An introduction to evolution PDEs October 16, 2025

COMPLEMENTS TO LECTURE 4:
THE MCKEAN-VLASOV EQUATION

We establish the existence and uniqueness of solutions to the McKean-Vlasov equa-
tion.

1. THE MCKEAN-VLASOV EQUATION

1.1. The well-posedness. In this section, we consider the nonlinear McKean-
Vlasov equation

(1.1) Of=Lsf:=Af+div(asf), £(0)= fo,
with
(1.2) af:=ax*f, acL®RY,

and we aim to prove the following existence and uniqueness result. We define
H =L} = {f € PR I o= [ £l do < o),
with ()2 := 1+ |z|?, and
V=H.:={feLi(RY); VfeL}(RY}.
Theorem 1.1. For any 0 < fy € H := L}, k > d/2, there exists a unique global

variational solution f to the McKean-Vlasov equation (1.1), and more precisely
f € Xr, for any T > 0, where X1 is defined thanks to

(1.3) fe Xy :=C(0,T); H)n L*0,T; V)N H'(0,T;V")
with the choices H := L? and V := H}.
Proof of Theorem 1.1. Step 1. A priori estimates. Integrating in the z vari-

able a nice solution f to the McKean-Vlasov equation (1.1) and using the Green-
Ostrogradski divergence formula, we have

%/fdm:/div(...)dac:Q

so that the mass (the integral) is conserved. On the other hand, multiplying the
equation by fi and integrating in the x variable, we get

s[5 = = [1vnr = [Viar
< gloli [ 12,

by using the Young inequality and assuming ay € L°. Thanks to the Gronwall
Lemma, we deduce that f(¢); = 0if for = 0, what is equivalent to the fact that the
1



2 COMPLEMENTS: THE MCKEAN-VLASOV EQUATION
equation is positivity preserving: f(t) > 0 if fo > 0. These two previous properties
together imply

(1.4) IfONer <l foller, Yt>0,

with in fact equality. We finally multiply the equation by f(z)2* and we integrate
in the z variable, in order to obtain

o | PP = = [1vspe? /f2
/faf Vi) /fzafv

by performing several integration by parts. Using the Young inequality in order to
get ride of the third term, we get

/f2 <= [IV5P@H 4 [ PO@H + o)™ — 20, Vi),

From (1.2) and (1.4), we have

lagllze < llall<llfollz1,

and therefore
Afx)** + |ag|* (2)*F = 2ap - V(2)** < Co(a)**

for a constant Cy := Cy(k, ||a||r=]/follz1). Together with the Gronwall lemma, we
deduce

t
(1) £ + [ 19512, ds < e LAl vezo.

That last estimate is strong enough for defining variational solutions as in the case
of a linear parabolic equation at least when Lf C L', which means k > d/2.

Step 2. We observe that for g € L? and f € V = H, the formula

(Lyf, by = —/Rd(Vf +ayf) - V(h(z)?**)dx, VheV,

defines a linear form on V. Repeating the same computations as for the proof of
(1.5), we have

(Lof, £) < IV flZ2 + CollflZ, V€ Hy,
with Co := Co(k, laf|L=|lg]|1). We consider now
g€ @ :={heC([0,T}; L); [IM(®)llz < [l follzr}
and the linear time depending problem
(1.6) Of =Lyf :=Af+div(agf), [f(0)= fo.

It is worth emphasizing that a, € L°°((0,7) x R?). We apply J.-L. Lions version
of the Lax-Milgram Theorem which implies that there exists a unique variational
solution f € Xp, and more precisely

), o0)ar = (for 0(0)) a1 + /{ o (), 0(5)) + (& (5), ()} ds,
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for any ¢ € X7 and any 0 < ¢t < T. Choosing ¢ := xas (z) ¥ as a test function in

the above variational formulation, with xu(z) := x(z/M), x € D(R?), 15(0,1) <
X < 1p(0,2), we deduce

Lo = [ o= [ 95+ 0,09

Using that f(t),fo € L2 C LY, 0 < xum 2 1, f,Vf € L*(0,T;L3) C L, and
IVxarllne — 0, we may pass to the limit M — oo, and we (rigorously) obtain
the same mass conservation (1.4) for the solution to this linear equation. Because
fo >0, we have f(¢) > 0 thanks to the weak maximum principle, and thus f € €.

Step 3. From the previous step, we have built a mapping 4 — €, g — f. For
g1,92 € %, we consider the associated solutions fi, fo € ¥ N X1 and we define
f:=1fo—f1, 9:= go — g1. We observe that

Onf = Af + div(ag, f) + div(agfa),  f(0) =0.
Adapting the L estimate established in Step 1, we have

s [ P = = [ g [ Faw [ 1, vn@
—/angl V()2 _/fzag_(vf<x>2k+fv<$>2k)
5 [ Pa@ 45 [ PlanPe® [ fa, v

by [ BlaP e+ [(Bla ) + 21964,

where we have used three times the Young inequality. Using (1.5) and the fact that
g1 € €, we deduce

st | 1

IN

N

(1 Nl loal) [ #2000 + lall~ gl [ 73
(1 lallAol3e) [ £ + lall gl e ol

Cl 2
_ / Py + gliga 2,

with C; := C;(k, ||a]|Le, || fol|1). Thanks to the Gronwall lemma, we finally obtain

N

T
sup |1 £z, < / lgl17: e+ 1= ds
(0,77 0

IN

Cae(CotCT [Sup] HQHQLla
0,T
and, because Li c L',

1
sup 11125 < 5 sup [l
(0,7] " [0.7] "

for T > 0 small enough. The Banach-Picard contraction mapping theorem tells us
that there exists a unique f € ¥ N Xy variational solution to the nonlinear McKean-

Vlasov equation. Iterating the above process we get a unique global solution. [
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1.2. Aubin-Lions Lemma and application. We present first a simple but typ-
ical version of Aubin-Lions Lemma.

Lemma 1.2. Consider a sequence (f,) of functions satisfying f, € C([0,T]; L*R%))
and

Oifn — Afn = F, +div(G,) in D'((0,T) x R,

with

(fn) is bounded in Yp := L>(0,T; LZ(R%)) N L2(0,T; H'(RY)), k > 0;

(Fy,), (Gy) are bounded in L*((0,T) x Bgr), VR > 0.
Then, there exists f € Yr and a subsequence (fy,,) such that

fn, — [ strongly in L*((0,T) x RY)) and weakly in Yr.

Proof of Lemma 1.2. Step 1. We introduce a sequence of mollifiers (p), that is
pe(w) =" 9p(e7tz) with 0 < p € D(R?), ||p||z+ = 1. We observe that

0

a7 / [t y) pe(z —y) dy = / (fn Ape + Fppe — G - Vpe) dy,

875 Rd Rd

where the RHS term is bounded in L?((0,7) x Bg) uniformly in n for any fixed
e > 0. We also clearly have

Ve /Rd fn(t,y) pe(z —y)dy = —/Rd InVype(x —y) dy,

where again the RHS term is bounded in L?((0,T) x Bg) uniformly in n for any
fixed € > 0. In other words, f, * p. is bounded in H'((0,T) x Bg). We finally
observe that

sup [(fu +po o) do

(0,77

< sup / / (e (2))2p2 (9) (& — )y

(0,71

< sup sup / (fol2))? )" da / p(y) () dy < 0.

n [0,7]

Thanks to the Rellich-Kondrachov Theorem, we get that (up to the extraction of
a subsequence) (f, * pe)n is strongly convergent in L?((0,T) x R?). Thanks to the
boundedness assumption on (fy,), we may extract a second subsequence (fy,,) such
that f,, — f weakly in Y7 for some f € Y. We then have f,, ¥ p. — f *p. weakly
in Y. Coming back to the previous strong compactness result, we thus also have

fny * pe — [ * p= strongly in L2((0,T) x R?) as k — oo.

~/(0,T) xRR?
/(O,T) xRd

Step 2. Now, we observe that

/( : d|g—g*p€\2dxdt
0,7) xR

| (att.2) = gtt.2 = ). 0) ]

1 2
/ / Vzg(t,zs)-yps(y)dsdy’ dudt,
Rd Jo
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with z, := x + sy thanks to a Taylor expansion. As a consequence, we have

1
g — g * pe|* dudt IV2g(t, z5) | [y pe (y) dsdydadt
(0,T) xRd (0,T)xR4 JR4 Jo
,4) X LT x

& / Vag(t, 2) 2dedz / C12p(C) de.
(0,T) xR Rd

where we have used the Jensen inequality and two changes of variables. We conclude
that f,, — f in L2((0,T) x R?) by writing

fnz_f:(fmz_fne*p8)+(fnz*p_f*p)+(f*p5_f)

and using the previous convergence and estimates. O

IN

IN

We give now a typical example of application of the Aubin-Lions lemma that we
illustrate on the McKean-Vlasov equation. It is worth emphasizing that more than
the result in itself, it is the strategy which is interesting because, for example, a
small variation around the same ideas allows one to establish the existence of Leray
solution to the Navier-Stokes equation in any dimension d > 2.

Let us then consider a,, € L>°(R%) and fo, € L2(R?), k > d/2, and the associated
unique solution f,, € X to the McKean-Vlasov equation

(1'7) Ot fn :AfneriV((an*fn)fn)a fn(o) = fon,

as built in Theorem 1.1.

Proposition 1.3. Assume that fo, — fo weakly in Li and a, — a, weakly in
L>=. Then f, — f in L2((0,T) x R?) (for instance), where f € X is the unique
solution to the McKean-Viasov equation (1.7) associated to the interaction kernel
a and to the initial datum fo.

Proof of Proposition 1.3. Because of Theorem 1.1, we know that
(fn) is bounded in Y7 := L>(0,T; L (R%)) N L2(0, T; H'(RY)),
((an * fn)fn) is bounded in L2((0,T) x R%).

We may thus apply the Aubin-Lions Lemma 1.2 and we deduce that there exists
f € Yr and a subsequence (f,,) such that

fn, — f strongly in L2((0,T) x R?)) and weakly in V7.
For ¢ € CL([0,T) x R%), the weak formulation of (1.7) writes

T
/ / Jrne (Orp + A(p)dxdtJr/ fone(0,-)dzdt
o JRrd Rd

T
[ [ ettt v)an, o = ) - Veotwdodyar
0 d d
‘We observe that

o (t2) o, (8y) = f(t,2) f(t,y) strongly in L'((0,T) x R? x RY)
and

an, (x —y) - Vo(y) = a(z —y) - Vep(y) weakly in L=(R? x RY).
Using the weak convergence in the LHS term and a standard weak-strong conver-
gence trick in order to deal with the RHS term, we immediately deduce that we
may pass to the limit £ — oo in the above formulation and thus that f is a weak
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solution to the McKean-Vlasov equation (1.7) associated to the interaction kernel
a and to the initial datum fy. Because weak solutions are variational solutions and
Theorem 1.1, f is in fact the unique variational solution and by uniqueness of the
limit it is the whole sequence (f,) which converges toward f. O

We recall and accept the following classical result.

Theorem 1.4 (Brouwer-Schauder-Tychonoff). Consider a locally convex topolog-
ical vector space X, a conver set Z C X which is metrizable and closed for the
induced topology and a function ¢ : Z — Z. We assume further that one of the
two following conditions holds

(1) Z is compact and ¢ is continuous;

(2) ¢ is compact and continuous.

In both cases, ¢ has at least one fized point.

We now recover the existence part of Theorem 1.1 as a consequence of the two last
results.

Corollary 1.5. For any fy € Li, k > d/2, there exists at least one solution to the
McKean-Viasov equation (1.1)

First proof of Corollary 1.5. We will use Theorem 1.4 with X := Xp endowed with
the strong topology of L?(U), with Z := ¥ which is convex and closed for the
strong topology of L?(U) and with ¢ : € — % the mapping ¢(g) := f, where f
is the unique variational solution of equation (1.6). Consider a sequence (g,) of
% and assume that g, — g weakly in L?(U). We proceed exactly as during the
proof of Proposition 1.3. From the Aubin-Lions Lemma 1.2, we know that there
exists f € L?(U) and a subsequence (f,,,) such that f,,, — f strongly in L?(U). We
may pass to the limit in the weak formulation of equation (1.6) written for f,,, and
we deduce that f is a weak solution (and thus a variational solution) to equation
(1.6) associated to g. By uniqueness of the solution, we have f = ¢(g) and by
uniqueness of the limit, we have (g,) — ¢(g) strongly in L*(U/). We immediately
deduce that ¢ is both compact and continuous. We may apply the second version
of Theorem 1.4 and conclude. O

Second proof of Corollary 1.5. We will use Theorem 1.4 with X := X endowed
with the weak topology of L?(U), with same definitions of Z and ¢. The set Z is
clearly weakly compact for the weak topology of L?(U) and the function ¢ has been
proved to be weakly continuous. We may apply the first version of Theorem 1.4
and conclude. (]
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