ gs‖L∞(0,T ;H1

k)

and similarly

‖∇ht‖L2
k
≤

∫ t

0

C

t− s
‖div(Esgs)‖L2

k
ds

≤ C
√
T ‖ gs‖L∞(0,T ;H1

k).

For T∗ > 0 small enough the mapping g 7→ h is a contraction in C([0, T∗];H
1
k), so

that there exists a unique f ∈ C([0, T∗];H
1
k) satisfying

(3.24) ft = Stf0 +

∫ t

0

St−sdiv(Esfs) ds, ∀ t ∈ (0, T∗).

Repeating the same argument, we construct a global solution f ∈ C([0, T ];H1
k) for

any T > 0.

• As an equation in L2
k, it is clear that (3.24) also write

(3.25) ft = Stf0 +

∫ t

0

∇St−s(Esfs) ds, ∀ t ∈ (0, T ).
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• Moreover, for any ϕt ∈ C2
c ([0, T ) × R2) and introducing the notation Gs :=

div(Esfs), we have

〈ϕt, ft〉 = 〈Stϕt, g0〉+

∫ t

0

〈St−sϕt, Gs〉 ds ∈ C1([0, T ])

because S∗t = St, and then

d

dt
〈ft, ϕt〉 := 〈S∗t (∆ϕt + ϕ′t), f0〉+

∫ t

0

〈St−s(∆ϕt + ϕ′t), Gs〉 ds+ 〈Gt, ϕt〉

= 〈∆ϕt + ϕ′t, ft〉+ 〈ϕt, Gt〉.

Integrating in time that last identity, we get that f is a weak solution in the following
sense [ ∫

fsϕs

]t
0

=

∫ t

0

∫ {
(∆ϕs + ∂sϕs)fs + ϕsdiv(Esfs)

}
ds,

or equivalently
∂

∂t
f = ∆f +∇ · (E f) in D′([0, T )× R2).

• On the one hand, performing one integration by part and using a straightforward
density argument, we get that f satisfies the equation in the variational sense

(3.26)
[ ∫

fsϕs

]t
0

=

∫ t

0

∫ {
∂sϕsfs −∇ϕs · (∇fs + Esfs)

}
ds,

for any ϕ ∈ C([0, T ];L2
k) ∩ L2(0, T ;H1

k) ∩ H1(0, T ;H−1). It is worth emphasizing
that for any ϕ ∈ C1

c ((0, T );H1), we have∣∣∣ ∫ T

0

〈ft, ∂tϕt〉dt
∣∣∣ =

∣∣∣ ∫ T

0

∫
∇ϕt · (∇ft + Etft)dt

∣∣∣
≤ ‖ ∇f + Ef‖L2(0,T ;H1)‖ ϕ‖L2(0,T ;H1) ≤ C ‖ ϕ‖L2(0,T ;H1),

which exactly means that f ∈ XT := H1(0, T ;H−1), so that f belongs to the same
space as the test functions.

• Given a mollifier (ρε) and introducing the regularized sequence fε = ρε ∗ f and
Gε := G ∗ ρε, we have

∂tfε = ∆fε +Gε ∈ L2,

so that fε ∈ H1
tH

2
x. We fix β : R → R a C2 function such that β′′ ∈ L∞ and

β(0) = 0 so that β(fε) ∈ W 1,1
t W 2,1

x . From the chain rule, we have

∂tfε = −β′′(fε)|∇fε|2 + ∆β(fε) + β′(fε)Gε.

Passing in the limit as ε→ 0, we get that f satisfies the equation in the renormalized
sense, namely

∂tβ(f) = −β′′(f)|∇f |2 + ∆β(f) + β′(f)div(Ef),

in the distributional sense D′([0, T ) × R2). In particular, for any ϕ ∈ C2
c (R2), we

have

(3.27)
d

dt

∫
β(f)ϕ+

∫
β′′(f)|∇f |2ϕ =

∫
β(f)∆ϕ+ β′(f)div(Ef)ϕ.
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We assume that β is convex, globally Lipschitz and non negative and we take ϕ(x) =
ϕR(x) = ϕ(x/R) with 1B1 ≤ ϕ ∈ D(R2). We obtain

d

dt

∫
β(f)ϕR ≤

∫ {
β(f)[∆ϕR − E · ∇ϕR] + [β′(f)f − β(f)](divE)ϕR

}
and then

d

dt

∫
β(f) ≤

∫
[β′(f)f − β(f)](divE),

by passing to the limit R→∞ and observing that ϕR → 1, ∇ϕR,∆ϕR → 0 as well
as β(f), β′(f)f ∈ L∞(0, T ;L1). Using a density argument, we may take β(s) = s−
so that β′(s)s− β(s) = 0 and then

d

dt

∫
f− ≤ 0.

We conclude that f ≥ 0. We may also choose β(s) = s2
− and we get the same

conclusion f ≥ 0 (without using an additional density argument). Taking β(f) = f
in (3.27) and arguing similarly, we deduce that f is mass conserving.

As a conclusion, we have established the following result.

Proposition 3.11. Under the above assumptions on E and f0, there exists a unique
global nonnegative and mass conservative solution f ∈ XT , ∀T > 0, to the linear
equation (3.22)-(3.23) in the mild sense (3.25), in the variational sense (3.26) and
in the renormalized sense (3.27).

3.4. Linear problem in L2∩L1
2. We consider now the same linear problem (3.22)-

(3.23) but with
E = E(t, x) ∈ L∞(0, T × R2)

and assuming
0 ≤ f0 ∈ L2 ∩ L1

2.

We first observe that
d

dt

∫
f 2 = −2

∫
|∇f |2 + 2

∫
∇f · Ef

≤ −
∫
|∇f |2 + ‖E‖L∞tx

∫
f 2,

by taking β(s) = s2 in equation (3.27). As a consequence, we deduce a first a priori
estimate

(3.28) sup
[0,T ]

∫
f 2 +

∫ T

0

∫
|∇f |2 ≤ e‖ E‖L

∞
tx
T

∫
f 2

0 ,

thanks to the Gronwall Lemma. Similarly, we have

d

dt

∫
f〈x〉2 = 4

∫
f +

∫
2x · Ef

≤ (4 + ‖E‖L∞tx)

∫
f〈x〉2,

and the second a priori estimate

(3.29) sup
[0,T ]

∫
f〈x〉2 ≤ e(4+‖ E‖L∞tx )T

∫
f0〈x〉2.
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We build the solution to (3.22)-(3.23) thanks to an approximation argument. We
consider a sequence (f0k) of H1

k such that f0k → f0 in L1
2 ∩ L2 and a sequence

(Ek) of L∞t W
1,∞
x such that Ek → E in L∞tx . We denote by fk the corresponding

solution exhibited in the previous section. For n ≥ m, we define fn,m = fm − fn,
En,m := Em − En and we compute

d

dt

∫
f 2
n,m = −2

∫
|∇fn,m|2 − 2

∫
∇fn,m · [ En,mfm + fn,mEn)]

≤
∫
|En,mfm + fn,mEn|2

≤ ‖En,m‖2
L∞tx
‖fm‖2

L∞t L2
x

+ ‖En‖2
L∞tx
‖fn,m‖2

L∞t L2
x
.

We immediately deduce ‖fn−fm‖L∞t L2
x
→ 0 thanks to the Gronwall Lemma and the

apriori estimate (3.29). In other words, (fn) is a Cauchy sequence in C([0, T );L2)
and it is bounded in L∞t L

1
2x ∩ L2

tH
1
x. We deduce that there exists

f ∈ YT := C([0, T );L2) ∩ L∞t L1
2x ∩ L2

tH
1
x ∩H1

tH
−1
x ,

such that fn → f strongly in C([0, T );L2) and weakly in L∞t L
1
2x ∩ L2

tH
1
x. With

this information, we may pass to the limit in the mild formulation (3.25), in the
variational formulation (3.26) and in the renormalized formulation (3.27).

As a conclusion, we have established the following second well posedness result.

Proposition 3.12. Under the above assumptions on E and f0, there exists a unique
global nonnegative and mass conservative solution f ∈ YT , ∀T > 0, to the linear
equation (3.22)-(3.23) in the mild sense (3.25), in the variational formulation (3.26)
and in the renormalized sense (3.27).

Remark 3.13. It is worth mentioning that (a slightly modified version of) Propo-
sition 3.12 (for f0 ∈ L2

k ⊂ L1
2) can be obtained more directly by using J.-L. Lions

theory of variational solutions.

3.5. Truncated nonlinear problem in L2 ∩ L1
2. For ε ∈ (0, 1), we define the

truncated logarithmic function

logε(r) := r/ε+ log ε− 1 if r ∈ (0, ε);

:= log r if r ∈ (ε, 1/ε);

:= − log ε if r > 1/ε,

so that in particular

(logε)
′(r) =

1

ε
∧ 1

r
1r<1/ε.

Abusing notations, we define the truncated potential κε on R2 by κε(z) = κε(|z|)
with

κε(r) := − 1

2π
logε r ∀r ∈ (0,∞).

The associated force field is finally define by

a(x) := ∇κε(x) =
x

|x|
κ′ε(|x|) ∈ L∞ ∩ L1.

We define the functional set

ZT := { f ∈ YT ; f ≥ 0, 〈f〉 = 〈f0〉, ‖f‖YT ≤ C},



22 THE KELLER-SEGEL EQUATION

with
‖f‖YT := max { ‖f‖L∞t L2

x
, ‖f‖L∞t L1

2
, ‖∇xf‖L2

tx
}.

For g ∈ ZT , we observe that

‖ a ∗ g‖L∞tx ≤ ‖ a‖L∞‖g‖L∞t L1
x
≤ ‖ a‖L∞〈f0〉,

and we then may define h = Φ[g] ∈ YT as the solution to

∂

∂t
h = ∆h+∇ · ((a ∗ g)h) in (0,∞)× R2(3.30)

f(0, x) = f0(x) in R2,(3.31)

exhibited in Section 3.4 for 0 ≤ f0 ∈ L1
2 ∩ L2. For any T > 0, we choose

C := exp((4 + ‖ a‖L∞M)T )‖ f0‖L1
2∩L2 ,

so that h ∈ ZT thanks to the two estimates (3.28) and (3.29) and the above bound
on a ∗ g. Next, for two functions g1, g2 ∈ ZT and the two associated solutions
h1, h2 ∈ ZT , we define h := h2 − h1, g := g2 − g1, and we compute

d

dt

∫
h2 = −2

∫
|∇h|2 − 2

∫
∇h · [ (a ∗ g)h2 + h(a ∗ g1)]

≤ ‖ a ∗ g‖2
L∞tx
‖ h2‖2

L∞t L2
x

+ ‖ a ∗ g1‖2
L∞tx
‖ h‖2

L∞t L2
x

≤ ‖ a‖2
L2‖g‖2

L∞t L2
x
‖ h2‖2

L∞t L2
x

+ ‖ a‖2
L2‖g1‖2

L∞t L2
x
‖ h‖2

L∞t L2
x
,

≤ 2A‖g‖2
L∞t L2

x
+ 2A‖ h‖2

L∞t L2
x
,

with A = ‖ a‖2
L2C2/2. Together with the Gronwall lemma, we deduce

‖ h‖L∞t L2 ≤ (eAT − 1)‖g‖L∞t L2 ,

so that the mapping Φ : Zτ → Zτ , g 7→ h is a contraction for the L∞(0, τ ;L2
x)

norm when τ > 0 small enough. We deduce that Φ admits a unique fixed point
f = Φ[f ] ∈ Yτ , which is thus a global nonnegative and mass conservative solution
to the linear equation (3.22)-(3.23) in the mild sense (3.25), in the variational sense
(3.26) and in the renormalized sense (3.27) on the time intervalle (0, τ). We get that
f is a solution on the time intervalle (0, T ) by an iterative process and observing
that exactly the same argument makes possible to build a solution on [mτ, (m+1)τ ]
as long as (m + 1)τ ≤ T , because the value of τ only depends on the constant A
which is finite on any given intervalle of time [0, T ]. Because T is arbitrary, we have
proven the existence of a global solution (here without restriction on the mass).

3.6. The compactness argument. For the smooth function β(s) := (s+α) log(s+
α), α > 0, the renormalized formulation of the equation writes

∂t

∫
β(f) = −

∫
β′′(f)|∇f |2 + β′′(f)∇f · K̄εf,

= −
∫
|∇f |2

α + f
+

∇f√
α + f

· K̄εf√
α + f

≤ −1

2

∫
|∇f |2

α + f
+

1

2

∫
K̄2
ε f

2

α + f

≤ −1

2

∫
|∇f |2

α + f
+

1

2
‖ Kε‖2

L∞ 〈f0〉3.
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Passing to the limit α → 0 in the last inequality and using the dominated conver-
gence and monotonous convergence theorems, we deduce the estimate

sup
[0,T ]

∫
f log f +

1

2

∫ T

0

∫
|∇f |2

f
≤
∫
f0 log f0 + CT.

Using that information, we may then pass to the limit in the second equality in the
previous series of equations, and we get

∂t

∫
f log f = −

∫
|∇f |2

f
+
∇f√
f
· K̄ε

√
f

= −
∫
|
√
f ∇ log f |2 + (

√
f ∇ log f) · K̄ε

√
f.

We observe that κ̄ε = κε ∗ fε ∈ YT . On the one hand, we have

d

dt

∫
fκ̄ε =

∫
(∂tf)κ̄ε +

∫
f∂tκ̄ε = 2

∫
f∂tκ̄ε

for a smooth function f and thus also for f ∈ YT . On the other hand, from the
variational formulation (3.26), we have

d

dt

∫
fκ̄ε =

∫
f∂tκ̄ε −

∫
∇κ̄ε · (∇f + K̄εf).

Both together, we deduce

1

2

d

dt

∫
fκ̄ε = −

∫
∇κ̄ε · (∇f + K̄εf)

= −
∫ √

fK̄ε · (
√
f∇ log f +

√
fK̄ε).

For the free energy associated to truncated Keller-Segel equation (3.30)-(3.31), we
finally have

d

dt

{ ∫
f log f +

1

2

∫
fκ̄ε

}
= −

∫
|
√
f ∇ log f |2 + 2(

√
f ∇ log f) · K̄ε

√
f + |

√
fK̄ε|2

= −
∫
|
√
f ∇ log f +

√
fK̄ε|2.

We may repeat the proof of the estimates obtained in the case of the (untruncated)
Keller-Segel model in Section 1.2 and Section 2 and then readily adapt the proof
of the stability result Proposition 3.4 in order to get that (fε) converges (up to the
extraction of a subsequence) to a solution f to the Keller-Segel equation associated
to the initial datum f0 in the sense of Definition 3.1.

4. Uniqueness result

We accept the following regularity result.

Theorem 4.1. For any initial datum f0 satisfying (2.1), the associated solution f
is smooth for positive time, namely f ∈ C∞((0, T ∗)×R2), and satisfies the identity
(1.8) on (0, T ∗).
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About the proof of Theorem 4.1. We just mention the formal computation which
leads to the L2 estimate. Multiplying the Keller-Segel by f and intergarting in the
position variable, we get

d

dt

∫
f 2 = −2

∫
|∇f |2 +

∫
f 3

and we have to explain how we may bound the last term. For any A > 1, we write∫
f 3 .

∫
(f ∧ A)3 +

∫
(f − A)3

+

. A2

∫
f + ‖(f − A)+‖L1 ‖ ∇(f − A)+‖2

L2

. A2M +
H+(f)

logA
‖ ∇f‖2

L2 ,

where we have used the Gagliardo-Nirenberg-Sobolev inequality (2.10) (with p = 2)
in the second line. All together, we deduce

d

dt

∫
f 2 = −

∫
|∇f |2 + A2M,

by choosing A large enough. �

We establish that the previous framework (for existence of weak solutions) is also
well adapted for the well-posedness issue.

Theorem 4.2. For any initial datum f0 satisfying (2.1), there exists at most one
weak solution in the sense of Definition 3.1 to the Keller-Segel equation (1.4)-(1.5).

We split the proof into two steps. We recall that from Theorem 4.1 we already know
that ‖f‖L2 ∈ C1(0, T ) and ‖f‖Lp ∈ L∞(t0, T ) for any 0 < t0 < T < T ∗ and any
p ∈ [1,∞].

Step 1. We establish our new main estimate, namely that any weak solution satisfies

(4.1) t1/4‖ (t, .)‖L4/3 → 0 as t→ 0.

First, from (1.4) and the regularity of the solution, we have

d

dt
‖f‖2

L2 + 2‖∇xf‖2
L2 = ‖f‖3

L3 on (0, T ).

As in the element of proof of Theorem 4.1, we deduce that

d

dt
‖f‖2

L2 + ‖∇xf‖2
L2 ≤ A2M on (0, T ),

for A large enough. Thanks to the Nash inequality

(4.2) ‖f‖2
L2 ≤ CM ‖∇f‖L2 ,

we thus obtain
d

dt
‖f‖2

L2 + cM‖f‖4
L2 ≤ A2M on (0, T ).

It is a classical trick of ordinary differential inequality to deduce that there exists a
constant K (which only depends on cM , A2M and T ) so that

(4.3) t ‖f(t, .)‖2
L2 ≤ K ∀ t ∈ (0, T ).
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We now prove (4.1) from (4.3), the conservation of mass and an interpolation ar-

gument (Hölder inequality). On the one hand, introducing the notation l̃og+f :=
2 + (log f)+, we use the Hölder inequality in order to get∫

f 4/3 =

∫
f 2/3 (l̃og+f)2/3 f 2/3 (l̃og+f)−2/3

≤
(∫

f l̃og+f
)2/3 (∫

f 2 (l̃og+f)−2
)1/3

,

or, in other words, and using a similar estimate as (2.4), we have

(4.4) ‖f‖L4/3 ≤ C(H(f),M2(f))
(∫

f 2 (l̃og+f)−2
)1/4

.

On the other hand, we observe that for any R ∈ (0,∞)

t

∫
f 2 (l̃og+f)−2 ≤ t

∫
f≤R

f 2 (l̃og+f)−2 + t

∫
f≥R

f 2 (l̃og+f)−2

≤ t
R

(l̃og+R)2

∫
f≤R

f +
t

(l̃og+R)2

∫
f≥R

f 2

≤ t
MR

(l̃og+R)2
+

K

(l̃og+R)2
≤ M +K

(l̃og+1/t)2
→ 0,(4.5)

where we have used that s 7→ s/(l̃og+s)
2 is an increasing function in the second line,

then the mass conservation and estimate (4.3) in the third line, and we have chosen
R := t−1 in order to get the last inequality. We conclude to (4.1) by gathering (4.4)
and (4.5).

Step 3. Contraction argument. We consider two weak solutions f1 and f2 to the
Keller-Segel equation (1.4) with same initial datum f0, that we write in the mild
form

fi(t) = et∆f0 +

∫ t

0

e(t−s)∆∇(K̄i(s) fi(s)) ds. K̄i = K ∗ fi.

Here et∆ stands for the heat semigroup defined in R2 by et∆f := γt ∗ f , γt(x) :=
(2πt)−1 exp(−|x|2/(2t)). The difference F := f2 − f1 satisfies

F (t) =

∫ t

0

∇ · e(t−s)∆(V2(s)F (s)) ds+

∫ t

0

∇ · e(t−s)∆(W (s) f1(s)) ds = I1 + I2,

with W := K̄2 − K̄1. For any t > 0, we define

Zi(t) := sup
0<s≤t

s1/4 ‖fi(s)‖L4/3 , ∆(t) := sup
0<s≤t

s1/4 ‖F (s)‖L4/3 .
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We then compute

J1 := t1/4 ‖I1(t)‖L4/3

≤ t1/4
∫ t

0

‖∇ · e(t−s)∆(K̄2(s)F (s))‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖K̄2(s)F (s)‖L1 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖K̄2(s)‖L4 ‖F (s)‖L4/3 ds

≤ t1/4
∫ t

0

C

(t− s)3/4
‖f2(s)‖L4/3 ‖F (s)‖L4/3 ds

≤
∫ t

0

C

(t− s)3/4

t1/4

s1/2
dsZ2(t) ∆(t)

=

∫ 1

0

C

(1− u)3/4

du

u1/2
Z2(t) ∆(t),

where we have used the regularizing effect of the heat equation

‖∇(et∆g)‖L4/3 ≤ ‖∇γt‖L4/3 ‖g‖L1 ≤ C

t3/4
‖g‖L1 ,

at the third line, the Hölder inequality at the fourth line and the critical Hardy-
Littlewood-Sobolev inequality (2.18) with r = 4/3 (and thus 2r/(2− r) = 4) at the
fifth line. Similarly, we have

J2 := t1/4 ‖I2(t)‖L4/3 ≤
∫ 1

0

C

(1− u)3/4

du

u1/2
∆(t)Z1(t).

Gathering the preceding estimates on J1 and J2 and using the asymptotic estimate
(4.1), we conclude to

∆(t) ≤
∫ 1

0

C

(1− u)3/4

du

u1/2
(Z1(t) + Z2(t)) ∆(t) ≤ 1

2
∆(t),

for t ∈ (0, T ), T > 0 small enough. That in turn implies ∆(t) ≡ 0 on [0, T ). �

Exercise 4.3. Prove the interpolation inequality ‖f‖L2 ≤ ‖f‖1/4

L1 ‖f‖3/4

L3 . Deduce
the Nash inequality (4.2). (Hint. Use the Gagliardo-Nirenberg-Sobolev inequality
(2.12) with p = 1).

5. Self-similar solutions

In this section, we consider the long time behavior of solution for subcritical mass
M ∈ (0, 8π) issue. For that purpose it is convenient to work with self-similar vari-
ables. We introduce the rescaled functions g and u defined by

(5.1) g(t, x) := R(t)−2f(logR(t), R(t)−1x), u(t, x) := c(logR(t), R(t)−1x),

with R(t) := (1 + 2t)1/2. The function g can be equivalently defined as the solution
to the rescaled parabolic-elliptic KS system

∂tg = ∆g +∇(gx− g∇u) in (0,∞)× R2,(5.2)

u = −κ ∗ g in (0,∞)× R2,
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associated to the same initial datum g(0, .) = f0.

The derivation of the (self-similar) rescaled Keller-Segel equation (5.2) from the
original equation (1.4) and the change of variables (5.1) is a elementary differential
calculus exercise that we briefly draw bellow. We compute successively

∂tg = 2e2tf(τ, w) + e4t (∂τf)(τ, w) + e3tx · (∇wf)(τ, w)

= e2t(divw(wf))(τ, w) + e4t (∂τf)(τ, w),

as well as

∆xg = e4t (∆wf)(τ, w)

and finally

divx(xg) = 2g + x · ∇xg

= 2e2tf(τ, w) + e3tx · ∇wf(τ, w)

= e2t(divw(wf))(τ, w).

For the last term, we compute

K ∗ g '
∫

x− y
|x− y|2

g(t, y) dy ' e2t

∫
x− y
|x− y|2

f(τ, ety) dy

'
∫

x− e−tv
|x− e−tv|2

f(τ, v) dv ' et
∫

w − v
|w − v|2

f(τ, v) dv

= et(K ∗ f)(τ, w),

and (divxK) ∗ g = g, so that

divx[(K ∗ g)g] = g2 + (K ∗ g) · ∇xg

= e4tf 2(τ, w) + e4t((K ∗ f) · ∇wf)(τ, w)

= e4tdivw[(K ∗ f)f ](τ, w).

We conclude to (5.2) by putting all theses identities together.

For a solution g to the rescaled equation equation (5.2), we may adapt straightfor-
wardly the computations on the evolution of the moments we made for the solutions
of the original equation (1.4). We easily have∫

R2

g(t) dx =

∫
R2

f0 dx = M,∫
R2

g(t)x dx =

∫
R2

f0 x dx = 0,

because

d

dt

∫
g x = −

∫
g x+

∫
g(∇(−∆g))

= −
∫
g x+

1

2

∫
div(|∇g|2) = −

∫
g x,

and ∫
R2

g(t) |x|2 dx =
M2

2
(1− e−2t) + e−2t

∫
R2

f0 |x|2 dx,
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because

d

dt

∫
g |x|2 = −2

∫
g |x|2 + 2

∫
x g(x)

∫
(x− y)

|x− y|2
g(y) dydx

= −2

∫
g |x|2 +

∫ ∫
(x− y) g(x)

(x− y)

|x− y|2
g(y) dydx

= −2

∫
g |x|2 +M2.

Observing that the rescaled Keller-Segel equation (5.2) may be written in the fol-
lowing gradient flow form

∂tg = div[ g∇(log g +
|x|2

2
+ κ ∗ g)],

we then naturally introduce the rescaled free energy

E(g) :=

∫
g log g dx−M +

∫
g
|x|2

2
dx+

1

2

∫
κ(x− y) g(x) g(y) dxdy,

and the dissipation of rescaled free energy

DE(g) :=

∫
g |∇(log g +

|x|2

2
+ κ ∗ g)|2 dx,

= −
∫

(log g +
|x|2

2
+ κ ∗ g)div

[
g∇(log g +

|x|2

2
+ κ ∗ g)

]
.

We easily deduce the decay of the rescaled free energy

(5.3)
d

dt
E(g) = −DE(g) ≤ 0.

Our first mathematical result is about the stationary issues.

Proposition 5.1. For any M ∈ (0, 8π), let us define the set D := { 0 ≤ g ∈
L1 logL1 ∩ L1

2, 〈g〉 = M}. There exists a unique solution G in D to the three
following equivalent assertions

• G minimises the rescaled free energy: E(G) = min{ E(g), g ≥ 0, 〈g〉 = M};
• G is a zero of the dissipation of rescaled free energy: DE(G) = 0;
• G is a stationary state of the rescaled Keller-Segel equation:

(5.4) ∆G+∇(Gx+GK ∗G) = 0.

Furthermore, G is smooth, radially symmetric, positive and

(5.5) G(x) = θ e−
|x|2
2
−(κ∗G)(x) ∈ L1(eα|x|

2

), ∀α ∈ (0, 1/2).

Proof of Proposition 5.1. The proof consistes in establishing the existence of
a solution to the first minimizing problem, by establishing several implications and
concluding by explaining why the stationary equation (5.4) has at most one solution.

Step 1. As the limit of a minimizing sequence (gn), there exists a solution G∗ ∈ D
to the minimizing problem. We use the logarithmic LHS inequality in order to
get H+(gn) + M2(gn) . E(g1) + C(M), the Dunford-Pettis Lemma which implies
that gnk

⇀ G∗ in L1-weak and finally the weak lsc of the functional E which is a
straightforward consequence of the lsc of the functional F established in Lemma 3.10.
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Step 2. Consider G∗ a solution to the minimizing problem. We consider the solution
gs to the rescaled KS equation starting from g0 = G∗ and we get

0 ≤
∫ T

0

DE(gs) ds = E(G∗)− E(gT ) ≤ 0.

We deduce that DE(gs) = 0 for any s > 0 and thus DE(G∗) = 0 (at least when G∗

is smooth enough, say DE(G∗) < ∞). In that case we deduce I(G∗) < ∞ as well
as G∗,K ∗ G∗ ∈ Lq for any q ∈ (1,∞). In the general case when we do not assume
a priori DE(G∗) < ∞ we have however DE(gs) = 0 for any s > 0 and the following
steps will imply that gs can be identifies as the unique steady state G to rescaled
KS equation. We then also get G∗ = G by passing to the limit as s→ 0.

Step 3. Consider G such that DE(G) = 0. It then satisfies

2∇
√
G +

√
GK ∗G+

√
Gx = 0,

and
√
G ∈ W 1,q

loc for any q ∈ (1,∞), in particular G ∈ C0(R2). Defining O := {x ∈
R2; G(x) > 0}, we have G ∈ W 1,q

loc (O) and then

∇(logG + κ ∗G+ |x|2/2) = 0 on O.
It means that G is given by the expression (5.5) on O. By a continuity argument,
we must have O = R2.

Step 4. The above equations also writes

∇G+G(K ∗G+ x) = 0,

from what we immediately deduce that G is a stationary state of the rescaled Keller-
Segel equation. By a bootstrap argument, we deduce that G is a smooth function.

Step 5. We accept that using a Schwarz symmetrization argument (or a moving
plane argument), we may deduce of the PDE that G is radially symmetric and next,
writing the associated non local ODE, that G is unique. �

Proposition 5.2. We have

sup
t≥1
‖gt‖W 2,p∩L1

k
≤ C.

Proof of Proposition 5.2. With Φ(x) = |x|k, k ≥ 2, we easily compute

d

dt

∫
f |x|k = −k

∫
f |x|k +

1

2

∫ ∫
(Φ′(x)− Φ′(y)) f(x)

(x− y)

|x− y|2
f(y) dydx

≤ −k
∫
f |x|k + CkMk−2M,

from what we deduce
sup
t≥0

Mk(t) ≤ max(C ′k,Mk(0)).

Next, we observe that

sup
t≥0
{H+(gt) +M2(gt)} ≤ C = C(M, E(g0)),

thanks to the logarithmic LHS inequality. We may then proceed in the same way as
for the solution f in the original variables, but we get here uniform in time regularity
estimates instead of local in time regularity estimates. �

Proposition 5.3. We have g(t)→ G in Lp as t→∞, for any p ∈ [1,∞].
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Proof of Proposition 5.3. We use a mix of the La Salle principle and the dissipation
of entropy method. We take tn →∞ and we write the free energy identity (5.3) in
time integrated form

E(gtn+T ) +

∫ T

0

DE(g(tn + s)) ds = E(gtn).

in particular the mapping t 7→ E(g(t)) is decreasing and thus E(g(tn)), E(gtn+T )→ Ē
(a constant which satisfies Ē ≥ E(G)). On the other hand, because of Lemma 3.8,
and after extraction of a subsequence, we have g(tn′ + s) → ḡ(s) in the sense of
C([0, T ];Lp(R2)−weak). Passing to the limit in the above free energy equation, we
get ∫ T

0

DE(ḡ(s)) ds = 0,

so that ḡ(s) = G for any s ∈ [0, T ]. In particular, g(tn′)→ ḡ(0) = G and we conclude
(by the usual contradiction argument) that the all sequence g(tn) converges to the
same limit for the strong norm sense Lp thanks to Proposition 5.2. �

6. Linear stability of the self-similar profile in L2

We introduce the linearized operator

Lf := ∆f + div(fx+ f K ∗G+GK ∗ f),

that we want to analyse in the suitable Hilbert space

H0 := { f ∈ L2(G−1); 〈f〉 = 0}.

To that purpose, we introduce the bilinear form

〈f, g〉 :=

∫
fg G−1dx+

∫ ∫
f(x)g(y)κ(x− y) dxdy,

as well as the two related quadratic forms

Q1[f ] := 〈f, f〉,
Q2[f ] := 〈−Lf, f〉.

Let us comment some basic facts. First, we may observe that for any f ∈ H0∩D(R2),
we have

(6.1) Q1[f ] = lim
ε→0

2

ε2
(E(G+ εf)− E(G)) ≥ 0

and

Q2[f ] = lim
ε→0

2

ε2
(DE(G+ εf)−DE(G)) ≥ 0,

so that if g is a solution to the rescaled Keller-Segel equation that we write as
g = G+ εf with given initial datum f0 ∈ H0, we may pas to the limit ε→ 0 in the
rescaled free energy equation (5.3), and we get

d

dt
Q1[f ] = −Q2[f ] ≤ 0.

It explains why these quadratic forms are introduced.
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On the other hand, we may also write the linearized rescaled Keller-Segel operator
in gradient flow form

Lf = ∆f + div(−f∇ logG+GK ∗ f)

= div[ G∇(f/G+ κ ∗ f)],

the bilinear form as

〈f, g〉 =

∫
f (g/G+ κ ∗ g),

and then compute directly

〈−Lf, f〉 = −
∫

div[ G∇(f/G+ κ ∗ f)] (f/G+ κ ∗ f)

=

∫
G|∇(f/G+ κ ∗ f)|2 =: Q2[f ].

We start with a technical Lemma that we will use in the sequel in order to get some
fundamental properties about Q1 and Q2.

Lemma 6.1. The function
F := ∂MG

is a solution to the linearized problem

LF = 0, 〈F 〉 = 1, F (0) 6= 0.

Proof of Lemma 6.1. We obtain the two first equations by just differentiating the
equation (5.4) and the mass condition 〈G〉 = M . On the other hand, we have

0 = 〈−LF, F 〉 = Q2[F ],

so that
∇(F/G+ κ ∗ F ) = 0.

Taking the divergence of that equation and recalling that ∆κ = δ, the function
Z := F/G satisfies

∆Z +GZ = 0.

Because G and then F and Z are radially symmetric and smooth, we obtain

Z ′′ +
1

r
Z +GZ ′ = 0, Z ′(0) = 0.

We now claim that if w ∈ C2(R+) satisfies

(6.2) w′′ +
1

r
w′ +Gw = 0, w(0) = w′(0) = 0,

then w ≡ 0. Indeed, we may introduce the quantity

U :=
1

2
(w′)2 +

1

2
Gw2

which satisfies

U ′ = w′(−1

r
w′ −Gw) +Gww′ +

1

2
G′w2 ≤ 1

2
(G′)+w

2 ≤ C U,

because G′ = −(r +K ∗G)G ≤ 0 on [R,∞) and (G′)+ ≤ CG on [0, R]. We deduce
U ≡ 0 from the Gronwall lemma, and thus w ≡ 0.

The mass condition 〈F 〉 = 1 implies F 6≡ 0, and thus F (0) 6= 0, from the above
ODE argument. �
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As a first consequence of the proof, we have :

Lemma 6.2. The bilinear form 〈·, ·〉 is a scalar product on H0 and the associated
norm is equivalent to the usual norm.

Proof of Lemma 6.2. It is clear that Q1[f ] . ‖ f‖2
H0

. Once proved that 〈·, ·〉
defines a norm, we get the equivalence between the two norms by using the open
map theorem. Since we already know that Q1 ≥ 0, we only have to prove that Q1 is
not degenerated. Assume now that Q1[f ] = 0, so that Q1[h] ≥ Q1[f ] for any h ∈ H0.
The associated Euler equation reads∫

R2

(fG−1 + f ∗ κ)h = 0, ∀h ∈ H0.

Choosing 0 ≤ χ ∈ Cc(R2) such that 〈χ〉 = 1 and choosing h := g − 〈g〉χ with
arbitrary g ∈ Cc(R2) in the above Euler equation, we deduce that

fG−1 + f ∗ κ = C :=

∫
[fG−1 + f ∗ κ] χ.

As a consequence, the function z := f/G satisfies

−∆z = zG.

From the last equation and using symmetrization techniques, we may establish that
z is radially symmetric, and we accept this fact. Recalling that the function F intro-
duced in the previous Lemma satisfies F (0) 6= 0, we may define λ := z(0)G(0)/F (0),
in such a way that the function w := z − λF/G satisfies (6.2). We have seen that
this implies w ≡ 0 and then f = λF . Together with the mass conditions on f and
F , we have

0 = 〈f〉 = λ〈F 〉 = λ,

so that f = 0. �

Lemma 6.3. The operator L is self-adjoint for the scalar product 〈·, ·〉, it is dissi-
pative and N(L) = {0}.

Proof of Lemma 6.3. We already know that 〈Lf, f〉 ≤ 0 for any f ∈ H0, namely
that L is coercive. We easily compute

〈Lf, g〉 =

∫
div[ G∇(f/G+ κ ∗ f)] (g/G+ κ ∗ g)

= −
∫

G∇(f/G+ κ ∗ f) · ∇(g/G+ κ ∗ g)

= 〈f,Lg〉
so that L∗ = L for this scalar product. Finally, we have seen in the proof of
Lemma 6.1 that Lf = 0 for some f ∈ H0 implies that the function z := f/G
satisfies

∆z +Gz = 0.

We conclude that f = 0 exactly in the same way as in the end of the proof of the
preceding Lemma. �

Let us sum up and emphasizing the elementary structure that we have used several
times in the first results of this section. The following equivalence holds true

Lf = 0⇔ Q2[f ] = 0⇔ f/G+ κ ∗ f = C ⇔ −∆z = zG,
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where z := f/G, and where for proving the reverse sense in the first equivalence we
use the Cauchy-Schwarz inequality

〈−Lf, g〉 ≤ 〈−Lf, f〉1/2〈−Lg, g〉1/2.

In order to go further, we state a Poincaré inequality.

Lemma 6.4. The stationary state G satisfies the Poincaré inequality, in the sense
that there exists λ > 0 such that

(6.3)

∫
|∇h|2G ≥ λ

∫
|h|2〈x〉2G, ∀h, 〈hG〉 = 0.

Proof of Lemma 6.4. The proof is a variation around the proof in the gaussian case
and it is only alluded. Put a complete proof ?

• We may check that G satisfies the so-called Lyapunov condition

L∗eα|x|2 . −eα|x|2 + b1BR
,

for any α ∈ (0, 1) and for some b, R > 0.

• The following is true but probably not necessary if we use the more recent proof of
the Poncaré inequality. Thanks to the convexity inequality s t ≤ s log s+et ∀ s, t > 0,
we have

| − logG+ ω − |x|2/2| ≤
∫
|x−y|≤1

(− log |x− y|)G(y) dy +

∫
|x−y|≥1

log |x− y|G(y) dy

≤
∫
|x−y|≤1

{ 1

|x− y|)
+G(y) logG(y)

}
dy

+

∫
|x−y|≥1

(log〈x〉+ log〈y〉)G(y) dy

≤ 2π +

∫
G logG+ C(M) log〈x〉,

so that G− e
−α|x|2 ≤ G ≤ G+ e

−β|x|2 for any β < 1/2 < α. That implies that the
local Poincaré inequality∫

BR

h2G .
∫
BR

|∇h|2G+
(∫

BR

hG
)2

, ∀h,

holds true.

• The Lyapunov condition and the local Poincaré inequality together classically
imply the (strong) Poincaré inequality (6.3). �

Corollary 6.5. The spectrum of L is discrete and thus

(6.4) ∃λ1 < 0, 〈Lf, f〉 ≤ 2λ1Q1[f ], ∀ f ∈ H0.

Finally, we deduce

Q1[eLt f0] ≤ e−2λ1tQ1[f0], ∀ f0 ∈ H0,

and thus

‖eLt f0‖L2(G−1) ≤ Ceλt‖f0‖L2(G−1), ∀ f0 ∈ H0.
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Elements of proof. That result is a very classical consequence (and variant) of
Lemma 6.4. The main point is that because of the previous estimate the operator L
has compact resolvent so that there exists a decreasing sequence (λk) of eigenvalues
with finite dimensional associated eigenspace such that

Σ(L) = {λn, n ≥ 1} ⊂]−∞, λ1],

and λ1 < 0 because of Lemma 6.3. By decomposing any function f in the Hilbert
space of eigenvectors we deduce (6.4). The end of the proof is straightforward from
(6.4). �

7. Bibliographic discussion

We refer to [5] for the origibal existence proof.
The uniqueness of the weak solution is established in [16].
The smoothness of the solution is proved in [5, 16] as well as the entropy identity.
The uniform estimates on g and the convergence to the stationary profile can be
found in [5, 16].
We refer to [5, 3, 10, 20] for the proof of the uniqueness of G.
The analysis of the linearized operator in L2(G−1) is presented in [11, 12]
The proof of the convergence to G for general initial datum is established in [16].
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