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CHAPTER 3 - MORE ABOUT THE HEAT EQUATION
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We present some qualitative properties of the heat equation and more particularly we present
several results on the self-similar behavior of the solutions in large time. These results are deduced
from several functional inequalities, among them the Poincaré inequality and the Log-Sobolev
inequality. Let us emphasize that the approach lies on an interplay between evolution PDEs and
functional inequalities and, although we only deal with (simple) linear situations, these methods
are robust enough to be generalized to (some) nonlinear situations.

1. Self-similar solutions of the heat equation and the Fokker-Planck equation

We consider the heat equation

(1.1)
∂f

∂t
=

1

2
∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd.

We recall that f(t, .) → 0 as t → ∞, and more precisely, that for any 1 ≤ q ≤ p ≤ ∞ and a
constant Cp,d the following rate of decay (ultracontractivity property) holds:

(1.2) ∥f(t, .)∥Lp ≤ Cp,d

t
d
2 (

1
q−

1
p )

∥f0∥Lq ∀ t > 0,

what can be obtained thanks to the representation formula or by using Nash argument presented in
a previous chapter. It is in fact possible to describe in a more accurate way that the mere estimate
(1.2) how the heat equation solution f(t, .) converges to 0 as time goes on. In order to do so, the
first step consists in looking for particular solutions to the heat equation that we will discover by
identifying some good change of scaling. We thus look for a self-similar solution to (1.2), namely
we look for a solution F with particular form

F (t, x) = tα G(tβx),

for some α, β ∈ R and a “self-similar profile” G. As F must be mass conserving, we have∫
Rd

F (t, x) dx =

∫
Rd

F (0, x) dx = tα
∫
Rd

G(tβ x) dx,

and we get from that the first equation α = β d. On the other hand, we easily compute

∂tF = α tα−1G(tβ x) + β tα−1 (tβ x) · (∇G)(tβ x), ∆F = tα t2β (∆G)(tβ x).

In order that (1.1) is satisfied, we have to take 2β + 1 = 0. We conclude with

(1.3) F (t, x) = t−d/2 G(t−1/2 x),
1

2
∆G+

1

2
div(xG) = 0.

1
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We observe (and that is not a surprise!) that a solution G ∈ L1(Rd) ∩ P(Rd) to (1.3) will satisfy
∇G+ xG = 0, it is thus unique and given by

G(x) := c0 e
−|x|2/2, c−1

0 = (2π)d/2 (normalized Gaussian function).

To sum up, we have proved that F is our favorite solution to the heat equation: that is the
fundamental solution to the heat equation.

Changing of point view, we may now consider G as a stationary solution to the harmonic Fokker-
Planck equation (sometimes also called the Ornstein-Uhlenbeck equation)

(1.4)
∂

∂t
g =

1

2
Lg =

1

2
∇ · (∇g + g x) in (0,∞)× Rd.

The link between the heat equation (1.1) and the Fokker-Planck equation (??) is as follows. If f
is a solution to the Fokker-Planck equation (??), some elementary computations permit to show
that

f(t, x) = (1 + t)−d/2 g(log(1 + t), (1 + t)−1/2 x)

is a solution to the heat equation (1.1), with f(0, x) = g(0, x). Reciprocally, if f is a solution to
the heat equation (1.1) then

g(t, x) := ed t/2 f(et − 1, et/2 x)

solves the Fokker-Planck equation (1.4). The last expression also gives the existence of a solution in
the sense of distributions to the Fokker-Planck equation (1.4) for any initial datum f0 = φ ∈ L1(Rd)
as soon as we know the existence of a solution to the heat equation for the same initial datum
(what we get thanks to the usual representation formula for instance).

2. Fokker-Planck equation and Poincaré inequality

2.1. Long time asymptotic behaviour of the solutions to the Fokker-Planck equation.
From now on in this chapter, we consider the Fokker-Planck equation

∂

∂t
f = L f = ∆f +∇ · (f ∇V ) in (0,∞)× Rd(2.1)

f(0, x) = f0(x) on Rd,(2.2)

and we assume that the “confinement potential” V is the harmonic potential

V (x) :=
|x|2

2
+ V0, V0 :=

d

2
log 2π.

We start observing that

d

dt

∫
Rd

f(t, x) dx =

∫
Rd

∇x · (∇xf + f ∇xV ) dx = 0,

so that the mass (of the solution) is conserved. We also have

1

2

d

dt

∫
Rd

(f+)
2 dx =

∫
Rd

f+(∆f + div(xf)) dx

= −
∫
Rd

|∇f+|2 −
∫
Rd

f+ x · ∇f+ dx ≤ d

2

∫
Rd

(f+)
2 dx,

and thanks to the Gronwall lemma, we conclude that the maximum principle holds. Moreover, the
function G = e−V ∈ L1(Rd) ∩ P(Rd) is nothing but the normalized Gaussian function, and since
∇G = −G∇V , it is a stationary solution to the Fokker-Planck equation (2.1).

Theorem 2.1. Let us fix f0 ∈ Lp(Rd), 1 ≤ p < ∞.

(1) There exists a unique global solution f ∈ C([0,∞);Lp(Rd)) to the Fokker-Planck equation (2.1).
This solution is mass conservative

(2.3) ⟨f(t, .)⟩ :=
∫
Rd

f(t, x) dx =

∫
Rd

f0(x) dx =: ⟨f0⟩, if f0 ∈ L1(Rd),

and the following maximum principle holds

f0 ≥ 0 ⇒ f(t, .) ≥ 0 ∀ t ≥ 0.
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(2) Asymptotically in large time the solution converges to the unique stationary solution with same
mass, namely

(2.4) ∥f(t, .)− ⟨f0⟩G∥E ≤ e−λP t ∥f0 − ⟨f0⟩G∥E as t → ∞,

where ∥ · ∥E stands for the norm of the Hilbert space E := L2(G−1) defined by

∥f∥2E :=

∫
Rd

f2 G−1 dx

and λP is the best (larger) constant in the Poincaré inequality.

More generally, for any weight function m : Rd → R+, we denote by Lp(m) the Lebesgue space
associated to the mesure m(x)dx and by Lp

m the Lebesgue space associated to the norm ∥f∥Lp
m
:=

∥f m∥Lp . We will also write Lp
k := Lp

m, when m := ⟨x⟩k.
We are going to give the main lines of the proof of point 2. Because the equation is linear, we may
assume in the sequel that ⟨f0⟩ = 0.

Using that GG−1 = 1, we deduce that ∇V = −G−1 ∇G = G · ∇(G−1). We can then write the
Fokker-Planck equation in the equivalent form

∂

∂t
f = divx

(
∇xf +Gf ∇xG

−1
)

(2.5)

= divx
(
G∇x(f G−1)

)
.

We then compute

1

2

d

dt

∫
f2 G−1 =

∫
Rd

(∂tf) f G−1 dx =

∫
Rd

divx

(
G∇x

(
f

G

))
f

G
dx(2.6)

= −
∫
Rd

G

∣∣∣∣∇x
f

G

∣∣∣∣2 dx.

Using the Poincaré inequality established in the next Theorem 2.2 with the choice of function
h := f(t, .)/G and observing that ⟨f/G⟩G = 0, we obtain

1

2

d

dt

∫
f2 G−1 ≤ −λP

∫
Rd

G

(
f

G

)2

dx = −λP

∫
Rd

f2 G−1 dx,

and we conclude using the Gronwall lemma.

Theorem 2.2 (Poincaré inequality). There exists a constant λP > 0 (which only depends on the
dimension) such that for any h ∈ D(Rd), there holds

(2.7)

∫
Rd

|∇h|2 Gdx ≥ λP

∫
Rd

|h− ⟨h⟩G|2 Gdx,

where we have defined

⟨h⟩µ :=

∫
Rd

h(x)µ(dx)

for any given (probability) measure µ ∈ P(Rd) and any function h ∈ L1(µ).

We present below two different proofs of this important result.

2.2. A first proof of the Poincaré inequality. We split the proof into three steps.

2.2.1. Poincaré-Wirtinger inequality (in an open and bounded set Ω).

Lemma 2.3. Let us denote Ω = BR the ball of Rd with center 0 and radius R > 0, and let us
consider ν ∈ P(Ω) a probability measure such that (abusing notations) ν, 1/ν ∈ L∞(Ω). There
exists a constant κ ∈ (0,∞), such that for any (smooth) function f , there holds

(2.8) κ

∫
Ω

|f − ⟨f⟩ν |2 ν ≤
∫
Ω

|∇f |2 ν, ⟨f⟩ν :=

∫
Ω

f ν,

and therefore

(2.9)

∫
Ω

f2 ν ≤ ⟨f⟩2ν +
1

κ

∫
Ω

|∇f |2 ν.
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Proof of Lemma 2.3. We start with

f(x)− f(y) =

∫ 1

0

∇f(zt) · (x− y) dt, zt = t x+ (1− t) y.

Multiplying that identity by ν(y) and integrating in the variable y ∈ Ω the resulting equation, we
get

f(x)− ⟨f⟩ν =

∫
Ω

∫ 1

0

∇f(zt) · (x− y) dt ν(y) dy.

Using the Cauchy-Schwarz inequality, we have∫
Ω

(f(x)− ⟨f⟩ν)2 ν(x) dx ≤
∫
Ω

∫
Ω

∫ 1

0

|∇f(zt)|2 |x− y|2 dt ν(y) ν(x)dydx

≤ C1

∫
Ω

∫
Ω

∫ 1/2

0

|∇f(zt)|2 dtdy ν(x)dx+ C1

∫
Ω

∫
Ω

∫ 1

1/2

|∇f(zt)|2 dtdx ν(y)dy,

with C1 := ∥ν∥L∞ diam(Ω)2. Performing the the changes of variables (x, y) 7→ (z, y) and (x, y) 7→
(x, z) and using the fact that zt ∈ [x, y] ⊂ Ω, we deduce∫

Ω

(f(x)− ⟨f⟩ν)2 ν(x) dx

≤ C1

∫
Ω

∫ 1/2

0

∫
Ω

|∇f(z)|2 dz

(1− t)d
dt ν(x)dx+ C1

∫
Ω

∫ 1

1/2

∫
Ω

|∇f(z)|2 dz

td
dt ν(y)dy

≤ 2C1

∫
Ω

|∇f(z)|2 dz.

We have thus established that the Poincaré-Wirtinger inequality (2.8) holds with the constant
κ−1 := 2C1 ∥1/ν∥L∞ . □

2.2.2. Weighted L2 estimate through L2 estimate on the derivative.

Proposition 2.4. There holds

1

4

∫
Rd

h2 |x|2 Gdx ≤
∫
Rd

|∇h|2 Gdx+
d

2

∫
Rd

h2 Gdx,

for any h ∈ C1
b (Rd).

Proof of Proposition 2.4. We define Φ := − logG = |x|2/2 + log(2π)d/2. For a given function h,
we denote g = hG1/2, and we expand∫

Rd

|∇h|2 Gdx =

∫
Rd

∣∣∣∇g G−1/2 + g∇G−1/2
∣∣∣2 Gdx

=

∫
Rd

{
|∇g|2 + g∇g∇Φ+

1

4
g2|∇Φ|2

}
dx,

because ∇G−1/2 = 1
2∇ΦG−1/2. Performing one integration by part, we get∫

Rd

|∇h|2 Gdx =

∫
Rd

|∇g|2 dx+

∫
Rd

h2

(
1

4
|∇Φ|2 − 1

2
∆Φ

)
Gdx.

We conclude by neglecting the first term and computing the second term at the RHS. □

2.2.3. End of the first proof of the Poincaré inequality. We split the L2 norm into two pieces∫
Rd

h2 Gdx =

∫
BR

h2 Gdx+

∫
Bc

R

h2 Gdx,

for some constant R > 0 to be choosen later. One the one hand, we have∫
BR

h2 Gdx ≤ CR

∫
BR

|∇h|2 Gdx+
(∫

Bc
R

hGdx
)2

≤ CR

∫
|∇h|2 Gdx+

(∫
Bc

R

Gdx
)∫

h2 Gdx,
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where in the first line, we have used the Poincaré-Wirtinger inequality (2.9) in BR with

ν := G(BR)
−1 G|BR

, G(BR) :=

∫
BR

Gdx,

and the fact that ⟨hG⟩ = 0, and in the second line, we have used the Cauchy-Schwarz inequality.
One the other hand, we have∫

Bc
R

h2 Gdx ≤ 1

R2

∫
Rd

h2 |x|2 Gdx

≤ 4

R2

∫
Rd

|∇h|2 Gdx+
2d

R2

∫
Rd

h2 Gdx,

by using Proposition 2.4. All together, we get∫
Rd

h2 Gdx ≤
(
CR +

4

R2

) ∫
Rd

|∇h|2 Gdx+
( 2d

R2
+

∫
Bc

R

Gdx
)∫

h2 Gdx,

and we choose R > 0 large enough in such a way that the constant in front of the last term at the
RHS is smaller than 1. □

2.3. A second proof of the Poincaré inequality. From (2.5), introducing the unknown h :=
f/G, we have

∂th = G−1div(G∇h)

= ∆h− x · ∇h =: Lh.

On the one hand, we have
h(Lh) = L(h2/2)− |∇h|2,

L is self-adjoint in L2(G) and L∗1 = 0. We then recover the identity (2.6), namely

(2.10)
1

2

d

dt

∫
h2Gdx = −

∫
|∇h|2Gdx.

We fix h0 ∈ L2(G) with ⟨h0G⟩ = 0. We accept that hT → 0 in L2(G) as T → ∞, what it has
been already established during the proofs 1 and 2 or can be established without rate using softer
argument (as it will be explained in the chapter about Lyapunov techniques). By time integration
of (2.10), we thus have

∥h0∥2 = − lim
T→∞

[
∥ht∥2

]T
0
= lim

T→∞

∫ T

0

2∥∇ht∥2 dt,

where here and below ∥ · ∥ denotes the L2(G) norm, and therefore

(2.11) ∥h0∥2 =

∫ ∞

0

2∥∇ht∥2 dt.

On the other hand, we compute

∇h · ∇Lh = ∇h ·∆∇h−∇h · ∇(x · ∇h)

= ∆(|∇h|2/2)− |D2h|2 − |∇h|2 − xDh : D2h

= L(|∇h|2/2)− |D2h|2 − |∇h|2.
We deduce

1

2

d

dt

∫
|∇h|2Gdx = −

∫
|D2h|2Gdx−

∫
|∇h|2Gdx ≤ −

∫
|∇h|2Gdx.

Similarly, as above, we have

∥∇h0∥2 − ∥∇hT ∥2 = −
∫ T

0

d

dt
∥∇ht∥2 dt ≥

∫ T

0

∥∇ht∥2 dt,

and therefore

(2.12) ∥∇h0∥2 ≥
∫ ∞

0

2∥∇ht∥2 dt.

Gathering (2.11) and (2.12), we conclude with the following Poincaré inequality with optimal
constant.
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Proposition 2.5 (Poincaré inequality with optimal constant). For any h ∈ D(Rd) with ⟨hG⟩ = 0,

∥∇h∥L2(G) ≥ ∥h∥L2(G).

We deduce from the above Poincaré inequality with optimal constant, the identity (2.10) and the
Gronwall lemma, the following optimal decay estimate

∥ht∥L2(G) ≤ e−t∥h0∥L2(G), ∀ t ≥ 0,

for any h0 ∈ L2(G) such that ⟨h0G⟩ = 0.

3. Log Sobolev inequality.

The estimate (2.4) gives a satisfactory (optimal) answer to the convergence to the equilibrium
issue for the Fokker-Planck equation (2.1). However, we may formulate two criticisms. The proof
is “completely linear” (in the sense that it can not be generalized to a nonlinear equation) and
the considered initial data are very confined/localized (in the sense that they belong to the strong
weighted space E, and again that it is not always compatible with the well posedness theory for
nonlinear equations).
We present now a series of results which apply to more general initial data but, above all, which
can be adapted to nonlinear equations. On the way, we will establish several functional inequalities
of their own interest, among them the famous Log-Sobolev (or logarithmic Sobolev) inequality.

3.1. Fisher information. We are still interested in the harmonic Fokker-Planck equation (2.1)-
(2.2). We define

D :=

{
f ∈ L1(Rd); f ≥ 0,

∫
f = 1,

∫
f x = 0,

∫
f |x|2 = d

}
and

D≤ :=

{
f ∈ L1(Rd); f ≥ 0,

∫
f = 1,

∫
f x = 0,

∫
f |x|2 ≤ d

}
.

We observe that D (and D≤) are invariant set for the flow of Fokker-Planck equation (2.1). We
also observe that G is the unique stationary solution which belongs to D. Indeed, the equations
for the first moments are

(3.1) ∂t⟨f⟩ = 0, ∂t⟨fx⟩ = −⟨fx⟩, ∂t⟨f |x|2⟩ = 2d⟨f⟩ − 2⟨f |x|2⟩.
It is therefore quite natural to think that any solution to the Fokker-Planck equation (2.1)-(2.2)
with initial datum f0 ∈ D converges to G. It is what we will establish in the next paragraphs.

We define the Fisher information (or Linnik functional) I(f) by

I(f) =

∫
|∇f |2

f
= 4

∫
|∇

√
f |2 =

∫
f |∇ log f |2

and the relative Fisher information I(f |G) by

I(f |G) = I(f)− I(G) = I(f)− d.

Lemma 3.1. For any f ∈ D≤, there holds

(3.2) I(f |G) ≥ 0,

with equality if, and only if, f = G.

Proof of Lemma 3.1. We define V := {f ∈ D≤ and ∇
√
f ∈ L2}. We start with the proof of (3.2).

For any f ∈ V , we have

0 ≤ J(f) :=

∫ ∣∣∣2∇√
f + x

√
f
∣∣∣2 dx

=

∫ (
4 |∇

√
f |2 + 2x · ∇f + |x|2 f

)
dx = I(f) + ⟨f |x|2⟩ − 2 d

≤ I(f)− d = I(f)− I(G) = I(f |G).

We consider now the case of equality. If I(f |G) = 0 then J(f) = 0 and 2∇
√
f + x

√
f = 0 a.e.. By

a bootstrap argument, using Sobolev inequality, we deduce that
√
f ∈ C0. Consider x0 ∈ Rd such
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that f(x0) > 0 (which exists because f ∈ V ) and then O the open and connected to x0 component
of the set {f > 0}. We deduce from the preceding identity that ∇(log

√
f + |x|2/4) = 0 in O

and then f(x) = eC−|x|2/2 on O for some constant C ∈ R. By continuity of f , we deduce that
O = Rd, and then C = − log(2π)d/2 (because of the normalized condition imposed by the fact
that f ∈ V ). □

In some sense (see below) the relative Fisher information measure the distance to the steady state
G. We also observe that

(3.3)
d

dt
I(f) = I ′(f) · Lf,

with

(3.4) I ′(f) · h = 2

∫
∇f

f
∇h−

∫
|∇f |2

f2
h,

and we wish to establish that I(f) decreases and converges to 0 with exponential decay.

Lemma 3.2. For any smooth probability measure f , we have

1

2
I ′(f) ·∆f = −

∑
ij

∫ ( 1

f2
∂if ∂jf − 1

f
∂ijf

)2

f,(3.5)

1

2
I ′(f) · (∇ · (f x)) = I(f),(3.6)

1

2
I ′(f) · L f = −

∑
ij

∫ ( 1

f2
∂if ∂jf − 1

f
∂ijf − δij

)2

f − I(f |G).(3.7)

As a consequence, there holds

1

2
I ′(f) · L(f) ≤ −I(f |G) ≤ 0.

Proof of Lemma 3.2. Proof of (3.5). Starting from (3.4) and integrating by part with respect to
the xi variable, we have

1

2
I ′(f) ·∆f =

∫
1

f
∂jf ∂iijf −

∫
1

2 f2
(∂jf)

2∂iif

=

∫ (
∂if

f2
∂jf ∂ijf − 1

f
∂ijf ∂ijf

)
+

∫ (
1

f2
∂if ∂jf ∂ijf − ∂if

f3
∂if (∂jf)

2

)
= −

∑
ij

∫ ( 1

f2
∂if ∂jf − 1

f
∂ijf

)2

f.

Proof of (3.6). We write

1

2
I ′(f) · (∇ · (f x)) =

∫
∂jf

f
∂ij(f xi)−

(∂jf)
2

2 f2
∂i(f xi).

We observe that

∂ij(f xi)−
(∂jf)

2 f
∂i(f xi) = (∂ijf)xi + d ∂jf + δij ∂jf − ∂if ∂jf

xi

2 f
− d

2
∂jf

= (∂ijf)xi + (
d

2
+ 1) ∂jf − ∂if ∂jf

xi

2 f
.

Gathering the two preceding equalities, we obtain

1

2
I ′(f) · (∇ · (f x)) = (

d

2
+ 1) I(f) +

∫
∂jf

f
∂ijf xi −

∫
∂jf

f
∂if ∂jf

xi

2 f
.

Last, we remark that thank to an integration by parts

−d

2
I(f) =

1

2

∫
∂i

(
(∂jf)

2

f

)
xi =

∫
∂jf ∂ijf

f
xi −

1

2

(∂jf)
2

f2
∂if xi,

and we then conclude
1

2
I ′(f) · (∇ · (f x)) = I(f).
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Proof of (3.7). Developing the expression below and using (3.5), we have

0 ≤
∑
ij

∫ ( 1

f2
∂if ∂jf − 1

f
∂ijf − δij

)2

f

= −1

2
I ′(f) ·∆f + 2

∑
i

∫ (
∂iif − 1

f
(∂if)

2
)
+ d

∫
f.

From
∫
f = 1,

∫
∂iif = 0 and (3.6), we then deduce

0 ≤ −1

2
I ′(f) ·∆f − 2I(f) + d = −1

2
I ′(f) · Lf + d− I(f),

which ends the proof of (3.7). □

Theorem 3.3. The Fisher information I is decreasing along the flow of the Fokker-Planck equa-
tion, i.e. I is a Lyapunov functional, and more precisely

(3.8) I(f(t, .)|G) ≤ e−2 t I(f0|G).

That implies the convergence in large time to G of any solution to the Fokker-Planck equation
associated to any initial condition f0 ∈ D ∩ V . More precisely,

(3.9) ∀ f0 ∈ D ∩ V f(t, .) → G in Lp ∩ L1
2 as t → ∞,

for any p ∈ [1, 2♯) where 2♯ = ∞ when d = 1, 2 and 2♯ = d/(d− 2) when d ≥ 3.

During the proof of Theorem 3.3, we will need the following result (see Excercise 4.3).

Lemma 3.4. A sequence (fn) which is bounded in L1
2 ∩ Lq, q > 1, and is such that fn → g a.e.

in Rd, also satisfies

fn → g in Lp ∩ L1
k, ∀ k ∈ [0, 2), ∀ p ∈ [1, q).

If furthemore, ∥fn∥L1
2
= ∥g∥L1

2
for any n ≥ 1, then fn → g in L1

2.

Proof of Theorem 3.3. We only consider the case d ≥ 3. On the one hand, thanks to (3.7), we have

(3.10)
d

dt
I(f |G) ≤ −2 I(f |G),

and we conclude to (3.8) thanks to the Gronwall lemma. On the other hand, thanks to the Sobolev
inequality, we have

∥f∥L2∗/2 = ∥
√
f∥2L2∗ ≤ C ∥∇

√
f∥2L2 = C I(f) ≤ C I(f0).

Consider now an increasing sequence (tn) which converges to +∞. Thanks to estimate (3.8)

and the Rellich Theorem, we may extract a subsequence still denoted as (tn) such that
√
f(tn)

converges a.e. and weakly in Ḣ1 to a limit denoted by
√
g. As a consequence, f(tn) → g a.e.

and (f(tn)) is bounded in L2∗/2 ∩ L1
2, so that fn → g in Lp ∩ L1

k, ∀ k ∈ [0, 2), ∀ p ∈ [1, q), thanks

to Lemma 3.6. From the lower semicontinuity of the norms, we have g is bounded in L2∗/2 ∩ L1
2,

⟨|v|2g⟩ ≤ lim inf⟨|v|2f(tn)⟩ = d and I(g) ≤ lim inf I(f(tn)) < ∞, so that g ∈ D≤∩V . Finally, since

2∇
√
f(tn)− x

√
f(tn) → 2∇√

g − x
√
g weakly in L2

loc (for instance) and (3.8), we have

0 ≤ J(g) ≤ lim inf
k→∞

J(f(tn, .) = lim inf
k→∞

I(f(tn, .)|G) = 0.

From J(g) = 0 and g ∈ V ∩D≤, we get g = G as a consequence of Lemma 3.1, and it is then the
all family (f(t))t≥0 which converges to G as t → ∞. The L1

2 convergence is a consequence of the
fact that ⟨f(t) |v|2⟩ = ⟨G |v|2⟩ for any time t ≥ 0 together with Lemma 3.6. □
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3.2. Entropy and Log-Sobolev inequality. For a function f ∈ D, we define the entropyH(f) ∈
R ∪ {+∞} and the relative entropy H(f |G) ∈ R ∪ {+∞} by

H(f) =

∫
Rd

f log f dx, H(f |G) = H(f)−H(G) =

∫
Rd

j(f/G)Gdx,

where j : R+ → R+, j(s) := s log s− s+1. It is worth emphasizing that the last integral is always
defined in R ∪ {+∞} because j(f) ≥ 0 and that for establishing the last equality we use that∫

Rd

f logGdx =

∫
Rd

G logGdx

because f ∈ D.

We start observing that for f ∈ P(Rd) ∩ S(Rd), there holds

H ′(f) · Lf :=

∫
Rd

(1 + log f) [∆f +∇ · (x f)]

= −
∫
Rd

∇f · ∇ log f −
∫
Rd

x f · ∇ log f

= −I(f) + d ⟨f⟩ = −I(f |G).

As a consequence, the entropy is a Lyapunov functional for the Fokker-Planck equation and more
precisely

(3.11)
d

dt
H(f) = −I(f |G) ≤ 0.

Theorem 3.5. (Logarithmic Sobolev inequality). For any f ∈ D ∩ V , the following Log-
Sobolev inequality holds

(3.12) H(f |G) ≤ 1

2
I(f |G).

That one also writes equivalently as∫
Rd

f ln f −
∫
Rd

G lnG ≤ 1

2

(∫
Rd

|∇f |2

f
− d

)
or also as ∫

Rd

u2 log(u2)G(dx) ≤ 2

∫
Rd

|∇u|2 G(dx).

For some applications, it is worth emphasizing that the Log-Sobolev inequality depends on a nicer
way of the dimension than the Poincaré inequality.

During the proof of Theorem 3.5, we will need the following result (see Excercise 4.5).

Lemma 3.6. Consider a sequence (fn) such that 0 ≤ fn → f in Lq ∩ L1
k, q > 1, k > 0, then

H(fn) → H(f).

Proof of Theorem 3.5. We denote by ft the solution to the Fokker-Planck equation (2.1) associated
to the initial datum f0 := f . On the one hand, from (3.9), Lemma 3.6 and (3.11), we get

H(f)−H(G) = lim
T→∞

[H(f)−H(fT )] = lim
T→∞

∫ T

0

[
− d

dt
H(f)

]
dt

= lim
T→∞

∫ T

0

[I(f |G)] dt.

From that identity and (3.10), we deduce

H(f)−H(G) ≤ lim
T→∞

∫ T

0

[
−1

2

d

dt
I(f |G)

]
dt

= lim
T→∞

1

2
[I(f |G)− I(fT |G)] =

1

2
I(f |G),

thanks to (3.8). □
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Lemma 3.7. (Csiszár-Kullback inequality). Consider probability measure µ and a nonneg-
ative measurable function g such that g µ is also a probability measure. Then

(3.13) ∥g − 1∥2L1(dµ) ≤ 2

∫
g log g dµ.

Proof of Lemma 3.7. Thanks to the Taylor-Laplace expansion formula, there holds

j(g) := g log g − g + 1 = j(1) + (g − 1) j′(1) + (g − 1)2
∫ 1

0

j′′(1 + s (g − 1)) (1− s) ds

= (g − 1)2
∫ 1

0

1− s

1 + s (g − 1)
ds.

Using Fubini theorem, we get

H(g) :=

∫
(g log g − g + 1) dµ =

∫ 1

0

(1− s)

∫
(g − 1)2

1 + s (g − 1)
dµ ds.

For any s ∈ [0, 1], we use the Cauchy-Schwarz inequality and the fact that both µ and g µ are
probability measures in order to deduce(∫

|g − 1| dµ
)2

≤
(∫

(g − 1)2

1 + s (g − 1)
dµ

)(∫
[1 + s (g − 1)]dµ

)
=

∫
(g − 1)2

1 + s (g − 1)
dµ.

As a conclusion, we obtain

H(g) ≥
∫ 1

0

(∫
|g − 1| dµ

)2

(1− s) ds =
1

2

(∫
|g − 1| dµ

)2

,

which ends the proof of the Csiszár-Kullback inequality. □

Putting together (3.11), (3.12) and (3.13) with G := µ and g := f/G, we immediately obtain the
following convergence result.

Theorem 3.8. For any f0 ∈ D such that H(f0) < ∞, the associated solution f to the Fokker-
Planck equation (2.1)-(2.2) satisfies

H(f |G) ≤ e−2t H(f0|G),

and then
∥f −G∥L1 ≤

√
2 e−t H(f0|G)1/2.
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4. Exercises and Complements

Exercise 4.1. Observe that the function H := xk satisfies

H ∈ L2(G), ⟨HG⟩ = 0, LH = −H, ∥∇H∥2L2(G) = ∥H∥2L2(G).

Conclude that the constant λP = 1 in the Poincaré inequality established in Proposition 2.5 is
optimal.

Exercise 4.2. Generalize the Poincaré inequality to a general superlinear potential V (x) = ⟨x⟩α/α+
V0, α ≥ 1, in the following strong (weighted) formulation∫

|∇g|2 G ≥ κ

∫
|g − ⟨g⟩G |2 (1 + |∇V |2)G ∀ g ∈ D(Rd),

where we have defined G := e−V ∈ P(Rd) (for an appropriate choice of V0 ∈ R).

Exercise 4.3. Establish Lemma 3.6.

A possible solution of Exercise 4.3. We first establish that fn → g strongly in L1. We write

∥fn − g∥L1 ≤
∫
BR

|fn − g| ∧M + 2R−2 sup
n

∫
Bc

R

|fn||x|2 + 2M1−q sup
n

∫
BR

|fn|q,

for any R,M > 0 and any k ≥ 1, and by using the dominated convergence theorem of Lebesgue
for the first term. Thanks to the interpolation inequalities

∥h∥Lp ≤ ∥h∥1−α
L1 ∥h∥αLq and ∥h∥L1

k
≤ ∥h∥k/2

L1
2
∥h∥1−k/2

L1 ,

with 1/p = 1− α+ α/q, we next get that fn → g strongly in Lp ∩L1
k, for any p ∈ [1, q), k ∈ [0, 2).

When we furthermore assume fn, g ≥ 0 and ⟨g|x|2⟩ = ⟨fn|x|2⟩ = d for any n ≥ 1, from Fatou
lemma, we may first deduce

lim sup
n

∫
Bc

R

fn|x|2 = d− lim inf
n

∫
BR

fn|x|2

≤ d−
∫
BR

f |x|2 =

∫
Bc

R

f |x|2,

for any R > 0. On the other hand, we have∫
|fn − f | |x|2 dx ≤

∫
BR

|fn − f | |x|2 dx+

∫
Bc

R

fn |x|2 dx+

∫
Bc

R

f |x|2 dx.

From the two above informations together with the convergence fn → f in L1, we deduce

lim sup
n

∥f − fn∥L1
2
≤ 2

∫
Bc

R

f |x|2 dx,

for any R > 0, and thus the conclusion by letting R → ∞. □

Exercise 4.4. Prove the convergence (3.8) for any f0 ∈ P(Rd) ∩ L1
2(Rd) such that I(f0) < ∞.

(Hint. Compute the equations for the moments of order 1 and 2 and introduce the relative Fisher
information I(f |M1,u,θ) associated to a normalized Gaussian with mean velocity u ∈ Rd and tem-
perature θ > 0).

Exercise 4.5. Prove that 0 ≤ fn → f in Lq ∩ L1
k, q > 1, k > 0, implies that H(fn) → H(f).

(Hint. Use the splitting

s | log s| ≤
√
s1

0≤s≤e−|x|k + s |x|k 1
e−|x|k≤s≤1

+ s(log s)+ 1s≥1 ∀ s ≥ 0

and the dominated convergence theorem).

Exercise 4.6. Generalize Theorem 3.8 to the case when f0 ∈ P(Rd) ∩ L1
q(Rd), q = 2 or q > 1,

such that H(f0) < ∞. (Hint. Proceed along the same line as in Exercise 4.4).

Exercise 4.7. Generalize Theorem 3.5 and Theorem 3.8 to the case of a super-harmonic potential
V (x) = ⟨x⟩α/α, α ≥ 2, and to an initial datum φ ∈ P(Rd) ∩ L1

2(Rd) such that H(φ) < ∞.
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