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An introduction to evolution PDEs

CHAPIER 6: MORE ABOUT REGULARITY
& LONGTIME BEHAVIOUR

We present several complementary tools about the regularity of solutions and their
longtime asymptotic. The last part, in blue color has not been yet presented during
the classes (and maybe will not be presented this year).

1. DE Giorci, NAsSH, MOSER

At least for the parabolic equation

(1.1) Of =div(AVf) on U:=(0,T) x R%,
where
(1.2) 0<vI<AeL>*U),
we have already seen that we may establish the ultracontractivity estimate
C
(13) 176 Mew < ey Mol
for any 1 < ¢ < p < oo. Nash approach consists in observing that
d
(14) G [ptn == [ avses <o

for any convex function 3 : R — R, in making the choice B(s) = s? and £(s) = |s|
and in using some interpolation and ODE estimates in order to establish the ul-
tracontractivity estimate (1.3) for p = 2 and ¢ = 1. Duality and interpolation
arguments make possible to get the full range of exponents. We explain how some
other choices of convex functions 3 lead to the same conclusion. These techniques
are more suitable in some situations, in particular in order to establish the ultra-
contractivity estimate (1.3) for the most general parabolic equations.

1.1. Moser approach. In order to simplicity the notations, let us only consider
the heat equation and thus a solution f to

0
(1.5) a{ Af on U, f(0,)=fo in R%
e We recall that this one satisfies the energy identity
(1.6) ||f||L2 = IV 2.

2 dt
We integrate in time equation (1.6) in order to get

5 [ 12+ //WW 5 [
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for any 0 < s <t. We fix 0 < tg < t1 <t < T and we integrate in s € (tg,t1) the
above equation. We obtain

(tl—tO)/fer?(tl—tO)/tlt/IszS/:/f2~

Taking the supremum in ¢ € (¢1,7T) and throwing up the second term at the RHS,
we deduce

1
(1.7) I oo (1y.22) < m”f“%zug;m),
where I; := [t;, T]. On the other hand, taking ¢ := T, throwing up the first term at
the RHS and using the Sobolev inequality

1 1 1
1.8 « < C — _—__Z
(18) 17l < Csll VS les 5o =5 - =
for estimating by below the second term at the RHS, we deduce
21
(1.9) £ %2y, < 7m||f||i2(zo;m)-
We now recall the interpolation inequality
(1.10) lgllzoozro < NglZaozro Mzl s
where
1 0 1-90 1 6 1-96
—=—+ , —=—+ , 0e]0,1],

do do q1 To To 1
which proof is left as an exercise (using twice the Holder inequality). Using this
interpolation inequality with 6 such that

1 1-0 60 1-0

p 2 — a2

we deduce
2 c 2
(1.11) I Zecysme) < m”f”m(fo;fﬁ)a p:=2(1+2/d).

e Before continuing, let us make two observations. First, for any smooth function
B :R — R, we have

aB(f) = B'(FIAf = AB(f) = B"(NIVFI,

so that when f is convex, the function 8(f) is a subsolution, namely it satisfies

(1.12) B(f) < AB(S)-

Next, for any subsolution g > 0 to the heat equation, we may repeat all the above
argument, and we get in the very same manner

1
(1.13) 19120 @rn) < Cmﬂgﬂiz(uk),

with Uy, 1= I, x ]Rd, I = (tk,T] and 0 <t < tpp1 <T.
e We consider now a solution f > 0 to the heat equation and we define

T T
tkzzgizik’ k21, peyr=0+2/d)pr, k=1, pr:=2.
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Because pi/2 > 1, and thus s — |s|P¥/2 is convex, and because of (1.12), the
function g := fP*/2 is a subsolution. Applying (1.13) to this function g, we obtain

2
Il @y = 1F 2100
2k 1/prk 2% 1 /ps
< (C?prk/QHQH(uk)) = (C?) pk||f||LPk(uk)-
Observing that
SERE S
— Dk 23:0 1+2/d 2 4
we deduce that -
H 1/pk <7 1/2-d/4
k=1
As a consequence, we have
[l = Uminf|[f]lzo ey,
< hmlan 1/p]||f||Lp1(u1)
and thus
(1.14) £l @) S T2 Y Fll L2 @)

Finally, together with the decay of the L? norm (1.6) which implies
£z @y < T2 foll s

we have thus established

(1.15) Il fr e Td/4HfO||L2

Estimate (1.15) is the dual estimate of (1.3) with p = 2 and ¢ = 1 obtained as a
first step using Nash method. We may thus end the proof of the full range estimate
(1.3) by arguing by duality and interpolation exactly as in Nash proof.

1.2. De Giorgi approach. For a fixed K > 0, we rather use the convex function
B(s) := (s — K)% in (1.4), which gives

1d

- K)% K)4|?

s [ K2 == [ 190 = K) P

Repeating the first step in Moser’s proof and using the notation fx = (f — K)4,
we straightforwardly obtain

C
(1.16) &l s @y < ﬁ“fKH%%uy
with U := (7,7), U == (7',T),0<7 <7 <T and p:=2(1+2/d) > 2.
Now, for K’ > K > 0, we first observe that thanks to the Holder inequality
(1.17) | frerll 2@y < N Fxrlloe@n{ Frer > 0} NU'[V/271/P
On the other hand, because fx+ > 0 is equivalent to fx > K’ — K, the Tchebychev

inequality implies

1
(1.18) {frxr >0ynU'| < m”ﬁ(“%?(u)
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Putting together the above three estimates and using the elementary inequality
fx < fi, we have key inequality

C 1 _
2 2(2-2/p)
||fK’HL2(M’) S T’*T(K’—K)2(172/p)”fKHL2(u) p .

Let us introduce an iterative argument. We define the sequence of (increasing)
time, (decreasing) cylinder and (increasing) truncation barrier

T,:=T-2(1+2™"), U, =(T,T) xR, K,:=

and the sequence of energy

. _ 2
g, ._/M (f — K,)2 dadt.

n

(1 - 2771)7

1
2

Using the above key inequality with 7 =T, 7/ = Ty,11, K = K,,, K’ = K41 and
observing that T}, 41 —T), = T2~ "2 K, .1 — K, =2- 2 2 _92/p = 1+ a with
a:=d/(d+2) € (0,1), we get

Enp1 S M™EMN Yn > 1,
for some constant M > 1. We use now the following elementary result.
Lemma 1.1. If a sequence (vy)n>0 satisfies 0 < v,1 < Mt for anyn > 1
andv0<M7$ for some M > 1 and a > 0, then v, — 0 as n — oo.
Proof of Lemma 1.1. Let us define u,, := ugo"™. We observe that
M™u b = M 0" ufun 1 = upq1,
provided that Mp® = 1 and p~tu§ = 1. With this choice, we have o := M—Ve

and uy = o"/* = MY/ o For vy < ug, we straighforwardly establish recursively
that v,, < u,, and thus v,, — 0. O

1
Assuming & < d := M~ a2, we deduce from Lemma 1.1 that &, — 0 as n — oo,
and in particular

Eno = / (f — Koo)ddzdt = 0,

with Uy, = (T/2,T) x R% and K, = 1/2. That precisely means that
(1.19) F<1/2 on Us.

In other words, we have established (first De Giorgi Lemma)

1
I fllzoe @) < 276”.]0”[/2(“0)'
It is not difficult to recover again (1.15) from that last estimate.
2. GENERAL RELATIVE ENTROPY

We consider the parabolic equation
(2.20) of =div(AVf+af)+b-Vf+cf.
If g > 0 is a solution to the same equation
Org = div(AVg) +b-Vg+cg
and if ¢ > 0 is a solution to the dual evolution problem
—0y¢ = div(ATV¢) — div(bp) + co,
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we can exhibit a family of entropies associated to the evolution PDE (2.20). More
precisely, we establish the following result (and in fact a bit more accurate formu-
lation of it).

Theorem 2.2. For any real values convex function H, the generalized entropy
functional

(2.21) frous) = [ H( g0

is an Lyapunov function for the evolution PDE (2.20) (meaning that is is decaying
function of time along the flows of the evolution PDE).

Step 1. First order PDE. We assume that
of = b-Vf+ecf

O g b-Vg+cg
-0 —div(bo) + c ¢,

and we show that
9 (H(X)ge) — div(bH (X)gp) =0, X = f/g.
‘We compute
0 (H(X)go) — div(bH (X)g9)
= H'(X)g¢[0:X —b- VX] + H(X) [0:(9¢) — div(bge)].

The first term vanishes because

1 1
§<atf—b-w>—g%(atg—nw):;(cf)—g—é(cg)=o.

The second term also vanishes because
Or(99) — div(bge) = ¢[0rg — b - Vg] + g [0 — div(bg)] = ¢ [—cg] + g[cg] = 0.
Step 2. Second order PDE. We assume that
O f = div(AVf) +cf
og = Ag+cg
—0p = Ad+co,

O0X —-b-VX =

and we show
Oy (H(X)g¢) — div(¢V(H(X)g)) + div(gH (X)V¢) = —H"(X)gp|V X |*.
We first observe that
(VS 1
AX = dw(7 i Vg)

A v

- —f—QVf—ZngQf
g g

Af _fAg _,Vg

g g* g

[Vgl?
93
VX,

f
7g72Ag

which in turn implies

6‘,5X7AX:2@'VX.
g
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We then compute
9:(H(X)g¢) — div(¢V(H(X)g)) + div(gH (X)Ve) =

= (O:H(X)) g¢ + H(X) 8,(9¢) — ¢ divlgH' (X)VX + H(X)Vyg] + gH(X)A¢

=H'(X)gp {0: X — AX — 2% VX} —go H"(X)|[VX[]* + H(X) [0:(9¢) — ¢Ag + gAd]

= —gp H"(X)|VX]?,
since the first term and the last term independently vanish.

Step 3. Conclusion. For any solutions (f, g, ¢) to the system of equations (with
A =1 and a = 0), we have summing up the three computations

9 (g¢H (X)) — div(bH (X)g¢) — div(¢V(H(X)g)) + div(gH (X) V)

— g6 H'(X) |VX]?

Since when we integrate in the = variable the term on the second line vanishes, we
find out

d
LH(T) = ~Dulf),
with
Du(f) = / 96 H'(X) [VX[2 > 0,

so that (2.21) is proved. O

Exercise 2.3. (1) Complete the proof for a general diffusion matriz A and for a
given vector field a.

(2) Generalize the result to the case where we add a integral term

/bf* = /b(x7m*)f(x*)dx*, b>0,
to the RHS of the equation.

Exercise 2.4. We consider a semigroup S; = e of linear and bounded operators
on L' and we assume that

(’L) St > 0,‘

(i) 3g > 0 such that Lg = 0, or equivalently Sig = g for any t > 0;

(iii) 3¢ > 0 such that L*¢ = 0, or equivalently (Sih, ) = (h,¢) for any h € L!
and t > 0.

Our aim is to generalize to that a bit more general (and abstract) framework the
general relative entropy principle we have presented for the evolution PDE (2.20).

(a) Prove that for any real affine function ¢, there holds £[(Stf)/glg = St[€(f/g)9g]-

(b) Prove that for any convex function H and any f, there holds H[(S:f)/glg <
Si[H(f/g)g]. (Hint. Use the fact that H = sup,< ().

(¢) Deduce that

[Hispidos < [ Hissggs, vizo
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3. DOBLIN-HARRIS THEOREM IN A BANACH LATTICE

We formulate a general abstract constructive Doblin-Harris theorem.

We consider a Banach lattice X, which means that X is a Banach space endowed
with a closed positive cone X, (we write f > 0 if f € X, and we recall that
f=f+—f- with fy € X, for any f € X. We also denote |f| := fo + f_). We
assume that X is in duality with another Banach lattice Y, with closed positive
cone Y, so that the bracket (¢, f) is well defined for any f € X, ¢ € Y, and that
f e Xy (vesp. ¢ > 0)iff (¢, f) >0 for any ¢ € Y, (resp. iff (¢,g) > 0 for any
g € X4), typically X =Y  or Y = X'. We write ¢ € Yy if ¢ € Y satisfies
(1, f) > 0 for any f € X \{0}.

Example 3.5. The typical case (and unique example) we have in mind is X := LP,
for p € [1,00] and a weight function w : R? — R, where

LE = {f € Lioc®"); [ fllzg = [l fw]r < oo},
and Y = LV_,.

We consider a positive and conservative (or stochastic) semigroup S = (S;) = (S(t))
on X, that means that (S;) is a semigroup on X such that

e S;: Xy — X, for any t > 0, in particular, 3b € R, IM > 1,
(3.22) 1St (x) < Me vt >0;
o there exist ¢; € Yy, ||¢1]] = 1, and a dual semigroup S* = Sy = S*(¢) on
Y such that S}¢1 = ¢1 for any ¢ > 0. More precisely, we assume that S}
is a bounded linear mapping on Y such that (S.f,¢) = (f, S} ¢), for any

feX, ¢ €Y andt > 0, and thus in particular S} : Y, — Y, for any
t> 0.

Example 3.6. For the linear McKean equation associated to the partial differential
operator Lf := Af+div(af) defined on (a subspace of) X := LP, C L', the function
¢1 =1 € L>® C Y fulfills the second condition (conservative property) and the
operator L generates a positive semigroup.

We denote by L the generator of S with domain D(L). For ¢ € Y., we define the
seminorm

[f]l/l = <|f|aw>? Vf c X.

Proposition 3.7. A positive and conservative semigroup S on a Banach lattice X
is a semigroup of contraction for the seminorm associated to the conservation ¢,
in other words

(3'23) [S(t)f]df'l < [.ﬂtﬁu Vi>0, VfeX.

Proof of Proposition 3.7. For f € X, we may write f = f, — f_, f+ € X, and
then compute

A

ISefl < [Sefel+[Sef-]
= Sify + Sif- =S fl,
where we have used the positivity property of S; in the second line. We deduce
[Stflgr < (Selfl, d1) = (| f], Sf d1)
and thus (3.23), because of the stationarity property of ¢;. a
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In order to obtain a very accurate and constructive description of the longtime
asymptotic behaviour of the semigroup S, we introduce additional assumptions.

e Lyapunov condition. We first make the strong dissipativity assumption
t

(3.24) IS fl < Coe|fIl+ Ch / 7 [S(5) fl g, ds,

for any f € X and ¢ > 0, where A < 0 and C; € (0, 00).

e Doblin-Harris condition. Next, we make the conditional positivity assumption:
for any T'>T; > 0 and A > 0, there exists gr 4 € X1 \{0} such that

(3.25) Stf > gralfle,, VfeXy Ifll < Alflg,-

Example 3.8. The above Lyapunov condition is satisfied by the Fokker-Planck
semigroup, but not by the heat semigroup (where the same estimate is however true
with A = 0). The above Doblin-Harris condition is true for the partial differential
operator Lf := Af +div(af).

Theorem 3.9. Consider a semigroup S on a Banach lattice X which satisfies the
above conditions. Then, there exists a unique normalized positive stationary state
f1 € D(L), that is

£f1:07 f1207 <¢17f1>:1.

Furthermore, there exist some constructive constants C > 1 and Ay < 0 such that
(3.26) ISt f — (f, 1) frll < Ce | f — (f, i) full
forany f € X andt > 0.

Sketch of the proof of Theorem 3.9.
Step 1. The Lyapunov condition. From (3.24) and (3.23), we have

t
ISef11 < Coe I+ s [ Mgl
and we may thus choose T' > Tj large enough in such a way that
(3.27) ISTfIl < el fl + Klfls
with
vr = Coe* € (0,1), K :=Cy/\
For further references, we denote by A a positive real number such that
(3.28) v+ K/A < 1.
Step 2. The conditional coupling property. We may now improve the non-expensive

estimate (3.23) on the set N := {f € X;(¢1, f) = 0}. Take indeed f € N such
that ||f|| < A[f]s,. Observing that [fi]s, = [fls,/2 and thus

Ifll < [IFIF < 2A[f+]g,
the previous estimate tells us that
Stf+ > 0914 0:= caalfls,-
Slightly modifying the arguments of Proposition 3.7, we compute now
IStfl < |Stf+ —ogr.al +[STf- — 09T, al
= Sr|f| — 2097,a.
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‘We deduce
[STf]¢1 S <|f‘7¢1> - 29 <¢1agT,A>7

and thus conclude to the conditional coupling estimate

(329) [STf]dJl < ’YH[f]¢17

with YH = 1-— 2C2A<¢179T,A> S (0, 1)

Step 3. We introduce a new equivalent norm || - || on X defined by
(3.30) A= [fTen + BILI-

Using the three properties (3.23), (3.27) and (3.29), we may prove that there exist
B > 0 small enough and v € (0,1) such that

(3.31) IS folll <yl folll, for any fo € N.
We observe that we have the alternative

Alfolg, > Il foll or  Alfols, <l foll-

In the first case of the alternative, using the Lyapunov estimate (3.27) and the
coupling estimate (3.29), we have

ST foll

(St folg, + BlSTfoll
(vu + BK)[fols, + Byel foll
Tl foll,

with v; := max(yg + SK,v1) < 1, by fixing from now on 8 > 0 small enough. In
the second case of the alternative, using the Lyapunov estimate (3.27) and the non
expansion estimate (3.23), we have

IS foll (ST folg, + BllST foll
(1+ BK — B6)[folg, + B(yL +6/A)| foll
Yalll foll,
with v := max(l + SK — 84,y + 6/A) for any 0 < 5§ < 1+ K. We take
6:= K+ 19,9 >0, so that we get
Y2 = max(1 — B9, (vr + K/A) +9/A) < 1,

by choosing ¥ > 0 small enough and using the very definition (3.28) of A. In any
cases, we have thus established (3.31) with v := max(y1,72) < 1.

<
<

<
<

Step 4. In order to prove the existence and uniqueness of the stationary state
fie Xy, wefixgoe M:={ge€ Xy,9 >0, (g,61) =1}, and we define recursively
gk = Stgr—1 for any k > 1. Thanks to (3.31), we get

o0 oo
Z llgr — gr—ll < Zv’“l\lgl = golll < o0,
k=1 k=0

so that (gr) is a Cauchy sequence in M. We set f; := limgy € M which is a
stationary state for the mapping St, as seen by passing to the limit in the recursive
equations defining (gr). From (3.31) again, this is the unique stationary state for
this mapping in M. From the semigroup property, we have S;f; = S;Srf1 =
St(Stf1) for any t > 0, so that S;f; is also a stationary state in M, and thus
Sif1 = f1 for any t > 0, by uniqueness.
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Step 5. For f € X, we see that h := f — (f,¢1)$1 € N, and using recursively
(3.31), we deduce
lISnzhll <" [R]l, V7 =0.

The estimate (3.26) then follows by using the equivalence of the norms | - || and
Il - I, the semigroup property and the growth estimate (3.22) for dealing with
intermediate times ¢t € (nT, (n+1)T). Fort >0 and t =nT+7,n >0, 7 € [0,T),
we may indeed write

IS@Al < 8IS S(n
< BTIIIS(T)A
< BTReMBT(L+ B)IIS(T)h|
< e(t/Tf'r/T)logy(lJrﬂfl)]\4ebT”h”7
where in the last line we have used (3.22) with b > 0 (what we may always assume

and it is also imposed in our case by the conservation hypothesis), from what we
conclude to (3.26) with Ay := T~ !logy < 0 and C :=y~1(1 4 g7 1)MebT. O

4. SEMIGROUPS FACTORIZATION TECHNIQUE

In this section, we establish the following weighted L' decay through a semigroups
factorization technique and the already known weighted L? decay (consequence and
equivalent to the Poincaré inequality).

Theorem 4.1. For any a € (—Ap,0) and for any k > k* := \p there exists Cq
such that for any ¢ € Li, the associated solution f to the Fokker-Planck equation
satisfies

(4.1) If = (@) Gllr < Crae® o — () GllLs-

A refined version of the proof below shows that the same estimate holds with a :=
—Ap.

Proof of Theorem 4.1. In order to simplify a bit the presentation, we only present
the proof in the case of the dimension d < 3, but the same arguments can be
generalized to any dimension d > 1.

Step 1. The splitting. We introduce the splitting £ = A + B with
Bf :=Af+V-(fz)-Mfxr, Af:=M fxr,
where xr(x) = x(z/R), x € D(RY), 15, < x < 1p,, and where R, M > 0 are

two real constants to be chosen later. We define, in any Banach space X such that
G € X C L', the projection operator

f:=(f)G,
which thus satisfies [1? = I and IT € B(X'). When S is well defined as a semigroup
in X, we have
(4.2) Se(I—=II)= (I —-1I)Se, = —1I) S (I —1I)

as a consequence of the projection property (I—1I1)? = (I—II)2, of the facts that G is
a stationary solution to the Fokker-Planck equation and that the mass is preserved
by the associated flow. Now, iteraration the Duhamel formula

S =S+ S¢ * ASg,
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we have
(4.3) Sr =S+ S * (ASp) + Sz * (ASg) * (.ASB)

The two identities (4.2) and (4.3) together and using the shorthand I+ = I — I,
we have

3
SeIt = TIHSBITt + I Sp # (ASE)ITH + SpITH + (ASg) * (ASEITY) =: > Ti(t).
=1
In order to get (4.1), we will establish that
(4.4)  Sp(t): L} — Lk, with bound O(e??), Vt >0, Yd' > a*, Vk > k*,
ea’t
WA
(46) A:Lp— Lk, A:L% - L*(GY), VK > k*, VE > k*,
with K* := Ap + d/2. We also recall that
(4.7) Set: L2(G7Y) — L2(G™1), with bound O(e™*rY), Vit >0,

which is nothing but the convergence obtained thanks to the Poincaré inequality.
We finally observe that

(4.8) uxw(t) = O0() and uxv*w(t) = O0(e™), Yt>0, Ya > a*,
if

(4.5) Sp(t): Ly — L, with bound O(—-), Vt >0, Va' >a*, VK > K*,

a't

(4.9)  u(t) =0, v(t) = o(;ﬁ), w(t) = 0™, Vt>0, Vd' > a*.

The first estimate in (4.8) is obtained by writing

t t
uxw(t) = / u(s)w(t — s)ds < / e e t73) ds < te®t < et
0 0
for any ¢t > 0 and any a > a’ > a*. For the second estimate in (4.8), we first write

2
a s

¢ ¢
vxw(t) = /0 v(s)w(t —s)ds < /0 Zgﬁe“ (t=5) ds S ¢/t < et

for any t > 0 and any o’ > a” > a*, and we conclude by combining that estimate
with the first estimate in (4.8).

Step 2. The conclusion. With the help of the estimates stated in step 1, we are in
position to prove (4.1) or equivalently that

(4.10) 1Tt rr S €, VE>0, Va>a®, Vi > k",

for any i = 1,2,3. For i = 1, (4.10) is nothing but (4.4) together with I+ € B(L}).
For proving (4.10) when i = 2, we use the first estimate in (4.8) with

u(t) = [T Se(t) iy, w(t) = [ASs(OI |11,

where both functions satisfy the hypothesizes of (4.9) because of II+ € B(L}), of
the first estimate on A with K = k in (4.6) and of the estimate (4.5) on Sg(t) in
Li. For proving (4.10) when i = 3, we use the second estimate in (4.8) with

u(t) :== HSL(t)HlHLZ’(Gfl)—w;, o(t) = [[ASs(t)|| L1~ 21,

w(t) = [ ASs(OT |1
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where the three functions satisfy the hypothesizes of (4.9). To check the estimate
on u, we use (4.7) and L?(G~') C L}. For the estimate on v, we use (4.5) and the
second estimate on A in (4.6). Finally, to check the estimate on w, we use the first
estimate on A in (4.6), the estimate (4.4) on Sp(t) in Li and II+ € B(L}).

In order to conclude the proof of Theorem 4.1, we thus need to establish (4.4), (4.5)
and (4.6). That is done in the three following steps.

Step 3. Proof of (4.6). The operator A is clearly bounded in any Lebesgue space
and more precisely

IA fllzemy < Crm 1 fllee, Y f €Ly, Vp=1,2,

K or m:= G~ and with

for m := (x)
— mo/
CR’M T M” <.>P5 ||L£(B2R)'

Step 4. Proof of (4.4). For any k,e > 0 and for any M, R > 0 large enough (which
may depend on k and ¢) the operator B is dissipative in L,lC in the sense that

@iy vred®y, [ 65 sime) @ < =0l
We immediately deduce (4.4) from (4.11) and the Gronwall lemma. In oder to
establish (4.11), we set 3(s) = |s| (and more rigorously we must take a smooth

version of that function) and m = (z)*, and we compute
Jensnm = [@redf+evnsm
= [V m) 4 difim e me - V)
= [1wsE s mes [ 101 {am+d - Viwm)
[171{am - Vm),

where we have used that g is a convex function. Defining

v = Am—x-Vm—Mxrm
(k? 2] ()™ — k|a|* (@) 72 — M xg) m

IN

we easily see that we can choose M, R > 0 large enough such that ¥ < (¢ — k)m
and then (4.11) follows.

Step 5. Proof of (4.5). Fix now K > K* and a > —Ap. There holds

Cor o
(4.12) 1S5(t)¢ell Lz < tj/’4 "ol Veelg,

which immediately implies (4.5) since we are restricted to the case of a dimension
d < 3. We set m = (x)X. A similar computation as in step 4 gives

Jenmme =~ [wgme s [172 {58 8o v 2
=~ [IwGmPE G re-x) [ 1P
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for M, R > 0 chosen large enough. Denoting by f(t) = Sg(t)¢ the solution to the
evolution PDE

of=Bf,  f0)=e,

we (formally) have

2dt/f2 /Bf)fm < - /\me|2+a/|f‘2

On the one hand, throwing away the last (negative) term at the RHS of the above
differential inequality and using the Nash trick, we get

(4.13) 1@ mllee < o IF @) milss, vt >0

On the other hand, throwing away the first (negative) term at the RHS of the above
differential inequality and using the Gronwall lemma exactly as in step 4, we get

(4.14) () m]|2 < Ce?C=%) || f(tg) m|| L2, Vit >to>0.
Using (4.13) for ¢ € (0,1] and (4.14) for t > 1, we deduce (4.12). O
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