COMPLEMENTS TO LECTURE 4: THE MCKEAN-VLASOV EQUATION

We establish the existence and uniqueness of solutions to the McKean-Vlasov equation.

1. The McKean-Vlasov equation

1.1. **The well-posedness.** In this section, we consider the nonlinear McKean-Vlasov equation

(1.1)
$$\partial_t f = \mathcal{L}_f f := \Delta f + \operatorname{div}(a_f f), \quad f(0) = f_0,$$

with

$$(1.2) a_f := a * f, \quad a \in L^{\infty}(\mathbb{R}^d)^d,$$

and we aim to prove the following existence and uniqueness result. We define

$$H = L_k^2 := \big\{ f \in L^2(\mathbb{R}^d); \ \|f\|_{L_k^2}^2 := \int f^2 \langle x \rangle^{2k} \, dx < \infty \big\},$$

with $\langle x \rangle^2 := 1 + |x|^2$, and

$$V = H_k^1 := \{ f \in L_k^2(\mathbb{R}^d); \ \nabla f \in L_k^2(\mathbb{R}^d) \}.$$

Theorem 1.1. For any $0 \le f_0 \in H := L_k^2$, k > d/2, there exists a unique global variational solution f to the McKean-Vlasov equation (1.1), and more precisely $f \in X_T$, for any T > 0, where X_T is defined thanks to

(1.3)
$$f \in X_T := C([0,T];H) \cap L^2(0,T;V) \cap H^1(0,T;V')$$

with the choices $H := L_k^2$ and $V := H_k^1$.

Proof of Theorem 1.1. Step 1. A priori estimates. Integrating in the x variable a nice solution f to the McKean-Vlasov equation (1.1) and using the Green-Ostrogradski divergence formula, we have

$$\frac{d}{dt} \int f dx = \int \operatorname{div}(\dots) \, dx = 0,$$

so that the mass (the integral) is conserved. On the other hand, multiplying the equation by f_+ and integrating in the x variable, we get

$$\frac{1}{2} \frac{d}{dt} \int f_{+}^{2} = -\int |\nabla f_{+}|^{2} - \int \nabla f_{+} \cdot a_{f} f_{+} \\
\leq \frac{1}{4} ||a_{f}||_{L^{\infty}}^{2} \int f_{+}^{2},$$

by using the Young inequality and assuming $a_f \in L^{\infty}$. Thanks to the Gronwall Lemma, we deduce that $f(t)_+ = 0$ if $f_{0+} = 0$, what is equivalent to the fact that the

equation is positivity preserving: $f(t) \ge 0$ if $f_0 \ge 0$. These two previous properties together imply

$$||f(t)||_{L^1} \le ||f_0||_{L^1}, \quad \forall t \ge 0,$$

with in fact equality. We finally multiply the equation by $f\langle x\rangle^{2k}$ and we integrate in the x variable, in order to obtain

$$\begin{split} \frac{1}{2}\frac{d}{dt}\int f^2\langle x\rangle^{2k} &= -\int |\nabla f|^2\langle x\rangle^{2k} + \frac{1}{2}\int f^2\Delta\langle x\rangle^{2k} \\ &-\int f(a_f\cdot\nabla f)\langle x\rangle^{2k} - \int f^2a_f\cdot\nabla\langle x\rangle^{2k}, \end{split}$$

by performing several integration by parts. Using the Young inequality in order to get ride of the third term, we get

$$\frac{d}{dt} \int f^2 \langle x \rangle^{2k} \le -\int |\nabla f|^2 \langle x \rangle^{2k} + \int f^2 (\Delta \langle x \rangle^{2k} + |a_f|^2 \langle x \rangle^{2k} - 2a_f \cdot \nabla \langle x \rangle^{2k}).$$

From (1.2) and (1.4), we have

$$||a_f||_{L^{\infty}} \le ||a||_{L^{\infty}} ||f_0||_{L^1},$$

and therefore

$$\Delta \langle x \rangle^{2k} + |a_f|^2 \langle x \rangle^{2k} - 2a_f \cdot \nabla \langle x \rangle^{2k} \le C_0 \langle x \rangle^{2k},$$

for a constant $C_0 := C_0(k, ||a||_{L^{\infty}} ||f_0||_{L^1})$. Together with the Gronwall lemma, we deduce

(1.5)
$$||f(t)||_{L_k^2}^2 + \int_0^t ||\nabla f||_{L_k^2}^2 ds \le e^{C_0 t} ||f_0||_{L_k^2}^2 \quad \forall t \ge 0.$$

That last estimate is strong enough for defining variational solutions as in the case of a linear parabolic equation at least when $L_k^2 \subset L^1$, which means k > d/2.

Step 2. We observe that for $g \in L^2_k$ and $f \in V = H^1_k$, the formula

$$\langle \mathcal{L}_g f, h \rangle := - \int_{\mathbb{D}^d} (\nabla f + a_g f) \cdot \nabla (h \langle x \rangle^{2k}) \, dx, \quad \forall h \in V,$$

defines a linear form on V. Repeating the same computations as for the proof of (1.5), we have

$$\langle \mathcal{L}_g f, f \rangle \le -\|\nabla f\|_{L_k^2}^2 + C_0 \|f\|_{L_k^2}^2, \quad \forall f \in H_k^1,$$

with $C_0 := C_0(k, ||a||_{L^{\infty}} ||g||_{L^1})$. We consider now

$$g \in \mathcal{C} := \left\{ h \in C([0,T]; L_k^2); \|h(t)\|_{L^1} \le \|f_0\|_{L^1} \right\}$$

and the linear time depending problem

(1.6)
$$\partial_t f = \mathcal{L}_a f := \Delta f + \operatorname{div}(a_a f), \quad f(0) = f_0.$$

It is worth emphasizing that $a_g \in L^{\infty}((0,T) \times \mathbb{R}^d)$. We apply J.-L. Lions version of the Lax-Milgram Theorem which implies that there exists a unique variational solution $f \in X_T$, and more precisely

$$(f(t), \varphi(t))_H = (f_0, \varphi(0))_H + \int_0^t \left\{ \langle \mathcal{L}_{g(s)} f(s), \varphi(s) \rangle + \langle \varphi'(s), f(s) \rangle \right\} ds,$$

for any $\varphi \in X_T$ and any $0 \le t \le T$. Choosing $\varphi := \chi_M \langle x \rangle^{-2k}$ as a test function in the above variational formulation, with $\chi_M(x) := \chi(x/M), \ \chi \in \mathcal{D}(\mathbb{R}^d), \ \mathbf{1}_{B(0,1)} \le \chi \le \mathbf{1}_{B(0,2)}$, we deduce

$$\int_{\mathbb{R}^d} f(t)\chi_M = \int_{\mathbb{R}^d} f_0 \chi_M - \int_{\mathcal{U}} (\nabla f + a_g f) \cdot \nabla \chi_M.$$

Using that $f(t), f_0 \in L^2_k \subset L^1$, $0 \leq \chi_M \nearrow 1$, $f, \nabla f \in L^2(0,T;L^2_k) \subset L^1_{tx}$ and $\|\nabla \chi_M\|_{L^\infty} \to 0$, we may pass to the limit $M \to \infty$, and we (rigorously) obtain the same mass conservation (1.4) for the solution to this linear equation. Because $f_0 \geq 0$, we have $f(t) \geq 0$ thanks to the weak maximum principle, and thus $f \in \mathscr{C}$. Step 3. From the previous step, we have built a mapping $\mathscr{C} \to \mathscr{C}$, $g \mapsto f$. For $g_1, g_2 \in \mathscr{C}$, we consider the associated solutions $f_1, f_2 \in \mathscr{C} \cap X_T$ and we define $f := f_2 - f_1, g := g_2 - g_1$. We observe that

$$\partial_t f = \Delta f + \operatorname{div}(a_{g_1} f) + \operatorname{div}(a_g f_2), \quad f(0) = 0.$$

Adapting the L_k^2 estimate established in Step 1, we have

$$\frac{1}{2} \frac{d}{dt} \int f^2 \langle x \rangle^{2k} = -\int |\nabla f|^2 \langle x \rangle^{2k} + \frac{1}{2} \int f^2 \Delta \langle x \rangle^{2k} - \int f(a_{g_1} \cdot \nabla f) \langle x \rangle^{2k}
- \int f^2 a_{g_1} \cdot \nabla \langle x \rangle^{2k} - \int f_2 a_{g_1} \cdot (\nabla f \langle x \rangle^{2k} + f \nabla \langle x \rangle^{2k})
\leq \frac{1}{2} \int f^2 \Delta \langle x \rangle^{2k} + \frac{1}{2} \int f^2 |a_{g_1}|^2 \langle x \rangle^{2k} - \int f^2 a_{g_1} \cdot \nabla \langle x \rangle^{2k}
+ \frac{1}{2} \int f_2^2 |a_{g_1}|^2 \langle x \rangle^{2k} + \int (f_2^2 |a_{g_1}|^2 \langle x \rangle^{2k} + f^2 |\nabla \langle x \rangle^{k}|^2),$$

where we have used three times the Young inequality. Using (1.5) and the fact that $g_1 \in \mathcal{C}$, we deduce

$$\frac{1}{2} \frac{d}{dt} \int f^2 \langle x \rangle^{2k} \lesssim (1 + ||a||_{L^{\infty}}^2 ||g_1||_{L^1}^2) \int f^2 \langle x \rangle^{2k} + ||a||_{L^{\infty}}^2 ||g||_{L^1}^2 \int f_2^2 \langle x \rangle^{2k}
\lesssim (1 + ||a||_{L^{\infty}}^2 ||f_0||_{L^1}^2) \int f^2 \langle x \rangle^{2k} + ||a||_{L^{\infty}}^2 ||g||_{L^1}^2 e^{C_0 t} ||f_0||_{L_k^2}^2
= \frac{C_1}{2} \int f^2 \langle x \rangle^{2k} + ||g||_{L^1}^2 \frac{C_2}{2} e^{C_0 t},$$

with $C_i := C_i(k, ||a||_{L^{\infty}}, ||f_0||_{L^1})$. Thanks to the Gronwall lemma, we finally obtain

$$\sup_{[0,T]} \|f\|_{L_k^2}^2 \leq \int_0^T \|g\|_{L^1}^2 C_2 e^{C_0 s + C_1 (t-s)} ds$$

$$\leq C_2 e^{(C_0 + C_1)T} T \sup_{[0,T]} \|g\|_{L^1}^2,$$

and, because $L_k^2 \subset L^1$,

$$\sup_{[0,T]} \|f\|_{L^2_k}^2 \leq \frac{1}{2} \sup_{[0,T]} \|g\|_{L^2_k}^2,$$

for T>0 small enough. The Banach-Picard contraction mapping theorem tells us that there exists a unique $f \in \mathcal{C} \cap X_T$ variational solution to the nonlinear McKean-Vlasov equation. Iterating the above process we get a unique global solution. \square

1.2. **Aubin-Lions Lemma and application.** We present first a simple but typical version of Aubin-Lions Lemma.

Lemma 1.2. Consider a sequence (f_n) of functions satisfying $f_n \in C([0,T]; L^2\mathbb{R}^d))$ and

$$\partial_t f_n - \Delta f_n = F_n + \operatorname{div}(G_n)$$
 in $\mathcal{D}'((0,T) \times \mathbb{R}^d)$,

with

$$(f_n)$$
 is bounded in $Y_T := L^{\infty}(0, T; L_k^2(\mathbb{R}^d)) \cap L^2(0, T; H^1(\mathbb{R}^d)), \ k > 0;$
 $(F_n), \ (G_n)$ are bounded in $L^2((0, T) \times B_R), \ \forall R > 0.$

Then, there exists $f \in Y_T$ and a subsequence (f_{n_ℓ}) such that

$$f_{n_{\ell}} \to f$$
 strongly in $L^2((0,T) \times \mathbb{R}^d)$ and weakly in Y_T .

Proof of Lemma 1.2. Step 1. We introduce a sequence of mollifiers (ρ_{ε}) , that is $\rho_{\varepsilon}(x) := \varepsilon^{-d} \rho(\varepsilon^{-1}x)$ with $0 \le \rho \in \mathcal{D}(\mathbb{R}^2)$, $\|\rho\|_{L^1} = 1$. We observe that

$$\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f_n(t, y) \, \rho_{\varepsilon}(x - y) \, dy = \int_{\mathbb{R}^d} (f_n \, \Delta \rho_{\varepsilon} + F_n \rho_{\varepsilon} - G_n \cdot \nabla \rho_{\varepsilon}) \, dy,$$

where the RHS term is bounded in $L^2((0,T) \times B_R)$ uniformly in n for any fixed $\varepsilon > 0$. We also clearly have

$$\nabla_x \int_{\mathbb{R}^d} f_n(t, y) \, \rho_{\varepsilon}(x - y) \, dy = -\int_{\mathbb{R}^d} f_n \nabla_y \rho_{\varepsilon}(x - y) \, dy,$$

where again the RHS term is bounded in $L^2((0,T) \times B_R)$ uniformly in n for any fixed $\varepsilon > 0$. In other words, $f_n * \rho_{\varepsilon}$ is bounded in $H^1((0,T) \times B_R)$. We finally observe that

$$\sup_{[0,T]} \int (f_{n_{\ell}} * \rho_{\varepsilon})^{2} \langle x \rangle^{k} dx$$

$$\leq \sup_{[0,T]} \iint (f_{n_{\ell}}(x))^{2} \rho_{\varepsilon}(y) \langle x - y \rangle^{k} dx dy$$

$$\leq \sup_{n} \sup_{[0,T]} \int (f_{n}(x))^{2} \langle x \rangle^{k} dx \int \rho(y) \langle y \rangle^{k} dy < \infty.$$

Thanks to the Rellich-Kondrachov Theorem, we get that (up to the extraction of a subsequence) $(f_n * \rho_{\varepsilon})_n$ is strongly convergent in $L^2((0,T) \times \mathbb{R}^d)$. Thanks to the boundedness assumption on (f_n) , we may extract a second subsequence $(f_{n_{\ell}})$ such that $f_{n_{\ell}} \to f$ weakly in Y_T for some $f \in Y_T$. We then have $f_{n_{\ell}} * \rho_{\varepsilon} \to f * \rho_{\varepsilon}$ weakly in Y_T . Coming back to the previous strong compactness result, we thus also have

$$f_{n_{\ell}} * \rho_{\varepsilon} \to f * \rho_{\varepsilon}$$
 strongly in $L^{2}((0,T) \times \mathbb{R}^{d})$ as $k \to \infty$.

Step 2. Now, we observe that

$$\int_{(0,T)\times\mathbb{R}^d} |g - g * \rho_{\varepsilon}|^2 dx dt = \int_{(0,T)\times\mathbb{R}^d} \left| \int_{\mathbb{R}^d} (g(t,x) - g(t,x-y)) \rho_{\varepsilon}(y) dy \right| dx dt$$
$$= \int_{(0,T)\times\mathbb{R}^d} \left| \int_{\mathbb{R}^d} \int_0^1 \nabla_x g(t,z_s) \cdot y \rho_{\varepsilon}(y) ds dy \right|^2 dx dt,$$

with $z_s := x + sy$ thanks to a Taylor expansion. As a consequence, we have

$$\int_{(0,T)\times\mathbb{R}^d} |g - g * \rho_{\varepsilon}|^2 dx dt \leq \int_{(0,T)\times\mathbb{R}^d} \int_{\mathbb{R}^d} \int_0^1 |\nabla_x g(t,z_s)|^2 |y|^2 \rho_{\varepsilon}(y) ds dy dx dt
\leq \varepsilon^2 \int_{(0,T)\times\mathbb{R}^d} |\nabla_x g(t,z)|^2 dt dz \int_{\mathbb{R}^d} |\zeta|^2 \rho(\zeta) d\zeta,$$

where we have used the Jensen inequality and two changes of variables. We conclude that $f_{n_{\ell}} \to f$ in $L^2((0,T) \times \mathbb{R}^d)$ by writing

$$f_{n_{\ell}} - f = (f_{n_{\ell}} - f_{n_{\ell}} * \rho_{\varepsilon}) + (f_{n_{\ell}} * \rho - f * \rho) + (f * \rho_{\varepsilon} - f)$$

and using the previous convergence and estimates.

We give now a typical example of application of the Aubin-Lions lemma that we illustrate on the McKean-Vlasov equation. It is worth emphasizing that more than the result in itself, it is the strategy which is interesting because, for example, a small variation around the same ideas allows one to establish the existence of Leray solution to the Navier-Stokes equation in any dimension $d \geq 2$.

Let us then consider $a_n \in L^{\infty}(\mathbb{R}^d)$ and $f_{0,n} \in L^2_k(\mathbb{R}^d)$, k > d/2, and the associated unique solution $f_n \in X_T$ to the McKean-Vlasov equation

(1.7)
$$\partial_t f_n = \Delta f_n + \operatorname{div}((a_n * f_n) f_n), \quad f_n(0) = f_{0,n},$$

as built in Theorem 1.1.

Proposition 1.3. Assume that $f_{0,n} \to f_0$ weakly in L_k^2 and $a_n \to a_n$ weakly in L^{∞} . Then $f_n \to f$ in $L^2((0,T) \times \mathbb{R}^d)$ (for instance), where $f \in X_T$ is the unique solution to the McKean-Vlasov equation (1.7) associated to the interaction kernel a and to the initial datum f_0 .

Proof of Proposition 1.3. Because of Theorem 1.1, we know that

$$(f_n)$$
 is bounded in $Y_T := L^{\infty}(0,T; L_k^2(\mathbb{R}^d)) \cap L^2(0,T; H^1(\mathbb{R}^d)),$
 $((a_n * f_n)f_n)$ is bounded in $L^2((0,T) \times \mathbb{R}^d).$

We may thus apply the Aubin-Lions Lemma 1.2 and we deduce that there exists $f \in Y_T$ and a subsequence (f_{n_ℓ}) such that

$$f_{n_{\ell}} \to f$$
 strongly in $L^2((0,T) \times \mathbb{R}^d)$ and weakly in Y_T .

For $\varphi \in C_c^1([0,T) \times \mathbb{R}^d)$, the weak formulation of (1.7) writes

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} f_{n_{\ell}}(\partial_{t}\varphi + \Delta\varphi) dx dt + \int_{\mathbb{R}^{d}} f_{0,n_{\ell}}\varphi(0,\cdot) dx dt$$
$$= \int_{0}^{T} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f_{n_{\ell}}(t,x) f_{n_{\ell}}(t,y) a_{n_{\ell}}(x-y) \cdot \nabla\varphi(y) dx dy dt.$$

We observe that

$$f_{n_{\ell}}(t,x)f_{n_{\ell}}(t,y) \to f(t,x)f(t,y)$$
 strongly in $L^{1}((0,T)\times\mathbb{R}^{d}\times\mathbb{R}^{d})$

and

$$a_{n_{\ell}}(x-y)\cdot\nabla\varphi(y) \rightharpoonup a(x-y)\cdot\nabla\varphi(y)$$
 weakly in $L^{\infty}(\mathbb{R}^d\times\mathbb{R}^d)$.

Using the weak convergence in the LHS term and a standard weak-strong convergence trick in order to deal with the RHS term, we immediately deduce that we may pass to the limit $\ell \to \infty$ in the above formulation and thus that f is a weak

solution to the McKean-Vlasov equation (1.7) associated to the interaction kernel a and to the initial datum f_0 . Because weak solutions are variational solutions and Theorem 1.1, f is in fact the unique variational solution and by uniqueness of the limit it is the whole sequence (f_n) which converges toward f.

We recall and accept the following classical result.

Theorem 1.4 (Brouwer-Schauder-Tychonoff). Consider a locally convex topological vector space X, a convex set $\mathcal{Z} \subset X$ which is metrizable and closed for the induced topology and a function $\varphi : \mathcal{Z} \to \mathcal{Z}$. We assume further that one of the two following conditions holds

- (1) \mathcal{Z} is compact and φ is continuous;
- (2) φ is compact and continuous.

In both cases, φ has at least one fixed point.

We now recover the existence part of Theorem 1.1 as a consequence of the two last results.

Corollary 1.5. For any $f_0 \in L_k^2$, k > d/2, there exists at least one solution to the McKean-Vlasov equation (1.1)

First proof of Corollary 1.5. We will use Theorem 1.4 with $X := X_T$ endowed with the **strong** topology of $L^2(\mathcal{U})$, with $\mathcal{Z} := \mathscr{C}$ which is convex and closed for the strong topology of $L^2(\mathcal{U})$ and with $\varphi : \mathscr{C} \to \mathscr{C}$ the mapping $\varphi(g) := f$, where f is the unique variational solution of equation (1.6). Consider a sequence (g_n) of \mathscr{C} and assume that $g_n \to g$ weakly in $L^2(\mathcal{U})$. We proceed exactly as during the proof of Proposition 1.3. From the Aubin-Lions Lemma 1.2, we know that there exists $f \in L^2(\mathcal{U})$ and a subsequence (f_{n_ℓ}) such that $f_{n_\ell} \to f$ strongly in $L^2(\mathcal{U})$. We may pass to the limit in the weak formulation of equation (1.6) written for f_{n_ℓ} and we deduce that f is a weak solution (and thus a variational solution) to equation (1.6) associated to g. By uniqueness of the solution, we have $f = \varphi(g)$ and by uniqueness of the limit, we have $\varphi(g_n) \to \varphi(g)$ strongly in $L^2(\mathcal{U})$. We immediately deduce that φ is both compact and continuous. We may apply the second version of Theorem 1.4 and conclude.

Second proof of Corollary 1.5. We will use Theorem 1.4 with $X := X_T$ endowed with the **weak** topology of $L^2(\mathcal{U})$, with same definitions of \mathcal{Z} and φ . The set \mathcal{Z} is clearly weakly compact for the weak topology of $L^2(\mathcal{U})$ and the function φ has been proved to be weakly continuous. We may apply the first version of Theorem 1.4 and conclude.