
An introduction to evolution PDEs October 16, 2025

COMPLEMENTS TO LECTURE 4:

THE MCKEAN-VLASOV EQUATION

We establish the existence and uniqueness of solutions to the McKean-Vlasov equa-
tion.

1. The McKean-Vlasov equation

1.1. The well-posedness. In this section, we consider the nonlinear McKean-
Vlasov equation

(1.1) ∂tf = Lff := ∆f + div(aff), f(0) = f0,

with

(1.2) af := a ∗ f, a ∈ L∞(Rd)d,

and we aim to prove the following existence and uniqueness result. We define

H = L2
k :=

{
f ∈ L2(Rd); ∥f∥2L2

k
:=

∫
f2⟨x⟩2k dx < ∞

}
,

with ⟨x⟩2 := 1 + |x|2, and

V = H1
k :=

{
f ∈ L2

k(Rd); ∇f ∈ L2
k(Rd)

}
.

Theorem 1.1. For any 0 ≤ f0 ∈ H := L2
k, k > d/2, there exists a unique global

variational solution f to the McKean-Vlasov equation (1.1), and more precisely
f ∈ XT , for any T > 0, where XT is defined thanks to

(1.3) f ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′)

with the choices H := L2
k and V := H1

k .

Proof of Theorem 1.1. Step 1. A priori estimates. Integrating in the x vari-
able a nice solution f to the McKean-Vlasov equation (1.1) and using the Green-
Ostrogradski divergence formula, we have

d

dt

∫
fdx =

∫
div(. . . ) dx = 0,

so that the mass (the integral) is conserved. On the other hand, multiplying the
equation by f+ and integrating in the x variable, we get

1

2

d

dt

∫
f2
+ = −

∫
|∇f+|2 −

∫
∇f+ · aff+

≤ 1

4
∥af∥2L∞

∫
f2
+,

by using the Young inequality and assuming af ∈ L∞. Thanks to the Gronwall
Lemma, we deduce that f(t)+ = 0 if f0+ = 0, what is equivalent to the fact that the
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2 COMPLEMENTS: THE MCKEAN-VLASOV EQUATION

equation is positivity preserving: f(t) ≥ 0 if f0 ≥ 0. These two previous properties
together imply

(1.4) ∥f(t)∥L1 ≤ ∥f0∥L1 , ∀ t ≥ 0,

with in fact equality. We finally multiply the equation by f⟨x⟩2k and we integrate
in the x variable, in order to obtain

1

2

d

dt

∫
f2⟨x⟩2k = −

∫
|∇f |2⟨x⟩2k +

1

2

∫
f2∆⟨x⟩2k

−
∫

f(af · ∇f)⟨x⟩2k −
∫

f2af · ∇⟨x⟩2k,

by performing several integration by parts. Using the Young inequality in order to
get ride of the third term, we get

d

dt

∫
f2⟨x⟩2k ≤ −

∫
|∇f |2⟨x⟩2k +

∫
f2(∆⟨x⟩2k + |af |2⟨x⟩2k − 2af · ∇⟨x⟩2k).

From (1.2) and (1.4), we have

∥af∥L∞ ≤ ∥a∥L∞∥f0∥L1 ,

and therefore

∆⟨x⟩2k + |af |2⟨x⟩2k − 2af · ∇⟨x⟩2k ≤ C0⟨x⟩2k,
for a constant C0 := C0(k, ∥a∥L∞∥f0∥L1). Together with the Gronwall lemma, we
deduce

(1.5) ∥f(t)∥2L2
k
+

∫ t

0

∥∇f∥2L2
k
ds ≤ eC0t ∥f0∥2L2

k
∀ t ≥ 0.

That last estimate is strong enough for defining variational solutions as in the case
of a linear parabolic equation at least when L2

k ⊂ L1, which means k > d/2.

Step 2. We observe that for g ∈ L2
k and f ∈ V = H1

k , the formula

⟨Lgf, h⟩ := −
∫
Rd

(∇f + agf) · ∇(h⟨x⟩2k) dx, ∀h ∈ V,

defines a linear form on V . Repeating the same computations as for the proof of
(1.5), we have

⟨Lgf, f⟩ ≤ −∥∇f∥2L2
k
+ C0∥f∥2L2

k
, ∀ f ∈ H1

k ,

with C0 := C0(k, ∥a∥L∞∥g∥L1). We consider now

g ∈ C :=
{
h ∈ C([0, T ];L2

k); ∥h(t)∥L1 ≤ ∥f0∥L1

}
and the linear time depending problem

(1.6) ∂tf = Lgf := ∆f + div(agf), f(0) = f0.

It is worth emphasizing that ag ∈ L∞((0, T ) × Rd). We apply J.-L. Lions version
of the Lax-Milgram Theorem which implies that there exists a unique variational
solution f ∈ XT , and more precisely

(f(t), φ(t))H = (f0, φ(0))H +

∫ t

0

{
⟨Lg(s)f(s), φ(s)⟩+ ⟨φ′(s), f(s)⟩

}
ds,
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for any φ ∈ XT and any 0 ≤ t ≤ T . Choosing φ := χM ⟨x⟩−2k as a test function in
the above variational formulation, with χM (x) := χ(x/M), χ ∈ D(Rd), 1B(0,1) ≤
χ ≤ 1B(0,2), we deduce∫

Rd

f(t)χM =

∫
Rd

f0χM −
∫
U
(∇f + agf) · ∇χM .

Using that f(t), f0 ∈ L2
k ⊂ L1, 0 ≤ χM ↗ 1, f,∇f ∈ L2(0, T ;L2

k) ⊂ L1
tx and

∥∇χM∥L∞ → 0, we may pass to the limit M → ∞, and we (rigorously) obtain
the same mass conservation (1.4) for the solution to this linear equation. Because
f0 ≥ 0, we have f(t) ≥ 0 thanks to the weak maximum principle, and thus f ∈ C .

Step 3. From the previous step, we have built a mapping C → C , g 7→ f . For
g1, g2 ∈ C , we consider the associated solutions f1, f2 ∈ C ∩ XT and we define
f := f2 − f1, g := g2 − g1. We observe that

∂tf = ∆f + div(ag1f) + div(agf2), f(0) = 0.

Adapting the L2
k estimate established in Step 1, we have

1

2

d

dt

∫
f2⟨x⟩2k = −

∫
|∇f |2⟨x⟩2k +

1

2

∫
f2∆⟨x⟩2k −

∫
f(ag1 · ∇f)⟨x⟩2k

−
∫

f2ag1 · ∇⟨x⟩2k −
∫

f2ag · (∇f⟨x⟩2k + f∇⟨x⟩2k)

≤ 1

2

∫
f2∆⟨x⟩2k +

1

2

∫
f2|ag1 |2⟨x⟩2k −

∫
f2ag1 · ∇⟨x⟩2k

+
1

2

∫
f2
2 |ag|2⟨x⟩2k +

∫
(f2

2 |ag|2⟨x⟩2k + f2|∇⟨x⟩k|2),

where we have used three times the Young inequality. Using (1.5) and the fact that
g1 ∈ C , we deduce

1

2

d

dt

∫
f2⟨x⟩2k ≲ (1 + ∥a∥2L∞∥g1∥2L1)

∫
f2⟨x⟩2k + ∥a∥2L∞∥g∥2L1

∫
f2
2 ⟨x⟩2k

≲ (1 + ∥a∥2L∞∥f0∥2L1)

∫
f2⟨x⟩2k + ∥a∥2L∞∥g∥2L1eC0t∥f0∥2L2

k

=
C1

2

∫
f2⟨x⟩2k + ∥g∥2L1

C2

2
eC0t,

with Ci := Ci(k, ∥a∥L∞ , ∥f0∥L1). Thanks to the Gronwall lemma, we finally obtain

sup
[0,T ]

∥f∥2L2
k

≤
∫ T

0

∥g∥2L1C2e
C0s+C1(t−s) ds

≤ C2e
(C0+C1)TT sup

[0,T ]

∥g∥2L1 ,

and, because L2
k ⊂ L1,

sup
[0,T ]

∥f∥2L2
k
≤ 1

2
sup
[0,T ]

∥g∥2L2
k
,

for T > 0 small enough. The Banach-Picard contraction mapping theorem tells us
that there exists a unique f ∈ C ∩XT variational solution to the nonlinear McKean-
Vlasov equation. Iterating the above process we get a unique global solution. □
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1.2. Aubin-Lions Lemma and application. We present first a simple but typ-
ical version of Aubin-Lions Lemma.

Lemma 1.2. Consider a sequence (fn) of functions satisfying fn ∈ C([0, T ];L2Rd))
and

∂tfn −∆fn = Fn + div(Gn) in D′((0, T )× Rd),

with

(fn) is bounded in YT := L∞(0, T ;L2
k(Rd)) ∩ L2(0, T ;H1(Rd)), k > 0;

(Fn), (Gn) are bounded in L2((0, T )×BR), ∀R > 0.

Then, there exists f ∈ YT and a subsequence (fnℓ
) such that

fnℓ
→ f strongly in L2((0, T )× Rd)) and weakly in YT .

Proof of Lemma 1.2. Step 1. We introduce a sequence of mollifiers (ρε), that is
ρε(x) := ε−dρ(ε−1x) with 0 ≤ ρ ∈ D(R2), ∥ρ∥L1 = 1. We observe that

∂

∂t

∫
Rd

fn(t, y) ρε(x− y) dy =

∫
Rd

(fn ∆ρε + Fnρε −Gn · ∇ρε) dy,

where the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any fixed
ε > 0. We also clearly have

∇x

∫
Rd

fn(t, y) ρε(x− y) dy = −
∫
Rd

fn∇yρε(x− y) dy,

where again the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any
fixed ε > 0. In other words, fn ∗ ρε is bounded in H1((0, T ) × BR). We finally
observe that

sup
[0,T ]

∫
(fnℓ

∗ ρε)2⟨x⟩kdx

≤ sup
[0,T ]

∫ ∫
(fnℓ

(x))2ρε(y)⟨x− y⟩kdxdy

≤ sup
n

sup
[0,T ]

∫
(fn(x))

2⟨x⟩kdx
∫

ρ(y)⟨y⟩kdy < ∞.

Thanks to the Rellich-Kondrachov Theorem, we get that (up to the extraction of
a subsequence) (fn ∗ ρε)n is strongly convergent in L2((0, T )×Rd). Thanks to the
boundedness assumption on (fn), we may extract a second subsequence (fnℓ

) such
that fnℓ

⇀ f weakly in YT for some f ∈ YT . We then have fnℓ
∗ρε → f ∗ρε weakly

in YT . Coming back to the previous strong compactness result, we thus also have

fnℓ
∗ ρε → f ∗ ρε strongly in L2((0, T )× Rd) as k → ∞.

Step 2. Now, we observe that∫
(0,T )×Rd

|g − g ∗ ρε|2 dxdt =

∫
(0,T )×R2

∣∣∣∫
Rd

(g(t, x)− g(t, x− y))ρε(y) dy
∣∣∣ dxdt

=

∫
(0,T )×Rd

∣∣∣∫
Rd

∫ 1

0

∇xg(t, zs) · yρε(y) dsdy
∣∣∣2 dxdt,
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with zs := x+ sy thanks to a Taylor expansion. As a consequence, we have∫
(0,T )×Rd

|g − g ∗ ρε|2 dxdt ≤
∫
(0,T )×Rd

∫
Rd

∫ 1

0

|∇xg(t, zs)|2|y|2ρε(y) dsdydxdt

≤ ε2
∫
(0,T )×Rd

|∇xg(t, z)|2dtdz
∫
Rd

|ζ|2ρ(ζ) dζ,

where we have used the Jensen inequality and two changes of variables. We conclude
that fnℓ

→ f in L2((0, T )× Rd) by writing

fnℓ
− f = (fnℓ

− fnℓ
∗ ρε) + (fnℓ

∗ ρ− f ∗ ρ) + (f ∗ ρε − f)

and using the previous convergence and estimates. □

We give now a typical example of application of the Aubin-Lions lemma that we
illustrate on the McKean-Vlasov equation. It is worth emphasizing that more than
the result in itself, it is the strategy which is interesting because, for example, a
small variation around the same ideas allows one to establish the existence of Leray
solution to the Navier-Stokes equation in any dimension d ≥ 2.

Let us then consider an ∈ L∞(Rd) and f0,n ∈ L2
k(Rd), k > d/2, and the associated

unique solution fn ∈ XT to the McKean-Vlasov equation

(1.7) ∂tfn = ∆fn + div((an ∗ fn)fn), fn(0) = f0,n,

as built in Theorem 1.1.

Proposition 1.3. Assume that f0,n ⇀ f0 weakly in L2
k and an ⇀ an weakly in

L∞. Then fn → f in L2((0, T ) × Rd) (for instance), where f ∈ XT is the unique
solution to the McKean-Vlasov equation (1.7) associated to the interaction kernel
a and to the initial datum f0.

Proof of Proposition 1.3. Because of Theorem 1.1, we know that

(fn) is bounded in YT := L∞(0, T ;L2
k(Rd)) ∩ L2(0, T ;H1(Rd)),

((an ∗ fn)fn) is bounded in L2((0, T )× Rd).

We may thus apply the Aubin-Lions Lemma 1.2 and we deduce that there exists
f ∈ YT and a subsequence (fnℓ

) such that

fnℓ
→ f strongly in L2((0, T )× Rd)) and weakly in YT .

For φ ∈ C1
c ([0, T )× Rd), the weak formulation of (1.7) writes∫ T

0

∫
Rd

fnℓ
(∂tφ+∆φ)dxdt+

∫
Rd

f0,nℓ
φ(0, ·)dxdt

=

∫ T

0

∫
Rd

∫
Rd

fnℓ
(t, x)fnℓ

(t, y)anℓ
(x− y) · ∇φ(y)dxdydt.

We observe that

fnℓ
(t, x)fnℓ

(t, y) → f(t, x)f(t, y) strongly in L1((0, T )× Rd × Rd)

and
anℓ

(x− y) · ∇φ(y) ⇀ a(x− y) · ∇φ(y) weakly in L∞(Rd × Rd).

Using the weak convergence in the LHS term and a standard weak-strong conver-
gence trick in order to deal with the RHS term, we immediately deduce that we
may pass to the limit ℓ → ∞ in the above formulation and thus that f is a weak
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solution to the McKean-Vlasov equation (1.7) associated to the interaction kernel
a and to the initial datum f0. Because weak solutions are variational solutions and
Theorem 1.1, f is in fact the unique variational solution and by uniqueness of the
limit it is the whole sequence (fn) which converges toward f . □

We recall and accept the following classical result.

Theorem 1.4 (Brouwer-Schauder-Tychonoff). Consider a locally convex topolog-
ical vector space X, a convex set Z ⊂ X which is metrizable and closed for the
induced topology and a function φ : Z → Z. We assume further that one of the
two following conditions holds

(1) Z is compact and φ is continuous;
(2) φ is compact and continuous.

In both cases, φ has at least one fixed point.

We now recover the existence part of Theorem 1.1 as a consequence of the two last
results.

Corollary 1.5. For any f0 ∈ L2
k, k > d/2, there exists at least one solution to the

McKean-Vlasov equation (1.1)

First proof of Corollary 1.5. We will use Theorem 1.4 with X := XT endowed with
the strong topology of L2(U), with Z := C which is convex and closed for the
strong topology of L2(U) and with φ : C → C the mapping φ(g) := f , where f
is the unique variational solution of equation (1.6). Consider a sequence (gn) of
C and assume that gn ⇀ g weakly in L2(U). We proceed exactly as during the
proof of Proposition 1.3. From the Aubin-Lions Lemma 1.2, we know that there
exists f ∈ L2(U) and a subsequence (fnℓ

) such that fnℓ
→ f strongly in L2(U). We

may pass to the limit in the weak formulation of equation (1.6) written for fnℓ
and

we deduce that f is a weak solution (and thus a variational solution) to equation
(1.6) associated to g. By uniqueness of the solution, we have f = φ(g) and by
uniqueness of the limit, we have φ(gn) → φ(g) strongly in L2(U). We immediately
deduce that φ is both compact and continuous. We may apply the second version
of Theorem 1.4 and conclude. □

Second proof of Corollary 1.5. We will use Theorem 1.4 with X := XT endowed
with the weak topology of L2(U), with same definitions of Z and φ. The set Z is
clearly weakly compact for the weak topology of L2(U) and the function φ has been
proved to be weakly continuous. We may apply the first version of Theorem 1.4
and conclude. □
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