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Abstract

Existence of global weak solutions to the continuous coagulation-fragmentation equations
with diffusion is investigated when the kinetic coefficients satisfy a detailed balance condition
or the coagulation coefficient enjoys a monotonicity condition. Our approach relies on weak
and strong compactness methods in L1 in the spirit of the DiPerna-Lions theory for the
Boltzmann equation. Under the detailed balance condition the large time behaviour is also
studied.

1 Introduction

Coagulation and fragmentation processes occur in the dynamics of cluster growth and describe the
mechanisms by which clusters can coalesce to form larger clusters or fragment into smaller ones.
Such processes are met in a variety of physical contexts, for instance in aerosol science for the
description of the evolution of a system of solid or liquid particles suspended in a gas [16], but also
in astrophysics [31], colloidal chemistry [35, 36] and polymer science. Other situations in which
coagulation-fragmentation processes arise include hematology (red blood cell aggregation [30]) and
population dynamics (animal grouping [29]). In these situations, the clusters are assumed to be
fully identified by their size (or volume or number of particles) which might be either a positive
real number (continuous model) or a positive integer (discrete model). Coagulation-fragmentation
models then aim at providing a description of the cluster size distribution as a function of space
and time as the system of clusters undergoes various physical influences. In the model to be studied
in this paper, the only reactions taken into account are the binary coagulation and fragmentation
of clusters and the approach of two clusters leading to aggregation takes place only by brownian
movement or diffusion (thermal coagulation). Other effects such as multiple coagulation or multiple
fragmentation, condensation, together with the influence of other external force fields (such as
electric fields for charged particles) are neglected. More precisely, denoting by Cy the clusters of
size y ∈ R+ := (0,+∞), the basic reactions taken into account herein are

Cy + Cy′
a(y,y′)−→ Cy+y′ (binary coagulation),

and

Cy
b(y−y′,y′)−→ Cy−y′ + Cy′ (binary fragmentation).

Here the rates a and b of these reactions are assumed to depend only on the sizes of the clusters
involved in the reactions and satisfy

a(y, y′) = a(y′, y) ≥ 0 and b(y, y′) = b(y′, y) ≥ 0.(1.1)
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2Laboratoire de Mathématiques Appliquées, Université de Versailles – Saint Quentin, 45 avenue des Etats-Unis,
F–78035 Versailles, France and DMA, CNRS UMR 8553, Ecole Normale Supérieure, 45 rue d’Ulm, F–75230 Paris
cedex 05, France

1



Similarly, the diffusion of the clusters is assumed to be only size-dependent with a diffusion coef-
ficient d = d(y). Denoting by f(t, x, y) the size distribution function at time t and position x, the
continuous coagulation-fragmentation equations with diffusion read

∂tf − d(y) ∆xf = Q(f), (t, x, y) ∈ (0,+∞)× Ω× R+,(1.2)
∂nf = 0, (t, x, y) ∈ (0,+∞)× ∂Ω× R+,(1.3)

f(0, x, y) = f in(x, y), (x, y) ∈ Ω× R+.(1.4)
(1.5)

Here, Ω is an open bounded subset of RN , N ≥ 1, with smooth boundary ∂Ω, ∂nf denotes the
outward normal derivative of f and the coagulation-fragmentation reaction term Q(f) is given by

Q(f) = Q1(f)−Q2(f)−Q3(f) +Q4(f),(1.6)

with

Q1(f)(x, y) =
1
2

∫ y

0

a(y′, y − y′) f(x, y′) f(x, y − y′) dy′,

Q2(f)(x, y) =
1
2

∫ y

0

b(y′, y − y′) dy′ f(x, y),

Q3(f)(x, y) = L(f)(x, y) f(x, y)

with L(f)(x, y) :=
∫ ∞

0

a(y, y′) f(x, y′) dy′,

Q4(f)(x, y) =
∫ ∞

0

b(y, y′) f(x, y + y′) dy′.

The meaning of the different contributions to the reaction term Q(f) is the following : Q1(f)
accounts for the formation of clusters Cy by coalescence of smaller clusters and Q2(f) for the
breakage of clusters Cy into two smaller pieces. The term Q3(f) describes the depletion of clusters
Cy by coagulation with other clusters, while Q4(f) represents the gain of clusters Cy as a result
of the fragmentation of larger clusters. Observe that there is no source nor sink of clusters in
the reactions described above and one thus expects the total volume of the clusters to remain
unchanged throughout time evolution. From a mathematical point of view, it would read∫

Ω

∫ ∞

0

y f(t, x, y) dydx =
∫

Ω

∫ ∞

0

y f in(x, y) dydx.

This equality comes from the following formal identity with φ(y) = y∫ ∞

0

Q(f) φ dy(1.7)

=
1
2

∫ ∞

0

∫ ∞

0

(a(y, y′) f f ′ − b(y, y′) f ′′) (φ′′ − φ− φ′) dy′dy

for φ : R+ → R which is obtained by changing variables and applying (without justification) the
Fubini theorem to Q1(f) and Q2(f). Here and below we put f = f(t, x, y), f ′ = f(t, x, y′) and
f ′′ = f(t, x, y + y′) to shorten notation. Similarly φ = φ(y), φ′ = φ(y′) and φ′′ = φ(y + y′). It is
however well-known by now that, even in the spatially homogeneous case, this property may fail
to be true, a phenomenon known as gelation. We will however not consider this issue here and
refer to [1, 18, 21] (and the references therein) for results in that direction. In general, it is only
possible to prove that the total volume at time t does not exceed the initial total volume, i.e.∫

Ω

∫ ∞

0

y f(t, x, y) dydx ≤
∫

Ω

∫ ∞

0

y f in(x, y) dydx,(1.8)
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provided the latter is finite. Still, the inequality (1.8) provides a natural functional space to work
with together with a first a priori estimate.

Unfortunately, in the case of general rate coefficients a and b, (1.8) is the only available natural
a priori estimate and it is not sufficient to yield an existence theory for (1.2)-(??) in the spatially
inhomogeneous case (in contrast with the spatially homogeneous case for which it is almost enough
in many cases, see [21, 22, 37]). The main reason for the discrepancy between these two situations
arises from the coagulation terms Q1(f) and Q3(f) which may be seen as convolutions with respect
to y but pointwise products with respect to x. While an L1-bound is clearly sufficient to give a
meaning to the former, it is certainly not to have suitable functional properties for the latter.
Nevertheless, in some situations, additional a priori estimates are available which guarantee the
weak compactness in L1 of both f and Q(f). In that case, we are in a situation which looks like
the one encountered for the Boltzmann equation [14] (and is even more favourable, thanks to the
diffusion operator ∆x) and some arguments in the spirit of those developed in [14] yield the strong
compactness of the volume averages of f . Such a result in turn allows to prove the existence of
weak solutions to (1.2)-(??).

The purpose of this paper is thus to investigate the existence of weak solutions to (1.2)-(??) in
two situations where the weak compactness in L1 of f and Q(f) can be obtained, namely when the
coagulation and fragmentation coefficients enjoy the so-called detailed balance condition, and when
the coagulation coefficients satisfy a monotonicity property introduced by Galkin & Tupchiev [19].
We briefly describe these two situations now and roughly indicate how the weak compactness in
L1 of f and Q(f) is obtained. Concerning the former, it turns out that, in some physical cases, the
coagulation and fragmentation reactions enjoy a reversibility property also called detailed balance
condition, and a mathematical formulation of the detailed balance condition readsthere is a positive function M ∈ L1(R+, (1 + y) dy) such that

a(y, y′) M(y) M(y′) = b(y, y′) M(y + y′), (y, y′) ∈ R2
+.

(1.9)

The function M in (1.9) is usually called an equilibrium of (1.2) and it readily follows from (1.9)
that it is a stationary solution to (1.2)-(??). Furthermore, the existence of such an equilibrium
guarantees that an additional a priori estimate is available which is similar to the celebrated
H–theorem for the Boltzmann equation (see [14] and the references therein), and reads

d

dt
H(f |M) +

∫
Ω

∫ ∞

0

d(y)
|∇xf |2

f
dydx(1.10)

+
1
2

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydx = 0,

where

H(f |M) =
∫

Ω

∫ ∞

0

h(f |M) dydx(1.11)

h(f |M) := f

(
ln
(

f

M(y)

)
− 1
)

+M(y) ≥ 0,

e(f) = j (a(y, y′) f f ′, b(y, y′) f ′′)(1.12)

j(r, s) =


(r − s) (ln r − ln s) ≥ 0 if (r, s) ∈ R2

+,

0 if (r, s) = (0, 0),

+∞ otherwise.

(1.13)
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Formally (1.10) follows from (1.7) with φ = dh(f |M)/df = ln f/M . Under suitable assumptions
on the initial datum f in the following “natural” bounds may be obtained from (1.8) and (1.10)

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

f(t)
(

(1 + y) +
∣∣∣∣ln( f(t)

M(y)

)∣∣∣∣) dydx <∞,(1.14) ∫ T

0

∫
Ω

∫ ∞

0

d(y)1/2 |∇xf | dydxdt <∞,(1.15) ∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydxdt <∞.(1.16)

It is then possible to deduce from the estimates (1.14)-(1.16) that f and Q(f) lie in a weakly
compact subset of L1 (provided a, b and d fulfil some technical assumptions which will be specified
later). We refer to Section 3.1 below for a detailed proof of this fact.

In addition it readily follows from (1.9) that Mα(y) = M(y) eαy, y ∈ R+, satisfies the detailed
balance condition and is thus also an equilibrium. Consequently it is a stationary solution to
(1.2)-(??) for α ∈ R and the stabilization of solutions to (1.2)-(??) towards the equilibria will
also be investigated. Roughly speaking we prove that any non-zero cluster point as t → +∞
of the solutions to (1.2)-(??) coincides with Mα for some α ∈ R. Convergence towards a single
equilibrium is also achieved in some particular cases.

In the other situation to be considered in this paper, a monotonicity condition is required on
the coagulation coefficients a [8, 17, 19], namely

a(y′, y − y′) ≤ a(y′, y) for y ≥ y′ ≥ 0.(1.17)

Such a monotonicity property guarantees that, in the absence of fragmentation (b ≡ 0), the Lp(Ω×
R+)-norm of weak solutions to (1.2)-(??) is non-increasing with respect to time for every p ∈ [1,∞].
In addition, assuming the fragmentation coefficients to be suitably dominated by the coagulation
ones, we are able to prove that

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

Φ(f(t)) dydx <∞,∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f f ′ Φ′(f) dy′dydxdt <∞

for any T ∈ R+, where Φ is a suitably constructed non-negative convex function such that Φ(r)/r →
+∞ and Φ′(r) → +∞ as r increases to +∞. The properties of Φ then allow us to conclude that
f and Q(f) lie in a weakly compact subset of L1 and we refer to Section 3.2 below for a detailed
proof.

Before stating our main results, let us mention some related works. It turns out that the
continuous coagulation-fragmentation equations with diffusion have not been much studied and
it is rather its discrete version which has been the object of several papers recently. Concerning
the continuous model, the only work we are aware of is due to Amann [3]. The approach used by
Amann is completely different and consists in viewing (1.2)-(??) as a single semilinear evolution
equation of the form

du

dt
+A(t)u = R(t, u), u(0) = u0,

where u is a Banach-space-valued function of (t, x) ∈ (0,+∞) × Ω. Abstract results from the
theory of general linear and quasilinear parabolic problems may then be applied after specifying
a suitable functional setting in which the operator A has the desired properties [3]. Though this
approach requires the strong assumption of the boundedness of the kinetic coefficients together
with some additional regularity of the initial datum with respect to space, it provides the exis-
tence, uniqueness, total volume conservation and continuous dependence with respect to the data
of solutions to (1.2)-(??), but only locally in time in the general case (global existence is obtained
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in one-space dimension or in the absence of coagulation (a ≡ 0) or if d does not depend on y).
Let us also mention here that existence results are also available for the continuous coagulation
model with spatial transport where the operator d(y) ∆x is replaced by a spatial transport oper-
ator divx(V (x, y) f(t, x, y)) (see, e.g., [8, 10, 17] and the references therein). Finally, as already
mentioned, the discrete version of (1.2)-(??) where y ranges in the set of positive integers (and the
integrals in Q(f) are replaced by series) has been investigated in several papers since the pioneering
work [5] where the pure coagulation equation with diffusion was considered. Existence results have
subsequently been obtained in [3, 11, 20, 22, 23, 24, 26, 34, 40, 41] under various assumptions on
the kinetic and diffusion coefficients, and large time asymptotics have been considered in [12, 25].
Let us point out that the approach we develop here for the continuous model would yield exis-
tence results for the discrete model with similar assumptions. However existence of a solution to
the discrete model holds true with the growth assumption (2.2) below but without the structure
conditions (1.9) or (1.17) [22].

We now outline the contents of this paper : in the next section, we state precisely our as-
sumptions on the kinetic and diffusion coefficients and on the initial datum f in, together with
our main results. Our first result (Theorem 2.2) is a weak stability principle for weak solutions
to (1.2)-(??) : a similar result is already known for the renormalized solutions to the Boltzmann
equation [14, Theorem II.1]. Roughly speaking the stability result states that given a sequence
(fn) of weak solutions to (1.2)-(??) such that (fn) and (Q(fn)) are weakly compact in L1, there is
a subsequence of (fn) which converges weakly in L1 to a weak solution to (1.2)-(??). This stability
property of weak solutions to (1.2)-(??) will be the main tool in our existence proof. Weak solutions
are constructed in Theorems 2.3 and 2.6 when the kinetic coefficients satisfy the detailed balance
condition (1.9) and the monotonicity condition (1.17), respectively. In the former case, additional
information on the large time behaviour of the weak solutions constructed in Theorem 2.3 are
available and the stabilization towards steady states is described in Theorem 2.4. In Section 3 we
perform formal computations to show how the assumptions made on the kinetic coefficients yield
the weak compactness in L1 of both f and Q(f) with the hope of clarifying the role played by
these assumptions. Section 4 is devoted to the proof of the weak stability result. The proof of this
result actually proceeds along the same lines as that of [14, Theorem II.1]. We then construct in
Section 5 a sequence of approximating problems to which we may apply the weak stability result
and deduce Theorems 2.3 and 2.6. The weak stability result is used once more in Section 6 to
investigate the large time behaviour of the solutions to (1.2)-(??) constructed in Theorem 2.3.
Some extensions of our approach to other kinetic coefficients are outlined in the last section.
Acknowledgments. The second author gratefully acknowledges the partial support of the TMR
project Asymptotic Methods in Kinetic Theory ERB FMRX CT97 0157 during this work.

2 Main results

Throughout the paper we assume a positivity condition on the diffusion coefficient d, namely,
the functions d and 1/d both belong to L∞(1/R,R) for each R ∈ (1,+∞)
and we put

dR := ess inf
(1/R,R)

d > 0 and DR := ess sup
(1/R,R)

d > 0.
(2.1)

together with the following growth condition on the kinetic coefficients :

for each R ∈ R+ the functions a and b belong to L∞((0, R) × (0, R))
with

MR := ‖a‖L∞((0,R)×(0,R)) + ‖b‖L∞((0,R)×(0,R)),

and there is a function ωR ∈ L∞0 (R+) such that

a(y, y′) + b(y, y′) ≤ ωR(y′) (1 + y′), (y, y′) ∈ (0, R)× R+.

(2.2)
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Here and below we denote by L∞0 (R+) the set of functions ω ∈ L∞(R+) such that ω(y) converges
to zero as y → +∞. Observe that (2.1) ensures that (1.2) is uniformly parabolic in the x-
variable on (0, T )×Ω× (1/R,R) for each R > 1. Typical examples of diffusion coefficients include
d(y) = D0 y

−δ, δ ∈ (0, 1] [33], which clearly satisfy (2.1). Also, kinetic coefficients a and b satisfying

a(y, y′) + b(y, y′) ≤ C0 (1 + (yy′)α)

with α ∈ [0, 1) clearly fulfil (2.2).
In view of the expected properties of f and Q(f) mentioned above we are naturally led to the

following definition of a weak solution to the initial-boundary value problem (1.2)-(??).

Definition 2.1 Let T ∈ (0,+∞] and f in be a non-negative function in L1(Ω×R+; (1 + y)dxdy).
A weak solution to (1.2)-(??) on [0, T ) is a non-negative function

f ∈ C([0, T );L1(Ω× R+)) ∩ L∞(0, T ;L1(Ω× R+; ydxdy))

satisfying f(0) = f in together with

f ∈ L1((0, T )× (1/R,R);W 1,1(Ω)),(2.3)

Qi(f) ∈ L1((0, T )× Ω× (0, R)), i ∈ {1, . . . , 4},(2.4)

for each R ∈ R+ and satisfies (1.2)-(??) in the following weak sense∫
Ω

∫ ∞

0

(
ψ(t) f(t)− ψ(0) f in

)
dydx(2.5)

+
∫ t

0

∫
Ω

∫ ∞

0

(d(y) ∇xf ∇xψ − f ∂tψ) dydxds

=
1
2

∫ t

0

∫
Ω

∫ ∞

0

Q(f) ψ dydxds

for each t ∈ (0, T ) and ψ ∈ C1([0, T ]× Ω̄× R+) with compact support in [0, T )× Ω̄× R+.

We now state a weak stability principle for weak solutions to (1.2)-(??).

Theorem 2.2 Assume that the kinetic coefficients a and b and the diffusion coefficient d fulfil the
assumptions (2.2) and (2.1), respectively. Let T ∈ (0,+∞) and, for each n ≥ 1, let fn be a weak
solution to (1.2)-(??) on [0, T ) with initial datum fn(0). Assume further that there are a weakly
compact subset Kw of L1(Ω× R+) and a constant CT such that

fn(t) ∈ Kw for each t ∈ [0, T ],(2.6)

sup
t∈[0,T )

∫
Ω

∫ ∞

0

(1 + y) fn(t, x, y) dydx ≤ CT(2.7)

for every n ≥ 1 and

(Qi(fn)) is weakly compact in L1((0, T )× Ω× (0, R))(2.8)

for each R ≥ 0 and i ∈ {1, . . . , 4}. Then there are a subsequence (fnk
) of (fn) and a function f

such that

f is a weak solution to (1.2)-(??) on [0, T ),(2.9)  fnk
−→ f in C([0, T );w − L1(Ω× R+)),

Qi(fnk
) ⇀ Qi(f) in L1((0, T )× Ω× (0, R))

(2.10)
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for R ∈ R+ and i ∈ {1, . . . , 4}, and∫ ∞

0

ψ(y) fnk
dy −→

∫ ∞

0

ψ(y) f dy in L1((0, T )× Ω)(2.11)

for ψ ∈ D(R+). Here D(R+) denotes the space of C∞-smooth and compactly supported functions
in R+ and C([0, T );w − L1(Ω × R+)) the space of weakly continuous functions from [0, T ) in
L1(Ω× R+).

A more general result is actually available and we may also allow the kinetic and diffusion
coefficients to depend on n (see Theorem 4.1 below). In particular, we will be able to consider
sequences of solutions to approximating problems for which existence of a solution follows by a
classical fixed point argument. We shall then employ the extended version of Theorem 2.2 to
obtain a weak solution to (1.2)-(??) as a limit of such sequences.

We are thus in a position to state our existence results and first consider the case where the
kinetic coefficients enjoy the detailed balance condition (1.9) besides the symmetry condition (1.1)
and the growth condition (2.2). We further assume that, for each R ∈ R+, the equilibrium M in
(1.9) satisfies the positivity condition

ess inf
y∈(0,R)

M(y) > 0.(2.12)

For instance, a possible choice of kinetic coefficients a and b satisfying the detailed balance condition
(1.9) is 

a(y, y′) = A0 (1 + y)α (1 + y′)α,

b(y, y′) = B0 a(y, y′)
exp (λ (y + y′)p)
exp (λ (yp + y′p))

(1 + y + y′)τ

(1 + y)τ (1 + y′)τ
,

(2.13)

where α ∈ [0, 1], λ > 0, p ∈ [0, 1), τ ∈ [0,+∞), and A0, B0 are positive real numbers. In that case,
M(y) = (1 + y)−τ exp (−λ yp − y), y ∈ R+. The case of constant coefficients a and b is included
in the above example (with α = τ = p = 0) and the additional requirements (2.12) and (2.2) are
clearly fulfilled if α < 1.

As for the initial datum f in we assume that{
f in ∈ L1(Ω × R+, ydxdy) is non-negative a.e. and
H(f in|M) <∞.

(2.14)

Our first existence result reads as follows (a more precise result is actually available, see The-
orem 5.8 below).

Theorem 2.3 Assume that the kinetic coefficients a and b satisfy (1.1), (1.9), (2.2) and (2.12),
the diffusion coefficient d satisfy (2.1) and the initial datum f in satisfy (2.14). Then there is a
weak solution f to (1.2)-(??) on [0,+∞) satisfying (1.8).

Owing to the detailed balance condition (1.9) it is also possible to investigate the large time
behaviour of the weak solutions to (1.2)-(??) constructed in the previous theorem. Indeed we first
observe that, for each α ∈ R, the function Mα defined by Mα(y) = M(y) exp (α y), y ∈ R+, also
satisfies the detailed balance equation (1.9) and is thus a stationary solution to (1.2)-(??). Such
properties are also enjoyed by the function M−∞ := 0 and the function Φ defined by Φ(−∞) = 0,

Φ(α) =
∫ ∞

0

y Mα(y) dy, α ∈ R,

is an increasing function on D(Φ) := {α ∈ [−∞,+∞) , Φ(α) < +∞}. Since we are only interested
in equilibria with finite total volume we introduce

αs := sup
{
α ∈ R , Mα ∈ L1(R+, y dy)

}
∈ [0,+∞],(2.15)
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so that [−∞, αs) ⊂ D(Φ) ⊂ [−∞, αs], and

%s := sup
α∈(−∞,αs)

∫ ∞

0

y Mα(y) dy ∈ (0,+∞].(2.16)

Observe that %s may be finite whatever the value of αs. In that case there is no equilibrium with
total volume larger than %s. For instance, in the previous example (2.13), αs = 1 but %s is finite if
p ∈ (0, 1) or τ > 1 and infinite if p = 0 and τ ∈ [0, 1). With these notations we have the following
result.

Theorem 2.4 Consider an initial datum f in satisfying (2.14), f in 6≡ 0, and define αin ∈ R as
the unique real number such that

Φ
(
αin
)

= M in :=
1
|Ω|

∫
Ω

∫ ∞

0

f in(x, y) y dydx(2.17)

if M in < %s and αin = αs if M in ≥ %s. Assume also that the assumptions of Theorem 2.3 are
fulfilled and that a and b are positive a.e. in R2

+. For any weak solution f to (1.2)-(??) with initial
datum f in given by Theorem 2.3 and any sequence (tn)n≥1 of positive real numbers satisfying
tn → +∞ there are a subsequence (tnk

) and α ∈
[
−∞, αin

]
such that the sequence of functions

(fnk
) defined by fnk

(t, x, y) = f(t+ tnk
, x, y) satisfies

fnk
−→Mα in C((0, T ];L1(Ω× R+)) for every T > 0.(2.18)

Moreover, under the additional assumption αs = +∞, there holds %s = +∞ and the equation
(2.17) always has a solution αin. In that case α = αin and there holds∫

Ω

∫ ∞

0

f(t, x, y) y dydx =
∫

Ω

∫ ∞

0

f in(x, y) y dydx(2.19)

for each t ∈ R+ together with

f(t) −→Mαin in L1(Ω× R+; (1 + y)dxdy) as t→ +∞.(2.20)

Let us mention here that the discrepancy between the convergence results when αs < +∞ and
αs = +∞ stems from the fact that the latter assumption provides a uniform control of f(t) in
L1(Ω × (Y,+∞), ydxdy) for large values of Y which allows us to prove that the total volume of
any cluster point of (f(t)) as t→ +∞ is equal to the initial total volume.

Remark 2.5 (i) Let us mention here that there are kinetic coefficients a and b satisfying (1.1),
(1.9), (2.2) and (2.12), and αs = +∞ as well. For instance,

a(y, y′) = exp
{
−(y2 + (y′)2)

}
and b(y, y′) = exp

{
−(y − y′)2

}
, (y, y′) ∈ R2

+,

and (1.9) is fulfilled with M(y) = exp
{
−y2

}
, y ∈ R+.

(ii) Let us also point out that Theorem 2.4 seems to be new even in the spatially homogeneous case
where only the case of constant coefficients a and b has already been considered in [2, 38].

We next turn to the case where the coagulation coefficients a enjoy the monotonicity property
(1.17). Besides (1.1) and (1.17) we also assume that a and b satisfy the growth condition (2.2) and
b is suitably dominated by a in the following sense : there are a constant A > 0 and a non-negative
function

B ∈ L1(R+) with y 7→ y B(y) ∈ L∞(R+)(2.21)

such that
b(y, y′ − y) ≤ A a(y, y′) +B(y′), 0 ≤ y ≤ y′.(2.22)

We finally require the initial datum to fulfil

f in ∈ L1(Ω× R+, (1 + y)dxdy) is non-negative a.e.(2.23)

We then have the following result.
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Theorem 2.6 Assume that the kinetic coefficients a and b satisfy (1.1), (1.17), (2.2) and (2.22),
the diffusion coefficient d satisfy (2.1) and the initial datum f in satisfy (2.23). Then there is a
weak solution f to (1.2)-(??) on [0,+∞) satisfying (1.8).

As an example of kinetic coefficients enjoying the requirement of Theorem 2.6 we put

a(y, y′) = µa (yα + (y′)α) , (y, y′) ∈ R2
+,

where µa is a positive real number and α ∈ [0, 1). For the fragmentation coefficients we put

b(y, y′) = λb + µb (y + y′)β
, (y, y′) ∈ R2

+,

where λb and µb are non-negative real numbers and β ∈ [0, α]. Such kinetic coefficients clearly
satisfy (1.1), (1.17), (2.2) and (2.22) with A = 2 (λb + µb)/µa and

B(y) = (λb + µb) 1[0,1](y).

Remark 2.7 If B ≡ 0 in (2.22) and f in ∈ Lp(Ω×R+) for some p ∈ (1,∞] then the solution f to
(1.2)-(??) constructed in Theorem 2.6 satisfies f ∈ L∞(0, T ;Lp(Ω×R+)) for T ∈ R+. For p = ∞
this fact has been noticed in [17, Section 5.2] in the spatially homogeneous case and in [8] for the
spatially inhomogeneous coagulation equation.

3 a priori estimates

As already mentioned in the previous section the weak stability principle stated in Theorem 2.2 is
the main tool in the proofs of Theorems 2.3–2.6. Still we first have to check that the requirements
needed to apply this result, namely the weak compactness in L1 of f and Q(f), are fulfilled.
The goal of this section is thus to show how the assumptions on the kinetic coefficients lead to
the desired compactness properties. Let us point out here that some of the computations of this
section are performed at a formal level but may be justified on the approximating solutions we
construct in Section 5.

3.1 The detailed balance condition (1.9)

Throughout this section we assume that the kinetic coefficients a and b satisfy (1.1), (1.9), (2.12)
and (2.2), the diffusion coefficient d satisfy (2.1) and we consider a solution f to (1.2)-(??) with
an initial datum f in satisfying (2.14) such that

C0 := sup
t∈[0,+∞)

∫
Ω

∫ ∞

0

y f(t, x, y) dydx <∞.(3.1)

Hereafter we denote by C any positive constant which depends only on Ω, M , C0 and H(f in|M).
The dependence of C upon additional parameters will be indicated explicitly. We also put U :=
Ω× R+, Ut := (0, t)× U and Ut,R := (0, t)× Ω× (0, R) for t ∈ [0, T ] and R ∈ R+.

As mentioned in the Introduction the detailed balance condition (1.9) ensures that an analogue
of the Boltzmann H–theorem holds for the coagulation-fragmentation equations which we formally
derive now. We multiply (1.2) by ln (f/M) and integrate over Ut. Noticing that∫

Ω

∫ ∞

0

∂tf ln (f/M) dydx =
d

dt
H(f |M)

and recalling (1.7) we obtain

H(f(t)|M) +
∫ t

0

∫
Ω

∫ ∞

0

d(y)
|∇xf |2

f
dydxds

+
1
2

∫ t

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydxds = H(f in|M),

9



where H(f |M) and e(f) are defined by (1.11) and (1.12), respectively, and we recall that we use
the following notations f = f(t, x, y), f ′ = f(t, x, y′) and f ′′ = f(t, x, y + y′). Since the three
terms of the left-hand side of the above inequality are non-negative we conclude that for every
t ∈ [0,+∞)

H(f(t)|M) ≤ C,(3.2) ∫ t

0

∫
Ω

∫ ∞

0

d(y) |∇xf |2 f−1 dydxds ≤ C,(3.3)

∫ t

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydxds ≤ C.(3.4)

We now derive additional estimates on f from (3.1)-(3.4) which eventually imply that f and
Q(f) belong to a weakly compact subset of L1. We first state a preliminary result.

Lemma 3.1 Let ξ be a measurable function from R+×U with discrete values in {0, 1} and α ≥ e2.
For t ∈ R+ there holds∫

Ω

∫ ∞

0

ξ(t) f(t) dydx ≤ 2
(
α+ e−1

) ∫
Ω

∫ ∞

0

ξ(t) M dydx(3.5)

+
2

lnα
H(f(t)|M).

Proof. Let t ∈ R+. On the one hand we notice that∫
U
ξ(t) f(t) dydx ≤ α

∫
U
ξ(t) 1{f(t)≤αM} M dydx

+
1

lnα

∫
U
ξ(t) 1{f(t)>αM} f(t)

∣∣∣∣ln( f(t)
M(y)

)∣∣∣∣ dydx
≤ α

∫
U
ξ(t) M dydx

+
1

lnα

∫
U
ξ(t) f(t)

∣∣∣∣ln( f(t)
M(y)

)∣∣∣∣ dydx.
On the other hand, since r ln r ≥ r | ln r| − 2/e for r > 0, we have

f(t) ln
(
f(t)
M(y)

)
≥ f(t)

∣∣∣∣ln( f(t)
M(y)

)∣∣∣∣− 2 M
e

,

whence ∫
U
ξ(t) f(t)

∣∣∣∣ln( f(t)
M(y)

)∣∣∣∣ dydx ≤ H(f(t)|M)(3.6)

+
∫
U
ξ(t)

(
f(t) +

2 M
e

)
dydx.

Combining the above two inequalities yields(
1− 1

lnα

) ∫
U
ξ(t) f(t) dydx ≤

(
α+

2
e lnα

) ∫
U
ξ(t) M dydx

+
1

lnα
H(f(t)|M).

Since α ≥ e2 (3.5) follows at once from the above inequality. ut
After this preparation we have the following result.
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Lemma 3.2 For t ∈ R+ there holds∫
Ω

∫ ∞

0

f(t)
(

1 +
∣∣∣∣ln( f(t)

M(y)

)∣∣∣∣) dydx ≤ C.(3.7)

Proof. Let t ∈ R+ and take ξ = 1U and α = e2 in (3.5). We thus obtain, thanks to (3.2),∫
U
f(t) dydx ≤ C |Ω| |M |L1 + C ≤ C.

We next write (3.6) with the function ξ = 1U and use (3.2) and the above inequality to conclude
that (3.7) holds true. ut

We next show that (3.7) and (3.3) yield some estimates for the gradient of f . Though these
estimates will not be used in the existence proof they ensure that the solution to (1.2)-(??) we
construct in Theorem 2.3 is such that d1/2∇xf belongs to L2(0,+∞;L1(Ω×R+)). This property
plays an important role in the study of the large time behaviour as it guarantees that the cluster
points of {f(t} as t→ +∞ are spatially homogeneous.

Lemma 3.3 For each T ∈ R+, we have∫ T

0

(∫
Ω

∫ ∞

0

d(y)1/2 |∇xf | dydx
)2

dt ≤ C,(3.8)

and ∫
E

d(y)1/2 |∇xf | dydxdt ≤ C

(∫
E

f dydxdt

)1/2

(3.9)

for every measurable subset E of R+ × Ω× R+.

Proof. Let T ∈ R+. By the Hölder inequality we have∫ T

0

(∫
U
d(y)1/2 |∇xf | dydx

)2

dt

≤
∫ T

0

(∫
U
f dydx

) (∫
U
d(y) |∇xf |2 f−1 dydx

)
dt,

and (3.8) follows at once from (3.3), (3.7) and the above inequality.
We next consider a measurable subset E of R+ × U . Proceeding as above we infer from (3.3)

that ∫
E

d(y)1/2 |∇xf | dydxdt

≤
(∫

E

d(y)
|∇xf |2

f
dydxdt

)1/2 (∫
E

f dydxdt

)1/2

≤ C

(∫
E

f dydxdt

)1/2

,

whence (3.9). ut
We now show that a sequence (fn) of non-negative functions satisfying the bounds (3.1) and

(3.7) uniformly with respect to n ≥ 1 enjoys the desired compactness properties.

Lemma 3.4 Let T ∈ R+ and (fn) be a sequence of non-negative functions such that, for each
n ≥ 1, there holds

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

fn(t)
(

1 + y +
∣∣∣∣ln( fn(t)

M(y)

)∣∣∣∣) dydx ≤ KT ,(3.10)
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∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(fn) dy′dydxdt ≤ KT(3.11)

for some constant KT (which does not depend on n). Then the sequence (fn) is weakly compact
in L1(UT ) and the sequence (Qi(fn)) is weakly compact in L1(UT,R) for each i ∈ {1, . . . , 4} and
R ∈ R+. Furthermore there is a weakly compact subset Kw of L1(U) such that fn(t) ∈ Kw for each
t ∈ [0, T ] and n ≥ 1.

Proof. We fix t ∈ [0, T ] and consider a measurable subset E of U with finite measure. It follows
from (3.10) and (3.5) with fn instead of f and ξ = 1E that, for α ≥ e2,∫

E

fn(t) dydx ≤ 4 α
∫

E

M(y) dydx+
2 KT

lnα
.

It also follows from (3.10) that ∫
Ω

∫ +∞

α

fn(t) dydx ≤ KT

α
.

We now introduce the subset Kw of L1(U) defined by : g ∈ Kw if g ∈ L1(U) and satisfies∫
E

g dydx ≤ 4 α
∫

E

M(y) dydx+
2 KT

lnα
,∫ ∞

α

g dydx ≤ KT

α

for every measurable subset E of U with finite measure and α ≥ e2.
On the one hand the above analysis ensures that fn(t) ∈ Kw for each t ∈ [0, T ] and n ≥ 1. On the
other hand, since M ∈ L1(R+) and Ω has finite measure, the Dunford-Pettis theorem entails that
Kw is a weakly compact subset of L1(U) and the last assertion of Lemma 3.4 is proved. Similar
computations yield the weak compactness of (fn) in L1(UT ).

We next fix R ∈ R+. By (2.2) we have

Q2(fn) ≤ R MR fn,

and the weak compactness of (fn) in L1(UT,R) entails that of (Q2(fn)).
We next consider a measurable subset E of UT,R. Recalling the following inequality

η ≤ α ξ +
1

lnα
(η − ξ) (ln η − ln ξ), (ξ, η) ∈ R2

+, α > 1,(3.12)

we have for 0 ≤ y′ ≤ y and α > 1

a(y′, y − y′) fn(t, x, y′) fn(t, x, y − y′)

≤ α b(y′, y − y′) fn(t, x, y) +
1

lnα
e(fn)(t, x, y′, y − y′),

from which we easily deduce that∫
E

Q1(fn) dydxdt ≤ α

∫
E

Q2(fn) dydxdt

+
1

lnα

∫
E

∫ y

0

e(fn)(t, x, y′, y − y′) dy′dydxdt.

The second term of the right-hand side of the above inequality being bounded from above by the
L1-norm of e(fn) it follows from (3.11) that∫

E

Q1(fn) dydxdt ≤ α sup
n≥1

∫
E

Q2(fn) dydxdt+
KT

lnα
.
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Consequently, we infer from the weak compactness of (Q2(fn)) in L1(UT,R) that (Q1(fn)) is
bounded in L1(UT,R) and

0 ≤ lim sup
|E|→0

sup
n≥1

∫
E

Q1(fn) dydxdt ≤ KT

lnα
.

The above inequality being valid for every α > 1, we finally obtain

lim
|E|→0

sup
n≥1

∫
E

Q1(fn) dydxdt = 0

by letting α→ +∞, whence the weak compactness of (Q1(fn)) in L1(UT,R).
We now consider Q4(fn). By (2.2) and (3.10) we have for α ≥ 2R∫

E

Q4(fn) dydxdt ≤
∫

E

∫ α

0

b(y, y′ − y) f ′n dy′dydxdt

+
∫

E

∫ ∞

α

ωR(y′ − y) (1 + y′ − y) f ′n dy′dydxdt

≤ Mα

∫
E×(0,α)

fn(t, x, y′) dy′dydxdt

+ C(T,R) |ωR|L∞(α−R,+∞).

The weak compactness of (fn) in L1(UT ) warrants that the first term of the right-hand side of the
above inequality converges to zero uniformly with respect to n ≥ 1 as |E| → 0. Consequently,

0 ≤ lim sup
|E|→0

sup
n≥1

∫
E

Q4(fn) dydxdt ≤ C(T,R) |ωR|L∞(α−R,+∞),

and the weak compactness in L1(UT,R) of (Q4(fn)) then follows since ωR ∈ L∞0 (R+).
Finally the weak compactness in L1(UT,R) of (Q3(fn)) is a consequence of that of (Q4(fn)) and

(3.11) by the same argument as the one used for (Q1(fn)). ut

3.2 The monotonicity property (1.17)

Throughout this section we assume that the kinetic coefficients a and b satisfy (1.1), (1.17), (2.2)
and (2.22), the diffusion coefficient d satisfy (2.1) and we consider a solution f to (1.2)-(??) with
an initial datum f in satisfying (2.23) such that

C0 := sup
t∈[0,+∞)

∫
Ω

∫ ∞

0

y f(t, x, y) dydx <∞.(3.13)

As we shall see below (Lemma 3.5) the monotonicity condition (1.17) is well-suited to obtain
the weak compactness in L1 of the coagulation terms. This is not the case for the fragmentation
terms which have a tendency to concentrate the distribution function f near y = 0. The stringent
condition (2.22) is then needed to prevent this phenomenon to occur and cannot be relaxed by
strengthening the coagulation.
Hereafter we denote by C any positive constant which depends only on Ω, M , C0, |f in|L1(Ω×(0,+∞)),
A, |B|L1(0,+∞) and the L∞(R+)-norm of y 7→ y B(y). The dependence of C upon additional
parameters will be indicated explicitly. We also put U := Ω × R+, Ut := (0, t) × U and Ut,R :=
(0, t)× Ω× (0, R) for t ∈ [0, T ] and R ∈ R+.

Lemma 3.5 Let Φ ∈W 1,∞
loc ([0,+∞)) be a non-negative and convex function such that

0 ≤ Φ(r) ≤ rΦ′(r) for r ≥ 0.(3.14)
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Then for any R ∈ (0,+∞] one has∫
Ω

∫ R

0

(Q1(f)−Q3(f))Φ′(f) dydx

≤ −1
2

∫
Ω

∫ R

0

∫ ∞

0

a(y, y′) f Φ′(f) f ′ dy′dydx.

Proof. We infer from the convexity of Φ that∫
Ω

∫ R

0

(Q1(f)−Q3(f))Φ′(f) dydx

≤ 1
2

∫
Ω

∫ R

0

∫ y

0

a(y′, y − y′) f(y − y′) (f ′ − f) Φ′(f) dy′dydx

+
1
2

∫
Ω

∫ R

0

∫ y

0

a(y′, y − y′) f(y − y′) f Φ′(f) dy′dydx

−
∫

Ω

∫ R

0

∫ ∞

0

a(y, y′) f ′ f Φ′(f) dy′dydx

≤ 1
2

∫
Ω

∫ R

0

∫ y

0

a(y′, y − y′) f(y − y′) Φ(f ′) dy′dydx

−
∫

Ω

∫ R

0

∫ ∞

0

a(y, y′) f ′ f Φ′(f) dy′dydx

+
1
2

∫
Ω

∫ R

0

∫ y

0

a(y′, y − y′) f(y − y′) (f Φ′(f)− Φ(f)) dy′dydx.

Performing the change of variables (y, y′) → (y′, z = y − y′) in the first term and (y, y′) → (y, z =
y − y′) in the last term of the right-hand side of the above inequality we obtain∫

Ω

∫ R

0

(Q1(f)−Q3(f))Φ′(f) dydx

≤ 1
2

∫
Ω

∫ R

0

∫ R−y′

0

a(y′, z) f(z) Φ(f ′) dy′dzdx

−
∫

Ω

∫ R

0

∫ ∞

0

a(y, y′) f ′ f Φ′(f) dy′dydx

+
1
2

∫
Ω

∫ R

0

∫ y

0

a(y − z, z) f(z) (f Φ′(f)− Φ(f)) dzdydx

≤ −1
2

∫
Ω

∫ R

0

∫ ∞

0

a(y, y′) f ′ f Φ′(f) dy′dydx

− 1
2

∫
Ω

∫ R

0

∫ ∞

0

(a(y, y′)− 1[0,y](y′) a(y − y′, y′)) f ′ (f Φ′(f)− Φ(f)) dy′dydx.

Now, Lemma 3.5 follows at once from the above inequality by remarking that the last term of the
right-hand side of the above inequality is non-negative thanks to (1.17) and (3.14). ut

Lemma 3.6 For each R ≥ 1 we have∫
Ω

∫ R

0

(Q2(f) +Q4(f)) dydx ≤ C(R,MR, ωR)

(
1 +

∫
Ω

∫ R

0

f dydx

)
.
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Proof. On the one hand, using (2.2), (3.13) and performing the change of variables (y, y′) →
(y, z = y + y′) we obtain∫

Ω

∫ R

0

Q4(f) dydx ≤ |ωR|L∞
∫

Ω

∫ R

0

∫ ∞

0

(1 + y′) f(y + y′) dy′ dydx

≤ R |ωR|L∞
∫

Ω

∫ ∞

0

f(z) (1 + z) dzdx

≤ C(R,ωR)

(∫
Ω

∫ R

0

f dydx+ 2
∫

Ω

∫ ∞

0

f y dydx

)

≤ C(R,ωR)

(
1 +

∫
Ω

∫ R

0

f dydx

)
.

On the other hand, it follows from (2.2) that∫
Ω

∫ R

0

Q2(f) dydx ≤ 1
2

∫
Ω

∫ R

0

R MR f dydx.

Combining the above two inequalities yields Lemma 3.6. ut

Corollary 3.7 For T ∈ R+ and R ≥ 1 there holds

sup
t∈[0,T ]

∫
Ω

∫ R

0

f(t) dydx ≤ C(T,R,MR, ωR, ),∫ T

0

∫
Ω

∫ R

0

∫ ∞

0

a(y, y′) f f ′ dy′dydxdt ≤ C(T,R,MR, ωR).

In particular,

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

f(t) dydx ≤ C(T,M1, ω1).(3.15)

Proof. Let t ∈ [0, T ]. We just integrate (1.2) over Ut,R and infer from Lemma 3.5 (with Φ = Id),
Lemma 3.6 and (2.23) that∫

Ω

∫ R

0

f(t) dydx+
1
2

∫ t

0

∫
Ω

∫ R

0

∫ ∞

0

a(y, y′) f ′ f dy′dydxds

≤
∫

Ω

∫ R

0

f in dydx+ C(T,R,MR, ωR)

(
1 +

∫ t

0

∫
Ω

∫ R

0

f dydxds

)
.

Using the Gronwall lemma we conclude that the first assertion of Corollary 3.7 holds true. This
assertion with R = 1 together with (3.13) yield (3.15). ut

Lemma 3.8 Let Φ ∈ W 1,∞
loc ([0,+∞)) be a non-negative convex and non-decreasing function such

that  Φ(r) = 0 for r ∈ [0, 4A],

Φ∗(Φ′(r)) ≤ κ (Φ(r) + r) for r ≥ 0,
(3.16)

where κ and A are positive constants. Here and below Φ∗ denotes the conjugate function of Φ, that
is,

Φ∗(r) = sup
s∈[0,+∞)

(r s− Φ(s)) , r ≥ 0.
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Then ∫
Ω

∫ ∞

0

Q4(f) Φ′(f) dydx ≤ 1
4

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f f ′ Φ′(f) dy′dydx

+ C (1 + κ)
∫

Ω

∫ ∞

0

(Φ(f) + f) dydx.

Proof. By (2.22) we have∫
Ω

∫ ∞

0

Q4(f) Φ′(f) dydx =
∫

Ω

∫ ∞

0

∫ ∞

y

b(y, y′ − y) f ′ Φ′(f) dy′dydx

≤ A

∫
Ω

∫ ∞

0

∫ ∞

y

a(y, y′) f ′ Φ′(f) dy′dydx

+
∫

Ω

∫ ∞

0

∫ ∞

y

B(y′) f ′ Φ′(f) dy′dydx.

On the one hand it follows from (3.16) that 4A Φ′(r) ≤ r Φ′(r) and thus

A

∫
Ω

∫ ∞

0

∫ ∞

y

a(y, y′) f ′ Φ′(f) dy′dydx

≤ 1
4

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f f ′ Φ′(f) dy′dydx.

On the other hand the Young inequality, (3.16) and (2.21) entail∫
Ω

∫ ∞

0

∫ ∞

y

B(y′) f ′ Φ′(f) dy′dydx

≤
∫

Ω

∫ ∞

0

∫ ∞

y

B(y′) (Φ(f ′) + Φ∗(Φ′(f))) dy′dydx

≤ sup
y≥0

{y B(y)}
∫

Ω

∫ ∞

0

Φ(f) dydx

+ κ

∫
Ω

∫ ∞

0

∫ ∞

y

B(y′) (Φ(f) + f) dy′dydx

≤ C

∫
Ω

∫ ∞

0

Φ(f) dydx

+ κ |B|L1(0,+∞)

∫
Ω

∫ ∞

0

(Φ(f) + f) dydx.

Combining the above three inequalities yields Lemma 3.8. ut

Corollary 3.9 There is a non-negative and convex function Φ ∈ W 1,∞
loc ([0,+∞)) depending only

on f in and A and satisfying (3.14), (3.16) and

lim
r→+∞

Φ′(r) = lim
r→+∞

Φ(r)
r

= +∞,(3.17)

such that

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

Φ(f(t)) dydx ≤ C(T,M1, ω1, f
in),(3.18) ∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f f ′ Φ′(f) dy′dydxdt ≤ C(T,M1, ω1, f
in)(3.19)

for every T ∈ R+.
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Proof of Corollary 3.9. Since f in belongs to L1(U) we first recall that a refined version of the de
la Vallée-Poussin theorem [27, Proposition I.1.1] guarantees that there exists a non-negative and
convex function Φ0 ∈ C1([0,+∞)) satisfying

Φ0(0) = 0, Φ′0(0) ≥ 0 and Φ′0 is concave on [0,+∞),

lim
r→+∞

Φ′0(r) = lim
r→+∞

Φ0(r)
r

= +∞,

(3.20)

and Φ0(f in) ∈ L1(U). It then follows from the properties enjoyed by Φ0 that

0 ≤ Φ0(r) ≤ r Φ′0(r) ≤ 2 Φ0(r), r ≥ 0,

(see Lemma B.1). In addition, denoting by r+ := max{r, 0} the positive part of the real number
r, the function Φ defined by

Φ(r) = (Φ0(r)− Φ0(4A))+ , r ≥ 0,

is a non-negative and non-decreasing convex function which is bounded from above by Φ0 and
satisfies (3.14) and (3.16) with κ = 1 + (Φ0(4A)/2A) (see Lemma B.2).

Let t ∈ [0, T ]. We now multiply (1.2) by Φ′(f), integrate over (0, t)×Ω×R+ and use Lemma 3.5
and Lemma 3.8 to obtain∫

Ω

∫ ∞

0

Φ(f(t)) dydx+
∫ t

0

∫
Ω

∫ ∞

0

d(y) Φ′′(f) |∇xf |2 dydxds

=
∫

Ω

∫ ∞

0

Φ(f in) dydx+
∫ t

0

∫
Ω

∫ ∞

0

Q(f) Φ′(f) dydxds,

∫
Ω

∫ ∞

0

Q(f) Φ′(f) dydx ≤ −1
2

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f Φ′(f) f ′ dy′dydx

+
1
4

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f f ′ Φ′(f) dy′dydx

+ C (1 + κ)
∫

Ω

∫ ∞

0

(Φ(f) + f) dydx.

Recall that the term involving Q2(f) has a non-positive contribution since f is non-negative and
Φ is non-decreasing. Thanks to (3.15) and the convexity of Φ we end up with∫

Ω

∫ ∞

0

Φ(f(t)) dydx ≤
∫

Ω

∫ ∞

0

Φ0(f in) dydx

− 1
4

∫ t

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) f Φ′(f) f ′ dy′dydxds

+ C(T,M1, ω1,Φ0)
(

1 +
∫ t

0

∫
Ω

∫ ∞

0

Φ(f) dydxds
)
,

and Corollary 3.9 follows at once from the Gronwall lemma. ut
We now show that a sequence (fn) of non-negative functions satisfying the bounds (3.18) and

(3.19) uniformly with respect to n ≥ 1 enjoys the desired compactness properties.

Lemma 3.10 Let T ∈ R+ and (fn) be a sequence of non-negative functions such that there are a
non-negative and convex function Φ ∈ W 1,∞

loc ([0,+∞)) satisfying (3.14), (3.16) and (3.17) and a
constant KT such that there holds

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

((1 + y) fn(t) + Φ(fn(t))) dydx ≤ KT ,(3.21)
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∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) fn f
′
n Φ′(fn) dy′dydxdt ≤ KT(3.22)

for any n ≥ 1. Then the sequence (fn) is weakly compact in L1(UT ) and the sequence (Qi(fn)) is
weakly compact in L1(UT,R) for each i ∈ {1, . . . , 4} and R ∈ R+. Furthermore there is a weakly
compact subset Kw of L1(U) such that fn(t) ∈ Kw for each t ∈ [0, T ] and n ≥ 1.

Proof. Observe first that the last assertion of Lemma 3.10 follows from (3.21) and the Dunford-
Pettis theorem since Φ satisfies (3.17).

We next fix R ∈ R+. By (2.2) we have

Q2(fn) ≤ R MR fn,

and the weak compactness of (fn) in L1(UT,R) entails that of (Q2(fn)).
We next consider a measurable subset E of UT,R. By (2.2) and the convexity of Φ we have for

α large enough ∫
E

Q1(fn) dydxdt

≤
∫ T

0

∫
Ω

∫ R

0

∫ R−y′

0

1′′E a(y, y′) fn f ′n dydy′dxdt

≤ α2

∫ T

0

∫
Ω

∫ R

0

∫ R

0

1′′E a(y, y′) 1{fn≤α} 1′{fn≤α} dydy
′dxdt

+
∫ T

0

∫
Ω

∫ R

0

∫ R

0

1′′E a(y, y′) 1{fn≤α} 1′{fn≥α} fn f ′n dydy′dxdt

+
∫ T

0

∫
Ω

∫ R

0

∫ R

0

1′′E a(y, y′) 1{fn≥α} fn f ′n dydy′dxdt

≤ α2 R MR |E|

+
1

Φ′(α)

∫ T

0

∫
Ω

∫ R

0

∫ R

0

a(y, y′) fn f ′n Φ′(fn) dydy′dxdt

+
1

Φ′(α)

∫ T

0

∫
Ω

∫ R

0

∫ R

0

a(y, y′) fn Φ′(fn) f ′n dydy′dxdt.

We now use (3.22) to deduce∫
E

Q1(fn) dydxdt ≤ α2 R MR |E|+ 2 KT

Φ′(α)
.

Therefore (Q1(fn)) is bounded in L1(UT,R) and

0 ≤ lim sup
|E|→0

sup
n≥1

∫
E

Q1(fn) dydxdt ≤ 2 KT

Φ′(α)

for any α large enough. Since Φ′ fulfils (3.17) we may let α → +∞ in the above inequality and
obtain

lim
|E|→0

sup
n≥1

∫
E

Q1(fn) dydxdt = 0,

whence the weak compactness of (Q1(fn)) in L1(UT,R).
As for Q3(fn), we have for α large enough∫

E

Q3(fn) dydxdt

≤ α

∫
E∩{fn≤α}

∫ ∞

0

a(y, y′) f ′n dy′dydxdt

+
1

Φ′(α)

∫
E∩{fn≥α}

∫ ∞

0

a(y, y′) f ′n fn Φ′(α) dy′dydxdt.
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On the one hand we infer from (2.2) and (3.21) that∫
E∩{fn≤α}

∫ ∞

0

a(y, y′) f ′n dy′dydxdt ≤ |E| |ωR|L∞ KT .

On the other hand (3.22) and the convexity of Φ entail∫
E∩{fn≥α}

∫ ∞

0

a(y, y′) f ′n fn Φ′(α) dy′dydxdt

≤
∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) fn Φ′(fn) f ′n dy′dydxdt ≤ KT .

Combining the above inequalities yields∫
E

Q3(fn) dydxdt ≤ α |E| |ωR|L∞ KT +
KT

Φ′(α)
,

and we argue as for (Q1(fn)) to prove the weak compactness of (Q3(fn)) in L1(UT,R).
Finally the weak compactness of (Q4(fn)) in L1(UT,R) follows from (2.2), (3.21) and the weak

compactness of (fn) as in the proof of Lemma 3.4. ut

4 Weak stability

In this section we study the convergence of sequences (fn) of solutions to (1.2)-(??) such that
both (fn) and (Q(fn)) enjoy weak compactness properties in L1. In view of applying such a result
to the proof of the existence of weak solutions to (1.2)-(??) we actually consider a more general
framework in which the kinetic and diffusion coefficients also vary. More precisely, we are given
sequences of coagulation and fragmentation coefficients (an)n≥1 and (bn)n≥1 (which may now also
depend on t and x) and a sequence of diffusion coefficients (dn)n≥1 satisfying an(t, x, y, y′) = an(t, x, y′, y) ≥ 0,

bn(t, x, y, y′) = bn(t, x, y′, y) ≥ 0,
(4.1)

and {the kinetic coefficients an and bn and the diffusion coefficient dn satisfy
(2.2) and (2.1), respectively, uniformly with respect to n ≥ 1 and (t, x) ∈
R+ × Ω,

(4.2)

(an, bn, dn) converges to (a, b, d) a.e. in R+ × Ω× R+.(4.3)

We define Qn(f), Qi,n(f), 1 ≤ i ≤ 4, and Ln(f), as Q(f), Qi(f), 1 ≤ i ≤ 4, and L(f), respectively,
with an, bn instead of a, b. The weak stability result then reads as follows.

Theorem 4.1 Let T ∈ (0,+∞) and, for each n ≥ 1, let fn be a weak solution to (1.2)-(??) on
[0, T ) with kinetic coefficients an, bn, diffusion coefficient dn, and initial datum fn(0). Assume
further that there are a constant CT and a weakly compact subset Kw of L1(Ω×R+) such that, for
each n ≥ 1, there holds

sup
t∈[0,T )

∫
Ω

∫ ∞

0

fn(t) (1 + y) dydx ≤ CT ,(4.4)

fn(t) ∈ Kw for each t ∈ [0, T ),(4.5)

and
(Qi,n(fn)) is weakly compact in L1((0, T )× Ω× (0, R))(4.6)

for each R ≥ 0 and i ∈ {1, . . . , 4}.
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Under the assumptions (4.1)-(4.3) there are a subsequence (fnk
) of (fn) and a function f such

that  fnk
−→ f in C([0, T );w − L1(Ω× R+)),

Qi,nk
(fnk

) ⇀ Qi(f) weakly in L1((0, T )× Ω× (0, R))
(4.7)

for R ∈ R+ and i ∈ {1, . . . , 4}. Consequently

f is a weak solution to (1.2)-(??) on [0, T ).(4.8)

Furthermore there holds

lim
k→+∞

∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

ψ(y) (fnk
− f) dy

∣∣∣∣ dxdt = 0(4.9)

for ψ ∈ D(R+) which implies Lnk
(fnk

) −→ L(f) strongly in L1((0, T )× Ω× (0, R)),

Q4,nk
(fnk

) −→ Q4(f) strongly in L1((0, T )× Ω× (0, R))
(4.10)

for every R ∈ R+.

Observe that Theorem 4.1 applies in particular to the case where an = a, bn = b and dn = d,
and thus includes Theorem 2.2 as a particular case.
Proof of Theorem 4.1. We put U := Ω × R+, Ut := (0, t) × U and Ut,R := (0, t) × Ω × (0, R)
for t ∈ [0, T ] and R ∈ R+. We first observe that (4.5), (4.6) and (1.2) allow us to improve the
compactness properties of (fn).

Lemma 4.2 The family {fn , n ≥ 1} is weakly equicontinuous in L1(U) at each point t0 ∈ [0, T ).

Proof. Consider t0 ∈ [0, T ) and ϕ ∈ C2(Ω̄ × R+) with compact support in Ω̄ × [1/R,R] for some
R ≥ 1. It follows from Definition 2.1 that, for t ∈ [0, T ),∣∣∣∣∫

U
(fn(t)− fn(t0)) ϕ dydx

∣∣∣∣
≤

∫ t

t0

∫
Ω

∫ R

1/R

fn dydxds |dn∆xϕ|L∞(U)

+ |ϕ|L∞(U)

∫ t

t0

∫
Ω

∫ R

1/R

|Qn(fn)| dydxds.

Since dn is uniformly bounded on the support of ϕ by (4.2) we obtain for α > 1,∣∣∣∣∫
U
(fn(t)− fn(t0)) ϕ dydx

∣∣∣∣
≤ CT (ϕ)

(
α |t− t0|+ sup

n≥1

∫
1{fn>α} fn dydxds

)
+ CT (ϕ) sup

n≥1

∫
1{|Qn(fn)|>α} |Qn(fn)| dydxds.

We first take the lim sup as t→ t0 in the above inequality and next use the weak compactness in
L1((0, T )×Ω× (1/R,R)) of (fn) and (Qn(fn)) given by (4.5) and (4.6) to let α→ +∞ and obtain
that

lim
t→t0

sup
n≥1

∣∣∣∣∫
Ω

∫ ∞

0

(fn(t)− fn(t0)) ϕ dydx

∣∣∣∣ = 0.(4.11)
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We next use (4.5) and the fact that any function ϕ ∈ L∞(U) is an almost everywhere limit of
smooth functions with compact support to conclude that (4.11) holds true for each ϕ ∈ L∞(U).
The proof of Lemma 4.2 is thus complete. ut

Owing to (4.5), Lemma 4.2 and the non-negativity of fn, it follows from a variant of the Arzelà-
Ascoli theorem (see, e.g., [39, Theorem 1.3.2]) that there are a subsequence of (fn) (not relabeled)
and a non-negative function f ∈ C([0, T );w − L1(U)) such that

fn −→ f in C([0, T );w − L1(U)).(4.12)

Furthermore, we infer from (4.6) that, extracting a further subsequence if necessary, we may also
assume that, for each i ∈ {1, . . . , 4}, there is a function Qi in L1

loc(UT ) such that

Qi,n(fn) ⇀ Qi in L1(UT,R)(4.13)

for each R ≥ 1.
The remainder of the proof of Theorem 4.1 is then devoted to the identification of Qi for

i ∈ {1, . . . , 4} in terms of f . As we aim at passing to the limit in the coagulation terms involving
quadratic terms, weak convergences are not sufficient for our purpose and we need some strong
compactness properties of the sequence (fn). As the Laplace operator only acts upon the variable
x it is expected that its compactness properties will only be effective upon the variables (t, x) : we
are thus led to study the averages of fn with respect to the volume variable y. More precisely we
have the following result.

Proposition 4.3 For each ψ ∈ D(R+) there holds∫ ∞

0

fn ψ(y) dy −→
∫ ∞

0

f ψ(y) dy in L1((0, T )× Ω).(4.14)

Proof. Owing to (4.12), (4.6) and (4.2) we are in a position to apply Proposition 5.5 below (with
J = supp ψ) from which Proposition 4.3 readily follows. ut

We gather in the next proposition some useful consequences of (4.12) and Proposition 4.3.

Corollary 4.4 (i) If ψ is a measurable function in UT satisfying

|ψ(t, x, y)| ≤ ω(y) (1 + y) a.e. in UT(4.15)

for some positive function ω in L∞0 (R+), there holds

lim
n→+∞

∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

(fn − f) ψ dy

∣∣∣∣ dxdt = 0.(4.16)

(ii) If (ψn)n≥1 and ψ are measurable functions in UT satisfying

lim
n→+∞

ψn(t, x, y) = ψ(t, x, y) a.e. in UT ,(4.17)

|ψn(t, x, y)| ≤ ω(y) (1 + y) a.e. in UT(4.18)

for each n ≥ 1 and some positive function ω in L∞0 (R+), there holds

lim
n→+∞

∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

(ψn fn − ψ f) dy
∣∣∣∣ dxdt = 0.(4.19)

(iii) If (ψn)n≥1 and ψ are measurable functions in (0, T )× Ω× R2
+ satisfying

lim
n→+∞

ψn(t, x, y, y′) = ψ(t, x, y, y′) a.e. in (0, T )× Ω× R2
+,(4.20)

|ψn(t, x, y, y′)| ≤ ω(y′) (1 + y′) a.e. in (0, T )× Ω× R2
+(4.21)

21



for each n ≥ 1 and some positive function ω in L∞0 (R+), there holds

lim
n→+∞

∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

∫ ∞

0

(ψn Fn f ′n − ψ F f ′) dy′dy
∣∣∣∣ dxdt = 0,(4.22)

where

Fn(t, x, y) =
fn(t, x, y)

1 + %n(t, x)
with %n(t, x) =

∫ ∞

0

fn(t, x, y) dy,

F (t, x, y) =
f(t, x, y)

1 + %(t, x)
with %(t, x) =

∫ ∞

0

f(t, x, y) dy,

In order not to delay further the proof of Theorem 4.1 we postpone the proof of Corollary 4.4
to the Appendix. We just mention here that it relies on arguments similar to those employed in
[14, Section IV] and go on with the proof of Theorem 4.1.

We first check that (4.10) holds true. Indeed consider R ∈ R+ and y ∈ (0, R). On the one hand
it follows from (4.2), (4.4) and (4.12) that∫ T

0

∫
Ω

∫ ∞

0

an(t, x, y, y′) f ′n dy′dxdt ≤ |ωR|L∞(0,+∞)

∫ T

0

∫
Ω

∫ ∞

0

(1 + y′) f ′n dy′dxdt

≤ |ωR|L∞(0,+∞) CT ,

and the right-hand side of the above inequality clearly belongs to L1(0, R). On the other hand,
using again (4.2), we deduce from Corollary 4.4 (ii) (with ψn = an) that

lim
n→+∞

∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

(an(t, x, y, y′) f ′n − a(y, y′) f ′) dy′
∣∣∣∣ dxdt = 0.

We may then apply the Lebesgue dominated convergence theorem to conclude that (Ln(fn)) con-
verges strongly towards L(f) in L1(UT,R) as n→ +∞. Next, since

Q4,n(fn) =
∫ ∞

0

1[y,+∞)(y′) bn(t, x, y, y′ − y) f ′n dy′,

a similar argument yields the strong convergence in L1(UT,R) of (Q4,n(fn)) towards Q4(f) as
n→ +∞ and the proof of (4.10) is complete. In particular we have proved that Q4 = Q4(f).

It remains to identify Qi for i ∈ {1, 2, 3}. By Corollary 4.4 (i) we may extract a further
subsequence of (fn) (not relabeled) such that

lim
n→+∞

%n(t, x) = %(t, x) a.e. in (0, T )× Ω,(4.23)

where the notation %n and % have been introduced in Corollary 4.4. We consider ψ ∈ L∞(UT ) with
compact support in UT,R for some R > 1. We begin with the fragmentation term Q2 and put

ψn(t, x, y) = ψ(t, x, y)
∫ y

0

bn(t, x, y′, y − y′) dy′.

Observe that ∫
UT

ψ Q2,n(fn) dydxdt =
∫
UT

ψn fn dydxdt.

Then, on the one hand, (4.13) and the compactness of the support of ψ yield

lim
n→+∞

∫
UT

ψ Q2,n(fn) dydxdt =
∫
UT

ψ Q2 dydxdt.
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On the other hand we infer from (4.2) and (4.3) that

|ψn(t, x, y)| ≤ R MR |ψ|L∞ ,
and

lim
n→+∞

ψn(t, x, y) = ψ(t, x, y)
∫ y

0

b(y′, y − y′) dy′ a.e.

We then infer from Corollary 4.4 (ii) that

lim
n→+∞

∫
UT

ψn fn dydxdt =
∫
UT

ψ f

∫ y

0

b(y′, y − y′) dy′ dydxdt,

hence ∫
UT

ψ Q2 dydxdt =
∫ T

0

∫
Ω

∫ ∞

0

ψ Q2(f) dydxdt.(4.24)

We next consider the coagulation term Q3. We put

ψn(t, x, y, y′) = an(t, x, y, y′) ψ(t, x, y),

and notice that ∫
UT

ψ
Q3,n(fn)
1 + %n

dydxdt =
∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

ψn Fn f ′n dy′dydxdt,

where Fn and %n are defined in Corollary 4.4. Owing to (4.13), (4.23) and the compactness of the
support of ψ we deduce from Lemma A.2 that

lim
n→+∞

∫
UT

ψ
Q3,n(fn)
1 + %n

dydxdt =
∫
UT

ψ
Q3

1 + %
dydxdt.

Using again the compactness of the support of ψ together with (4.2) and (4.3) we obtain that

lim
n→+∞

ψn(t, x, y, y′) = a(y, y′) ψ(t, x, y) a.e.

|ψn(t, x, y, y′)| ≤ |ψ|L∞ ωR(y′) (1 + y′).
Therefore, it follows from Corollary 4.4 (iii) that

lim
n→+∞

∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

ψn Fn f ′n =
∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

a(y, y′) ψ F f ′.

The above analysis entails ∫
UT

ψ
Q3

1 + %
dydxdt =

∫
UT

ψ
Q3(f)
1 + %

dydxdt.(4.25)

We finally consider Q1. We put

ψn(t, x, y, y′) = an(t, x, y, y′) ψ(t, x, y + y′),

so that ∫
UT

ψ
Q1,n(fn)
1 + %n

dydxdt =
∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

ψn Fn f ′n dy′dydxdt.

We then argue as for Q3 to conclude that∫
UT

ψ
Q1

1 + %
dydxdt =

∫
UT

ψ
Q1(f)
1 + %

dydxdt.(4.26)

Since (4.24)-(4.26) are valid for every ψ in L∞(UT ) with compact support in UT we end up with

Qi = Qi(f) a.e. for i ∈ {1, . . . , 4}.(4.27)

Now, owing to (4.12), (4.13) and (4.27) it is straightforward to pass to the limit in the equation
satisfied by fn. We thus obtain that f satisfies (2.5) with initial datum f(0) and the proof of
Theorem 4.1 is complete. ut
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5 Existence

This section is devoted to the proof of Theorems 2.3 and 2.6 and is divided into three parts. We
first study the partially diffusive heat equation ∂tu − ν(y) ∆xu = g with homogeneous Neumann
boundary conditions and establish existence and uniqueness of solutions in a L1-framework, to-
gether with the L1-compactness of volume averages. The second part is devoted to the construction
of approximations of (1.2)-(??), the solutions of which enjoy the properties required to apply The-
orem 4.1. The convergence of these approximating solutions towards a solution of (1.2)-(??) is
performed in the last part which completes the proofs of Theorems 2.3 and 2.6.

5.1 A partially diffusive heat equation

Let J be a non-empty and bounded interval of R+ and consider a non-negative function ν ∈ L∞(J)
satisfying

0 < m1 ≤ ν(y) ≤ m2 a.e. in J(5.1)

for some positive real numbers m1 and m2. Here and below we put U := Ω×J and Qt := (0, t)×U
for t ∈ R+.

Proposition 5.1 Let T ∈ R+ and consider uin ∈ L1(U) and g ∈ L1(QT ). There is a unique
function

u ∈ L∞(0, T ;L1(U)) ∩ L1((0, T )× J ;W 1,1(Ω))(5.2)

satisfying u(0) = uin and ∫ T

0

∫
Ω

∫
J

(ν(y) ∇xu.∇xϕ− u ∂tϕ) dydxdt(5.3)

=
∫

U

uin ϕ(0) dydx+
∫ T

0

∫
Ω

∫
J

g ϕ dydxdt

for each ϕ ∈ C1([0, T ]× Ū) with ϕ(T ) = 0. In addition, u ∈ C([0, T ];L1(U)) with

|u(t)|L1(U) ≤ |uin|L1(U) + |g|L1(Qt), t ∈ [0, T ],(5.4)

and there is a constant CT depending only on Ω, J , T , m1, |uin|L1(U) and |g|L1(QT ) such that

|u|L1((0,T )×J;W 1,1(Ω)) ≤ CT .(5.5)

Remark 5.2 Owing to the regularity (5.2) of u the formula (5.3) is also valid for functions ϕ ∈
L∞(QT ) with ∇xϕ ∈ L∞(QT ), ∂tϕ ∈ L∞(QT ) and ϕ(T ) = 0.

As a first step towards the proof of Proposition 5.1 we consider the case of L2-data.

Lemma 5.3 Consider uin ∈ L2(U) and g ∈ L2(QT ). There is a unique function u ∈ C([0, T ];L2(U)) ∩ L2((0, T )× J ;H1(Ω)),

∂tu ∈ L2((0, T )× J ;H1(Ω)′),
(5.6)

satisfying u(0) = uin and∫ t

0

∫
J

〈∂tu, ϕ〉 dyds+
∫ t

0

∫
U

ν(y) ∇xu.∇xϕ dydxds(5.7)

=
∫ t

0

∫
U

g ϕ dydxds
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for each t ∈ (0, T ) and ϕ ∈ L2((0, T ) × J ;H1(Ω)). Here H1(Ω)′ denotes the dual space of H1(Ω)
and 〈., .〉 the duality pairing between H1(Ω) and H1(Ω)′. Moreover, for t ∈ [0, T ], there holds

|u(t)|L2(U) ≤ |uin|L2(U) +
∫ t

0

|g(s)|L2(U) ds.(5.8)

Proof. Observe first that, if u is a function satisfying (5.6) and (5.7), we may take ϕ = u in (5.7)
and obtain

|u(t)|2L2 + 2
∫ t

0

∫
U

ν(y) |∇xu|2 dydxds

= |uin|2L2 + 2
∫ t

0

∫
U

|g(s)|L2(U) |u(s)|L2(U) ds

for t ∈ [0, T ]. As (5.7) is a linear equation the uniqueness part of Lemma 5.3 and (5.8) follow at
once from the above inequality and a variant of the Gronwall lemma [7, Lemma A.5].

In order to prove the existence part of Lemma 5.3 we consider the following regularised problem

∂tu
ε − ν(y) ∆xu

ε − ε ∂2
yu

ε = g in (0, T )× Ω× J,

∂nu
ε = 0 on (0, T )× ∂Ω× J,

∂yu
ε = 0 on (0, T )× Ω× ∂J,

uε(0) = uin in Ω× J,

for ε ∈ (0, 1). Classical arguments ensure the existence and uniqueness of a weak solution uε to
the above initial-boundary value problem satisfying

uε ∈W 1,2(0, T ;L2(U)) ∩ L2(0, T ;H1(U)),

together with the estimates

sup
t∈[0,T ]

|uε(t)|L2(U) +
∣∣∣ν1/2 ∇xu

ε
∣∣∣
L2(QT )

+
∣∣∣ε1/2 ∂yu

ε
∣∣∣
L2(QT )

≤ K,(5.9)

|∂tu
ε|L2(0,T ;H1(U)′) ≤ K,

where K does not depend on ε ∈ (0, 1). We are thus in a position to apply a classical Aubin lemma
(see, e.g., [32, Corollary 4]) to conclude that there are a function u ∈ L2(QT ) and a subsequence
of (uε) (not relabeled) such that

uε −→ u weakly in L2(QT ) and strongly in C([0, T ];H1(U)′).(5.10)

We may then pass to the limit as ε→ 0 in the equation satisfied by uε and obtain that u satisfies
(5.7) for ϕ ∈ L2(0, T ;H1(U)). A density argument then yields that ∂tu has the regularity (5.6) and
that (5.7) holds true. Finally u belongs to L∞(0, T ;L2(U)) by (5.9), which, together with (5.10),
entail that u belongs to C([0, T ];w − L2(U)). Since t 7→ |u(t)|L2 is in C([0, T ]) as a consequence of
(5.7) (with ϕ = u) the reflexivity of L2(U) and (5.9) actually imply that u enjoys the regularity
(5.6). ut

For further use we derive additional regularity properties of the solution to (5.6)-(5.7).

Lemma 5.4 Under the assumptions and notations of Lemma 5.3 there holds

|u(t)|L1(U) ≤ |uin|L1(U) + |g|L1(Qt)(5.11)

for t ∈ [0, T ] and there is a positive constant C(Ω, T,m1) such that

|∇xu|L1(QT ) ≤ C(Ω, T,m1)
(
|uin|L1(U) + |g|L1(QT )

)
.(5.12)

Furthermore, if uin ≡ 0 and g ∈ D(QT ), we have∣∣∂i
t∂

j
xu
∣∣
L∞(QT )

≤ T
∣∣∂i

t∂
j
xg
∣∣
L∞(QT )

(5.13)

for i ∈ N and j ∈ N.
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Proof. We first observe that the Fubini theorem and (5.1) entail that, for almost every y ∈ J ,
ν(y) ≥ m1 and uin(., y) and g(., ., y) belong to L2(Ω) and L2((0, T )× Ω), respectively. For such y
we denote by vy the unique solution in C([0, T ];L2(Ω)) with ∇xv

y ∈ L2((0, T )× Ω) to
∂tv

y − ν(y) ∆xv
y = g(., ., y) in (0, T )× Ω,

∂nv
y = 0 on (0, T )× ∂Ω,

vy(0, .) = uin(., y) in Ω.

(5.14)

Introducing V (t, x, y) = vy(t, x) for (t, x, y) ∈ QT the properties of the vy’s yield that V satisfies
(5.6) and (5.7) and we infer from the uniqueness statement of Lemma 5.3 that u(., ., y) = V (., ., y)
for almost every y ∈ J . The assertion (5.11) then readily follows from the L1(Ω)-contraction
property of (5.14) after a further integration with respect to y ∈ J . Next, if uin ≡ 0 and g ∈
D(QT ), (5.13) is a straightforward consequence of (5.14) and the maximum principle. Finally, to
prove (5.12), we notice that the smoothing properties of (5.14) guarantee that there is a constant
C(Ω, T,m1) depending only on Ω, T and m1 such that

|∇xv
y|L1((0,T )×Ω) ≤ C(Ω, T,m1)

(
|uin(., y)|L1(Ω) + |g(., ., y)|L1((0,T )×Ω)

)
(5.15)

for almost every y ∈ J . The assertion (5.15) can be proved either by using the integral formulation
of (5.14) and decay estimates of the linear heat semigroup or by a duality method [4, Section 3]
or with the device introduced in [6, Section IV]. Integrating (5.15) with respect to y ∈ J yields
(5.12). ut
Proof of Proposition 5.1. We proceed along the lines of the proof of [4, Lemmes 3.3 & 3.4].
– Existence : let (uin

k )k≥1 and (gk)k≥1 be sequences in L2(U) and L2(QT ), respectively, such that(
uin

k , gk

)
−→

(
uin, g

)
in L1(U)× L1(QT ).(5.16)

For k ≥ 1 we denote by uk the solution to (5.6)-(5.7) with data
(
uin

k , gk

)
. The linearity of (5.7),

(5.11) and (5.12) warrant that (uk) is a Cauchy sequence in C([0, T ];L1(U)) and L1((0, T ) ×
J ;W 1,1(Ω)) and we denote its limit by u. Clearly u enjoys the regularity properties (5.2) and
(5.5). It is then straighforward to pass to the limit as k → +∞ in (5.7) and check that u satisfies
(5.3).
– Uniqueness : Since (5.2)-(5.3) is a linear problem it is sufficient to prove that any function
satisfying (5.2)-(5.3) with uin = g = 0 vanishes identically. We thus consider a function u satisfying
(5.2)-(5.3) with uin = g = 0 and proceed along the lines of [4, Lemme 3.4] by a duality method.
Given ϑ ∈ D(QT ) we define ϑ̃(t, x, y) = ϑ(T−t, x, y) for (t, x, y) ∈ QT and denote by ψ̃ the solution
to (5.6)-(5.7) with initial datum and right-hand side (0, ϑ̃). By (5.13) the function ψ defined by
ψ(t, x, y) = ψ̃(T − t, x, y), (t, x, y) ∈ QT , enjoys the required properties to be used in (5.3) (see
Remark 5.2) and we obtain after some computations∫

QT

u ϑ dydxdt = 0.

Consequently u ≡ 0 and the proof of Proposition 5.1 is complete. ut
We next establish some compactness properties of the volume averages of sequences of solutions

to (5.2)-(5.3).

Proposition 5.5 Let T ∈ R+ and consider sequences of functions (uin
k )k≥1 in L1(U), (gk)k≥1 in

L1(QT ) and (νk)k≥1 in L∞(J). Assume that there are positive constants m1 and m2 such that

|uin
k |L1(U) + |gk|L1(QT ) ≤ m2,(5.17)

0 < m1 ≤ νk(y) ≤ m2 a.e. in J(5.18)
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for each k ≥ 1. For k ≥ 1 we denote by uk the solution to (5.2)-(5.3) with diffusion coefficient νk

instead of ν, initial datum uin
k and right-hand side gk given by Proposition 5.1. Assuming moreover

that there is u ∈ L1(QT ) such that

uk ⇀ u in L1(QT ),(5.19)

we have ∫
J

uk ϕ(y) dy −→
∫

J

u ϕ(y) dy in L1((0, T )× Ω)(5.20)

for any ϕ ∈ D(J).

Proof. Owing to (5.17), (5.18), (5.4) and (5.5) there is a constant C depending only m1, m2, T , J
and Ω such that

sup
t∈[0,T ]

|uk(t)|L1(U) +
∫ T

0

∫
Ω

∫
J

|∇xuk| dydxdt ≤ C(5.21)

for each k ≥ 1. For ϕ ∈ L∞(J) we put

%ϕ
k (t, x) :=

∫
J

uk(t, x, y) ϕ(y) dy

and infer from (5.21) and the Fubini theorem that

sup
t∈[0,T ]

|%ϕ
k (t)|L1(Ω) +

∫ T

0

∫
Ω

|∇x%
ϕ
k | dxdt ≤ C |ϕ|L∞(J)(5.22)

for each k ≥ 1. We next infer from (5.3) that, if ϕ belongs to D(J), %ϕ
k satisfies

∂t%
ϕ
k = ∆x%

νkϕ
k +

∫
J

gk(., ., y) ϕ(y) dy in D′((0, T )× Ω).

It therefore follows from (5.18) and (5.22) that

(∂t%
ϕ
k ) is bounded in L1(0, T ;Hm(Ω)′)(5.23)

for m large enough. Owing to (5.22), (5.23) and the compactness of the embedding of W 1,1(Ω)
into L1(Ω) it follows from [32, Corollary 4] that (%ϕ

k ) is compact in L1((0, T )×Ω). Now it is clear
from (5.19) that the only possible cluster point of (%ϕ

k ) as k → +∞ is

%ϕ : (t, x) 7→
∫

J

u(t, x, y) ϕ(y) dy,

which warrants that (%ϕ
k ) converges towards %ϕ in L1((0, T )× Ω). ut

5.2 A regularized problem

Let a, b and d be kinetic and diffusion coefficients satisfying (1.1), (2.2) and (2.1), respectively,
and assume further that

ess inf
[0,m]

d > 0 and a(y, y′) = b(y, y′) = 0 whenever y + y′ ≥ m(5.24)

for some m ∈ R+. Observe that (5.24) implies that supp Q(f) ⊂ [0,m]. For δ ∈ (0, 1), we further
introduce as in [14]

Q̃(f) =
Q(f)

1 + δ %m(f)
with %m(f) =

∫ m

0

f(y) dy,

Q̃i(f) =
Qi(f)

1 + δ %m(f)
, i ∈ {1, . . . , 4}.

With these notations we are in a position to state the main result of this section.
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Proposition 5.6 Let f in be a non-negative function in L∞(Ω × R+) with support in Ω̄ × [0,m]
and δ ∈ (0, 1). Under the assumptions (1.1), (2.2), (5.24) and (2.1) on the kinetic and diffusion
coefficients there is a unique non-negative function

f ∈ C([0,+∞);L2(Ω× R+))

with f(0) = f in satisfying supp f(t) ⊂ Ω̄ × [0,m] for each t ∈ [0,+∞) and f is a solution to
(5.6)-(5.7) in (0, T ) × Ω × (0,m) with (ν, uin, g) = (d, f in, Q̃(f)) for each T ∈ R+. Also, for
t ∈ R+ there holds ∫

Ω

∫ m

0

y f(t, x, y)dydx =
∫

Ω

∫ m

0

y f in(x, y)dydx.(5.25)

Assume further that there is γ0 > 0 such that f in ≥ γ0 a.e. in Ω × (0,m). Then, for each
t ∈ R+ there is a positive constant γ(t) depending on a, b, m and t such that

f(s, x, y) ≥ γ(t) > 0 a.e. in (0, t)× Ω× (0,m).(5.26)

The proof of Proposition 5.6 will be performed by a classical fixed point argument. For that
purpose we first need to check that the reaction terms have Lipschitz continuity properties. We
summarize the required properties in the next lemma, the proof being left to the reader.

Lemma 5.7 Let a and b be kinetic coefficients satisfying (1.1), (2.2) and (5.24) and put

Ka,b := sup
(y,y′)∈R2

+

{
a(y, y′) + (1 + y + y′)2 b(y, y′)

}
< +∞.

If δ ∈ (0, 1) and f ∈ L2(Ω × (0,m)) then Q̃i(f) also belongs to L2(Ω × (0,m)) for i ∈ {1, . . . , 4}.
In addition, putting Λ = 4 Ka,b δ

−1 there holds∣∣∣Q̃i(f)
∣∣∣
L2(Ω×(0,m))

≤ Λ |f |L2(Ω×(0,m))∣∣∣Q̃i(f)− Q̃i(f̂)
∣∣∣
L1(Ω×(0,m))

≤ Λ
∣∣∣f − f̂

∣∣∣
L1(Ω×(0,m))

for every (f, f̂) ∈ L2(Ω× (0,m); R2).

In other words each Q̃i maps bounded subsets of L2(Ω × (0,m)) into bounded subsets of
L2(Ω×(0,m)) and is Lipschitz continuous in L2(Ω×(0,m)) for the norm of L1(Ω×(0,m)). Observe
that the constant Λ in Lemma 5.7 only depends on a and b through Ka,b and, in particular, does
not depend explicitly on m.
Proof of Proposition 5.6. For u ∈ L2(Ω× (0,m)) we put

G(u) = Q̃1(u)+ − Q̃2(u)− Q̃3(u) + Q̃4(u)+,

where r+ := max (r, 0) denotes the positive part of r ∈ R. It readily follows from Lemma 5.7 that

|G(u)|L2(Ω×(0,m)) ≤ 4 Λ |u|L2(Ω×(0,m))

|G(u)−G(û)|L1(Ω×(0,m)) ≤ 4 Λ |u− û|L1(Ω×(0,m))

for (u, û) ∈ L2(Ω × (0,m); R2). For R ≥ 1 and T ∈ R+ we introduce the complete metric space
(XR,T , dist ) defined by

XR,T :=

{
u ∈ C([0, T ];L1(Ω× (0,m)), sup

t∈[0,T ]

|u(t)|L2(Ω×(0,m)) ≤ R

}
,

dist (u, û) = sup
t∈[0,T ]

|(u− û)(t)|L1(Ω×(0,m)).
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For u ∈ XR,T Q̃(u) belongs to L∞(0, T ;L2(Ω× (0,m)) and we denote by G(u) the unique solution
to (5.6)-(5.7) given by Lemma 5.3 with (ν, uin, g) = (d, f in, G(u)). Thanks to (5.8) and (5.11) we
have

sup
t∈[0,T ]

|G(u)(t)|L2(Ω×(0,m)) ≤ |f in|L2(Ω×(0,m)) + 4 T Λ sup
t∈[0,T ]

|u(t)|L2(Ω×(0,m)),

dist (G(u),G(û)) ≤ 4 T Λ dist (u, û).

Choosing R large enough and T small enough it is easily seen that G is a strict contraction from
XR,T in XR,T , whence there are T > 0 and f ∈ XR,T such that f is the unique solution to
(5.6)-(5.7) given by Lemma 5.3 with (ν, uin, g) = (d, f in, G(f)). By classical arguments f might
be extended to a unique maximal solution to (5.6)-(5.7) with (ν, uin, g) = (d, f in, G(f)) defined on
[0, T?) for some T? ∈ (0,+∞] with the following alternative : either T? = +∞ or T? < +∞ and
|f(t)|L2(Ω×(0,m)) blows up as t→ T?. However (5.8), Lemma 5.7 and the Gronwall lemma exclude
the latter. Consequently, T? = +∞.

Next, by (2.2) we have

−G(f)(−f)+ ≤ Mm

δ
(−f)2+,

and it follows from (5.7) (after multiplication by −(−u)+ and integration), the Gronwall lemma
and the non-negativity of f in that (−f)+ = 0 almost everywhere. Consequently f is non-negative
and G(f) = Q̃(f). We may then take y as a test function in the equation satisfied by f and
conclude that (5.25) hold true.

We finally check the last assertion of Proposition 5.6 under the additional assumption that
f in ≥ γ0 > 0 a.e. in Ω× (0,m). Introducing

γ(t) = γ0 exp {−((1 +m) Mm t)/δ},

we infer from (2.2) and (5.7) that

∂t(γ − f) − d ∆x(γ − f) +
(1 +m) Mm

δ
(γ − f)

≤ Q̃2(f) + Q̃3(f)− (1 +m) Mm

δ
f ≤ 0

in L2((0, T )× (0,m);H1(Ω)′) with (γ − f)(0) ≤ 0. Consequently (γ − f)+ = 0, whence (5.26). ut

5.3 Proof of Theorem 2.3

Let a, b, and d be kinetic and diffusion coefficients satisfying (1.1), (1.9), (2.12), (2.2), and (2.1),
respectively, and consider an initial datum f in satisfying (2.14). The aim of this section is to show
that the above assumptions on the data guarantee the existence of a weak solution to (1.2)-(??)
as stated in Theorem 2.3. We actually have a more precise result.

Theorem 5.8 Under the assumptions of Theorem 2.3 there is at least one weak solution f to
(1.2)-(??) on [0,+∞) satisfying (1.8) and there is a constant κ0 depending only on Ω, M and f in

such that ∫
Ω

∫ ∞

0

f(t) (1 + y) dydx+H(f(t)|M) ≤ κ0,(5.27)

∫ t

0

(∫
Ω

∫ ∞

0

d(y)1/2 |∇xf | dydx
)2

ds ≤ κ0,(5.28)

∫ t

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydxds ≤ κ0(5.29)
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for every t ∈ R+. There also holds∫
E

d(y)1/2 |∇xf | dydxdt ≤ κ0

(∫
E

f dydxdt

)1/2

(5.30)

for every measurable subset E of R+ × Ω× R+.
Furthermore, if αs = +∞ (recall that αs is defined in (2.15)) there holds∫

Ω

∫ ∞

0

y f(t) dydx =
∫

Ω

∫ ∞

0

y f in dydx, t ≥ 0.(5.31)

Notice that we do not obtain an L2-estimate on d1/2 ∇xf f
−1/2 in Theorem 5.8 as it could be

expected from the formal computation (1.10) and as one gets in the case of the Boltzmann-Fokker-
Planck equation, see [13]. This is due to the fact that, though (1.10) is satisfied by the solutions to
the approximating problems considered below, the compactness properties of these solutions are
not sufficient to recover (1.10) in the limit. Instead, we obtain the weaker estimates (5.28) which
is nevertheless useful for the study of the large time behaviour in Section 6.
Proof of Theorem 5.8. Let m ≥ 1 be an integer and put

am(y, y′) = 1[0,m](y + y′) a(y, y′), bm(y, y′) = 1[0,m](y + y′) b(y, y′),

dm(y) = min{m,max {1/m, d(y)}},

f in
m (x, y) = min

{
max

{
f in(x, y),

M(y)
m

}
,m

}
1[0,m](y)

for (x, y, y′) ∈ Ω×R2
+. We first point out worthy properties enjoyed by the above approximations

of the data. First (am, bm) still satisfies the detailed balance condition (1.9) with the same function
M , that is,

am(y, y′) M(y) M(y′) = bm(y, y′) M(y + y′), (y, y′) ∈ R2
+.

Also, (2.12) ensures that there is γ0,m > 0 such that f in
m ≥ γ0,m a.e. in Ω× (0,m). We finally infer

from (2.14) that there is a constant κ0 depending only on Ω, M and f in such that

H(f in
m |M) +

∫
Ω

∫ ∞

0

y f in
m dydx ≤ κ0.(5.32)

We next define Qi,m as Qi with (am, bm) instead of (a, b) for i ∈ {1, . . . , 4},

Q̃i,m(f) =
Qi,m(f)

1 + %m(f)/m
with %m(f) =

∫ m

0

f(y) dy,

and Q̃m(f) = Q̃1,m(f) − Q̃2,m(f) − Q̃3,m(f) + Q̃4,m(f). Owing to the properties enjoyed by am,
bm, dm and f in

m we are in a position to apply Proposition 5.6 and obtain a non-negative solution
fm to (5.6)-(5.7) on (0,+∞) × Ω × (0,m) with (ν, uin, g) = (dm, f

in
m , Q̃m(fm)) which satisfies

supp fm(t) ⊂ Ω̄× [0,m], ∫
Ω

∫ ∞

0

y fm(t) dydx =
∫

Ω

∫ ∞

0

y f in
m dydx,(5.33)

fm(s, x, y) ≥ γm(t) > 0 a.e. in (0, t)× Ω× (0,m)

for some positive constant γm(t) (depending on t and m) and for each t ∈ R+. Observe next that
this positivity property allows us to take ln (fm/M) as a test function in the equation satisfied by
fm ; since (am, bm) satisfies the detailed balance condition (1.9) we obtain

H(fm(t)|M) +
∫ t

0

∫
Ω

∫ m

0

dm(y)
|∇xfm|2

fm
dydxds(5.34)

+
1
2

∫ t

0

∫
Ω

∫ m

0

∫ m

0

j
(
ãm fm f ′m, b̃m f ′′m

)
dy′dydxds ≤ H(f in

m |M),
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with

ãm(s, x, y, y′) =
am(y, y′)

1 + %m(fm(s, x))/m
, b̃m(s, x, y, y′) =

bm(y, y′)
1 + %m(fm(s, x))/m

.

Now, on the one hand, it follows from (5.32) that the right-hand sides of (5.33) and (5.34) are
bounded from above by a constant κ0 which depends neither on m ≥ 1 nor on t ∈ R+. On the
other hand, we remark that fm is a weak solution to (1.2)-(??) on [0,+∞) with kinetic coefficients
(ãm, b̃m), diffusion coefficient dm and initial datum f in

m which obviously fulfil (1.1), (1.9), (2.12),
(2.2), and (2.1), uniformly with respect to m ≥ 1. We may then proceed along the lines of
Section 3.1 to show that ∫

Ω

∫ ∞

0

(1 + y) fm(t) dydx+H(fm(t)|M) ≤ κ0,(5.35)

∫ t

0

(∫
Ω

∫ ∞

0

dm(y)1/2 |∇xfm| dydx
)2

ds ≤ κ0,(5.36) ∫ t

0

∫
Ω

∫ ∞

0

∫ ∞

0

j
(
ãm fm f ′m, b̃m f ′′m

)
dy′dydxds ≤ κ0(5.37)

for each t ∈ R+ (with some possibly larger κ0) while for each T ∈ R+ there is a weakly compact
subset Kw of L1(Ω× R+) such that

fm(t) ∈ Kw for each t ∈ [0, T ],(5.38)

In addition, (
Q̃i,m(fm)

)
is weakly compact in L1((0, T )× Ω× (0, R))(5.39)

for each R ∈ R+, T ∈ R+ and i ∈ {1, . . . , 4}. Also,∫
E

dm(y)1/2 |∇xfm| dydxdt ≤ κ0

(∫
E

fm(y) dydxdt
)1/2

(5.40)

for every measurable subset E of R+ × Ω× R+.
Consequently, on the one hand, ãm, b̃m, and dm clearly satisfy (4.1) and (4.2) and

(am, bm, dm) −→ (a, b, d) a.e. in R+ × Ω× R+.

On the other hand, owing to (5.35), (5.38) and (5.39) the sequence (fm) enjoys the properties
required by Theorem 4.1. We are thus almost in a position to apply Theorem 4.1 but we do
not know yet whether the condition (4.3) is fulfilled. Nevertheless it is clear from the proof of
Theorem 4.1 that (4.3) is only needed to identify the weak limits of the reaction terms and that
the strong compactness property (4.9) holds true without (4.3). But (4.9) is exactly what is needed
to guarantee that (ãm, b̃m) converges towards (a, b) a.e. in R+×Ω×R+. This last remark justifies
that Theorem 4.1 can be used to conclude that there are a subsequence of (fm) (not relabeled) and
a weak solution f to (1.2)-(??) on [0,+∞) with kinetic coefficients a, b and diffusion coefficient d
such that

fm −→ f in C([0, T ];w − L1(Ω× R+))(5.41)

for each T ∈ R+. In particular, it readily follows from the choice of f in
m and (5.41) that f(0) =

f in while (5.35), (5.36), (5.41) and the convexity of H(.|M) ensure that (5.27) holds true. We
next infer from (5.40), (5.41) and (2.1) that (d1/2

m ∇xfm) and (∇xfm) are weakly compact in
L1((0, T ) × Ω × (0, R)) and L1((0, T ) × Ω × (1/R,R)), respectively, for each R ≥ 1 and T ∈ R+.
Therefore,

d1/2
m ∇xfm ⇀ d1/2∇xf in L1((0, T )× Ω× (0, R))(5.42)

for each R ≥ 1 and T ∈ R+. The assertions (5.28) and (5.30) then follow at once from (5.41) and
(5.42) by letting m→ +∞ in (5.36) and (5.40), respectively.

31



It remains to check (5.29). For that purpose we argue as in [15] and claim that am fm f ′m ⇀ a f f ′ in L1((0, T )× Ω× (0, R)2),

bm f ′′m ⇀ b f ′′ in L1((0, T )× Ω× (0, R)2),
(5.43)

for every R ≥ 1 and T ∈ R+. Indeed the weak compactness (5.41) of (fm) guarantees the
claimed weak compactness of (bmf ′′m) which in turn, together with (5.37) and (3.12), entails that
of (amfmf

′
m). Next, if ϕ ∈ L∞((0, T ) × Ω × (0, R)2), we proceed as in the proof of (4.25) (with

ψm = am ϕ) to conclude that (5.43) holds true. Since j is a lower semicontinuous convex function
in R2 the functional

(A,B) ∈ L1((0, T )× Ω× (0, R)2; R2) 7→
∫ T

0

∫
Ω

∫ R

0

∫ R

0

j(A,B) dy′dydxdt

is a lower semicontinuous and convex functional and the weak convergences (5.43) and (5.37) entail
that ∫ T

0

∫
Ω

∫ R

0

∫ R

0

e(f) ≤ lim inf
n→+∞

∫ T

0

∫
Ω

∫ R

0

∫ R

0

en(fn) ≤ κ0.

Letting R→ +∞ yields (5.29) and the proof of Theorem 2.3 is complete in the general case.
It remains to check that (5.41) can be improved to yield (5.31) when αs = +∞. Consider

Y ≥ 1, t ∈ R+, m ≥ 1 and α > 1. Since αs = +∞ the function Mα defined by Mα(y) = M(y) eαy,
y ∈ R+, belongs to L1(R+, ydy). Consequently,∫

Ω

∫ +∞

Y

y fm(t) dydx ≤
∫

Ω

∫ +∞

Y

y Mα(y) 1{fm(t)≤Mα}(x, y) dydx

+
∫

Ω

∫ +∞

Y

y fm(t) 1{fm(t)>Mα}(x, y) dydx

≤ |Ω|
∫ +∞

Y

y Mα(y) dy

+
1
α

∫
Ω

∫ +∞

Y

fm(t) ln
(
fm(t)
M

)
dydx

≤ |Ω|
∫ +∞

Y

y Mα(y) dy +
κ0

α
,

where we have used (5.35) and Lemma 3.4 to bound the last term of the right-hand side of the
above inequality. Therefore,

lim sup
Y→+∞

sup
m≥1

∫
Ω

∫ +∞

Y

fm(t) y dydx ≤ κ0

α

for each α > 1, whence

lim
Y→+∞

sup
m≥1

sup
t∈R+

∫
Ω

∫ +∞

Y

fm(t) y dydx = 0.(5.44)

Recalling (5.41) we readily conclude that

fm −→ f in C([0, T ];w − L1(Ω× R+, (1 + y)dxdy)),

from which (5.31) follows, together with

lim
Y→+∞

sup
t∈R+

∫
Ω

∫ +∞

Y

fm(t) y dydx = 0.(5.45)

The proof of Theorem 2.3 is thus complete. ut
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5.4 Proof of Theorem 2.6

Let a, b, and d be kinetic and diffusion coefficients satisfying (1.1), (1.17), (2.2), (2.22) and (2.1),
respectively, and consider an initial datum f in satisfying (2.23). As in the proof of Corollary 3.9 we
use again a refined version of the de la Vallée-Poussin theorem [27, Proposition I.1.1] to deduce that
there exists a non-negative and convex function Φ0 ∈ C1([0,+∞)) satisfying (3.20) and Φ0(f in) ∈
L1(Ω× R+).

We now introduce approximations of a, b, d and f in. Let us first remark that the monotonicity
property (1.17) is not likely to be fulfilled by a compactly supported approximation of a as required
by Proposition 5.6 ; the proof of Theorem 2.6 will thus proceed in two steps : for k ≥ 1, m ≥ k
and (x, y, y′) ∈ Ω× R2

+ we put

ak(y, y′) = min{a(y, y′), k}, bk(y, y′) = min{b(y, y′), A k} 1[0,k](y + y′),

dk(y) = min{max {1/k, d(y)}, k}, f in,k(x, y) = min{f in(x, y), k} 1[0,k](y),

and
ak

m(y, y′) = ak(y, y′) 1[0,m](y + y′).

Observe that ak
m ≤ ak ≤ a, bk ≤ b, ak(y′, y − y′) ≤ ak(y, y′), 0 ≤ y′ ≤ y,

bk(y, y′ − y) ≤ A ak(y, y′) +B(y′), 0 ≤ y ≤ y′,
(5.46)

and, since a and b are locally bounded in R2
+ by (2.2),

(ak, bk) −→ (a, b) a.e. in R2
+.(5.47)

Also, since Φ0 is a non-decreasing function we have∫
Ω

∫ ∞

0

(
(1 + y) f in,k + Φ0(f in,k)

)
dydx ≤ κ0(5.48)

for each k ≥ 1, where κ0 is a constant depending only on f in. Note that (5.48) will enable us to
employ the estimates derived in Section 3.2 to perform the passage to the limit as k → +∞. On
the other hand ak

m clearly does not satisfy (1.17) but

sup
(y,y′)∈R2

+

(
ak

m(y, y′) + (1 + y + y′)2 bk(y, y′)
)
≤ 2 A (1 + k)3(5.49)

for m ≥ k and k ≥ 1. We now define Qk
i,m and Qk

i with (ak
m, b

k) and (ak, bk), respectively, instead
of (a, b) for i ∈ {1, . . . , 4},

Q̃k
i,m(f) =

Qk
i,m(f)

1 + %m(f)/k
with %m(f) =

∫ m

0

f(y) dy,

Q̃k
i (f) =

Qk
i (f)

1 + %(f)/k
with %(f) =

∫ ∞

0

f(y) dy,

and 
Q̃k

m(f) = Q̃k
1,m(f)− Q̃k

2,m(f)− Q̃k
3,m(f) + Q̃k

4,m(f),

Q̃k(f) = Q̃k
1(f)− Q̃k

2(f)− Q̃k
3(f) + Q̃k

4(f).

We now fix k ≥ 1 and consider m ≥ k. Owing to the properties enjoyed by ak
m, bk, dk and

f in,k we infer from Proposition 5.6 that there is a non-negative solution fk
m to (5.6)-(5.7) on

R+×Ω× (0,m) with (ν, uin, g) = (dk, f in,k, Q̃k
m(fk

m)) which satisfies supp fk
m(t) ⊂ Ω̄× [0,m] and∫

Ω

∫ ∞

0

y fk
m(t) dydx =

∫
Ω

∫ ∞

0

y f in,k dydx(5.50)

33



for t ∈ R+. We next infer from (5.8), (5.49) and Lemma 5.7 that

|fk
m(t)|L2(Ω×R+) ≤ |f in,k|L2(Ω×R+) + 32 A (1 + k)4

∫ t

0

|fk
m(s)|L2(Ω×R+) ds

and the Gronwall lemma entails that

(fk
m) is bounded in L∞(0, T ;L2(Ω× R+))(5.51)

for each T ∈ R+. Using again (5.49) and Lemma 5.7 we further obtain that

(Q̃k
i,m(fk

m)) is bounded in L∞(0, T ;L2(Ω× R+))(5.52)

for i ∈ {1, . . . , 4} and T ∈ R+.
Consider next n ≥ m ≥ k. For i ∈ {1, . . . , 4} we have

Q̃k
i,m(fk

m)− Q̃k
i,n(fk

n) = Q̃k
i,m(fk

m)− Q̃k
i,n(fk

m) + Q̃k
i,n(fk

m)− Q̃k
i,n(fk

n).

On the one hand, using once more (5.49) and Lemma 5.7 we deduce that∣∣∣Q̃k
i,n(fk

m)− Q̃k
i,n(fk

n)
∣∣∣
L1(Ω×R+)

≤ 8 A (1 + k)3
∣∣fk

m − fk
n

∣∣
L1(Ω×R+)

.

On the other hand,
Q̃k

i,m(fk
m)− Q̃k

i,n(fk
m) = 0

if i ∈ {2, 4}, while (5.49) and (5.50) ensure that∣∣∣Q̃k
i,m(fk

m)− Q̃k
i,n(fk

m)
∣∣∣
L1(Ω×R+)

≤ 2 k2

m

∫
Ω

∫ ∞

0

y f in dydx.

Consequently, for n ≥ m ≥ k we have

sup
1≤i≤4

∣∣∣Q̃k
i,m(fk

m)− Q̃k
i,n(fk

n)
∣∣∣
L1(Ω×R+)

(5.53)

≤ C(k,A, f in)
(

1
m

+
∣∣fk

m − fk
n

∣∣
L1(Ω×R+)

)
.

Since (fk
n − fk

m) is the solution to (5.6)-(5.7) with (ν, uin, g) = (dk, 0, Q̃k
m(fk

m)− Q̃k
n(fk

n)) it follows
from (5.4), (5.53) and the Gronwall lemma that (fk

m)m≥k is a Cauchy sequence in C([0, T ];L1(Ω×
R+)) for each T ∈ R+ and we denote by fk its limit. This last result and (5.53) entail that(
Q̃k

i,m(fk
m)
)

m≥k
is also a Cauchy sequence in C([0, T ];L1(Ω×R+)) for i ∈ {1, . . . , 4} and T ∈ R+

and we denote by Q̄k
i its limit. We may now argue as in the proof of Theorem 4.1 and conclude that

Q̄k
i = Qk

i (fk) with the help of Corollary 4.4. Recalling (5.51) and (5.52) it is straightforward to
pass to the limit as m→ +∞ and deduce that fk is the solution to (5.6)-(5.7) on (0,+∞)×Ω×R+

with (ν, uin, g) = (dk, f in,k, Q̃k(fk)).
We now pass to the limit as k → +∞ : we first notice that, for k ≥ 1, fk is a weak solution to

(1.2)-(??) on [0,+∞) with kinetic coefficients ãk and b̃k defined by

ãk(t, x, y, y′) =
ak(y, y′)

1 + %(fk)/k
, b̃k(t, x, y, y′) =

bk(y, y′)
1 + %(fk)/k

,

diffusion coefficient dk and initial datum f in,k. Moreover, we infer from (5.46) that (ãk, b̃k) satisfies
(5.46) as well, together with (4.1) and (4.2). Also, (5.46), (5.48) and the regularity of (fk, Q̃k(fk))
allow us to justify the computations performed in Section 3.2 and show that the sequence (fk)
enjoys the bounds of Corollaries 3.7 and 3.9 uniformly with respect to k ≥ 1. We may therefore
employ Lemma 3.10 to deduce that (fk) satisfies the compactness properties required to apply
Theorem 4.1. The remainder of the proof of Theorem 2.6 is then similar to that of Theorem 2.3
in the previous section to which we refer. ut
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6 Large time behaviour

In this section we prove the stabilization towards an equilibrium in the long time when the kinetic
coefficients a and b satisfy the detailed balance condition (1.9). More precisely we assume that the
kinetic and diffusion coefficients fulfil (1.1), (2.2), (2.12) and (2.1), respectively, and that a and b
are positive a.e. in R2

+. We are also given an initial datum f in satisfying (2.14) and denote by f
the weak solution to (1.2)-(??) constructed in Theorem 5.8. It first follows from (5.27), (5.28) and
(5.29) that

f ∈ L∞(0,+∞;L1(Ω× R+, (1 + y) dxdy), H(f |M) ∈ L∞(0,+∞),

d1/2 ∇xf ∈ L2(0,+∞;L1(Ω× R+)), e(f) ∈ L1((0,+∞)× Ω× R2
+).

(6.1)

Let (tn) be a sequence of positive real numbers such that tn → +∞ and put fn(t) = f(tn + t)
for n ≥ 1 and t ∈ R+. Owing to Theorem 5.8 it is easily seen that fn is a weak solution to
(1.2)-(??) on [0,+∞) with initial datum f(tn). We fix T ∈ R+ and infer from (6.1) that

sup
t∈[0,T ]

∫
Ω

∫ ∞

0

(1 + y) fn(t) dydx+H(fn(t)|M) ≤ κ0,(6.2)

∫ T

0

(∫
Ω

∫ ∞

0

d(y)1/2 |∇xfn| dydx
)2

dt(6.3)

≤
∫ tn+T

tn

(∫
Ω

∫ ∞

0

d(y)1/2 |∇xf | dydx
)2

dt −→ 0,

∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(fn) dy′dydxdt ≤
∫ tn+T

tn

∫
Ω

∫ ∞

0

∫ ∞

0

e(f) dy′dydxdt −→ 0.(6.4)

Thanks to Lemma 3.4 we are in a position to apply Theorem 4.1 to deduce that there are a
subsequence of (fn) (not relabeled) and a weak solution f to (1.2)-(??) such that

fn −→ f̄ in C([0, T ];w − L1(Ω× R+)),(6.5) 
Qi(fn) ⇀ Qi(f̄) in L1((0, T )× Ω× (0, R)),

L(fn) −→ L(f̄) in L1((0, T )× Ω× (0, R)),

Q4(fn) −→ Q4(f̄) in L1((0, T )× Ω× (0, R))

(6.6)

for every R ∈ R+. Moreover, (5.30), (2.1) and (6.5) warrant the weak compactness of (d1/2 ∇xfn)
and (∇xfn) in L1((0, T )×Ω× (0, R)) and L1((0, T )×Ω× (1/R,R)), respectively, for every R ≥ 1,
whence

d1/2 ∇xfn ⇀ d1/2 ∇xf̄ in L1((0, T )× Ω× (0, R)).(6.7)

On the one hand we argue as in the proof of (5.29) and use (6.4) to conclude that

e(f̄) = 0 a.e. in (0, T )× Ω× R2
+.(6.8)

Consequently,

a(y, y′) f̄(t, x, y) f̄(t, x, y′) = b(y, y′) f̄(t, x, y + y′) a.e. in (0, T )× Ω× R2
+.(6.9)

In particular (6.9) implies that Q(f̄) = 0. On the other hand, (6.3), (6.7) and (2.1) entail that

∇xf̄ = 0 a.e. in (0, T )× Ω× R+.(6.10)
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Therefore f̄ satisfies ∂tf̄ = 0 in D′((0, T )× Ω× R+) and we end up with f̄(t, x, y) = f̄(y) almost
everywhere in (0, T ) × Ω × R+. Recalling (6.9) we conclude from Lemma C.1 that there is α ∈
[−∞,+∞) such that

f̄ = Mα a.e. in (0, T )× Ω× R+.

Owing to (1.8) and (6.5) we clearly have α ∈ [−∞, αin] and we have thus proved that

fn −→Mα in C([0, T ];w − L1(Ω× R+)).(6.11)

In order to improve the convergence (6.11) we adapt an argument of P.-L. Lions [28] and first
establish that

fn −→Mα in L1((0, T )× Ω× R+).(6.12)

Indeed if α = −∞ (i.e. Mα ≡ 0) the assertion (6.12) follows at once from (6.11) and the non-
negativity of fn for every n ≥ 1. If α ∈ R we have

|η − ξ| ≤ (λ− 1) ξ +
1

lnλ
(η − ξ) (ln η − ln ξ), (ξ, η) ∈ R2

+, λ > 1

by (3.12). Consequently, for R ≥ 1 and λ > 1,∫ T

0

∫
Ω

∫ R

0

|Q3(fn)−Q4(fn)| dydxdt ≤ (λ− 1)
∫ T

0

∫
Ω

∫ R

0

Q4(fn) dydxdt

+
1

lnλ

∫ T

0

∫
Ω

∫ ∞

0

∫ ∞

0

e(fn) dy′dydxdt.

Thanks to (6.4) and (6.6) we may pass to the limit as n → +∞ in the above inequality and,
recalling that f̄ = Mα, we obtain

lim sup
n→+∞

∫ T

0

∫
Ω

∫ R

0

|Q3(fn)−Q4(fn)| dydxdt ≤ (λ− 1)
∫ T

0

∫
Ω

∫ R

0

Q4(Mα) dydxdt.

We then let λ→ 1 and use (6.6) once more to conclude that

Q3(fn) −→ Q4(Mα) in L1((0, T )× Ω× (0, R))

for each R ∈ R+. Since Q3(Mα) = Q4(Mα) by (1.9) we finally obtain, after extracting a further
subsequence if necessary, that Q3(fn) −→ Q3(Mα) in L1((0, T )× Ω× (0, R)),

fn L(fn) −→Mα L(Mα) a.e. in (0, T )× Ω× (0, R)
(6.13)

for every R ∈ R+. Since L(fn) converges towards L(Mα) in L1((0, T ) × Ω × (0, R)) by (6.6) the
positivity (2.12) of M ensures that (fn) converges almost everywhere towards Mα, whence the
claim (6.12) by (6.11) and the Vitali theorem.

It then readily follows from (6.12) that

Q2(fn) −→ Q2(Mα) in L1((0, T )× Ω× (0, R))(6.14)

for each R ∈ R+ and we next argue as in the proof of (6.13) to obtain that

Q1(fn) −→ Q1(Mα) in L1((0, T )× Ω× (0, R)).(6.15)

Combining (6.6), (6.13), (6.14) and (6.15) yields

Q(fn) −→ Q(Mα) = 0 in L1((0, T )× Ω× (0, R)).(6.16)
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We now consider t ∈ (0, T ], s ∈ (0, t) and infer from (5.4) that∫
Ω

∫ R

0

|fn(t)−Mα| dydx ≤
∫

Ω

∫ R

0

|fn(s)−Mα| dydx

+
∫ t

s

∫
Ω

∫ R

0

|Q(fn)| dydxdσ.

After integration with respect to s we obtain

t

∫
Ω

∫ R

0

|fn(t)−Mα| dydx ≤
∫ t

0

∫
Ω

∫ R

0

|fn(s)−Mα| dydxds

+ t

∫ t

0

∫
Ω

∫ R

0

|Q(fn)| dydxds.

Thanks to (6.12) and (6.16) we may pass to the limit as n→ +∞ and end up with

lim
n→+∞

sup
t∈(0,T ]

t

∫
Ω

∫ R

0

|fn(t)−Mα| dydx = 0.

Combining (6.11) with the above assertion yields (2.18).
Finally, if αs = +∞, (5.31) and the estimate (5.45) imply that Mα = Mαin , whence (2.20).

7 Some extensions

The purpose of this section is to outline how some slight modifications of our analysis allow us to
prove the existence of weak solutions to (1.2)-(??) for kinetic coefficients a and b satisfying the
symmetry condition (1.1), the monotonicity condition (1.17) but not (2.2) or (2.22).

We first consider kinetic coefficients a and b satisfying (1.1), (1.17) and (2.2) and assume that
there are positive real numbers A and B such that 0 ≤ b(y, y′) ≤ B, (y, y′) ∈ R2

+,

A ≤ a(y, y′), (y, y′) ∈ [1,+∞)2.
(7.1)

As for the diffusion coefficient we still assume that (2.1) holds while a stronger assumption is
required on the initial datum, namely,

f in ∈ L1(Ω× R+, (1 + y)dxdy) ∩ L2(Ω× R+) is non-negative a.e.(7.2)

We then have the following result.

Theorem 7.1 Assume that the kinetic coefficients a and b satisfy (1.1), (1.17), (2.2) and (7.1),
the diffusion coefficient d satisfy (2.1) and the initial datum f in satisfy (7.2). Then there is a weak
solution f to (1.2)-(??) on [0,+∞) satisfying (1.8) and f belongs to L∞(0, T ;L2(Ω × R+)) for
each T ∈ R+.

Theorem 7.1 applies in particular when a(y, y′) = (y y′)α for α ∈ [0, 1) and b ≡ 1 which cannot
be handled by Theorem 2.6 (as (2.21)-(2.22) are not fulfilled).

The proof of Theorem 7.1 is similar to that of Theorem 2.6 except that the function Φ in
Corollary 3.9 and Lemma 3.10 is now Φ(r) = r2, r ∈ R+, and Lemma 3.8 is to be replaced by the
following result.

Lemma 7.2 Under the assumptions of Theorem 7.1 there holds∫
Ω

∫ ∞

0

Q4(f) f dydx ≤ 2 B
∫

Ω

∫ ∞

0

f2 dydx+
2 B
A

∫
Ω

∫ ∞

0

Q3(f) f dydx.
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Proof. Thanks to (7.1) we have∫
Ω

∫ ∞

0

Q4(f) f dydx ≤ B

∫
Ω

∫ ∞

0

∫ ∞

0

f f ′ dy′dydx

≤ B

∫
Ω

(∫ 1

0

f dy +
∫ ∞

1

f dy

)2

≤ 2 B
∫

Ω

(∫ 1

0

f dy

)2

+ 2 B
∫

Ω

∫ ∞

1

∫ ∞

1

f f ′ dy′dydx

≤ 2 B
∫

Ω

∫ 1

0

f2 dy +
2 B
A

∫
Ω

∫ ∞

1

∫ ∞

1

a(y, y′) f f ′ dy′dydx,

and the proof of Lemma 7.2 is complete. ut
Another possible extension of our analysis involves the particular class of coagulation coefficients

of multiplicative type and allows to relax the growth condition (2.2). More precisely, we assume
that the coagulation coefficient a satisfies (1.1), (1.17) and there are a non-negative measurable
function r : R+ → R+ and A ≥ 1 such that

r(y) r(y′) ≤ a(y, y′) ≤ A r(y) r(y′), (y, y′) ∈ R2
+.(7.3)

For the sake of simplicity we assume that b ≡ 0 (though it is possible to consider fragmentation
coefficients suitably dominated by r as in [21]). In that case we have the following result.

Theorem 7.3 Under the assumptions (1.1), (1.17), (7.3), (2.1) and (2.23) on the coagulation
coefficients a, the diffusion coefficient d and the initial datum f in, and if b ≡ 0, there is a weak
solution f to (1.2)-(??) on [0,+∞) satisfying (1.8).

Here again, the proof of Theorem 7.3 is similar to that of Theorem 2.6 but we need an additional
estimate to control the behaviour of f for large values of y (in order to be able to pass to the limit
in Q3(f) and Q4(f)). Such an estimate is supplied by (7.3) which guarantees that∫ T

0

∫
Ω

(∫ ∞

Y

r(y) f(t, x, y) dy
)2

dxdt ≤ 2
Y

∫
Ω

∫ ∞

0

(1 + y) f in dydx

holds true for every Y ∈ R+ (see [21, Lemma 2.4 & 2.5]).
Notice that Theorem 7.3 allows us to obtain an existence result for

a(y, y′) = y y′ +A1 (y + y′) +A0,

where A0, A1 are non-negative real numbers, which clearly does not satisfy the growth condition
(2.2). Though Theorem 7.3 extends to the coagulation-fragmentation equation it requires a suffi-
ciently weak fragmentation and in particular, the case a(y, y′) = y y′ and b(y, y′) = 1 cannot be
handled by this device.

Remark 7.4 Let us finally point out that our analysis of the coagulation-fragmentation equation
with diffusion for coagulation coefficients satisfying the monotonicity condition (1.17) is likely to
extend to the multiple fragmentation case (see, e.g., [21] and the references therein).

A Proof of Corollary 4.4

Lemma A.1 Let U be an open bounded subset of Rm, m ≥ 1, and consider two sequences (vn) in
L1(U) and (wk) in L∞(U) and a function w ∈ L∞(U) such that

(vn) is weakly relatively compact in L1(U),(A.1)
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|wk(x)| ≤ C and lim
k→+∞

wk(x) = w(x) a.e.(A.2)

for some C > 0. Then

lim
k→+∞

sup
n≥1

∫
U

|vn| |wk − w| dx = 0.(A.3)

The proof of Lemma A.1 relies on the Egorov and Dunford-Pettis theorems and is implicitly
contained in [14]. Similarly one can prove the following result, the proof of which is given below
for the sake of completeness.

Lemma A.2 Let U be an open bounded subset of Rm, m ≥ 1, and consider two sequences (vn) in
L1(U) and (wn) in L∞(U) and functions v ∈ L1(U) and w ∈ L∞(U) such that

vn ⇀ v in L1(U),(A.4)

|wn(x)| ≤ C and lim
n→+∞

wn(x) = w(x) a.e.(A.5)

for some C > 0. Then

lim
n→+∞

∫
U

|vn| |wn − w| dx = 0 and vn wn ⇀ v w in L1(U).(A.6)

Proof of Lemma A.2. Let ε ∈ (0, 1). The Dunford-Pettis theorem and (A.4) entail that there exists
η > 0 such that

sup
n≥1

∫
E

|vn(x)| dx ≤ ε/(2C)

for any measurable subset E of U with |E| ≤ η. It next follows from (A.5) and the Egorov theorem
that there is a measurable subset Eη with |Eη| ≤ η such that (wn) converges towards w uniformly
on U \ Eη. Then∫

U

|vn| |wn − w| dx ≤ |vn|L1(U) |wn − w|L∞(U\Eη) + 2C
∫

Eη

|vn| dx.(A.7)

Since (vn) is bounded in L1(U) by (A.4) and the last term of the right-hand side of (A.7) is
bounded from above by ε, the left-hand side of (A.7) is bounded from above by 2ε for n large
enough, whence the first assertion of (A.6). The second assertion of (A.6) then readily follows
from the first one and (A.4). ut
Proof of Corollary 4.4. We still use the notations U = Ω× R+ and UT = (0, T )× U .
We first prove the assertion (i) and consider the case where ψ(t, x, y) = ϕ(t, x) ϑ(y) where

ϕ ∈ L∞((0, T )× Ω) and ϑ(y) ≤ ω(y) (1 + y) a.e. in R+

for some positive function ω ∈ L∞0 (R+). There is a sequence (ϑm) in D(R+) such that

lim
m→+∞

ϑm(y) = ϑ(y) and ϑm(y) ≤ 2 ω(y) (1 + y) a.e. in R+.

On the one hand, putting

f̂n(t, x, y) = ω(y) (1 + y) fn(t, x, y), f̂(t, x, y) = ω(y) (1 + y) f(t, x, y),

we infer from (4.4) and (4.12) that

f̂n ⇀ f̂ in L1(UT ).

On the other hand, introducing

ψ̃m(t, x, y) = ϕ(t, x)
ϑm(y)

ω(y) (1 + y)
, ψ̃(t, x, y) = ϕ(t, x)

ϑ(y)
ω(y) (1 + y)

,
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we see that (ψ̃m) is bounded in L∞(UT ) and converges almost everywhere towards ψ̃. We may
thus apply Lemma A.1 to conclude that

lim
m→+∞

sup
n≥1

∫
UT

∣∣∣f̂n − f̂
∣∣∣ ∣∣∣ψ̃m − ψ̃

∣∣∣ dydxdt = 0.

Next, noticing that fn ϕ ϑm = f̂n ψ̃m, we obtain∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

(fn − f) ψ dy

∣∣∣∣ dxdt ≤ |ϕ|L∞
∫ T

0

∫
Ω

∣∣∣∣∫ ∞

0

(f̂n − f̂) ϑm dy

∣∣∣∣ dxdt
+ sup

n≥1

∫
UT

∣∣∣f̂n − f̂
∣∣∣ ∣∣∣ψ̃m − ψ̃

∣∣∣ dydxdt.
We first let n→ +∞ in the above inequality and infer from Proposition 4.3 that the first term of
the right-hand side converges to zero. We then pass to the limit as m → +∞ and conclude that
(4.16) holds true for functions ψ with separated variables. We next argue as in the proof of [14,
Corollary IV.2] to obtain the assertion (i) for arbitrary ψ satisfying (4.15).

As for the assertion (ii), it follows at once from (i) and Lemma A.2. Finally similar arguments
lead to (iii). ut

B Auxiliary results on convex functions

Let Φ ∈ C1([0,+∞)) be a non-negative and convex function satisfying (3.20), that is,
Φ(0) = 0, Φ′(0) ≥ 0 and Φ′ is concave on [0,+∞),

lim
r→+∞

Φ′(r) = lim
r→+∞

Φ(r)
r

= +∞,

and put
Φ∗(r) = sup

s∈R+

(r s− Φ(s)) , r ∈ R+.

Lemma B.1 For r ∈ [0,+∞) there holds

Φ(r) ≤ r Φ′(r) ≤ 2 Φ(r),(B.1)

Φ∗ (Φ′(r)) = r Φ′(r)− Φ(r) ≤ Φ(r).(B.2)

Proof. Let r ∈ (0,+∞). The convexity of Φ first entails that

Φ(0)− Φ(r) ≥ (0− r) Φ′(r),

hence the first inequality in (B.1). Next, Φ′ being concave with Φ′(0) ≥ 0 we have

−Φ′(s) ≤ Φ′(0)− Φ′(s) ≤ −s Φ′′(s), s ∈ (0, r),

hence
s Φ′′(s) + Φ′(s) ≤ 2 Φ′(s), s ∈ (0, r).

Integrating the above inequality with respect to s over (0, r) yields the second inequality in (B.1).
Finally, let r ∈ [0,+∞). Using again the convexity of Φ yields that

r Φ′(r)− Φ(r) ≥ s Φ′(r)− Φ(s)

for s ∈ R+ and the first equality in (B.2) follows. The second inequality in (B.2) is then a
consequence of (B.1). ut
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Lemma B.2 For r0 ∈ R+ the function Ψ defined by Ψ(r) = (Φ(r)− Φ(r0))+, r ∈ R+, is a
non-negative and convex function satisfying

Ψ(r) ≤ r Ψ′(r),(B.3)

Ψ∗ (Ψ′(r)) ≤
(

1 +
Φ(2 r0)
r0

)
(r + Ψ(r)) ,(B.4)

for r ∈ [0,+∞).

Proof. The convexity and non-negativity of Ψ readily follow from the properties of Φ and of the
positive part, while (B.3) is proved as the first inequality in (B.1). We next notice that, since Φ is
non-decreasing, we have Ψ′(r) = Φ′(r) sign+(r − r0). Consequently,

Ψ∗ (Ψ′(r)) = Ψ∗(0) = 0 for r ∈ [0, r0).

For r ≥ r0 and s ∈ R+ we have

Φ′(r) s−Ψ(r) ≤ r Φ′(r) + Φ(s)− Φ(r)−Ψ(r)

by the convexity of Φ and we further infer from (B.1) that

Φ′(r) s−Ψ(r) ≤ r Φ′(r)− Φ(r) + Φ(s)− Φ(r0)− (Φ(r)− Φ(r0))+ + Φ(r0)
≤ Φ(r) + Φ(r0)

for r ≥ r0. Therefore

Ψ∗ (Ψ′(r)) ≤ (Φ(r) + Φ(r0)) sign+(r − r0)
≤ 2 Φ(r0) sign+(r − r0) + Ψ(r)

≤ 2 Φ(r0)
r0

r + Ψ(r)

for r ≥ 0 and the proof of Lemma B.2 is complete. ut

C Equilibria are Mα

We assume here that the kinetic coefficients a and b enjoy the detailed balance condition (1.9)
together with the positivity assumption (2.12) and are positive a.e. in R2

+. The aim of this section
is to prove that any function satisfying (1.9) coincides with Mα for some α ∈ [−∞,+∞). More
precisely we have the following result.

Lemma C.1 Consider a non-negative function f ∈ L1(R+) satisfying

a(y, y′) f(y) f(y′) = b(y, y′) f(y + y′) a.e. in R2
+.(C.1)

Then there is α ∈ [−∞,+∞) such that f(y) = M(y) eαy a.e. in R+.

Proof. It readily follows from (C.1), (1.9) and the positivity of a, b and M that the function g
defined by g(y) = f(y)/M(y), y ∈ R+, is a non-negative measurable function satisfying

g(y) g(y′) = g(y + y′) a.e. in R2
+.(C.2)

In addition we infer from (2.12) that g ∈ L1(0, R) for every R ∈ R+. We may therefore introduce
the function G ∈ C([0,+∞)) defined by

G(y) =
∫ y

0

g(y′) dy′, y ∈ [0,+∞).
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Integrating (C.2) over (0, 1) with respect to y′ yields

G(1) g(y) = G(y + 1)−G(y) a.e. in R+.(C.3)

If G(1) = 0 it follows from (C.3) and the continuity of G that G(y+1) = G(y) for each y ∈ R+,
whence G(k) = 0 for each integer k ≥ 1. Consequently, g = 0 a.e. in R+ and we conclude that
f = M−∞ a.e. in R+.

Assume now that G(1) > 0 and put

g̃(y) =
G(y + 1)−G(y)

G(1)
, y ∈ [0,+∞).

Then g̃ ∈ C([0,+∞)) and coincides with g a.e. in R+. Therefore g̃ also satisfies (C.2) and the
continuity of g̃ entails that (C.2) holds true for every (y, y′) ∈ R2

+. Classical arguments then ensure
that there is α ∈ R such that g̃(y) = exp {αy} for y ∈ R+, whence f = Mα a.e. in R+. ut
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