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CHAPTER 2 - THE (SPACE HOMOGENEOUS) LANDAU EQUATION
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Are written in blue color some changes (corrections) with respect to what has been taught during
the classes.

1. Introduction

1.1. The Landau equation. In this chapter, we consider the (space homogeneous) Landau equa-
tion

(1.1) ∂tf(t, v) = Q(f, f)(t, v), f(0, v) = f0(v),

on the density function f = f(t, v) ≥ 0, t ≥ 0, v ∈ Rd, d ≥ 2, where the Landau kernel is defined
by the formula

(1.2) Q(g, f)(v) :=
∂

∂vi

{∫
Rd

aij(v − v∗)
(
g(v∗)

∂f

∂vj
(v)− f(v)

∂g

∂vj
(v∗)

)
dv∗

}
.

Here and in the sequel we use Einstein’s convention of sommation of repeated indices. The matrix
a = (aij) is defined by

(1.3) a(z) = |z|2+γΠ(z), Πij(z) := δij − ẑiẑj , ẑk :=
zk
|z|
,

so that Π is the orthogonal projection on the hyperplan z⊥ := {y ∈ Rd; y · z = 0}, in particular
Π2 = Π. Most of the time, we will restrict ourself to the more interesting and only physically
meaningful case

d := 3, γ := −3.

In that case, the Landau equation (1.1) models in a space homogeneous regime the evolution of a
plasma where gas particles interact through the Coulomb force in a binary collisions regime.
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1.2. Physical properties.

Let us start explaining some simple but fundamental features about the equation.

On the one hand, we observe that Π(z)ξ = ξ − ẑ(ẑ · ξ) for any z, ξ ∈ Rd, so that

Π(z)z = 0 and Π(z)ξξ = |ξ|2(1− (ẑ · ξ̂)2) ≥ 0,

and thus

(1.4) a(z)ξξ ≥ 0 and (a(z)ξξ = 0 iff ξ ∝ z).

Here and below, we use the bilinear form notation auv = tvau = v ·au. In particular, the symmetric
matrix a is positive but not strictly positive.

On the other hand, for any nice functions f, φ : Rd → R, f ≥ 0, we have∫
Q(f, f)φdv =

∫ ∫
a(v − v∗)

(
f∇f∗ − f∗∇f

)
∇φdvdv∗

= −
∫ ∫

a(v − v∗)
(
f∇f∗ − f∗∇f

)
∇∗φ∗ dvdv∗,

where we use the shorthands f = f(v), ∇ψ = (∇ψ)(v), f∗ = f(v∗), ∇ψ∗ = (∇ψ)(v∗), where the
first formula comes from (1.2) and an integrating by part and where the second formula comes by
just interchanging the variables v and v∗ and observing that a(−z) = a(z). Summing up the two
formulas gives the more symmetric formula

(1.5)

∫
Q(f, f)φdv =

1

2

∫ ∫
a(v − v∗)

(
f∇f∗ − f∗∇f

)(
∇φ−∇∗φ∗

)
dvdv∗.

Observing that a(v − v∗)(∇φ−∇φ∗) = 0 for φ = 1, vi, |v|2 because of (1.4), we deduce that∫
Q(f, f)φdv = 0, forφ = 1, vi, |v|2,

that we may rephrase by saying that 1, v and |v|2 are collisional invariants of the Landau kernel
and that reflects at this statistical level the fact that each collision leaves invariant the number of
particles involved in a binary collisional system, leaves invariant its momentum and leaves invariant
its energy. As a consequence, a solution f = f(t, v) to the the Landau equation (1.1) satisfies

d

dt

∫
f

 1
v

|v|2

 dv = 0,

so that ∫
f(t, v)

 1
v

|v|2

 dv =

∫
f0

 1
v

|v|2

 dv, ∀ t ≥ 0,

meaning that the total mass, momentum and energy are constant of time through the Landau
evolution. In order to simplify the presentation, we define the set of functions

E= :=
{
f ∈ L1(Rd); f ≥ 0,

∫
f

(
1
v

)
dv =

(
1
0

)
,

∫
f |v|2 dv = d

}
and we will always restrict ourself to case when f0 ∈ E= and thus, at least formally, f(t, ·) ∈ E= for
any t ≥ 0. It turns out that we may come down to that situation from a mere change of variables
and as a consequence of the Galilean invariance of the model, but we do not discuss further that
issue.

Choosing now φ := log f in (2.3), we see that

DH(f) := −
∫
Q(f, f) log f dv =

1

2

∫ ∫
aff∗

(∇f
f

− ∇f∗
f∗

)(∇f
f

− ∇f∗
f∗

)
dvdv∗ ≥ 0,

the nonnegativity coming from the positivity property in (1.4). Defining the entropy functional

H(f) :=

∫
f log fdv,
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we deduce that any solution f = f(t, v) to the the Landau equation (1.1) satisfies

d

dt
H(f) =

∫
Q(f, f)(1 + log f) dv = −DH(f) ≤ 0,

what is nothing but the famous H-Theorem of Boltzmann which reveals the non-reversibility
property of the Landau dynamic. Integrating in time, we equivalently have

H(f(t, ·)) +
∫ t

0

DH(f(s, ·)) ds = H(f0), ∀ t ≥ 0.

We finally consider the stationary problem and for that purpose we define the normalized gaussian

M :=
1

(2π)d/2
exp

(
−|v|2

2

)
,

which in particular satisfies M ∈ E=. It is in fact the only stationary state of the Landau equation
which belongs to E= as a consequence of the following result.

Lemma 1.1. For f ∈ E= smooth and positive, the three following assertions are equivalent

f = M , Q(f, f) = 0, DH(f) = 0.

Proof of Lemma 1.1. We assume here d = 3. The two first direct implications being straightfor-
ward, we only have to show that(

f ∈ E and DH(f) = 0
)

imply f = M .

On the one hand, because DH(f) = 0 and f > 0 imply

a(∇
√
ff∗ −∇∗

√
ff∗)(∇

√
ff∗ −∇∗

√
ff∗) = 0,

we deduce from (1.4) that

(1.6)
√
f∗∇

√
f −

√
f∇

√
f∗ = λ(v, v∗)(v − v∗), ∀ v, v∗ ∈ Rd,

for a scalar function (v, v∗) 7→ λ(v, v∗). By permuting v and v∗ in the equation, we see that
λ(v, v∗) = λ(v∗, v). For any independent vectors (v1, v2, v3), vi ∈ R3, the equation for different
choices of values of v and v∗ gives√

f2∇
√
f1 −

√
f1∇

√
f2 = λ12(v1 − v2)√

f3∇
√
f2 −

√
f2∇

√
f3 = λ23(v2 − v3)√

f1∇
√
f3 −

√
f3∇

√
f1 = λ31(v3 − v1),

with λij := λ(vi − vj). Multiplying the first equation by
√
f3, the second equation by

√
f1, the

third equation by
√
f2 and summing up, we get

0 =
√
f3λ12(v1 − v2) +

√
f1λ23(v2 − v3) +

√
f2λ31(v3 − v1).

Taking the scalar product of that last equation with the vector v1 ∧ v2, we deduce√
f1λ23 −

√
f2λ31 = 0,

in particular

λ31 =
λ23√
f2

√
f1 = µ(v3)

√
f1, µ(v) :=

1

|B|

∫
B

λ(v2 − v)√
f(v2)

dv2.

By symmetry, we get that λij = µ(vi)
√
fj = µ(vj)

√
fi, and thus

λij = λ
√
fi
√
fj , for some λ ∈ R.

Coming back to (1.6), we deduce

∇(log f − λ|v|2/2) = ∇∗(log f∗ − λ|v∗|2/2), ∀ v, v∗ ∈ R3,

thus

∇(log f − λ|v|2/2) = u ∈ R3, ∀ v ∈ R3,

and finally

log f = λ|v|2/2 + u · v + log ϱ, ∀ v ∈ R3
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for some ϱ > 0. In other words, f is the gaussian function

m(v) = ϱ exp(−λ|v|2/2− u · v), ∀ v ∈ R3,

from what we immediately conclude because of the moment conditions m ∈ E=. □

1.3. Other representation and notations.

We define the following quantities

bi(z) := ∂jaij(z), c(z) := ∂ijaij(z),(1.7)

so that in the Coulomb case

bi(z) = −2 |z|−3 zi, c(z) := −8πδ0,(1.8)

from what we are able to rewrite the Landau operator (1.2) into the shorter forms

(1.9)

Q(g, f) = ∂i{agij∂jf − bgi f}
= ∂ij{agijf} − 2∂i{bgi f}
= agij∂ijf + 8πgf,

where we have defined

agij := aij ∗ g, bgi := bi ∗ g, cg := c ∗ g = −8πg.

The first formulation is nothing but (1.2) after one integration by parts, the second and third
formulations are then obtained by playing with derivative expansions.

2. H-solution and their stability

This section is dedicated to the formulation of weak solutions for which we establish the stability.

2.1. A priori estimates, Villani’s inequality and weak formulation. For H0 ∈ R, we define
EH0

the set of functions

EH0
:=

{
f ∈ L1(Rd); f ≥ 0,

∫
f

(
1
v

)
dv =

(
1
0

)
,

∫
f |v|2 dv ≤ d, H(f) ≤ H0

}
.

From the conservations law and the H-Theorem presented in Section 1.2, any solution to the
Landau equation satisfies

(2.1) f(t, ·) ∈ EH0
, ∀ t ≥ 0,

with H0 := H(f0). Let us be a bit more precise. Introducing the notations

H±(g) :=

∫
g(log g)±dv, Mk(g) :=

∫
g|v|k dv,

the integral form of the H-Theorem writes

H+(f(T, ·)) +
∫ T

0

DH(f(t, ·))dt = H(f0) +H−(f(T, ·)), ∀T > 0.

As an immediate consequence of the inequality

s (log s)− ≤
√
s10≤s≤e−|v|2 + s |v|2 1e−|v|2<s≤1, ∀ s ≥ 0,

we obtain

H−(g) ≤ (2π)d/2 +M2(g), ∀ g ∈ L1
+,

and thus

H−(g) ≤ C0 := (2π)d/2 + d, ∀ g ∈ EH0
.

We deduce in particular that any solution f to the Landau equation satisfies

(2.2)

∫ ∞

0

DH(f(t, ·))dt ≤ D0,

with D0 := C0 +H0.
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We are now going to see why the collision kernel Q(f, f) is meaningful for a function f satisfying the
above natural a priori bounds. Starting from (2.3) and recalling (1.3), for a function φ ∈ C2

c (Rd),
we write

(2.3)

∫
Q(f, f)φdv =

∫∫
X · Y dv∗dv,

with

X := 2−1/2|z|1+γ/2
√
ff∗Π(∇ log f −∇∗ log f∗)

Y := 2−1/2|z|1+γ/2
√
ff∗Π(∇φ−∇∗φ∗),

where z := v∗ − v. We observe that

∥X∥2L2 = DH(f),

and

∥Y ∥2L2 = B(f ;φ) := 1

2

∫∫
aff∗(∇φ−∇∗φ∗)(∇φ−∇∗φ∗).

Because |∇φ−∇∗φ∗| ≤ ∥D2φ∥L∞ |v − v∗|, we have

a(∇φ−∇∗φ∗)(∇φ−∇∗φ∗)

= a(∇φ−∇∗φ∗)(∇φ−∇∗φ∗)1|v−v∗|≤1 + a(∇φ−∇∗φ∗)(∇φ−∇∗φ∗)1|v−v∗|≥1

≤ ∥D2φ∥L∞ |v − v∗|γ+41|v−v∗|≤1 + |v − v∗|γ+24∥∇φ∥L∞1|v−v∗|≥1,

≤ 4∥φ∥W 2,∞⟨v⟩⟨v∗⟩,

where in the last line we have particularize the discussion to the Coulomb exponent γ := 3, so that

B(f ;φ) ≤ 2∥φ∥W 2,∞∥f∥2L1
1
.

It thus turns out that when f ∈ EH0
and DH(f) < ∞, we have both X,Y ∈ L2(R2d), so that

the RHS term in (2.3) is well defined. In other words, using the Cauchy-Schwarz inequality, the
following Villani’s estimate holds true

(2.4) |⟨Q(f, f), φ⟩| ≤ DH(f)1/2B(f ;φ)1/2 ≤
√
2∥φ∥1/2W 2,∞DH(f)1/2∥f∥L1

1
,

what gives a meaning to Q(f, f) in the distributional sense.

Thanks to the above discussion, we may introduce the definition of weak solutions we will deal
with. For T > 0, we define the functional set

FT :=
{
g ∈ C([0, T ];L1

w); g(t) ∈ EH0 , ∀ t ∈ (0, T ),

∫ T

0

DH(g(t)) dt ≤ D0

}
.

Definition 2.1. For H0 ∈ R and f0 ∈ EH0
∩ E=, we say that a function f a weak solution (or

H-solution) to the Landau equation with initial datum f0 if f ∈ FT for any T > 0 and (1.1) holds
in the distributional sense, or more precisely

(2.5) −
∫ T

0

∫
f∂tφ−

∫
f0φ(0, ·) =

∫ ∞

0

⟨Q(f, f), φ⟩dt,

for any φ ∈ C2
c ([0,∞)× Rd).

It is worth emphasizing that because of (2.4) and f ∈ F∞, we have ⟨Q(f, f), φ⟩ ∈ L2(R+) or more
precisely recalling the definition (2.3), we have X ∈ L2(R+ × R6) and Y ∈ L2(R+ × R6), what
makes the RHS term well defined in (2.5).

2.2. Weak stability.

Theorem 2.2. Assume that (fn) is a sequence in FT of solutions to the Landau equation. Then,
up to the extraction of a subsequence, fn ⇀ f σ(L1, L∞), where f belongs to FT and is a weak
solution to the Landau equation.
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Proof. Step 1. From the a priori bound and the Dunford-Pettis Lemma, there exist a subsequence
still denoted by (fn) and a function f ∈ L1((0, T ) × Rd) such that fn ⇀ f in the weak sense
σ(L1, L∞). Because of the equation (2.5), for any φ ∈ C2

c (R+ × R3), we have

d

dt

∫
φfn = ⟨Q(fn, fn), φ⟩

which is bounded in L2(0, T ). From the above piece of information, we may deduce that∫
fnψ →

∫
fψ a.e. on (0, T ), bounded in L∞(0, T ),

for any ψ ∈ L∞((0, T )× R3), and next that for any K ∈ L∞(R3), we have

(2.6) (fn ∗K)fn ⇀ (f ∗K)f weakly in L1((0, T )× R3).

The proof of this claim is left as an exercise.

Step 2. We split a := aε+a
c
ε, aε := aψε, ψε ∈ D(R3), 1|z|≤ε ≤ ψε ≤ 1|z|≤2ε, a

c
ε := aψc

ε, ψ
c := 1−ψε,

ε ∈ (0, 1], and we next write, with obvious notations,

(2.7) Q(f, f) = Qε(f, f) +Qc
ε(f, f).

In order to deal with the first term, we define

Bε(f ;φ) :=
1

2

∫∫
aεff∗(∇φ−∇∗φ∗)(∇φ−∇∗φ∗),

and coming back to the proof of (2.4), we first observe that

aε(∇φ−∇∗φ∗)(∇φ−∇∗φ∗) ≤ ∥D2φ∥L∞ |v − v∗|γ+41|v−v∗|≤2ε ≤ 2∥D2φ∥L∞ε,

so that

|⟨Qε(f, f), φ⟩| ≤ DH(f)1/2Bε(f ;φ)
1/2 ≤ ∥D2φ∥1/2L∞DH(f)1/2∥f∥L1

1
ε→ 0,

as ε→ 0 for any fixed φ ∈ C2
c (R+ × R3). On the other hand, observing that

Qc
ε(f, f)(v) = D2 : {(acε ∗ f)f} − 2div{(bcε ∗ f)f},

with bcε(z) = divacε(z), and taking advantage of the fact that acε, b
c
ε ∈ L∞, we deduce from (2.6)

that

⟨Qc
ε(fn, fn), φ⟩ − ⟨Qc

ε(f, f), φ⟩

=

∫
[(acε ∗ fn)fn − (acε ∗ f)f ] : D2φ− 2[(bcε ∗ fn)fn − (bcε ∗ f)f ] · ∇φ→ 0,

as n → ∞, for any fixed ε ∈ (0, 1] and φ ∈ C2
c (R+ × R3). Using the splitting (2.7) and the two

above convergences, we classically deduce

(2.8) Q(fn, fn)⇀ Q(f, f) in D′(R+ × R3) as n→ ∞.

We immediately conclude by passing to the limit in the weak formulation (2.5). □

It is worth emphasizing that for proving (2.8), we need to use that DH(f) ∈ L1(0, T ), what is a
consequence of the lsc property

(2.9)

∫ T

0

DH(f) ≤ lim inf

∫ T

0

DH(fn).

We may prove that result using a convexity argument and we refer to the exercises sheet for such
an argument. An alternative way is presented in Lemma 3.6 below.

3. Ellipticity and additional estimates

We show that the Landau equation has a parabolic nature, from what we deduce some regularity
properties for the solutions.
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3.1. On the ellipticity of af .

We start with an elementary estimate about the localization of the positivity of elements of EH0 .

Lemma 3.1. There exist some constants R, λ, η > 0 depending only of H0 such that

|{f ≥ λ} ∩BR| ≥ η, ∀ f ∈ EH0
.

Proof of Lemma 3.1. For any R, λ > 0 and Λ > 1, we write

Λ|{f ≥ λ} ∩BR| ≥
∫
BR

f1λ<f≤Λ

≥
∫
f −

∫
BR

f1f<λ −
∫
Bc

R

f −
∫
f1f>Λ.

Observing that we have∫
BR

f1f<λ ≤ λ|BR|,
∫
Bc

R

f ≤ 1

R2
,

∫
f1f>Λ ≤

∫
f
log+ f

log+ Λ
≤ H+

0

log Λ
,

we deduce

Λ|{f ≥ λ} ∩BR| ≥ 1− 1

R2
− H+

0

log Λ
− λ|BR|,

and we conclude by choosing first R > 0 large enough, next Λ > 1 large enough and finally λ > 0
small enough. □

We define the truncated diffusion coefficient

(3.1) ãij = ψ̃(|z|)(δij − ẑiẑj),

with ψ̃(s) = φ̃(s)/s, φ̃ ∈ C2(R+), φ̃(s) = s3 on [0, 1/2], φ̃(s) = 1 on [1,∞) and 0 ≤ φ̃′ ≤ 2 on R+,
so that a ≥ ã as symmetric matrices, and we also define the truncated diffusion matrix ãf := ã ∗ f .
We establish a coercivity estimate on this last one.

Proposition 3.2. There exists a constant a0 > 0 depending only on H0 such that

(3.2) ãf ≥ a0⟨v⟩−3I, ∀ f ∈ EH0
.

Proof of Proposition 3.2. For e ∈ S2, ε > 0 and with the notations of Lemma 3.1, we introduce
the two sets

B := {z ∈ BR(v) ∩B1/2; f(v − z) ≥ λ, 1− (ẑ · e)2 > ε}
C := {z ∈ BR(v) ∩Bc

1/2; f(v − z) ≥ λ, 1− (ẑ · e)2 > ε}.
We have

ãf (v)ee =

∫
f(v − z)ψ̃(z)(1− (ẑ · e)2)dz

≥ λε

∫
B∪C

ψ̃(z)dz ≥ λε
(∫

B

|z|2dz +
∫

C

dz

8|z|

)
.

Observing that ∫
B

|z|2dz ≥
∫
Bϱ(0)

|z|2dz = ϱ5
∫
B1(0)

|u|2du =
π

3
ϱ5,

with ϱ ≥ 0 defined by |B| = Bϱ(0) =
4
3πϱ

3, we deduce

(3.3) ãf (v)ee ≥ λε
(2
3
|B|5/3 + 1

8(|v|+R)
|C |

)
.

In order to lower bound the RHS term, we introduce the set

A := {z ∈ BR(v); 1− (ẑ · e)2 ≤ ε}.
Writing in euclidian coordinates

z = z1e+ z′, z1 ∈ R, z′ ⊥ e, v = v1e+ v′, v1 ∈ R, v′ ⊥ e,

we see that z ∈ A implies

|v1 − z1| ≤ R and z21 > (1− ε)|z|2 = (1− ε)(z21 + |z′|2).
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Both equations together imply

|z′|2 ≤ ε

1− ε
z21 ≤ 2ε(R+ |v|)2.

We deduce the following upper bound on its volume

|A | ≤ (2R)π2(R+ |v|)2ε.

Defining

(3.4) ε := [8π(R+ |v|)2R]−1η,

and using Lemma 3.1, we deduce

(3.5) 2max(|B|, |C |) ≥ |B ∪ C | ≥ |{z ∈ BR(v); f(v − z) ≥ λ}| − |A | ≥ η/2.

Gathering the three estimates (3.3), (3.4) and (3.5), we have established

ãf (v)ee ≥ λη

8πR
min

(2
3

(η
4

)5/3
,
η

32

) 1

(1 +R+ |v|)3
, ∀ e ∈ S2,

what is nothing but the announced estimate. □

3.2. Weighted Fisher, Sobolev and Lebesgue estimates. We first establish an estimate on
a weighted Firsher information.

Proposition 3.3. For any f ∈ EH0
, there holds

∥∇
√
f∥2L2

−3/2
≲ 1 +DH(f).

Proof of Proposition 3.3. From the very definitions of a and ã, we have DH(f) ≥ D̃H(f), with

D̃H(f) :=
1

2

∫ ∫
ãij(v − v∗)

(
f∂if∗ − f∗∂if

)(
∂j log f∗ − ∂j log f

)
dvdv∗

=

∫ ∫
ãij(v − v∗)

(
f∗4∂i

√
f∂j

√
f − ∂if∂jf∗) dvdv∗

= 4

∫
ãfij∂i

√
f∂j

√
f +

∫ ∫
ff∗∂

2
ij ãij(v − v∗) dvdv∗.

From the very definition (3.1), we compute

∂j ãij = ψ̃(|z|)(−ẑi∂j ẑj) = −2ẑiψ̃(|z|)/|z|

and next

∂ij ãij = −2ψ̃′(|z|)/|z| − 2ψ̃(|z|)/|z|2 = −2φ̃′(|z|)/|z|2 ≥ −8.

Using Proposition 3.2, we deduce

D̃H(f) ≥ 4a0

∫
|∇

√
f |2⟨v⟩−3 − 8M2

0 ,

from what we immediately conclude. □

Proposition 3.4. For any f ∈ EH0
, there holds

(3.6) ∥f∥r(p)
Lp

k(p)

≲ 1 +DH(f),

for any p ∈ (1, 3] and with k(p) := 15
2

1
p − 11

2 , 1
r(p) := 3

2 (1 − 1
p ), in particular (k, r)(3) = (−3, 1),

and

(3.7) ∥∇f∥r
′(q)

Lq

k′(q)
≲ 1 +DH(f),

for any q ∈ [1, 3/2] and with k′(q) := 15
2

1
q −8, 1

r′(q) :=
1
2 (4−

3
q ), in particular (k′, r′)(3/2) = (−3, 1).
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Proof of Proposition 3.4. On the one hand, thanks to the Sobolev embedding Ḣ1 ⊂ L6, we have(∫
f3⟨v⟩−9

)1/3

≲
∫

|∇(
√
f⟨v⟩−3/2

)
|2

≲
∫

|∇
√
f |2⟨v⟩−3 +

∫
f |∇⟨v⟩−3/2|2,

and we deduce estimate (3.6) in the case p = 3 thanks to Proposition 3.3. We deduce the full
range of exponents p ∈ (1, 3] in (3.6) by interpolating (just using the Holder inequality) that first
estimate together with the L1

2 a priori bound.

On the other hand, thanks to the Holder inequality, we have

∥∇f∥q
Lq

k′
=

∫ ∣∣∣∣∣ ∇f√
f⟨v⟩3

∣∣∣∣∣
q

fq/2⟨v⟩q(k
′+3/2)

≤
(∫

|∇f |2

f⟨v⟩3

)q/2 (∫
[f⟨v⟩2(k

′+3/2)]q/(2−q)

)(2−q)/2

= 2q∥∇
√
f∥q

L2
−3/2

∥f∥q/2
Lp

k
,

with p := q/(2− q) and k = 2k′ + 3. Because of (3.6) and Proposition 3.3, we deduce

∥∇f∥Lq

k′
≲ (1 +DH(f))

1
2+

1
2r(p)

when p ∈ [1, 3] and k = k(p). The first condition implies q ∈ [1, 3/2] and the second condition
implies k′ = k(p)/2− 3/2 = k′(q). We conclude to (3.7) by observing that 1

r′(q) =
1
2 + 1

2r(p) . □

As a consequence of Definition 2.1, we deduce that any H-solution f to the Landau equation also
satisfies

f ∈ L1(0, T ;L3
−3 ∩W

1,3/2
−3 ), ∀T > 0.

That implies that each term involved in the first and second formulations of QL(f, f) in (1.9) can
be defined separately in a distributional sense. In order to see this, we start establishing some
estimates on the functions af and bf .

Lemma 3.5. For any f ∈ L1
2 ∩ L3

−3, there hold

∥af∥L5 ≲ ∥f∥L1
2∩L3

−3
,(3.8)

∥bf∥L15/8 ≲ ∥f∥L1
2∩L3

−3
.(3.9)

Proof of Lemma 3.5. On the one hand, the Holder inequality tells us that

∥f∥L15/13 ≤ ∥f∥2/5
L3

−3
∥f∥3/5

L1
2
.

On the other hand, the Hardy-Littlewood-Sobolev inequality tells us

(3.10) ∥f ∗ |z|−λ∥Lr ≲ ∥f∥Lp ,
1

r
=

1

p
+
λ

3
− 1,

for 0 < λ < 3, 1 < p, r <∞. In particular, we have

∥af∥L5 ≤ ∥f ∗ |z|−1∥L5 ≲ ∥f∥L15/13 ,

by making the choice r = 5, λ = 1, p = 15/13 in (3.10), from what we deduce (3.8). Similarly, we
have

∥bf∥L15/8 ≤ ∥f ∗ |z|−2∥L15/8 ≲ ∥f∥L15/13 ,

by making the choice r = 15/8, λ = 2, p = 15/13 in (3.10), from what we deduce (3.9). □

As a consequence, we may write

⟨Q(f, f), φ⟩ = −
∫∫ {

fbfi ∂iφ+ afij∂jf∂iφ
}
dvdv∗

=

∫∫
f
{
afij∂ijφ+ 2bfi ∂iφ

}
dvdv∗,

where both integrals are well-defined. In the first integral indeed, the first term is well-defined

since f ∈ L3
−3, b

f
i ∂iφ ∈ L

3/2
comp ⊂ (L3

−3)
′ and the second term is well-defined since ∂jf ∈ L

3/2
−3 ,



10 CHAPTER 2 - THE (SPACE HOMOGENEOUS) LANDAU EQUATION

afij∂iφ ∈ L5
comp ⊂ (L

3/2
−3 )

′. The new term in the second integral is also well-defined because

afij∂ijφ ∈ L5
comp ⊂ (L3

−3)
′.

We end this section by establishing the lsc of DH and thus completing the proof of Theorem 2.2.

Lemma 3.6. For any sequence (fn) of H-solution to the Landau equation such that fn ⇀ f weakly
in L1, there holds

(3.11) fn → f strongly in L1

and

(3.12)

∫ T

0

DH(f) ≤ lim inf

∫ T

0

DH(fn).

Proof of Lemma 3.6. Step 1. We know that

∂t

∫
fnφdv bounded in L2(0, T )

and (fn) is bounded in (W 1,1
−1 ∩ L1

2)(U). By the same arguments as in Aubin-Lions Lemma, we
deduce (3.11).

Step 2. We observe that

DH(f) =

∫ ∫
aξξdvdv∗, ξ := ∇

√
ff∗ −∇∗

√
ff∗.

Because of step 1, we have
√
fn(t, v)fn(t, v∗) →

√
fn(t, v)fn(t, v∗) in L2((0, T ) × R2d). With

obvious notations, we deduce that ξn ⇀ ξ weakly in L2, because the convergence holds in D′ and
the sequence is bounded in L2. We now write aε,c(ξn − ξ)(ξn − ξ) ≥ 0, so that∫ T

0

D(fn) ≥
∫ T

0

Dε,c(fn) ≥
∫ T

0

∫
R2d

[2aε,cξnξ − aε,cξξ].

Passing to the limit, we have

lim inf
n→∞

∫ T

0

D(fn) ≥ lim
n→∞

∫ T

0

∫
R2d

[2aε,cξnξ − aε,cξξ] =

∫ T

0

Dε,c(f),

for any ε > 0. We conclude to (3.12) by observing that aε,cξξ ↗ aξξ as ε→ 0. □
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