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This is the current version (as of September 27, 2006) of my lecture notes for
the 2005 Saint-Flour summer school. There have been important changes from
the previous preliminary versions, especially in the last part. A few references
and figures are still missing.

This text is much more ambitious than I initially intended it to be, so its
publication will be delayed. Presently, everything has been revised except for
Chapters 24 and 25 (gradient flows) which still need some reworking; also
Chapter 23 needs some more work, and Chapter 22 should be debugged. The
bibliography should be completed.
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2 Preface

When I was first approached for the 2005 edition of the Saint-Flour Probability Summer
School, I was intrigued, flattered and scared.1 Apart from the challenge posed by the
teaching of a rather analytical subject to a probabilistic audience, there was the danger of
writing a remake of my recent book Topics in Optimal Transportation.

However, I gradually realized that I was offered a unique opportunity to rewrite the
whole theory from a different perspective, with alternative proofs and different focus, and a
more probabilistic presentation; plus the incorporation of recent progress. Among the most
striking of these recent advances, there was the rising awareness that Mather’s minimal
measures had a lot to do with optimal transport, and that both theories could actually be
embedded in a single framework. There was also the discovery that optimal transport could
provide a robust synthetic approach to Ricci curvature bounds. These links with dynamical
systems on one hand, differential geometry on the other hand, were only briefly alluded
to in my first book; here on the contrary they will be at the basis of the presentation.
To summarize: more probability, more geometry, and more dynamical systems. Of course
there cannot be more of everything, so in some sense there is less analysis and less physics,
and also there are fewer digressions.

So these notes are by no means a reduction or an expansion of my book, but should be
regarded as a complementary reading. Both sources can be read independently, or together,
and hopefully the complementarity of points of view will have pedagogical value.

The text is divided in many short chapters, separated into three main parts. The first
part is devoted to a qualitative description of optimal transport; the second part discusses
the use of optimal transport in Riemannian geometry; finally the third part is devoted to
recent research about a synthetic treatment of Ricci curvature bounds, based on optimal
transport. Throughout the book I have tried to optimize the results, the proofs and the
presentation, and to provide complete and self-contained proofs of the most important
results. Many statements and theorems have been written and proven specifically for this
course, and many results appear in rather sharp form for the first time. I also added several
Appendices, some of them to present some domains of mathematics to non-experts, some
of them to provide proofs of important auxiliary results. All this has resulted in a rapid
growth of the document, which in the end is about five times (!) the size that I had
planned initially. So the non-expert reader is advised to skip long proofs at first reading,
and concentrate on explanations, statements and examples. Also I have tried to present
rather comprehensive bibliographical notes, a dauntingly difficult task in view of the rapid
expansion of the literature.

About terminology: For some reason I decided to switch from “transportation” to
“transport”, but this really is a matter of taste.

For people who are already familiar with the theory of optimal transport, here are some
more serious changes.

The dynamical point of view is given a prominent role from the beginning, with Mc-
Cann’s concept of displacement interpolation. A recurring idea in these notes is that it
is often better to consider optimal transport from some intermediate time, rather than
from the initial time. Displacement interpolation is discussed before any theorem about
the solvability of the Monge problem, in an abstract setting of “Lagrangian action”, which
generalizes the notion of length space. This point of view encompasses at the same time
recent developments dealing with optimal transport in length spaces, and those about
smooth Lagrangian cost functions on Riemannian manifolds. For the convenience of the
readers, I included basic reminders about Riemannian geometry and length spaces.
1 Fans of Tom Waits may have identified this quotation.
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I wrote down in detail some important estimates by Mather, well-known in certain
circles, and made extensive use of them, in particular to prove the Lipschitz regularity of
“intermediate” transport maps (taking as starting measure not the measure at time 0, but
the measure at time t0 ∈ (0, 1)). Then the absolute continuity of displacement interpolants
comes for free, and this gives a more unified picture of the Mather and Monge-Kantorovich
theories. I also rewrote in this way the classical theorems of solvability of the Monge prob-
lem for quadratic cost in Euclidean space. Finally, this approach allows to treat changes
of variables formulas associated with optimal transport by means of changes of variables
that are Lipschitz, and not just with bounded variation.

The links between Ricci curvature and optimal transport, which are discussed at length
in Parts II and III, appear for the first time in lecture notes form; many results actually
appear for the first time at all. I included reminders about the meaning and calculus
with Ricci curvature, and also about the Gromov–Hausdorff convergence; so hopefully the
reader can follow the whole discussion without being forced to consult some independent
source on differential geometry.

There are several important parts of the theory which I chose not to develop too much,
or not at all. In my opinion the topic which is most poorly represented is the regularity
theory for optimal transport; first because it is a quite long story, and secondly because it
is not necessary for the purpose of these notes. There have been important progress quite
recently on the topic of regularity of optimal transport of manifolds (with works by Neil
Trudinger, Xu-Jia Wang, Grégoire Loeper and others) and a consistent picture of regularity
seems to be emerging right now. A few years from now, an up-to-date monograph on the
subject would actually be welcome.

Another topic which is not addressed at all is the numerical simulation of optimal
transport. Besides classical methods such as the simplex algorithm, there are more origi-
nal methods such as the “auction algorithm” by Bertsekas, and more recently numerical
methods based on the Monge–Ampère equation. This subject too is in need of a good
synthesis work.

Still another subject which is poorly developed is the Monge-Mather-Mañé problem
arising in dynamical systems, and including as a variant the optimal transport problem
when the cost function is a distance. This topic is addressed in several books on theoretical
Lagrangian mechanics, such as Albert Fathi’s lecture notes; but now it would be desirable
to rewrite everything in a framework that also encompasses the optimal transport problem.
An important step in this direction was recently performed by Patrick Bernard and Boris
Buffoni. There will be in these notes an introduction to Mather’s approach, but there
would be much more to say.

The use of optimal transport in the theory of concentration of measure is addressed in
Chapter 22, as part of Riemannian geometry — but some of the estimates are established
in more general metric structures. About this application of optimal transport one can also
consult two recent synthesis documents about concentration of measure: the monograph by
Michel Ledoux, The Concentration of Measure Phenomenon; and the Saint-Flour course
by Pascal Massart.

Gradient flows with respect to the Wasserstein distance are discussed in Chapters 23
to 25. The exposition is, I hope, precise, and addresses the most important points, but it
is not exhaustive. In fact, this topic has inflated so quickly in the past five years or so,
that an up-to-date and complete reference would fill up a whole book. It was actually the
subject of an excellent reference treatise: Gradient flows in metric spaces and in the space
of probability measures, by Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré. Still in that
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reference the emphasis is on Euclidean (or Hilbert) spaces, while now it would be desirable
to rewrite the whole theory in a genuinely Riemannian context.

There are other classical applications of optimal transport to various fields of probability
theory, which are missing from this book, but can be found in the two-volume treatise by
Svetlozar Rachev and Ludger Rüschendorf, Mass Transportation Problems.

During the preparation of this text I asked help from a number of people. Among them,
Luigi Ambrosio and John Lott are the ones whom I most put to contribution; these notes
owe a lot to their detailed comments and suggestions. Most of Part III, but also significant
portions of Parts I and II, are made up with ideas taken from my collaborations with
John, which started in 2004 as I was enjoying the hospitality of the Miller Institute in
Berkeley. Long discussions with Patrick Bernard and Albert Fathi allowed me to get the
links between the modern theory of optimal transport and Mather’s theory, which were
a key to the presentation in Part I. Apart from these people, I received valuable help
from François Bolley, Yann Brenier, Dario Cordero-Erausquin, Denis Feyel, Alessio Figalli,
Sylvain Gallot, Wilfrid Gangbo, Diogo Gomes, Arnaud Guilin, Michel Ledoux, Grégoire
Loeper, Robert McCann, Felix Otto, Ludger Rüschendorf, Giuseppe Savaré, Karl-Theodor
Sturm, Anthon Thalmaier, Hermann Thorisson, Süleyman Üstünel, Xu-Jia Wang, and
others.

Short versions of this course were tried on mixed audiences in the Universities of Bonn,
Dortmund, Grenoble and Orléans, as well as the CIRM in Luminy and the Borel seminar
in Leysin. All these institutions are warmly thanked.

It is a pleasure to thank Jean Picard for all his organization work on the 2005 Saint-
Flour summer school. Additional thanks are due to the participants for their questions,
comments and bug-tracking, in particular Sylvain Arlot (who also did a great job in spot-
ting typos and mistakes), Fabrice Baudoin, Jérôme Demange, Steve Evans (whom I also
thank for his beautiful lectures), Christophe Leuridan, Jan Ob#lój, Erwann Saint-Loubert
Bié, and others. I extend these thanks to the joyful group of young PhD students and
mâıtres de conférences with whom I spent such a good time on excursions, restaurants
and other activities, making my stay in Saint-Flour truly wonderful (with special thanks
to my personal driver, Stéphane Loisel, and my table tennis sparring-partner, François
Simenhaus).

Typing of these notes was entirely performed on my faithful laptop, a gift of the Miller
Institute. My eternal gratitude goes to those who made fine typesetting accessible to every
mathematician, most importantly Donald Knuth for TEX, and also the developers of LATEX,
BibTEX and XFig.

As usual, I encourage all readers to report mistakes and misprints. After publication,
I will maintain a list of errata, accessible from my Web page.

Cédric Villani
Lyon, September 2006
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6 Conventions

Axioms
I use the classical axioms of set theory; not the full version of the axiom of choice (only

the classical version of “countable dependent choice”).

Sets and structures
Id is the identity mapping, whatever the space.
If f and g are two functions, then (f, g) is the function x "−→ (f(x), g(x)). The compo-

sition f ◦ g will often be denoted f(g).
N is the set of positive integers: N = {1, 2, 3, . . .}. A sequence is denoted either (xk)k∈N,

or simply, when no confusion seems possible, (xk).
R is the set of real numbers. When I write Rn it is implicitly assumed that n is a

positive integer. The Euclidean scalar product between two vectors a and b in Rn is denoted
indifferently a · b or 〈a, b〉. The Euclidean norm will be denoted simply | · |, independently
of the dimension n.

Mn(R) is the space of real n× n matrices, and In the n× n identity matrix. The trace
of a matrix M will be denoted by tr M , its determinant by det M , its adjoint by M∗, and
its Hilbert-Schmidt norm

√
tr (M∗M) by ‖M‖HS (or just ‖M‖).

Unless otherwise stated, Riemannian manifolds appearing in the text are finite-
dimensional, smooth and complete. If a Riemannian manifold is given, I shall usually
denote by n its dimension, by d the geodesic distance on M , and by vol the volume (= n-
dimensional Hausdorff) measure on M . The norm on a tangent space of a Riemannian
manifold will most of the time be denoted by | · |, as in Rn, without explicit mention of
the point at which the norm is taken. (The symbol ‖ · ‖ will be reserved for special norms
or functional norms.)

If Q is a quadratic form defined on Rn, or on the tangent bundle of a manifold, its
value on a (tangent) vector v will be denoted by

〈
Q · v, v

〉
, or simply Q(v).

The open ball of radius r and center x in a metric space X is denoted indifferently by
B(x, r) or Br(x). If X is a Riemannian manifold, the distance is of course the geodesic
distance. The closed ball will be denoted by B(x, r]) or Br](x). The diameter of a metric
space X will be denoted diam (X ).

The closure of a set A in a metric space will be denoted by A (this is also the set of all
limits of sequences with values in A).

A metric space X is said to be locally compact if every point x ∈ X admits a compact
neighborhood; and boundedly compact if every closed and bounded subset of X is compact.

A map f between metric spaces (X , d) and (X ′, d′) is said to be C-Lipschitz if
d′(f(x), f(y)) ≤ C d(x, y) for all x, y in X . The best admissible constant C is then denoted
by ‖f‖Lip.

A map is said to be locally Lipschitz if it is Lipschitz on bounded sets, not necessarily
compact (so it makes sense to speak of a locally Lipschitz map defined almost everywhere).

A curve in a space X is a continuous map defined on a subinterval of R, into X . In
these notes the words “curve” and “path” will be synonymous. The time-t evaluation map
et is defined by et(γ) = γt = γ(t).

If γ is a curve defined from an interval of R into a metric space, its length will be
denoted L(γ), and its speed by |γ̇|; definitions are recalled on p. 89.

Unless otherwise stated, geodesics are minimizing, constant-speed geodesic curves. If X
is a metric space, the space of all geodesics γ : [0, 1] → X will be denoted by Γ (X ).

Being given x0 and x1 in a metric space, I denote by [x0, x1]t the set of all t-barycenters
of x0 and x1, as defined on p. 242. If A0 and A1 are two sets, then [A0, A1]t stands for the
set of all [x0, x1]t with (x0, x1) ∈ A0 × A1.
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Function spaces
I denote by C(X ) the space of continuous functions X → R, by Cb(X ) the space of

bounded continuous functions X → R; and by C0(X ) the space of continuous functions
X → R converging to 0 at infinity; all of them are equipped with the norm of uniform
convergence. Then Ck

b (X ) is the space of k-times continuously differentiable functions
u : X → R, such that all the partial derivatives of u up to order k are bounded; and it is
equipped with the norm given by the supremum of all norms ‖∂u‖Cb , where ∂u is a partial
derivative of order at most k; Ck

c (X ) is the space of k-times continuously differentiable
functions with compact support; etc. When the target space Y is not R, the notation is
transformed in an obvious way: C(X ;Y ), etc.

I use the standard notation Lp for the Lebesgue space of exponent p; the space and the
measure will often be implicit, but clear from the context.

Calculus
The derivative of a function u = u(t), defined on an interval of R and valued in Rn

or in a smooth manifold, will be denoted by u′, or more often by u̇. If u is a function of
several variables, the partial derivative with respect to the variable t will be denoted by
∂tu, or ∂u/∂t. The notation ut does not stand for ∂tu, but for u(t).

The gradient operator will be denoted by grad or simply ∇; the divergence operator
by div or ∇·; the Laplace operator by ∆; the Hessian operator by Hess or ∇2 (so ∇2 does
not stand for the Laplace operator). The notation is the same in Rn or in a Riemannian
manifold. ∆ is the divergence of the gradient, so it is typically a nonpositive operator. The
value of the gradient of f at point x will be denoted either ∇xf or ∇f(x). The notation
∇̃ stands for the approximate gradient, defined in Definition 10.2.

When T is a map Rn → Rn, the notation ∇T stands for the Jacobian matrix of T , that
is the matrix of partial derivatives (∂Ti/∂xj) (1 ≤ i, j ≤ n).

All these differential operators will be applied to (smooth) functions but also to mea-
sures, by duality. For instance, the Laplacian of a measure µ is defined via the iden-
tity

∫
ζ d(∆µ) =

∫
(∆ζ) dµ (ζ ∈ C2

c ). The notation is consistent in the sense that
∆(fvol ) = (∆f) vol . Similarly, I shall take the divergence of a vector-valued measure,
etc.

The notation f = o(g) means f/g −→ 0 (in an asymptotic regime that should be clear
from the context), while f = O(g) means that f/g is bounded.

The positive and negative parts of x ∈ R are defined respectively by x+ = max(x, 0)
and x− = max(−x, 0); both are nonnegative, and |x| = x+ + x−. The notation a ∧ b
will sometimes be used for min(a, b). All these notions are extended in the usual way to
functions and also to signed measures.

Probability measures
The Dirac mass at point x is denoted by δx.
The law of a random variable X is denoted by just law (X).
All measures considered in the text are Borel measures on Polish spaces, which are

complete, separable metric spaces, equipped with their Borel σ-algebra. I shall usually not
use the completed σ-algebra, except on some rare occasions in Chapter 5, and this will be
emphasized in the context. These issues only arise with discontinuous cost functions, that
play a marginal role in these notes; for continuous cost functions the whole theory can be
developed with just Borel measurable sets.

A measure is said to be finite if it has finite mass, locally finite if it attributes finite
mass to compact sets.
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The space of Borel probability measures on X is denoted P (X ), the space of finite Borel
measures by M+(X ), the space of finite signed Borel measures by M(X ).

The integral of a function f with respect to a probability measure µ will be denoted
indifferently

∫
f(x) dµ(x) or

∫
f(x)µ(dx), or

∫
f dµ.

If µ is a Borel measure on a topological space X , then a set N is said to be µ-negligible
if N is included in a Borel set of zero µ-measure. Then µ is said to be concentrated on a
set C if X \ C is negligible. If C itself is Borel measurable, this is of course equivalent to
µ[X \ C] = 0.

If µ is a Borel measure, its support Sptµ is the smallest closed set on which it is
concentrated. The same notation Spt will be used for the support of a continuous function.

If µ is a Borel probability measure on X , and T is a Borel map X → Y, then T#µ stands
for the image measure (or push-forward) of µ by T . It is a Borel probability measure on
Y, defined by (T#µ)[A] = µ[T−1(A)]. Depending on the authors, the measure T#µ is often
denoted by T#µ, T∗µ, T (µ), Tµ, µ ◦ T−1, µT−1, or µ[T ∈ ·].

The weak topology on P (X ) (or topology of weak convergence, or narrow topology)
is induced by convergence against Cb(X ), i.e. bounded continuous test functions. If X is
Polish, then the space P (X ) itself is Polish. Unless explicitly stated, I do not use the
weak-∗ topology of measures (induced by C0(X ) or Cc(X )).

When a probability measure is clearly specified by the context, it will sometimes be
denoted just by P , and the associated integral, or expectation, will be denoted by E .

If µ ∈ P (X ) and ν ∈ P (Y) are given, then Π(µ, ν) is the set of all joint probability
measures on X × Y whose marginals are µ and ν.

If π(dx dy) is a probability measure in two variables x and y, the conditional law of x
given y will be denoted by π(dx|y); this is a measurable function of y with values in the
set of probability measures in the variable x; it is obtained by disintegrating π along its
y-marginal.

Notation specific to optimal transport

C(µ, ν) is the optimal (total) cost between µ and ν, see p. 66. It implicitly depends on the
choice of a cost function c(x, y).

For any p ∈ [1,+∞), Wp is the Wasserstein distance of order p, see Definition 6.1; and
Pp(X ) is the Wasserstein space of order p, i.e. the set of probability measures with finite
moments of order p, equipped with the distance Wp, see Definition 6.3.

Pc(X ) is the set of probability measures on X with compact support.
If a reference measure ν on X is specified, then P ac(X ) (resp. P ac

p (X ), P ac
c (X )) stands

for those elements of P (X ) (resp. Pp(X ), Pc(X )) which are absolutely continuous with
respect to ν.

c-convex functions are introduced in Definition 5.2.
DCN is the displacement convex class of order N (N plays the role of a dimension);

this is a family of convex functions, defined on p. 273 and in Definition 17.1.
Uν is a functional defined on P (X ); it depends on a convex function U and a reference

measure ν on X . This functional will be defined at various levels of generality, first in
equation (15.2), then in Definition 29.1 and Theorem 30.4.

Uβ
π,ν is another functional on P (X ), which involves not only a convex function U and

a reference measure ν, but also a coupling π and a distortion coefficient β, which is a
nonnegative function on X × X : See again Definition 29.1 and Theorem 30.4.

β(K,N)
t is the notation for the distortion coefficients that will play a prominent role in

these notes; they are defined in (14.60).
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CD(K,N) means “curvature-dimension condition (K,N)”, which morally means that
the Ricci curvature is bounded below by K (a real number) and the dimension is bounded
above by N (a real number which is not less than 1).

If π(dx dy) is a coupling, then π̌ is the coupling obtained by swapping variables, that
is π(dy dx), or more rigorously, S#π, where S(x, y) = (y, x).
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For a start, I shall recall in Chapter 1 some basic facts about couplings and changes of
variables, including definitions, a short list of some famous couplings (Knothe-Rosenblatt
coupling, Moser coupling, optimal coupling, etc.); and some important basic formulas
about change of variables, conservation of mass, and linear diffusion equations.

In Chapter 2 I shall present, without detailed proofs, three applications of optimal
coupling techniques, providing a flavor of the kind of applications that will be considered
later.

Finally, Chapter 3 is a short historical perspective about the foundations and develop-
ment of optimal coupling theory.





1

Couplings and changes of variables

Couplings are very well-known in all branches of probability theory, but since they will
occur again and again in this course, it might be a good idea to start with some basic
reminders and a few more technical issues.

Definition 1.1 (coupling). Let (X , µ) and (Y, ν) be two probability spaces. Coupling µ
and ν means constructing two random variables X and Y on some probability space Ω,
in such a way that law (X) = µ, law (Y ) = ν. The couple (X,Y ) is called a coupling of
(µ, ν). By abuse of language, one often says that the law of (X,Y ) is a coupling of (µ, ν).

If µ and ν are the only laws in the problem, then without loss of generality one may
choose Ω = X × Y. In a more measure-theoretical formulation, coupling µ and ν means
constructing a measure π on X ×Y such that π admits µ and ν as marginals on X and Y
respectively. The following three statements are equivalent ways to rephrase that marginal
condition:

• (projX )#π = µ, (projY)#π = ν, where projX and projY respectively stand for the
projection maps (x, y) "−→ x and (x, y) "−→ y;

• For all measurable sets A ⊂ X , B ⊂ Y, π[A × Y] = µ[A], π[X × B] = ν[B];
• For all integrable (resp. nonnegative) measurable functions ϕ,ψ on X ,Y,

∫

X×Y

(
ϕ(x) + ψ(y)

)
dπ(x, y) =

∫

X
ϕ dµ +

∫

Y
ψ dν.

A first remark about couplings is that they always exist: at least there is the trivial
coupling, in which the variables X and Y are independent (so their joint law is the
tensor product µ⊗ ν). This can hardly be called a coupling, since the value of X does not
give any information about the value of Y . Another extreme is when all the information
about the value of Y is contained in the value of X, in other words Y is just a function
of X. This motivates the following definition (in which X and Y do not play symmetric
roles).

Definition 1.2 (deterministic coupling). With the notation of Definition 1.1, a cou-
pling (X,Y ) is said to be deterministic if there exists a measurable function T : X → Y
such that

Y = T (X).

To say that (X,Y ) is a deterministic coupling of µ and ν is strictly equivalent to any
one of the four statements below:
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• (X,Y ) is a coupling of µ and ν whose law π is concentrated on the graph of a measurable
function T : X → Y;

• X has law µ and Y = T (X), where T pushes µ forward to ν: T#µ = ν.
• X has law µ and Y = T (X), where T is a change of variables from µ to ν: for all

integrable (resp. nonnegative) functions ϕ,
∫

Y
ϕ(y) dν(y) =

∫

X
ϕ
(
T (x)

)
dµ(x); (1.1)

• π = (Id , T )#µ.

The map T appearing in all these statements is the same and is uniquely defined µ-
almost surely (when the joint law of (X,Y ) has been fixed). The converse is true: If T and
T̃ coincide µ-almost surely, then T#µ = T̃#µ. It is common to call T the transport map:
Informally, one can say that T transports the mass represented by the measure µ, to the
mass represented by the measure ν.

Unlike couplings, deterministic couplings do not always exist: Just think of the case
when µ is a Dirac mass and ν is not. But there may also be infinitely many deterministic
couplings between two given probability measures.

Some famous couplings

Here below are some of the most famous couplings used in mathematics — of course the
list is far from complete, since everybody has his or her own preferred coupling technique.
Each of these couplings comes with its own natural setting; this variety of assumptions
reflects the variety of constructions. (This is a good reason to state each of them with
some generality.)

1. The measurable isomorphism: Let (X , µ) and (Y, ν) be Polish (i.e. complete, sep-
arable, metric) probability spaces without atom (i.e. no single point carries a positive
mass). Then there exists a (nonunique) measurable bijection T : X → Y such that
T#µ = ν, (T−1)#ν = µ. In that sense, all atomless Polish probability spaces are iso-
morphic, and, say, isomorphic to the space Y = [0, 1] equipped with the Lebesgue
measure. Powerful as that theorem may seem, in practice the map T is very singular;
as a good exercise, the reader might try to construct it “explicitly”, in terms of cu-
mulative distribution functions, when X = R and Y = [0, 1] (issues do arise when the
density of µ vanishes at some places). Experience shows that it is quite easy to fall
into logical traps when working with the measurable isomorphism, and my advice is
to never use it.

2. The Moser mapping: Let X be a smooth compact Riemannian manifold with volume
vol , and let f, g be Lipschitz continuous positive probability densities on X ; then there
exists a deterministic coupling T of µ = f vol and ν = g vol . On the plus side, there is
a somewhat explicit representation of that mapping, and it is as smooth as can be: if
f, g are Ck,α then T is Ck+1,α. The formula is given in an Appendix at the end of this
chapter. The same construction works in Rn provided that f and g decay fast enough
at infinity; and it is robust enough to accomodate for variants.

3. The increasing rearrangement on R. Let µ, ν be two probability measures on R,
define their cumulative distribution functions by
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F (x) =
∫ x

−∞
dµ, G(y) =

∫ y

−∞
dν.

Further define their right-continuous inverses by

F−1(t) := inf
{

x ∈ R; F (x) > t
}

; G−1(t) := inf
{

y ∈ R; G(y) > t
}
;

and set
T = G−1 ◦ F.

If µ does not have atoms, then T#µ = ν. This rearrangement is quite simple, explicit,
as smooth as can be, and has good geometric properties.

4. The Knothe-Rosenblatt rearrangement in Rn. Let µ and ν be two probability
measures on Rn, such that µ is absolutely continuous with respect to Lebesgue measure.
Then define a coupling of µ and ν as follows.
Step 1: Take the marginal on the first variable: this gives probability measures µ1(dx1),
ν1(dy1) on R, with µ1 atomless. Define y1 = T1(x1) by the formula for the increasing
rearrangement of µ1 into ν1.
Step 2: Now take the marginal on the first two variables and disintegrate it with respect
to the first variable: This gives probability measures µ2(dx1 dx2) = µ1(dx1)µ2(dx2|x1),
ν2(dy1 dy2) = ν1(dy1) ν2(dy2|y1). Then, for each given y1 ∈ R, set y1 = T1(x1), and
define y2 = T2(x2;x1) by the formula for the increasing rearrangement of µ2(dx2|x1)
into ν2(dy2|y1).
Then repeat the construction, adding variables one after the other and defining
y3 = T3(x3;x1, x2); etc. After n steps, this produces a map y = T (x) which trans-
ports µ to ν, and in practical situations might be computed explicitly with little effort.
Moreover, the Jacobian matrix of the change of variables T is (by construction) up-
per triangular with positive entries of the diagonal; this makes it suitable for various
geometric applications. On the negative side, this mapping does not satisfy many in-
teresting intrinsic properties; it is not invariant under isometries of Rn, not even under
relabelling of coordinates.

5. The Holley coupling on a lattice. Let µ and ν be two discrete probabilities on a finite
lattice Λ, say {0, 1}N , equipped with the natural partial ordering (x ≤ y if xn ≤ yn for
all n). Assume that

∀x, y ∈ Λ, µ[inf(x, y)] ν[sup(x, y)] ≥ µ[x] ν[y]. (1.2)

Then there exists a coupling (X,Y ) of (µ, ν) with X ≤ Y . The situation above appears
in a number of problems in statistical mechanics, in connection with the so-called
FKG inequalities. Inequality (1.2) intuitively says that ν puts more mass on large
values than µ.

6. Probabilistic representation formulas for solutions of partial differential equa-
tions. There are hundreds of them (if not thousands), representing solutions of dif-
fusion, transport or jump processes as the laws of various deterministic or stochastic
processes. Some of them are recalled later in this chapter.

7. The exact coupling of two stochastic processes, or Markov chains. Two realizations
of a stochastic process are started at initial time, and when they happen to be in the
same state at some time, they are merged: From that time on, they follow the same
path and accordingly, have the same law. For two Markov chains which are started
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µ
ν

dx1 dy1

T1

Fig. 1.1. Second step in the construction of the Knothe-Rosenblatt map: After the correspondance x1 → y1

has been determined, the conditional probability of x2 (seen as a one-dimensional probability on a small
“slice” of width dx1) can be transported to the conditional probability of y2 (seen as a one-dimensional
probability on a slice of width dy1).

independently, this is called the classical coupling. There are many variants with
important differences which are all intended to make two trajectories close to each
other after some time: the Ornstein coupling, the ε-coupling (in which one requires
the two variables to be close, rather than to occupy the same state), the shift-coupling
(in which one allows an additional time-shift), etc.

8. The optimal coupling or optimal transport. Here one introduces a cost func-
tion c(x, y) on X × Y, that can be interpreted as the infinitesimal work needed to
move one unit of mass from location x to location y. Then one considers the Monge-
Kantorovich minimization problem

inf E c(X,Y ),

where the pair (X,Y ) runs over all possible couplings of (µ, ν); or equivalently, in terms
of measures,

inf
∫

X×Y
c(x, y) dπ(x, y),

where the infimum runs over all joint probability measures π on X ×Y with marginals
µ and ν. Such joint measures are called transport plans (or transportation plans),
and optimal ones are called optimal transport plans.

Of course, the solution of the Monge-Kantorovich problem depends on the cost func-
tion c. The cost function and the probability spaces here can be very general, and some
nontrivial results about the Monge-Kantorovich problem can be obtained as soon, say, c
is lower semi-continuous and X ,Y are Polish spaces. Even the apparently trivial choice
c(x, y) = 1x '=y appears in the probabilistic interpretation of total variation:

‖µ − ν‖TV = 2 inf
{

E 1X '=Y ; law (X) = µ, law (Y ) = ν
}
.
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Cost functions valued in {0, 1} also appear naturally in Strassen’s duality theorem.
Under certain assumptions one can guarantee that the optimal coupling really is deter-

ministic; the search of deterministic optimal couplings is called the Monge problem. A
solution of the Monge problem yields a plan to transport the mass at minimal cost with a
recipe that associates to each point x a single point y. (“No mass shall be split”.) To force
the existence of solutions to the Monge problem, two kinds of assumptions are natural:
First, c should “vary enough” in some sense (think that the constant cost function will
allow for arbitrary minimizers), and secondly, µ should enjoy some regularity property (at
least Dirac masses should be ruled out!)

Here is a typical result: If c(x, y) = |x − y|2 in the Euclidean space µ is absolutely
continuous with respect to Lebesgue measure, and µ, ν have finite moments of order 2,
then there is a unique optimal Monge coupling between µ and ν. More general statements
will be established in Chapter 10.

Optimal couplings enjoy many nice properties:
(i) They naturally arise in many problems coming from economics, physics, partial

differential equations or geometry (by the way, the increasing rearrangement and the Holley
coupling can be seen as particular cases of optimal transport);

(ii) They are quite stable with respect to perturbations;
(iii) They encode good geometric information, if the cost function c is defined in terms

of the underlying geometry;
(iv) They exist in smooth as well as nonsmooth settings;
(v) They come with a rich structure: an optimal cost functional (the value of the

minimum defining the Monge-Kantorovich problem); a dual variational problem; and,
under adequate structure conditions, a continuous interpolation.

On the negative side, it is important to be warned that optimal transport is in general
not so smooth. There are known counterexamples which put limits on the regularity that
one can expect from it, even for very nice cost functions.

All these issues will be discussed again and again in the sequel.

Gluing

If Z is a function of Y and Y is a function of X, then of course Z is a function of X.
Something of this still remains true in the setting of nondeterministic couplings, under
quite general assumptions.

Gluing Lemma. Let (Xi, µi), i = 1, 2, 3, be Polish probability spaces. If (X1,X2) is a
coupling of (µ1, µ2) and (Y2, Y3) is a coupling of (µ2, µ3), then one can construct a triple
of random variables (Z1, Z2, Z3) such that (Z1, Z2) has the same law as (X1,X2) and
(Z2, Z3) has the same law as (Y2, Y3).

It is simple to understand why this is called “gluing lemma”: if π12 stands for the law of
(X1,X2) on X1 ×X2 and π23 stands for the law of (X2,X3) on X2 ×X3, then to construct
the joint law π123 of (Z1, Z2, Z3) one just has to glue π12 and π23 along their common
marginal µ2. In a slightly informal writing: Disintegrate π12 and π23 as

π12(dx1 dx2) = π12(dx1|x2)µ2(dx2), π23(dx2 dx3) = π23(dx3|x2)µ2(dx2),

and then reconstruct π123 as

π123(dx1 dx2 dx3) = π12(dx1|x2)µ2(dx2)π23(dx3|x2).
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Change of Variables Formula

When one writes the formula for change of variables, say in Rn or on a Riemannian
manifold, a Jacobian term appears, and one has to be careful about two things: the change
of variables should be injective (otherwise, reduce to a subset where it is injective, or take
the multiplicity into account); and it should be somewhat smooth. It is classical to write
these formulas when the change of variables is continuously differentiable, or at least
Lipschitz:

Change of Variables Formula. Let M be an n-dimensional Riemannian manifold with
a C1 metric, let µ0, µ1 be two probability measures on M , and let T : M → M be a
measurable function such that T#µ0 = µ1. Let ν be a reference measure, of the form
ν(dx) = e−V (x) vol (dx), where V is continuous and vol is the volume (or n-dimensional
Hausdorff) measure. Further assume that

(i) µ0(dx) = ρ0(x) ν(dx) and µ1(dy) = ρ1(y) ν(dy);
(ii) T is injective;
(iii) T is locally Lipschitz.
Then, µ0-almost surely,

ρ0(x) = ρ1(T (x))JT (x), (1.3)

where JT (x) is the Jacobian determinant of T at x, defined by

JT (x) := lim
ε↓0

ν[T (Bε(x))]
ν[Bε(x)]

. (1.4)

The same holds true if T is only defined on the complement of a µ0-negligible set, and
satisfies properties (ii) and (iii) on its domain of definition.

Remark 1.3. When ν is just the volume measure, JT (x) coincides with the usual Jacobian
determinant, which in the case M = Rn is the absolute value of the determinant of the
Jacobian matrix ∇T . Since V is continuous, it is almost immediate to deduce the statement
with an arbitrary V from the statement with V = 0 (this amounts to multiply ρ0(x) by
eV (x), ρ1(y) by eV (y), JT (x) by eV (x)−V (T (x))).

Remark 1.4. There is a more general framework, namely approximate differentiabil-
ity. A function T on an n-dimensional Riemannian manifold is said to be approximately
differentiable at x if there exists a function T̃ , differentiable at x, such that the set {T̃ 3= T}
has zero density at x, meaning

lim
r→0

vol
[{

x ∈ Br(x); T (x) 3= T̃ (x)
}]

vol [Br(x)]
= 0.

It turns out that, roughly speaking, an approximately differentiable map can be replaced,
up to neglecting a small set, by a Lipschitz map (this is a kind of differentiable version of
Lusin’s theorem). So one can prove the Jacobian formula for an approximately differen-
tiable map by approximating it with a sequence of Lipschitz maps.

Approximate differentiability is obviously a local property; it holds true if the distri-
butional derivative of T is a locally integrable function, or even a locally finite measure.
Even if I shall not need them in this course, such singular changes of variables actually
arise rather naturally in the study of optimal transportation. So it might be useful to know
that the Theorem of Change of Variables Formula still holds true if (iii) is replaced by

(iii’) T is approximately differentiable.
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Conservation of Mass Formula

The single most important theorem of change of variables arising in continuum physics
might be the one resulting from the conservation of mass formula,

∂ρ

∂t
+ ∇ · (ρξ) = 0. (1.5)

Here ρ = ρ(t, x) stands for the density of a system of particles at time t and position x;
ξ = ξ(t, x) for the velocity field at time t and position x; and ∇· stands for the divergence
operator (the trace of the Jacobian matrix with respect to the x variable). Once again,
the natural setting for this equation is a Riemannian manifold M .

It will be useful to work with particle densities µt(dx) (that are not necessarily abso-
lutely continuous) and rewrite (1.5) as

∂µ

∂t
+ ∇ · (µξ) = 0,

where the divergence operator is defined by duality against continuously differentiable
functions with compact support:

∫

M
ϕ∇ · (µξ) = −

∫

M
(ξ ·∇ϕ) dµ.

The formula of conservation of mass is an Eulerian description of the physical world,
which means that the unknowns are fields. The next theorem links it with the Lagrangian
description, in which everything is expressed in terms of particle trajectories, that are
integral curves of the velocity field:

ξ
(
t, Tt(x)

)
=

d

dt
Tt(x). (1.6)

If ξ is (locally) Lipschitz continuous, then the Cauchy-Lipschitz theorem guarantees the
existence of a flow Tt locally defined on a maximal time interval, and itself locally Lipschitz
in both arguments t and x. Then, for each t the map Tt is a local diffeomorphism onto
its image. But the formula of conservation of mass also holds true without any regularity
assumption on ξ; one should only keep in mind that if ξ is not Lipschitz, then a solution
of (1.6) is not uniquely determined by its value at time 0, so x "−→ Tt(x) is not necessarily
uniquely defined. On the other hand, it makes sense to consider random solutions of (1.6).

Mass Conservation Formula. Let M be a C1 manifold, T ∈ (0,+∞] and let ξ(t, x) be
a (measurable) velocity field on [0, T ) × M . Let (µt)0≤t<T be a time-dependent family of
probability measures on M (continuous in time for the weak topology), such that

∫ T

0
|ξ(t, x)|µt(dx) dt < +∞.

Then, the following two statements are equivalent:
(i) µ = µt(dx) is a weak solution of the linear (transport) partial differential equation

∂tµ + ∇x · (µξ) = 0

on [0, T ) × M ;
(ii) µt is the law at time t of a random solution Tt(x) of (1.6).

If moreover ξ is locally Lipschitz, then (Tt)0≤t<T defines a deterministic flow, and
statement (ii) can be rewritten

(ii’) µt = (Tt)#µ0.
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Diffusion Formula

The final reminder in this chapter is very well-known and related to Itô’s formula; it was
discovered independently (in the Euclidean context) by Bachelier, Einstein and Smolu-
chowski at the beginning of the twentieth century. It requires a bit more regularity than
the Conservation of Mass Formula. The natural assumptions on the phase space are in
terms of Ricci curvature, a concept which will play an important role in these notes. For
the reader who has no idea what Ricci curvature means, it is sufficient to know that the
theorem below applies when M is either Rn, or a compact manifold with a C2 metric. By
convention, Bt denotes the “standard” Brownian motion on M with identity covariance
matrix.

Diffusion Theorem. Let M be a Riemannian manifold with a C2 metric, such that the
Ricci curvature tensor of M is uniformly bounded below, and let σ(t, x) : TxM → TxM be
a twice differentiable linear mapping on each tangent space. Let Xt stand for the solution
of the stochastic differential equation

dXt =
√

2σ(t,Xt) dBt (0 ≤ t < T ). (1.7)

Then the following two statements are equivalent:
(i) µ = µt(dx) is a weak solution of the linear (diffusion) partial differential equation

∂tµ = ∇x ·
(
(σσ∗)∇xµ

)

on M × [0, T ), where σ∗ stands for the transpose of σ;
(ii) µt = law (Xt) for all t ∈ [0, T ), where Xt solves (1.7).

Example 1.5. In Rn, the solution of the heat equation with initial datum δ0 is the law of
Xt =

√
2 Bt (Brownian motion sped up by a factor

√
2).

Remark 1.6. Actually, there is a finer criterion for the diffusion equation to hold true:
it is sufficient that the Ricci curvature at point x be bounded below by −Cd(x0, x)2gx,
where gx is the metric at point x and x0 is an arbitrary reference point. The exponent 2
here is sharp.

Exercise 1.7. Let M be a smooth compact manifold, equipped with its standard reference
volume, and let ρ0 be a smooth positive probability density on M . Let (ρt)t≥0 be the
solution of the heat equation

∂tρ = ∆ρ.

Use (ρt) to construct a deterministic coupling of ρ0 and ρ1.
Hint: Rewrite the heat equation in the form of an equation of conservation of mass.

Appendix: Moser’s coupling

In this Appendix I shall advertise for Moser’s technique for coupling smooth positive
probability measures; it is simple, elegant and powerful, and plays a prominent role in
geometry. It is not limited to compact manifolds, but does require assumptions about the
behavior at infinity.

Here I shall explain the method in the case when M is a smooth n-dimensional Rie-
mannian manifold, equipped with a reference probability measure ν(dx) = e−V (x) vol (dx),



1 Couplings and changes of variables 23

and V is at least continuously differentiable. So let µ0 = ρ0 ν, µ1 = ρ1 ν be two probability
measures on M , and assume for simplicity that ρ0, ρ1 are bounded below by a constant
K > 0. Further assume that ρ0 and ρ1 are locally Lipschitz, and that the equation

(∆ −∇V ·∇)u = ρ0 − ρ1

can be solved for some u ∈ C1,1
loc (M) (that is, ∇u is locally Lipschitz). Then, define a locally

Lipschitz vector field

ξ(t, x) =
∇u(x)

(1 − t)ρ0(x) + tρ1(x)
,

with associated flow (Tt(x))0≤t≤1, and a family (µt)0<t<1 of probability measures by

µt = (1 − t)µ0 + tµ1.

It is easy to check that
∂tµ = (ρ1 − ρ0) ν,

∇ · (µtξ(t, ·)) = ∇ · (∇u e−V vol ) = e−V (∆u −∇V ·∇u) vol = (ρ0 − ρ1) ν.

So µt satisfies the formula of conservation of mass, therefore µt = (Tt)#µ0. In particular,
T1 provides a deterministic coupling of µ0 and µ1.

In the case when M is compact and V = 0, the above construction works if ρ0 and ρ1

are Lipschitz continuous and positive. Indeed, the solution of ∆u = ρ0 − ρ1 will be of class
C2,α for all α ∈ (0, 1), and in particular ∇u will be of class C1. In more general situations,
things might depend on the regularity of V , and its behavior at infinity.

Bibliographical Notes

An excellent general reference book for the “classical theory” of couplings is the mono-
graph by Thorisson [352]. There one can find an exhaustive treatment of classical couplings
of Markov chains or stochastic processes, such as ε-coupling, shift-coupling, Ornstein cou-
pling. As for the classical theory of optimal couplings, a rather exhaustive account can be
found in the two volumes by Rachev and Rüschendorf [306]. This includes in particular
the theory of optimal coupling on the real line with a convex cost function, which can be
treated in a simple and direct manner [306, Section 3.1]. (In [365], for the sake of consis-
tency of the presentation I treated optimal coupling on R as a particular case of optimal
coupling on Rn, however this has the drawback to involve subtle arguments.)

The Knothe-Rosenblatt coupling was introduced in 1952 by Rosenblatt [314], who sug-
gested that it might be useful to “normalize” statistical data before applying a statistical
test. In 1957, Knothe [228] rediscovered it for applications to the theory of convex bodies.
It is quite likely that other people have discovered this coupling independently.

It was in 1965 that Moser proved his coupling theorem, for smooth compact manifolds
without boundaries [279]. Noncompact manifolds were later considered by Greene and
Shiohama [190]. Moser himself also worked with Dacorogna on the more delicate case
where the domain is an open set with boundary, and the transport is required to fix the
boundary [126].

Strassen’s duality theorem is discussed e.g. in [365, Section 1.4].
The Gluing Lemma is due to several authors, starting with Vorob’ev in 1962 for fi-

nite sets. The modern formulation seems to have emerged around 1980, independently
by Berkes and Philipp [46], Thorisson, Kallenberg, and maybe others. Refinements were
discussed e.g. by de Acosta [128, Theorem A.1] (for marginals indexed by an arbitrary
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set) or Thorisson [352, Theorem 5.1]; see also the bibliographic comments in [146, p. 20].
For a proof of the statement in these notes, it is sufficient to consult Dudley [146, Theo-
rem 1.1.10], or [365, Lemma 7.6]. A comment about terminology: I like the word “gluing”
which seems to give a good intuition of the proof, but many authors just talk about
“composition” of plans.

The formula of changes of variables can be found in many textbooks for C1 or Lipschitz
change of variables, see e.g. Evans and Gariepy [156, Chapter 3]. The generalization to
approximately differentiable maps is explained in Ambrosio, Gigli and Savaré [15, Sec-
tion 5.5]. Such a generality is interesting in the context of optimal transportation, where
changes of variables are often very rough (say BV, which means of bounded variation).
In that context however, there is more structure: For instance, changes of variables will
typically be given by the gradient of a convex function in Rn, and on such a map one knows
slightly more than on a general BV function, because convex functions are twice differen-
tiable almost everywhere in the sense of Alexandrov. McCann [267] used this property to
prove, by slightly more elementary means, the change of variables formula for a gradient
of convex function. The proof is reproduced in [365, Theorem 4.8]. It was later generalized
by Cordero-Erausquin, McCann and Schmuckenschläger to Riemannian manifolds [118],
a case which again can be treated either as part of the general result about BV changes
of variables, or with the help of almost everywhere second derivatives of semi-concave
functions.

The formula of conservation of mass is also called the method of characteristics for
linear transport equations, and is described in a number of textbooks in partial differential
equations, at least when the driving vector field is Lipschitz, see for instance Evans [153,
Section 3.2]. An essentially equivalent statement is proven in [365, Theorem 5.34]. Treating
vector fields that are only assumed to be locally Lipschitz is not so easy, see Ambrosio,
Gigli and Savaré [15, Section 8.1].

The Lipschitz condition can be relaxed into a W 1,p or even a BV condition, but then the
flow is determined only almost everywhere, and this becomes an extremely subtle problem,
which has been studied by many authors since the pioneering work of DiPerna and Lions
at the beginning of the nineties. See Ambrosio [12] for recent progress and references. The
version which is stated in these notes, with no regularity assumption, is due to Ambrosio
and carefully proved in [15, Section 8.1]. In spite of its appealing and relatively natural
character (especially in a probabilistic perspective), this is a very recent research result.
Note that, if Tt(x) is not uniquely determined by x, then the solution to the conservation
equation starting with a given probability measure might admit several solutions.

A recent work by Lisini [244] addresses a generalization of the formula of conservation of
mass in the setting of general Polish spaces. Of course, without any regularity assumption
on the space it is impossible to speak of vector fields and partial differential equations;
but it is still possible to consider paths in the space of probability measures, and random
curves. Lisini’s results are most naturally expressed in the language of optimal transport
distances; see the bibliographical notes for Chapter 7.

The Diffusion Formula can be obtained as a simple consequence of the Itô formula,
which in the Euclidean setting can be found in any textbook on stochastic differential
equations, e.g. [285]. (Let me note that this was recently the hundredth anniversary of its
discovery by Einstein [150].) Fascinating tales about the Brownian motion can be read in
Nelson’s unconventional book [282], especially Chapters 1–4. For the much more subtle
Riemannian setting, one may consult Stroock [334], Hsu [216] and the references therein.

The Brownian motion on a smooth Riemannian manifold is always well-defined, even
if the manifold has a wild behavior at infinity (the construction of the Brownian motion is
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purely local); but in the absence of a good control on the Ricci curvature, there might be
several heat kernels, and the heat equation might not be uniquely solvable from a given
initial datum. This corresponds to the possibility of a blow-up of the Brownian motion (i.e.
the Brownian motion escapes to infinity) in finite time. All this was explained to me by
Thalmaier. The sharp criterion Ric ≥ −K[1 + d(x0, x)2] for avoiding blow-up of the heat
equation is based on comparison theorems for Laplace operators. In the version stated here
it is due to Ichihara [218]; see also the book by Hackenbroch and Thalmaier [203, p. 544].
Non-explosion criteria based on curvature have been studied also by Gaffney, Yau, Hsu,
Karp and Li, Davies, Takeda, Sturm and Grigor’yan; for a detailed exposition, and many
explanations, the reader can consult the survey by Grigor’yan [191, Section 9].
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Three examples of coupling techniques

In this chapter I shall present three applications of coupling methods. The first one is
classical and quite simple, the other two are more original but very typical of the topics
that will be considered later in these notes. The proofs are extremely variable in difficulty
and will only be sketched here; see the references in the bibliographical notes for details.

Convergence of the Langevin process

Consider a particle subject to the force induced by a potential V ∈ C1(Rn; R), a friction
and a random white noise agitation. If Xt stands for the position of the particle at time t,
m for its mass, λ for the friction coefficient, k for the Boltzmann constant and T for the
temperature of the heat bath, then the Newton equations can be written as

m
d2Xt

dt2
= −∇V (Xt) − λm

dXt

dt
+

√
kT

dBt

dt
, (2.1)

where (Bt)t≥0 is a standard Brownian motion. This is a second-order (stochastic) differ-
ential equation, so it should come with initial conditions for both the position X and the
velocity Ẋ.

Now consider a large cloud particles evolving independently, according to (2.1); the
question is whether the distribution of particles will converge to a definite limit as t → ∞.
In other words: Consider the stochastic differential equation (2.1) starting from some
initial distribution µ0(dx dv) = law (X0, Ẋ0), is it true that law (Xt), or law (Xt, Ẋt), will
converge to some given limit law as t → ∞?

Obviously, to solve this problem one has to make some assumptions on the potential V ,
which should prevent the particles from all escaping at infinity; for instance, we can make
the very strong assumption that V is uniformly convex, i.e. there exists K > 0 such
that the Hessian ∇2V satisfies ∇2V ≥ KIn. Some assumptions on the initial distribution
might also be needed; for instance, it is natural to assume that the Hamiltonian has finite
expectation at initial time:

E
(

V (X0) +
|Ẋ0|2

2

)
< +∞

Under these assumptions, it is true that there is exponential convergence to equilibrium,
at least if V does not grow too wildly at infinity (for instance if the Hessian of V is also
bounded above). However, I do not know of any simple method to prove this.
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However, consider the limit where the friction coefficient is quite strong, and the motion
of the particle is so slow that the acceleration term may be neglected in front of the others:
Then, up to resetting units, equation (2.1) becomes

dXt

dt
= −∇V (Xt) +

dBt

dt
, (2.2)

which is often called a Langevin process. Now, to study the convergence of equilibrium
for (2.2) there is an extremely simple solution by coupling. Consider another random
position (Yt)t≥0 obeying the same equation as (2.2):

dYt

dt
= −∇V (Yt) +

dBt

dt
, (2.3)

where the random realization of the Brownian motion is the same as in (2.2) (this is the
coupling). The initial positions X0 and Y0 may be coupled in an arbitrary way, but it is
possible to assume that they are independent. In any case, since they are driven by the
same Brownian motion, Xt and Yt will be correlated for t > 0.

Since Bt is not differentiable as a function of time, neither Xt nor Yt is differentiable
(equations (2.2) and (2.3) hold only in the sense of solutions of stochastic differential
equations); but it is easily checked that αt := Xt − Yt is a continuously differentiable
function of time, and

dαt

dt
= −

[
∇V (Xt) −∇V (Yt)

]
,

so in particular

d

dt

|αt|2

2
= −

〈
∇V (Xt) −∇V (Yt), Xt − Yt

〉
≤ −K

∣∣Xt − Yt

∣∣2 = −K |αt|2.

It follows by Gronwall’s lemma that

|αt|2 ≤ e−2Kt |α0|2.

Assume for simplicity that E |X0|2 and E |Y0|2 are finite. Then

E |Xt − Yt|2 ≤ e−2Kt E |X0 − Y0|2 ≤ 2 (E |X0|2 + E |Y0|2) e−2Kt. (2.4)

In particular, Xt − Yt converges to 0 almost surely, and this is independent of the distri-
bution of Y0.

This in itself would be essentially sufficient to guarantee the existence of a stationary
distribution; but in any case, it is easy to check, by applying the Diffusion Formula, that

ν(dy) =
e−V (y)

Z
dy

(where Z =
∫

e−V is a normalization constant) is stationary: If law (Y0) = ν, then also
law (Yt) = ν. Then (2.4) easily implies that µt := law (Xt) converges weakly to ν; in
addition, the convergence is exponentially fast.

Euclidean isoperimetry

Among all subsets of Rn with given surface, which one has the largest volume? To simplify
the problem, let us assume that we are looking for a bounded open set Ω ⊂ Rn with,
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say, Lipschitz boundary ∂Ω, that the measure of |∂Ω| is given; then the problem is to
maximize the measure of |Ω| itself For ∂Ω one should use the (n−1)-dimensional Hausdorff
measure, and for Ω the n-dimensional Hausdorff measure, which of course is the same as
the Lebesgue measure in Rn.

It has been known, at least since ancient times, that the solution to this “isoperimetric
problem” is the ball. A simple scaling argument shows that this statement is equivalent
to the Euclidean isoperimetric inequality:

|∂Ω|
|Ω|

n
n−1

≥ |∂B|
|B|

n
n−1

,

where B is any ball.
There are many many proofs of the isoperimetric inequality, and many refinements as

well. It is less known that there is a proof by coupling.
Here is a sketch of the argument, forgetting about regularity issues. Let B be a ball

such that |∂B| = |∂Ω|. Consider a random point X distributed uniformly in Ω, and a
random point Y distributed uniformly in B. Introduce the Knothe-Rosenblatt coupling
of X and Y : This is a deterministic coupling of the form Y = T (X), such that, at each
x ∈ Ω, the Jacobian matrix ∇T (x) is triangular with nonnegative diagonal entries. Since
the law of X (resp. Y ) has uniform density 1/|Ω| (resp. 1/|B|), the Change of Variables
Formula writes

∀x ∈ Ω
1
|Ω|

=
(
det∇T (x)

) 1
|B|

. (2.5)

Since ∇T is triangular, its Jacobian determinant can be written det∇T =
∏

λi, and its
divergence ∇ · T =

∑
λi, where the nonnegative numbers (λi)1≤i≤n are the eigenvalues of

∇T . Then the arithmetic-geometric inequality (
∏

λi)1/n ≤ (
∑

λi)/n becomes

(
det∇T (x)

)1/n ≤ ∇ · T (x)
n

.

Combining this with (2.5) results in

1
|Ω|1/n

≤ (∇ · T )(x)
n|B|1/n

.

Integrate this over Ω and then apply the divergence theorem:

|Ω|1−
1
n ≤ 1

n|B|
1
n

∫

Ω
(∇ · T )(x) dx =

1

n|B|
1
n

∫

∂Ω
(T · σ) dHn−1, (2.6)

where σ : ∂Ω → Rn is the unit outer normal to Ω and Hn−1 is the (n − 1)-dimensional
Hausdorff measure (restricted to ∂Ω). But T is valued in B, so |T ·σ| ≤ 1, and (2.6) implies

|Ω|1−
1
n ≤ |∂Ω|

n|B|
1
n

.

Since |∂Ω| = |∂B| = n|B|, the right-hand side is actually |B|1−
1
n , so the volume of Ω is

indeed bounded by the volume of B. This concludes the proof.

Open Problem 2.1. Can one devise an optimal coupling between sets (in the sense of a
coupling between the uniform probability measures on these sets) in such a way that the
total cost of the coupling decreases under a some evolution converging to balls, such as
mean curvature motion?
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Caffarelli’s log concave perturbation theorem

The previous example was about transporting a set to another, now the present one is in
some sense about transporting a whole space to another.

It is classical in geometry to compare a space X with a “model space” M that has
nice properties and is, e.g., less curved than X . A general idea is that certain inequalities
which hold true on the model space can automatically be “transported” to X . The theorem
discussed in this section is a striking illustration of this idea.

Let F,G,H, J, L be nonnegative continuous functions on R, with H and J nondecreas-
ing, and let 5 ∈ R. For a given measure µ on Rn, let λ[µ] be the largest λ ≥ 0 such that,
for all Lipschitz functions h : Rn → R,

∫

Rn
L(h) dµ = 5 =⇒ F

(∫

Rn
G(h) dµ

)
≤ 1

λ
H

(∫

Rn
J(|∇h|) dµ

)
, (2.7)

Functional inequalities of the form (2.7) are variants of Sobolev inequalities; many of
them are well-known and useful. Caffarelli’s theorem states that they can only be improved
by log-concave perturbation of the Gaussian distribution. More precisely, if γ is the standard
Gaussian measure and µ = e−vγ is another probability measure, with v convex, then

λ[µ] ≥ λ[γ].

His proof is a simple consequence of the following remarkable fact, which I shall call
Caffarelli’s log-concave perturbation theorem: If dµ/dγ is log-concave, then there
exists a 1-Lipschitz change of variables from the measure γ to the measure µ.

In other words, there is a deterministic coupling
(
X, Y = C(X)

)
of (γ, µ), such that

|C(x) − C(y)| ≤ |x − y|, or equivalently |∇C| ≤ 1. It follows in particular that
∣∣∇(h ◦ C)

∣∣ ≤ |(∇h) ◦ C|, (2.8)

whatever the function h.
Now it is easy to understand why the existence of the map C implies the result about

Sobolev inequalities: On one hand, the definition of change of variables implies
∫

G(h) dµ =
∫

G(h ◦ C) dγ,

∫
L(h) dµ =

∫
L(h ◦ C) dγ;

on the other hand, by the definition of change of variables again, inequality (2.8) and the
nondecreasing property of J ,

∫
J(|∇h|) dµ =

∫
J
(
|∇h ◦ C|

)
dγ ≥

∫
J
(
|∇(h ◦ C)|

)
dγ.

Thus, inequality (2.7) is indeed “transported” from the space (Rn, γ) to the space (Rn, µ).

Bibliographical Notes

It is very classical to use coupling arguments to prove convergence to equilibrium
for stochastic differential equations and Markov chains; many examples are described
by Rachev and Rüschendorf [306] or Thorisson [352]. Actually, the standard argument
found in textbooks to prove the convergence to equilibrium for a positive aperiodic er-
godic Markov chain is a coupling argument (but the null case can also be treated in
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that way, as I learnt from Thorisson). Optimal couplings are often well adapted to such
situations, but definitely not the only ones to apply.

The coupling method is not limited to systems of independent particles, and sometimes
works in presence of correlations, for instance if the law satisfies a nonlinear diffusion
equation. This is exemplified in works by Tanaka [350] on the spatially homogeneous
Boltzmann equation with Maxwell molecules (the core of Tanaka’s argument is reproduced
in my book [365, Section 7.5]), or some recent works [255, 102].

Recently, Cattiaux and Guillin [107] found a simple and elegant coupling argument to
prove the exponential convergence for the law of the stochastic process

dXt =
√

2 dBt − Ẽ∇V (Xt − X̃t) dt,

where X̃t is an independent copy of Xt, the Ẽ expectation only bears on X̃t, and V is
assumed to be a uniformly convex C1 symmetric potential on Rn.

It is also classical to couple a system of particles with an auxiliary artificial system to
study the limit when the number of particles becomes large. For the Vlasov equation in
kinetic theory this was been done by Dobrushin [144] and Neunzert [284] several decades
ago. (The proof is reproduced in Spohn [332, Chapter 5], and also suggested as an exercise
in my book [365, Problem 14].) Later Sznitman used this strategy in a systematic way for
the propagation of chaos, and made it very popular, see e.g. his work on the Boltzmann
equation [343] or his Saint-Flour lecture notes [344] and the many references included.

In all these works, the “philosophy” is always the same: Introduce some nice coupling
and see how it evolves in a certain asymptotic regime (say, either the time, or the number
of particles, or both, go to infinity).

It is possible to treat the convergence to equilibrium for the complete system (2.1) by
methods that are either analytic [140, 210, 366] or probabilistic [311, 261, 242], but all
methods known to me are much delicate than the simple coupling argument which works
for (2.2). It is certainly a nice open problem to find an elementary coupling argument that
works for (2.1). (The arguments in the above-mentioned probabilistic proofs ultimately
rely on coupling methods via theorems of convergence for Markov chains; but in a quite
indirect way.)

Coupling techniques have also been used recently for proving rather spectacular unique-
ness theorems for invariant measures in infinite dimension, see e.g. [149, 205, 204].

Classical references for the isoperimetric inequality and related topics are the books
by Burago and Zalgaller [82], and Schneider [329]; and the survey by Osserman [286].
Knothe [228] had the idea to use a “coupling” method to prove geometric inequalities,
and Gromov [275, Appendix] applied this method to prove the Euclidean isopetrimetric
inequality. Trudinger [356] gave a closely related treatment of the same inequality and some
of its generalizations, by means of a clever use of the Monge-Ampère equation (which more
or less amounts to the construction of an optimal coupling with quadratic cost function).
Cabré [86] found a surprising simplification of Trudinger’s method, based on the solution
of just a linear elliptic equation. The “proof” which I gave in this chapter is a variation on
Gromov’s argument (somewhat close to a recent work of Maggi and myself [253]); although
it is not rigorous, there is no real difficulty in turning it into a full proof by using the same
arguments as in the above-mentioned references. The reader may also consult Chapter 6
of my book [365], or the notes at the end of Chapters 18 and 21, for further links between
optimal coupling and isoperimetric-type inequalities.

The construction of Caffarelli’s map C is easy, at least conceptually: The optimal cou-
pling of the Gaussian measure γ with the measure µ = e−vγ, when the cost function is the
square of the Euclidean distance, will do the job. But proving that C is indeed 1-Lipschitz
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is much more of a sport, and involves some techniques from nonlinear partial differential
equations [91]. An idea of the core of the proof is explained in [365, Problem 13]. It would
be nice to find a softer argument.

Üstünel pointed out to me that, if v is convex and symmetric (v(−x) = v(x)), then the
Moser transport T from γ to e−vγ is contracting, in the sense that |T (x)| ≤ |x|; it is not
clear however that T would be 1-Lipschitz.

Caffarelli’s theorem has many analytic and probabilistic applications, see e.g. [183, 207].
There is an infinite-dimensional version by Feyel and Üstünel [168], where the Gaussian
measure is replaced by the Wiener measure.
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The founding fathers of optimal transport

As many other research subjects in mathematics, the field of optimal transport was born
several times. The first of these births occurred at the end of the eighteenth century, by
ways of the French geometer Gaspard Monge.

Monge was born in 1746 under the French Ancient Régime. Because of his outstanding
skills, military authorities tolerated him in a military training school from which he should
have been excluded by his modest origin. He invented descriptive geometry all by his own,
and the power of the method was so apparent that he was appointed professor at the age
of 22, with the understanding that his theory would remain a military secret, for exclusive
use of higher officers. He later served as a professor under several regimes (escaping a
death sentence by the Terror, and becoming later one of Napoleon’s closest friends), and
taught at Ecole Normale Supérieure and École Polytechnique in Paris. Most of his work
was devoted to geometry.

In 1781 he published one of his first famous works, Mémoire sur la théorie des déblais et
des remblais (a “déblai” is an amount of material that is extracted from the earth or a mine;
a “remblai” is a material that is input into a new construction). The problem considered
by Monge is as follows: Assume you have a certain amount of soil, to extract from the
ground and transport to places where it should be incorporated in a construction. The
places where the material should be extracted, and the ones where it should be transported
to, are all known. But the assignment has to be determined: To which destination should
one send the material that has been extracted at a certain place? The answer does matter
because transport is costly, and you want to minimize the total cost. Monge assumed that
the transport cost of one unit of mass along a certain distance was given by the product
of the mass by the distance.

Nowadays there is a Monge street in Paris, and therein one can find an excellent bakery
called Le Boulanger de Monge. To acknowledge this, and to illustrate how Monge’s problem
can be recast in an economic perspective, I shall express the problem as follows. Consider
a large number of bakeries, producing breads, that should be transported each morning to
cafés where consumers will eat them. The amount of bread that can be produced at each
bakery, and the amount that will be consumed at each café are known in advance, and can
be modelled as probability measures (there is a “density of production” and a “density of
consumption”) on a certain space, which in our case would be Paris (equipped with the
natural metric where the distance between two points is the length of the shortest path
joining them). The problem is to find in practice where each unit of bread should go, in
such a way as to minimize the total transport cost. So Monge’s problem really is the search
of an optimal coupling; and to be more precise, he was looking for a deterministic optimal
coupling.
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déblais
remblais

x

T

y

Fig. 3.1. Monge’s problem of déblais and remblais

Fig. 3.2. Economic illustration of Monge’s problem: squares stand for production units, circles for con-
sumption places

Monge studied the problem in three dimensions for a continuous distribution of mass.
Guided by his beautiful geometric intuition, he made the important observation that trans-
port should go along straight lines that should be orthogonal to a family of surfaces. This
study led him to the discovery of lines of curvature, a concept that by itself was a great
contribution to the geometry of surfaces. His ideas were developed by Charles Dupin and
later by Paul Appell. For nowadays’ mathematical standards, all these arguments were
flawed, yet it certainly would be worth looking up all these problems with modern tools.

Later Monge’s problem was rediscovered by the Russian mathematician Leonid Kan-
torovich. Born in 1912, Kantorovich was a very gifted mathematician who made his rep-
utation as a first-class researcher at the age of eighteen, and earned a professor position
just as young as Monge. He worked in many areas of mathematics, with a strong taste
for applications in economics, and later theoretical computer science. In 1938 a laboratory
consulted him for the solution of a certain optimization problem, which he found out was
representative of a whole class of linear problems arising in various areas of economics.
Motivated by this discovery, he developed the tools of linear programming, that later be-
came prominent in economics. He was awarded a joint Nobel prize in 1975 with Tjalling
Koopmans “for their contributions to the theory of optimum allocation of resources”.

In the case that is of direct interest for us, namely optimal coupling, Kantorovich stated
and proved, by means of functional analytical tools, a duality theorem that would play a
crucial role later. On the same occasion he devised a convenient notion of distance between
probability measures: the distance between two measures should be the optimal transport
cost from one to the other, if the cost is chosen as the distance function. This distance
between probability measures is nowadays called the Kantorovich-Rubinstein distance, and
has proven to be particularly flexible in many applications.
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It is only several years after his main results that Kantorovich made the connection with
Monge’s work. The problem of optimal coupling has since then been called the Monge-
Kantorovich problem.

All along the second half of the twentieth century, optimal coupling techniques and
variants of the Kantorovich-Rubinstein distance (nowadays often called under the name
of Wasserstein distances, or many other denominations) were used by statisticians and
probabilists. The “basis” space could be finite-dimensional, or infinite-dimensional: For
instance, optimal couplings give interesting notions of distance between probability mea-
sures on path spaces. A particularly interesting contribution is due to Tanaka, who in
the seventies used such a distance to study the time-behavior of a simple variant of the
Boltzmann equation.

During that time, reparametrization techniques (yet another word for change of vari-
ables) were used by many people working on inequalities involving volumes or integrals.
Long later it would be understood that optimal transport often provides useful reparame-
trizations.

At the end of the eighties, three directions of research emerged independently and
almost simultaneously, which completely reshaped the whole picture of optimal transport.

One of them was John Mather’s work on Lagrangian dynamical systems. Action-
minimizing curves are basic important objects in the theory of dynamical systems, and the
construction of closed action-minimizing curves satisfying certain qualitative properties is
a classical problem. By the end of the eighties, Mather found it convenient to study not
only action-minimizing curves, but action-minimizing stationary measures in phase space.
Mather’s measures are a generalization of action-minimizing curves, and they solve a varia-
tional problem which in effect is a Monge-Kantorovich problem. Under some conditions on
the Lagrangian, Mather proved a celebrated result according to which (roughly speaking)
certain action-minimizing measures are automatically concentrated on Lipschitz graphs.
As we shall understand later, this problem is intimately related to the construction of a
deterministic optimal coupling.

The second direction of research came from the work of Yann Brenier. While studying
problems in incompressible fluid mechanics, Brenier needed to construct an operator that
would act like the projection on the set of measure-preserving mappings in an open set
(in probabilistic language, measure-preserving mappings are deterministic couplings of
the Lebesgue measure with itself). He understood that he could do so by introducing an
optimal coupling: If u is the map of which one wants to compute the projection, introduce
a coupling of the Lebesgue measure L with u#L. This study revealed an unexpected
link between optimal transport and fluid mechanics, and at the same time attracted the
attention of the community of partial differential equations, by pointing out its relation
with the theory of the Monge-Ampère equation.

The third direction of research, certainly the most surprising, came from outside mathe-
matics. Mike Cullen was part of a group of meteorologists with a well-developed mathemat-
ical taste, working on semi-geostrophic equations, used in meteorology for the modelling of
atmospheric fronts. Cullen and his collaborators showed that a certain well-known change
of unknown due to Hoskins could be re-interpreted in terms of an optimal coupling prob-
lem, and they identified the minimization property as a stability condition. A striking
feature of this work was that optimal transport could arise naturally in partial differential
equations which seemed to have nothing to do with it.

All three contributions emphasized (in their respective domain) that important infor-
mation can be gained by a qualitative description of optimal transport. These new directions
of research attracted various mathematicians (among the first, Luis Caffarelli, Craig Evans,
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Wilfrid Gangbo, Robert McCann, and others), who worked on a better description of the
structure of optimal transport and found some other applications.

An important conceptual step was accomplished by Felix Otto, who discovered an
appealing formalism which in effect introduced a differential point of view in optimal
transport theory. This opened the way to a more geometric description of the space of
probability measures, and connected optimal transport to the theory of diffusion equa-
tions, thus leading to a rich interplay between geometry, functional analysis and partial
differential equations.

Nowadays optimal transport has become a thriving industry, involving many researchers
and many trends. Apart from meteorology, fluid mechanics and diffusion equations, it
has also been applied to such diverse topics as the collapse of sandpiles, the matching
of images, and the design of networks or reflector antennas. My book, Topics in Optimal
Transportation, written between 2000 and 2003, was the first attempt to present a synthetic
view of the modern theory. Since then the field has grown much faster than I expected,
and it was never so active as now.

Bibliographical Notes

Before the twentieth century, the main references about the problem of “déblais et
remblais” are the memoirs by Monge [276], Dupin [148] and Appell [22]. Besides achieving
important mathematical results, Monge and Dupin were strongly committed to the devel-
opment of the society at their time and it is interesting to browse some of their writings
about economics and industry (a list can be found online at http://gallica.bnf.fr). A
lively account of Monge’s life and political commitments can be found in Bell’s delightful
treatise, Men of Mathematics [?].

Kantorovich introduced his minimization problem in [220], established his duality the-
orem in [221], and later made the link with Monge’s problem in [222]. He wrote a short
autobiography on the occasion of his Nobel Prize [223].

Mather introduced minimizing measures in [259], and later proved his Lipschitz graph
theorem in [260]. The explicit connection with the Monge-Kantorovich problem came only
recently [47].

Tanaka’s contributions to kinetic theory go back to the mid-seventies [280, 349, 350].
This line of research was later taken back by Toscani and collaborators [60, 305]. These
papers constituted my first contact with the optimal transport problem. More recent de-
velopments about the use of optimal transport in the Boltzmann equation for granular
media appear for instance in [62].

Brenier announced his main results in a short note [69], then published detailed proofs
in [72]. Chapter 3 in [365] is entirely devoted to Brenier’s polar factorization theorem (which
includes the existence of the projection operator), its interpretation and consequences.
About the sources of inspiration of Brenier, and various links between optimal transport
and hydrodynamics, one may consult [70, 74, 75].

The semi-geostrophic system was introduced by Eliassen [152] and Hoskins [213, 214,
215]; it is very briefly described in [365, Problem 9, pp. 323–326]; a short list of references
is also provided there. Cullen and collaborators wrote many papers on the subject, see in
particular [125]; see also the review article [124], the work by Cullen and Gangbo [123], or
the recent book by Cullen [121].

Further links between optimal transport and other fields of mathematics (or physics)
can be found in my book [365], or in the treatise by Rachev and Rüschendorf [306].
Here below is a non-exhaustive list of some unexpected applications. Relations with the
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modelling of sandpiles are reviewed by Evans [154]. Applications of optimal transport to
image processing are discussed by Gangbo and McCann [?], Haker, Zhu, Tannenbaum
and Angenent [?], and others. X.-J. Wang [?] discovered that the theoretical problem of
designing reflector antennas could be recast as an optimal transport problem. In his PhD,
Bernot [?] made the link between optimal transport and the design of networks.

Many generalizations of optimal transport have been considered, such as the transship-
ment problem [306], or optimal coupling with more than two given marginals [230, 319,
323, 325, 180]. Other variants are discussed also in [306].





Part I

Qualitative description of optimal transport
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The first part of these notes is devoted to the description and characterization of optimal
transport under certain regularity assumptions on the measures and the cost function.

As a start, some general theorems about optimal transport plans are established in
Chapters 4 and 5, in particular the Kantorovich duality theorem. The emphasis is on c-
cyclically monotone maps, both in the statements and in the proofs. The assumptions on
the cost function and the spaces will be very general.

From the Monge–Kantorovich problem one can derive natural distance functions on
spaces of probability measures, by choosing the cost function as a power of the distance.
The main properties of these distances are established in Chapter 6.

In Chapter 7 a time-dependent version of the Monge–Kantorovich problem is inves-
tigated, which leads to an interpolation procedure between probability measures, called
displacement interpolation. The natural assumption is that the cost function derives from
a Lagrangian action, in the sense of classical mechanics; still (almost) no smoothness is
required at that level. In Chapter 8 I shall make further assumptions of smoothness and
convexity, and recover some regularity properties of the displacement interpolant by a
strategy due to Mather.

Then in Chapters 9 and 10 it is shown how to establish the existence of deterministic
optimal couplings, and characterize the associated transport maps, again under adequate
regularity and convexity assumptions. These transports might not be smooth, as explained
in Chapter 12, but the Change of Variables Formula still applies, as discussed in Chap-
ter 11.

The main results of this part are synthetized and summarized in Chapter 13.
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Basic properties

Existence

The first good thing about optimal couplings is that they exist:

Theorem 4.1 (Existence of an optimal coupling). Let (X , µ) and (Y, ν) be two
Polish (i.e. metric, complete separable) probability spaces. Let c : X × Y → R ∪ {+∞} be
a lower semi-continuous cost function, bounded below by some real number. Then there is
always a coupling of µ and ν which minimizes the total cost E c(X,Y ) among all possible
couplings (X,Y ).

The proof relies on basic variational arguments involving the topology of weak conver-
gence (i.e. imposed by bounded continuous test functions). There are two key properties:
(a) lower semi-continuity and (b) compactness. These issues are taken care of respectively
in Lemmas 4.2 and 4.3 below, which will be used again in the sequel. Before going on,
I recall Prokhorov’s theorem: If X is a Polish space, then a set P ⊂ P (X ) is precompact
for the weak topology if and only if it is tight, i.e. for any ε > 0 there is a compact set Kε

such that µ[X \ Kε] ≤ ε for all µ ∈ P.

Lemma 4.2 (lower semi-continuity of the cost functional). Let X and Y be Polish
spaces, and let c : X × Y → R ∪ {+∞} be a lower semi-continuous cost function, bounded
below. Then F : π →

∫
c dπ is also a lower semi-continuous functional on P (X × Y),

bounded below.

Proof of Lemma 4.2. Let πk be a family of probability measures on X × Y, converging
weakly to some probability measure π. Since c is lower semi-continuous, it can be written
as the pointwise limit of a nondecreasing family (c()(∈N of continuous real-valued functions.
Then ∫

c dπ = lim
(→∞

∫
c( dπ = lim

(→∞
lim

k→∞

∫
c( dπk ≤ lim inf

k→∞

∫
c dπk.

So the function F : π "−→
∫

c dπ is indeed lower semi-continuous with respect to weak
convergence. It is also clearly bounded below by inf c. 78

Lemma 4.3 (tightness of transference plans). Let X and Y be two Polish spaces.
Let P ⊂ P (X ) and Q ⊂ P (Y) be tight subsets of P (X ) and P (Y) respectively. Then the
set Π(P,Q) of all transference plans whose marginals lie in P and Q respectively, is itself
tight in P (X × Y).

Proof of Lemma 4.3. Let µ ∈ P, ν ∈ Q, and π ∈ Π(µ, ν). By assumption, for any ε > 0
there is a compact set Kε ⊂ X , independent of the choice of µ in P, such that µ[X\Kε] ≤ ε;
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and similarly there is a compact set Lε ⊂ Y, independent of the choice of ν in Q, such
that ν[Y \ Lε] ≤ ε. It follows that, for any coupling (X,Y ) of (µ, ν),

P
[
(X,Y ) /∈ Kε × Lε

]
≤ P [X /∈ Kε] + P [Y /∈ Lε] ≤ 2ε.

The desired result follows since this bound is independent of the coupling, and Kε ×Lε is
compact in X × Y. 78

Proof of Theorem 4.1. Since X is Polish, {µ} is tight in P (X ); and similarly, {ν} is tight in
P (Y). So Π(µ, ν) is tight in P (X ×Y), and by Prokhorov’s theorem this set has a compact
closure. By passing to the limit in the equation for marginals, we see that Π(µ, ν) is closed,
so it is in fact compact.

Since F : π "−→
∫

c dπ is a lower semi-continuous function on a compact set, bounded
below, it admits a minimizer (this is a standard result; to prove it, select a minimizing
sequence and pass to the lim inf). So there is indeed a transference plan π which minimizes
the cost functional

∫
c dπ. 78

Remark 4.4. This existence theorem does not imply that the optimal cost is finite. It
might be that all transport plans lead to an infinite total cost. A simple condition to rule
out this annoying possibility is

∫
c(x, y) dµ(x) dν(y) < +∞;

which guarantees that at least the independent coupling has finite total cost. In the sequel,
I shall sometimes make the stronger assumption

c(x, y) ≤ cX (x) + cY(y), (cX , cY ) ∈ L1(dµ) × L1(dν),

which implies that any coupling has finite total cost, and has other nice consequences (see
e.g. Theorem 5.9).

Restriction property

The second good thing about optimal couplings is that any sub-coupling is still optimal.
In words: If you have an optimal transport plan, then any induced sub-plan (transferring
part of the initial mass to part of the final mass) has to be optimal too — otherwise you
might be able to lower the cost of the sub-plan, and as a consequence the cost of the whole
plan. This is the content of the next theorem.

Theorem 4.5 (Optimality is inherited by restriction). With the same notation as
in Theorem 4.1, let π be the law of an optimal coupling between two probability measures
µ and ν. Let π̃ be a nonnegative measure on X × Y, such that π̃ ≤ π and π̃[X × Y] > 0.
Then the probability measure

π′ :=
π̃

π̃[X × Y]

is an optimal transference plan between its marginals µ′ and ν ′.
Moreover, if π is the unique optimal transference plan between µ and ν, then also π′ is

the unique optimal transference plan between µ′ and ν ′.
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Example 4.6. If (X,Y ) is an optimal coupling of (µ, ν), and Z ⊂ X × Y is such that
P
[
(X,Y ) ∈ Z

]
> 0, then the couple (X,Y ), conditioned to lie in Z, is an optimal coupling

of (µ′, ν ′), where µ′ (resp. ν ′) is the law of X (resp. Y ) conditioned by the event “(X,Y ) ∈
Z”.

Proof of Theorem 4.5. Assume that π′ is not optimal; then there exists π′′ such that

(projX )#π′′ = (projX )#π′ =: µ′, (projY)#π′′ = (projY)#π′ =: ν ′, (4.1)

yet ∫
c(x, y) dπ′′(x, y) <

∫
c(x, y) dπ′(x, y). (4.2)

Then consider
π̂ := (π − π̃) + Z̃π′′, (4.3)

where Z̃ = π̃[X × Y] > 0. Clearly, π̂ is a nonnegative measure. On the other hand, it can
be written as

π̂ = π + Z̃(π′′ − π′);

then (4.1) shows that π̂ has the same marginals as π, while (4.2) implies that it has a
lower transport cost than π. This contradicts the optimality of π. The conclusion is that
π′ is in fact optimal.

It remains to prove the last statement of Theorem 4.5. Assume that π is the unique
optimal transference plan between µ and ν; and let π′′ be any optimal transference plan
between µ′ and ν ′. Define again π̂ by (4.3). Then π̂ has the same cost as π, so π̂ = π,
which implies that π̃ = Z̃π′′, i.e. π′′ = π′. 78

Convexity properties

The following estimates are of constant use:

Theorem 4.7 (Convexity of the optimal cost). Let X and Y be two Polish space,
let c : X × Y → R ∪ {+∞} be a lower semi-continuous function, and let C be the associ-
ated optimal transport cost functional on P (X ) × P (Y). Let (Θ,λ) be a probability space,
and let µθ, νθ be two measurable functions defined on Θ, with values in P (X ) and P (Y)
respectively. Then

C

(∫

Θ
µθ λ(dθ),

∫

Θ
νθ λ(dθ)

)
≤

(∫

Θ
C(µθ, νθ)λ(dθ)

) 1
p

.

Proof. For each θ, let πθ be optimal in the transport problem with cost dp and marginals
µθ and νθ. Then π :=

∫
πθ λ(dθ) has marginals µ :=

∫
µθ λ(dθ) and ν :=

∫
νθ λ(dθ). So

C(µ, ν) ≤
∫

X×Y
c(x, y) dπ(x, y)

=
∫

X×Y
c(x, y)

(∫

Θ
πθ λ(dθ)

)
(dx dy)

=
∫

Θ

(∫

X×Y
c(x, y)πθ(dx dy)

)
λ(dθ)

=
∫

Θ
C(µθ, νθ)λ(dθ),

and then the conclusion follows. 78
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Description of optimal plans

Obtaining more precise information about minimizers will be much more of a sport. Here
is a short list of questions that one might ask:

- is the optimal coupling unique? smooth in some sense?
- is there a Monge coupling, i.e. a deterministic optimal coupling?
- is there a geometrical way to characterize optimal couplings? Can one check in practice

that a certain coupling is optimal?

About the second question: Why don’t we try to apply the same reasoning as in the
proof of Theorem 4.1? The problem is that the set of deterministic couplings is in general
not compact. In fact, this set is often dense in the larger space of all couplings! So we may
expect that the value of the infimum in the Monge problem coincides with the value of
the minimum in the Kantorovich problem; but there is no a priori reason to expect the
existence of a Monge minimizer.

Example 4.8. Let X = Y = R2, let c(x, y) = |x−y|2, let µ be H1 restricted to {0}×[−1, 1],
and let ν be (1/2)H1 restricted to {−1, 1} × [−1, 1], where H1 is the one-dimensional
Hausdorff measure. Then there is a unique optimal transport, which for each point (0, a)
sends one half of the mass at (0, a) to (−1, a), and the other half to (1, a). This is not a
Monge transport, but it is easy to approximate it by Monge transports.

Fig. 4.1. The optimal plan, represented on the left image, consists in splitting the mass in the center into
two halves and transport mass horizontally. On the right the filled regions represent the lines of transport
for a deterministic (without splitting of mass) approximation of the optimum.

Bibliographical Notes

Theorem 4.1 has probably been known from immemorial times. Prokhorov’s theorem
is a most classical result that can be found e.g. in [52] (or in my own course on integration,
accessible online via http://www.umpa.ens-lyon.fr/~cvillani/Cours).

Theorems of the form “infimum cost in the Monge problem = minimum cost in the
Kantorovich problem” have been established by Gangbo [177, Appendix A], Ambrosio [10,
Theorem 2.1] and Pratelli [301, Theorem B]. The most general results to this date are those
which appear in Pratelli’s work: The equality holds true if the source space (X , µ) is Polish
without atoms, and the cost is continuous X×Y → R∪{+∞} (with the value +∞ allowed).
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Cyclical monotonicity and Kantorovich duality

To get started, we should first become acquainted with two basic concepts in the theory
of optimal transport. The first one is a geometric property called cyclical monotonicity;
the second one is the Kantorovich dual problem, which is another face of the original
Monge–Kantorovich problem.

Definitions and heuristics

I shall start by explaining the concepts of cyclical monotonicity and Kantorovich duality
in an informal way, sticking to the bakery analogy. Assume you have been hired by a
large consortium of bakeries and cafés, to be in charge of the distribution of bread from
production units (bakeries) to consumption units (cafés). The locations of the bakeries and
cafés, their respective production and consumption rates, are all determined in advance.
You have written a transference plan, which says, for each bakery (located at) xi and each
café yj, how much bread should go each morning from xi to yj.

As there are complaints that the transport cost associated with your plan is actually
too high, you try to reduce it. For that purpose you choose a bakery x1 that sends part of
its production to a distant café y1, and decide that one basket of bread will be rerouted
to another café y2, that is closer to x1; thus you will gain c(x1, y2) − c(x1, y1). Of course,
now this results in an excess of bread in y2, so one basket of bread arriving to y2 (say,
from bakery x2) should in turn be rerouted to yet another café, say y3. The process goes
on and on until finally you redirect a basket from some bakery xN to y1, at which point
you can stop since you have a new admissible transference plan.

The new plan is (strictly) better than the previous one if and only if

c(x1, y2) + c(x2, y3) + . . . + c(xN , y1) < c(x1, y1) + c(x2, y2) + . . . + c(xN , yN ).

Thus, if you can find such cycles (x1, y1), . . . , (xN , yN ) in your transference plan, certainly
the latter is not optimal. On the contrary, if you do not find then, then your plan cannot
be improved (at least by the procedure described above) and it is likely to be optimal.
This motivates the following definitions.

Definition 5.1 (cyclical monotonicity). Let X ,Y be arbitrary sets, and c : X × Y →
(−∞,+∞] be a cost function. A subset Γ ⊂ X × Y is said to be c-cyclically monotone if,
for any N ∈ N, and any family (x1, y1), . . . , (xN , yN ) of points in Γ , holds the inequality

N∑

i=1

c(xi, yi) ≤
N∑

i=1

c(xi, yi+1) (5.1)
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Fig. 5.1. An attempt to improve the cost by a cycle; solid arrows indicate the mass transport in the
original plan, dashed arrows the paths along which a bit of mass is rerouted.

(with the convention yN+1 = y1). A transference plan is said to be c-cyclically monotone
if it is concentrated on a c-cyclically monotone set.

Informally, a c-cyclically monotone plan is a plan that cannot be improved : it is impos-
sible to perturb it (in the sense considered before, by rerouting mass along some cycle)
and get something more economical. One can think of it as a kind of local minimizer. It
is intuitively obvious that an optimal plan should be c-cyclically monotone; the converse
property is much less obvious (maybe it is possible to get something better by radically
changing the plan), but we shall soon see that it holds true under mild conditions.

The next key concept is the dual Kantorovich problem. While the central notion in
the original Monge–Kantorovich problem is cost, in the dual problem it is price. Imagine
that a company offers to take care of all your transportation problem, buying bread at
the bakeries and selling them to the cafés; what happens in between is not your problem
(and maybe they have tricks to do the transport at a lower price than you). Let ψ(x) be
the price at which a basket of bread is bought at bakery x, and φ(y) the price at which it
is sold at café y. On the whole, the price which the consortium bakery+café pays for the
transport is φ(y)−ψ(x), instead of the original cost c(x, y). This of course is for each unit
of bread: if there is a mass µ(dx) at x, then the total price of the bread shipment from
there will be ψ(x)µ(dx).

So as to be competitive, the company needs to set up prices in such a way that

∀(x, y), φ(y) − ψ(x) ≤ c(x, y). (5.2)

When you were handling the transportation yourself, your problem was to minimize the
cost. Now that the company takes this into charge, their problem is to maximize the profits.
This naturally leads to the dual Kantorovich problem:

sup
{∫

Y
φ(y) dν(y) −

∫

X
ψ(x) dµ(x); φ(y) − ψ(x) ≤ c(x, y)

}
. (5.3)

From a mathematical point of view, it will be imposed that the functions (ψ,φ) ap-
pearing in (5.3) be integrable: ψ ∈ L1(X , µ); φ ∈ L1(Y, ν).

With the intervention of the company, the shipment of each unit of bread does not
cost more than it used to when you were handling it yourself; so it is obvious that the
supremum in (5.3) is less than the optimal transport cost:
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sup
φ−ψ≤c

{∫

Y
φ(y) dν(y) −

∫

X
ψ(x) dµ(x)

}
≤ inf

π∈Π(µ,ν)

{∫

X×Y
c(x, y) dπ(x, y)

}
. (5.4)

Clearly, if we can find a pair (ψ,φ) and a transference plan π for which there is equality,
then (ψ,φ) is optimal in the left-hand side and π is also optimal in the right-hand side.

A pair of price functions (ψ,φ) will informally be said to be competitive if it satis-
fies (5.2). For a given y, it is of course in the interest of the company to set the high-
est possible competitive price φ(y), i.e. the highest lower bound (i.e. the infimum) for
ψ(x) + c(x, y), among all bakeries x. Similarly, for a given x, the price ψ(x) should be the
supremum of all φ(y) − c(x, y). Thus it makes sense to describe a pair of prices (ψ,φ) as
tight if

φ(y) = inf
x

(
ψ(x) + c(x, y)

)
, ψ(x) = sup

y

(
φ(y) − c(x, y)

)
. (5.5)

In words, prices are tight if it is impossible for the company to raise the selling price, or
lower the buying price, without losing its competitivity.

Consider an arbitrary pair of competitive prices (ψ,φ). We can always improve φ by
replacing it by φ1(y) = infx

(
ψ(x) + c(x, y)

)
. Then we can also improve ψ by replacing by

ψ1(x) = supy

(
φ1(y) − c(x, y)

)
; then replacing φ1 by φ2(y) = infx

(
ψ1(x) + c(x, y)

)
, and so

on. It turns out that this process is stationary: as an easy exercise, the reader can check
that φ2 = φ1, ψ2 = ψ1, which means that after just one iteration we have obtained a pair
of tight prices. Thus, when we consider the dual Kantorovich problem (5.3), it makes sense
to restrict our attention to tight pairs, in the sense of equation (5.5). From that equation
we can reconstruct φ in terms of ψ, so we can just take ψ as the only unknown in our
problem. That unknown cannot be just any function: if you take a general function ψ,
compute φ by the first formula in (5.5), there is no chance that the second formula will
be satisfied. In fact this second formula will hold true if and only if ψ is c-convex, in the
sense of the following definition.

Definition 5.2 (c-convexity). Let X ,Y be sets, and c : X × Y → (−∞,+∞] be a fixed
cost. A function ψ : X → R∪ {+∞} is said to be c-convex if it is not identically +∞, and
there exists ζ : Y → R ∪ {±∞} such that

∀x ψ(x) = sup
y

(
ζ(y) − c(x, y)

)
. (5.6)

Then its c-transform is the function ψc defined by

∀y ψc(y) = inf
x

(
ψ(x) + c(x, y)

)
, (5.7)

and its c-subdifferential is the c-cyclically monotone set defined by

∂cψ :=
{
(x, y) ⊂ X × Y; ψc(y) − ψ(x) = c(x, y)

}
.

The functions ψ and ψc are said to be c-conjugate.
Then the c-subdifferential of ψ at point x is

∂cψ(x) =
{
y ∈ Y; (x, y) ∈ ∂cψ

}
,

or equivalently
∀z ∈ X , ψ(x) + c(x, y) ≤ ψ(z) + c(z, y). (5.8)
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Particular Case 5.3. If c(x, y) = −x · y on Rn ×Rn, then then the c-transform coincides
with the usual Legendre transform, and c-convexity is just plain convexity on Rn. (Actually,
this is a slight oversimplification: c-convexity is equivalent to plain convexity plus lower
semi-continuity! A convex function is automatically continuous on the largest open set Ω
where it is finite, but lower semi-continuity might fail at the boundary of Ω...) One can
think of the cost function c(x, y) = −x · y as basically the same as c(x, y) = |x − y|2/2,
since the “interaction” between the positions x and y is the same for both costs.

Particular Case 5.4. If c = d is a distance on some metric space X , or more generally
if c satisfies the triangular inequality c(x, z) ≤ c(x, y) + c(y, z), then a c-convex function
is just a 1-Lipschitz function, and it is its own c-transform. Indeed, if ψ is c-convex then
it is obviously 1-Lipschitz; conversely, if ψ is 1-Lipschitz, then ψ(x) ≤ ψ(y) + d(x, y), so
ψ(x) = infy[ψ(y) + d(x, y)] = ψc(x). As an even more particular case, if c(x, y) = 1x '=y,
then ψ is c-convex if and only if supψ − inf ψ ≤ 1, and then again ψc = ψ.

Remark 5.5. There is no measure theory in Definition 5.2, so no assumption of mea-
surability is made, and the supremum in (5.6) is a true supremum, not just an essential
supremum; the same is true for the infimum in (5.7). If c is continuous, then a c-convex
function is automatically lower semi-continuous, and its subdifferential is closed; but if c
is not continuous the measurability of ψ and ∂cψ are not guaranteed.

Remark 5.6. I excluded the case when ψ ≡ +∞ so as to avoid trivial situations; what
is called a c-convex function here might more properly (!) be called a proper c-convex
function. This automatically implies that ζ in (5.6) does not take the value +∞ at all if
c is real-valued. If c does achieve infinite values, then the correct convention in (5.6) is
(+∞) − (+∞) = −∞.

If ψ is a function on X , then its c-transform is a function on Y. Conversely, given a
function on Y, one may define its c-transform as a function on X . It will be convenient
in the sequel to define the latter concept by an infimum rather than a supremum. This
convention has the drawback to break the symmetry between the roles of X and Y, but it
has other advantages that will be apparent later on.

Definition 5.7 (c-concavity). With the same notation as in Definition 5.2, a function
φ : Y → R ∪ {−∞} is said to be c-concave if it is not identically −∞, and there exists
ψ : X → R ∪ {±∞} such that φ = ψc.

Then its c-transform is the function φc defined by

∀x φc(x) = sup
y

(
φ(y) − c(x, y)

)
;

and its c-superdifferential is the c-cyclically monotone set defined by

∂cψ :=
{

(x, y) ⊂ X × Y; ψc(y) − ψ(x) = c(x, y)
}

.

The following proposition may be taken as the main justification for the concept of
c-convexity.

Proposition 5.8 (Alternative characterization of c-convexity via c-convexification).
For any function ψ : X → R∪ {+∞}, define its c-convexification to be ψcc = (ψc)c. More
explicitly,

ψcc(x) = sup
y∈Y

inf
ex∈X

(
ψ(x̃) + c(x̃, y) − c(x, y)

)
.

Then ψ is c-convex if and only if ψcc = ψ.
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Proof of Proposition 5.8. As a general fact, for any function φ : Y → R ∪ {−∞} (not
necessarily c-convex), one has the identity φccc = φc. Indeed,

φccc(x) = sup
y

inf
ex

sup
ey

[
φ(ỹ) − c(x̃, ỹ) + c(x̃, y) − c(x, y)

]
;

then the choice x = x̃ shows that φccc(x) ≤ φc(x); while the choice ỹ = y shows that
φccc(x) ≥ φc(x).

So if ψ is c-convex, then there is ζ such that ψ = ζc, so ψcc = ζccc = ζc = ψ.
The converse is obvious: If ψcc = ψ, then ψ is the c-transform of ψc, so it is c-convex.

78

Kantorovich duality

We are now ready to state and prove the main result in this chapter.

Theorem 5.9 (Kantorovich duality). Let (X , µ) and (Y, ν) be two Polish probability
spaces and let c : X ×Y → R∪ {+∞} be a lower semi-continuous cost function, such that

∀(x, y) ∈ X × Y, c(x, y) ≥ a(x) + b(y)

for some real-valued, upper semi-continuous functions a ∈ L1(µ), b ∈ L1(ν). Then
(i) There is duality:

min
π∈Π(µ,ν)

∫

X×Y
c(x, y) dπ(x, y) = sup

(ψ,φ)∈Cb(X )×Cb(Y); φ−ψ≤c

(∫

Y
φ(y) dν(y) −

∫

X
ψ(x) dµ(x)

)

= sup
(ψ,φ)∈L1(µ)×L1(ν); φ−ψ≤c

(∫

Y
φ(y) dν(y) −

∫

X
ψ(x) dµ(x)

)

= sup
ψ∈L1(µ)

(∫

Y
ψc(y) dν(y) −

∫

X
ψ(x) dµ(x)

)

= sup
φ∈L1(ν)

(∫

Y
φ(y) dν(y) −

∫

X
φc(x) dµ(x)

)
,

and in the above suprema one might as well impose that ψ be c-convex, and φ be c-concave.

(ii) If c is real-valued and the optimal cost C(µ, ν) = infπ∈Π(µ,ν)

∫
c dπ is finite, then

there is a measurable c-cyclically monotone set Γ ⊂ X×Y (closed if a, b, c are continuous)
such that for any π ∈ Π(µ, ν) the following five statements are equivalent:

(a) π is optimal;
(b) π is c-cyclically monotone;
(c) There is a c-convex ψ such that, π-almost surely, ψc(y) − ψ(x) = c(x, y);
(d) There are functions ψ : X → R ∪ {+∞} and φ : Y → R ∪ {−∞}, such that

φ(y) − ψ(x) ≤ c(x, y) for all (x, y), with equality π-almost surely.
(e) π is concentrated on Γ .

(iii) If c is real-valued, C(µ, ν) < +∞, and one has the pointwise upper bound

c(x, y) ≤ cX (x) + cY(y), (cX , cY ) ∈ L1(X , µ) × L1(Y, ν), (5.9)

then both the original and the dual Kantorovich problems admit solutions, so



52 5 Cyclical monotonicity and Kantorovich duality

min
π∈Π(µ,ν)

∫

X×Y
c(x, y) dπ(x, y) = max

(ψ,φ)∈L1(µ)×L1(ν); φ−ψ≤c

(∫

Y
φ(y) dν(y) −

∫

X
ψ(x) dµ(x)

)

(5.10)

= max
ψ∈L1(µ)

(∫

Y
ψc(y) dν(y) −

∫

X
ψ(x) dµ(x)

)
, (5.11)

and in the latter expressions one might as well impose that ψ be c-convex and φ = ψc.
If in addition a, b and c are continuous, then there is a closed c-cyclically monotone set
Γ ⊂ X × Y, such that
{
π ∈ Π(µ, ν) is optimal in the Kantorovich problem if and only if π is concentrated on Γ ;
ψ is optimal in the dual Kantorovich problem if and only if Γ ⊂ ∂cψ.

Remark 5.10. When the cost c is continuous, then the support of π is c-monotone; but
for a discontinuous cost function it might a priori be true that π is concentrated on a (non-
closed) monotone set, while the support of π is not monotone. So, in the sequel, the words
“concentrated on” are not exchangeable with “supported in”. There is another subtlety
for discontinuous cost functions: It is not clear that the functions φ and ψc appearing in
statements (ii) and (iii) are Borel measurable; it will only be proven that they coincide
with measurable functions outside of a ν-negligible set.

Remark 5.11. Note the difference between statements (b) and (e). The set Γ appearing
in (ii)(b) is the same for all optimal π’s, it only depends on µ and ν. This set is in general
not unique. If c is continuous and Γ is imposed to be closed, then one can define a smallest
Γ , which is the closure of the union of all the supports of the optimal π’s. There is also
a largest Γ , which is the intersection of all the subdifferentials ∂cψ, where ψ is such that
there exists an optimal π supported in ∂cψ. (Since the cost function is assumed to be
continuous, the subdifferentials are closed, and so is their intersection.)

Remark 5.12. Here is a useful practical consequence of Theorem 5.9: Given a transference
plan π, if you can cook up a pair of competitive prices (ψ,φ) such that φ(y)−ψ(x) = c(x, y)
throughout the support of π, then you know that π is optimal. This theorem also shows
that optimal transference plans satisfy very special conditions: if you fix an optimal pair
(ψ,φ), then mass arriving at y can come from x only if c(x, y) = φ(y)−ψ(x) = ψc(y)−ψ(x),
which means that

x ∈ Arg min
x′∈X

(
ψ(x′) + c(x′, y)

)
.

In terms of my bakery analogy this can be restated as follows: a café accepts bread from
a bakery only if the combined cost of buying the bread there and transporting it here
is lowest among all possible bakeries. Similarly, given a pair of competitive prices (ψ,φ),
if we can cook up a transference plan π such that φ(y) − ψ(x) = c(x, y) throughout the
support of π, then you know that (ψ,φ) is a solution to the dual Kantorovich problem.

Remark 5.13. The assumption c ≤ cX + cY in (iii) can be weakened into
∫

X×Y
c(x, y) dµ(x) dν(y) < +∞,

or even

µ

[{
x;

∫

Y
c(x, y) dν(y) < +∞

}]
> 0; ν

[{
y;
∫

X
c(x, y) dµ(x) < +∞

}]
> 0. (5.12)
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Particular Case 5.14. The Particular Case 5.4 leads to the following variant of Theo-
rem 5.9. When c(x, y) = d(x, y) is a distance on a Polish space X , and µ, ν belong to
P1(X ), then

inf E d(X,Y ) = sup E [ψ(X) − ψ(Y )] = sup
{∫

X
ψ dµ −

∫

Y
ψ dν

}
. (5.13)

where the infimum on the left is over all couplings (X,Y ) of (µ, ν), and the supremum
on the right is over all 1-Lipschitz functions ψ. This is the Kantorovich–Rubinstein
formula; it holds true as soon as the supremum in the left-hand side is finite, and it is
very useful.

Particular Case 5.15. Now consider c(x, y) = −x ·y in Rn×Rn. This cost is not nonneg-
ative, but we have the lower bound c(x, y) ≥ −(|x|2 + |y|2)/2. So if x → |x|2 ∈ L1(µ) and
y → |y|2 ∈ L1(ν), then one can invoke the Particular Case 5.3 to deduce from Theorem 5.9
that

sup E (X · Y ) = inf E
[
ϕ(X) + ϕ∗(Y )

]
= inf

{∫

X
ϕ dµ +

∫

Y
ϕ∗ dν

}
, (5.14)

where the supremum on the left is over all couplings (X,Y ) of (µ, ν), the infimum on
the right is over all (lower semi-continuous) convex functions on Rn, and ϕ∗ stands for
the usual Legendre transform of ϕ. In formula (5.14), the signs have been changed with
respect to the statement of Theorem 5.9, so the problem is to maximize the correlation of
the random variables X and Y .

Before proving Theorem 5.9, I shall first informally explain the construction. At first
reading, the reader might be content with those informal explanations and skip the rigorous
proof.

Idea of proof of Theorem 5.9. Take an optimal π (which exists from Theorem 4.1), and let
(ψ,φ) be two competitive prices. Of course, as in (5.4),

∫
c(x, y) dπ(x, y) ≤

∫
φ dν −

∫
ψ dµ =

∫
[φ(y) − ψ(x)] dπ(x, y).

So if both quantities are equal, then necessarily

φ(y) − ψ(x) = c(x, y) π − almost surely.

Intuitively speaking, wherever there is some transfer of goods from x to y, then the prices
should be adjusted exactly to the transport cost.

Now let (xi)0≤i≤m and (yi)0≤i≤m be such that (xi, yi) belongs to the support of π, so
there is indeed some transfer from xi to yi. Then we hope that






φ(y0) − ψ(x0) = c(x0, y0)
φ(y1) − ψ(x1) = c(x1, y1)
. . .

φ(ym) − ψ(xm) = c(xm, ym).

On the other hand, if x is an arbitrary point,
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φ(y0) − ψ(x1) ≤ c(x1, y0)
φ(y1) − ψ(x2) ≤ c(x2, y1)
. . .

φ(ym) − ψ(x) ≤ c(x, ym).

By subtracting these inequalities from the previous equalities, and adding up everything,
one obtains

ψ(x) ≥ ψ(x0) +
[
c(x0, y0) − c(x1, y0)

]
+ . . . +

[
c(xm, ym) − c(x, ym)

]
.

Of course, one can add an arbitrary constant to ψ, provided that one subtract the same
constant from φ; so it is possible to decide that ψ(x0) = 0, where (x0, y0) is arbitrarily
chosen in the support of π. Then

ψ(x) ≥
[
c(x0, y0) − c(x1, y0)

]
+ . . . +

[
c(xm, ym) − c(x, ym)

]
, (5.15)

and this should be true for all choices of (xi, yi) (1 ≤ i ≤ m) in the support of π, and for
all m ≥ 1. So it becomes natural to define ψ as the supremum of all the functions (of the
variable x) appearing in the right-hand side of (5.15). It will turn out that this ψ satisfies
the equation

ψc(y) − ψ(x) = c(x, y) π(dx dy)-almost surely.

Then, if ψ and ψc are integrable, one can write
∫

c dπ =
∫

ψc dπ −
∫

ψ dπ =
∫

ψc dν −
∫

ψ dµ.

This shows at the same time that π is optimal in the original Kantorovich problem, and
that the pair (ψ,ψc) is optimal in the dual Kantorovich problem. 78

Rigorous proof of Theorem 5.9, Part (i). The argument will be divided into a number of
steps.

Step 0: It is sufficient to treat the case when c is nonnegative.
Indeed, let

c̃(x, y) := c(x, y) − a(x) − b(y) ≥ 0, Λ :=
∫

a dµ +
∫

b dν ∈ R.

Whenever ψ : X → R ∪ {+∞} and φ : Y → R ∪ {−∞} are two functions, define

ψ̃(x) := ψ(x) + a(x), φ̃(y) := φ(y) − b(y).

Then the following properties are readily checked:

c lower semi-continuous =⇒ c̃ lower semi-continuous

ψ̃ ∈ L1(µ) ⇐⇒ ψ ∈ L1(µ); φ̃ ∈ L1(ν) ⇐⇒ φ ∈ L1(ν);

∀π ∈ Π(µ, ν),
∫

c̃ dπ =
∫

c dπ + Λ;

∀(ψ,φ) ∈ L1(µ) × L1(ν),
∫

φ̃ dν −
∫

ψ̃ dµ =
∫

φ dν −
∫

ψ dν + Λ;

ψ is c-convex ⇐⇒ ψ̃ is c̃-convex; φ is c-concave ⇐⇒ φ̃ is c̃-concave;
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(φ,ψ) is a pair of c-conjugate functions ⇐⇒ (φ̃, ψ̃) is a pair of c̃-conjugate functions;

∀Γ ⊂ X × Y, Γ is c-cyclically monotone ⇐⇒ Γ is c̃-cyclically monotone.

From these formulas it follows that it is equivalent to establish Theorem 5.9 for the cost
c or for the nonnegative cost c̃. So in the sequel, I shall always assume, without further
comment, that c is nonnegative.

Step 1: If µ = (1/n)
∑

δxi , ν = (1/n)
∑

δyj , then there is at least one cyclically
monotone transference plan.

Indeed, in that particular case, a transference plan between µ and ν can be identified
with a bistochastic array of n × n real numbers aij ∈ [0, 1]: each aij tells what proportion
of the 1/n mass carried by point xi will go to destination yj. So the Monge–Kantorovich
problem becomes

inf
(aij )

∑

ij

aij c(xi, yi)

where the infimum is over all arrays (aij) satisfying
∑

i

aij = 1,
∑

j

aij = 1. (5.16)

Here we are minimizing a linear function on the compact set [0, 1]n×n, so obviously there
exists a minimizer; the corresponding transference plan π can be written as

π =
1
n

∑

ij

aij δ(xi,yj),

and its support S is the set of all couples (xi, yj) such that aij > 0.
Assume that S is not cyclically monotone: Then there exists (xi1 , yj1), . . . , (xiN , yjN ) in

S such that

c(xi1 , yj2) + c(xi2 , yj3) + . . . + c(xiN , yj1) < c(xi1 , yj1) + . . . + c(xiN , yjN ). (5.17)

Let a := min(ai1,j1, . . . , aiN ,jN ) > 0. Define a new transference plan π̃ by the formula

π̃ = π +
a

n

N∑

(=1

(
δ(xi!

,yj!+1
) − δ(xi!

,yj!
)

)
.

It is easy to check that this has the correct marginals, and by (5.17) the cost associated
with π̃ is strictly less than the cost associated with π. This is a contradiction, so S is
indeed c-cyclically monotone!

Step 2: If c is continuous, then there is a cyclically monotone transference plan.
To prove this, consider sequences of independent random variables xi ∈ X , yj ∈ Y,

with respective law µ, ν. According to the law of large numbers for empirical measures
(sometimes called fundamental theorem of statistics, or Varadarajan’s theorem), one has,
with probability 1,

µn :=
1
n

n∑

i=1

δxi −→ µ, νn :=
1
n

n∑

j=1

δyj −→ ν (5.18)

as n → ∞, in the sense of weak convergence of measures. In particular, by Prokhorov’s
theorem, (µn) and (νn) are tight sequences.



56 5 Cyclical monotonicity and Kantorovich duality

For each n, let πn be a cyclically monotone transference plan between µn and νn. Let
ε > 0 be arbitrary; by tightness there are compact sets Kε ⊂ X and Lε ⊂ Y such that for
all n, µn[X \ Kε] ≤ ε, νn[Y \ Lε] ≤ ε; then

πn
[
(X × Y) \ (Kε × Lε)

]
≤ πn

[
X × (Y \ Lε)

]
+ πn

[
(X \ Kε) × Y

]

= νn[Y \ Lε] + µn[X \ Kε] ≤ 2ε.

Since Kε × Lε is compact, this proves the tightness of the sequence (πn). By Prokhorov’s
theorem again, there is a subsequence, still denoted (πn), which converges weakly to some
probability measure π, i.e.

∫
h(x, y) dπn(x, y) −→

∫
h(x, y) dπ(x, y)

for all bounded continuous functions h on X × Y. By applying the previous identity with
h(x, y) = f(x) and h(x, y) = g(y), we see that π has marginals µ and ν, so this is an
admissible transference plan between µ and ν.

For each n, the cyclical monotonicity of πn implies that for all N and π⊗N
n -almost all

(x1, y1), . . . , (xN , yN ), the inequality (5.1) is satisfied; in other words, π⊗N
n is concentrated

on the set C(N) of all ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N satisfying (5.1). Since c is
continuous, C(N) is a closed set, so the weak limit π⊗N of π⊗N

n is also concentrated on
C(N). Let Γ = Sptπ (Spt stands for “support”), then

ΓN = (Sptπ)N = Spt(π⊗N ) ⊂ C(N),

and since this holds true for all N , Γ is c-cyclically monotone.

Step 3: If c is continuous and π is c-cyclically monotone, there is a c-convex ψ such
that ∂cψ contains the support of π.

Let again Γ denote the support of π (this is a closed set). Pick any (x0, y0) ∈ Γ , and
define

ψ(x) := sup
m∈N

sup
{ [

c(x0, y0) − c(x1, y0)
]
+
[
c(x1, y1) − c(x2, y1)

]

+ · · · +
[
c(xm, ym) − c(x, ym)

]
; (x1, y1), . . . , (xm, ym) ∈ Γ

}
. (5.19)

By applying the definition with m = 1 and (x1, y1) = (x0, y0), one immediately sees
that ψ(x0) ≥ 0. On the other hand, ψ(x0) is the supremum of all the quantities [c(x0, y0)−
c(x1, y0)]+. . .+[c(xm, ym)−c(x0, ym)] which by cyclical monotonicity are all nonpositive. So
actually ψ(x0) = 0. In fact this is the only place in this Step where c-cyclically monotonicity
will be used!

By renaming ym as y, obviously

ψ(x) = sup
y∈Y

sup
m∈N

sup
(x1,y1),...,(xm−1,ym−1),xm

{ [
c(x0, y0) − c(x1, y0)

]
+
[
c(x1, y1) − c(x2, y1)

]

+ · · · +
[
c(xm, y) − c(x, y)

]
; (x1, y1), . . . , (xm, y) ∈ Γ

}
. (5.20)

So ψ(x) = supy[ζ(y) − c(x, y)], if ζ is defined by

ζ(y) = sup
{[

c(x0, y0) − c(x1, y0)
]
+
[
c(x1, y1) − c(x2, y1)

]
+ · · · + c(xm, y);

m ∈ N, (x1, y1), . . . , (xm, y) ∈ Γ
}

(5.21)
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(with the convention that ζ = −∞ out of projY(Γ )). Thus ψ is a c-convex function.
Now let (x, y) ∈ Γ . By choosing x = xm, y = ym in the definition of ψ,

ψ(x) ≥ sup
m

{(
sup

(x1,y1),...,(xm−1,ym−1)
[c(x0, y0)−c(x1, y0)]+ · · · +[c(xm−1, ym−1)−c(x, ym−1)]

)

+ [c(x, y) − c(x, y)],
}

.

In the definition of ψ, it does not matter whether one takes the supremum over m − 1 or
over m variables, since one also takes the supremum over m. So the previous inequality
can be recast as

ψ(x) ≥ ψ(x) + c(x, y) − c(x, y).

In particular, ψ(x) + c(x, y) ≥ ψ(x) + c(x, y). Taking the infimum over x ∈ X in the
left-hand side, we deduce that

ψc(y) ≥ ψ(x) + c(x, y).

Since the reverse inequality is always satisfied, actually

ψc(y) = ψ(x) + c(x, y),

and this means precisely that (x, y) ∈ ∂cψ. So Γ does lie in the c-subdifferential of ψ.

Step 4: If c is continuous and bounded, then there is duality.
Let ‖c‖ := sup c(x, y). By Steps 2 and 3, there exists a transference plan π whose

support is included in ∂cψ for some c-convex ψ, which was constructed “explicitly” in
Step 3. Let φ = ψc.

From (5.19), ψ = supψm, where each ψm is a supremum of continuous functions,
and therefore lower semi-continuous. In particular, ψ is measurable. (Note: A lower semi-
continuous function on a Polish space is always measurable, even if it is obtained as a
supremum of uncountably many continuous functions; in fact it can always be written as
a supremum of countably many continuous functions!) The same can be said of φ.

Next we check that ψ, φ are bounded. Let (x0, y0) ∈ ∂cψ be such that ψ(x0) < +∞;
then necessarily φ(y0) > −∞. So, for any x ∈ X ,

ψ(x) = sup
y

[φ(y) − c(x, y)] ≥ φ(y0) − c(x, y0) ≥ φ(y0) − ‖c‖;

φ(y) = inf
x

[ψ(x) + c(x, y)] ≤ ψ(x0) + c(x0, y) ≤ ψ(x0) + ‖c‖.

Re-injecting these bounds in the identities ψ = φc, φ = ψc, we get

ψ(x) ≤ sup
y

φ(y) ≤ ψ(x0) + ‖c‖;

φ(y) ≥ inf
x

ψ(x) ≥ φ(y0) − ‖c‖.

So both ψ and φ are bounded from above and below.
Thus we can integrate φ, ψ against µ, ν respectively, and, by the marginal condition,

∫
φ(y) dν(y) −

∫
ψ(x) dµ(x) =

∫ [
φ(y) − ψ(x)

]
dπ(x, y).

Since φ(y)−ψ(x) = c(x, y) on the support of π, the latter quantity equals
∫

c(x, y) dπ(x, y).
It follows that (5.4) is actually an equality, which proves the duality.
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Step 5: If c is lower semicontinuous, then there is duality.
Since c is lower semi-continuous, we can write

c(x, y) = lim
k→∞

ck(x, y),

where (ck)k∈N is a nondecreasing sequence of bounded, uniformly continuous functions. To
see this, just choose

ck(x, y) = inf
(x′,y′)

{
min

(
c(x′, y′), k

)
+ k

[
d(x, x′) + d(y, y′)

]}
;

note that ck is k-Lipschitz, nondecreasing in k, and satisfies 0 ≤ ck(x, y) ≤ min(c(x, y), k).
(It is instructive to understand exactly where the lower semi-continuity assumption is used
in this statement.)

By Step 4, for each k we can find πk, φk, ψk such that ψk is bounded and c-convex,
φk = (ψk)c, and

∫
ck(x, y) dπk(x, y) =

∫
φk(y) dν(y) −

∫
ψk(x) dµ(x).

Since ck is no larger than c, the constraint φk(y)−ψk(x) ≤ ck(x, y) implies φk(y)−ψk(x) ≤
c(x, y); so all (φk,ψk) are admissible in the dual problem with cost c. Moreover, for each k
the functions φk and ψk are uniformly continuous because c itself is uniformly continuous.

By Lemma 4.3, Π(µ, ν) is weakly sequentially compact. Thus, up to extraction of a
subsequence, we can assume that πk converges to some π̃ ∈ Π(µ, ν). For all indices 5 ≤ k,
we have c( ≤ ck, so

∫
c( dπ̃ = lim

k→∞

∫
c( dπk

≤ lim sup
k→∞

∫
ck dπk

= lim sup
k→∞

(∫
φk(y) dν(y) −

∫
ψk(x) dµ(x)

)
.

On the other hand, by monotone convergence,
∫

c dπ̃ = lim
(→∞

∫
c( dπ̃.

So

inf
Π(µ,ν)

∫
c dπ ≤

∫
c dπ̃ ≤ lim sup

k→∞

(∫
φk(y) dν(y) −

∫
ψk(x) dµ(x)

)

≤ inf
Π(µ,ν)

∫
c dπ.

Moreover, ∫
φk(y) dν(y) −

∫
ψk(x) dµ(x) −→ inf

Π(µ,ν)

∫
c dπ. (5.22)

Since each pair (ψk,φk) lies in Cb(X ) × Cb(Y), the duality also holds with bounded con-
tinuous (and even Lipschitz) test functions, as claimed in Theorem 5.9(i). 78
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Proof of Theorem 5.9, Part (ii). From now on, I shall assume that the optimal transport
cost C(µ, ν) is finite, and that c is real-valued. Part (ii) will be established in the following
way: (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a) ⇒ (e) ⇒ (b). There seems to be some redundancy in
this chain of implications, but this is because the implications (a) ⇒ (c) will be used to
construct the set Γ appearing in (e).

(a) ⇒ (b): Let π be an optimal plan, and let (φk,ψk)k∈N be as in Step 5 of the proof
of Part (i). Since the optimal transport cost is finite by assumption, the cost function c
belongs to L1(π). From (5.22) and the marginal property of π,

∫ [
c(x, y) − φk(y) + ψk(x)

]
dπ(x, y) −→ 0

as k → ∞, which means that c(x, y) − φk(y) + ψk(x) converges to 0 in L1(X × Y,π) as
k → ∞. Up to choosing a subsequence, we can assume that the convergence is almost sure;
then φk(yi)−ψk(xi) converges to c(xi, yi), π(dxi dyi)-almost surely, as k → ∞. By passing
to the limit in the inequality

N∑

i=1

c(xi, yi+1) ≥
N∑

i=1

[φk(yi+1) − ψk(xi)] =
N∑

i=1

[φk(yi) − ψk(xi)]

(where by convention yN+1 = y1) we see that, π⊗N -almost surely,

N∑

i=1

c(xi, yi+1) ≥
N∑

i=1

c(xi, yi). (5.23)

The conclusion so far is that there is a set ΓN ⊂ (X×Y)N of N -tuples ((x1, y1), . . . , (xN , yN )),
of full measure for π⊗N , satisfying (5.23). Let projk((xi, yi)1≤i≤N ) := (xk, yk) be the pro-
jection on the factor k of (X × Y)N . It is easy to check that Γ := ∩1≤k≤Nprojk(ΓN ) is a
c-cyclically monotone set which has full π-measure; so π is indeed c-cyclically monotone.

(b) ⇒ (c): Let π be a cyclically monotone transference plan. The function ψ can be
constructed just as in Step 3 of the proof of Part (i), only with some differences. First, Γ
is not necessarily closed; it is just a Borel set such that π[Γ ] = 1. (If Γ is not Borel, make
it Borel by modifying it on a negligible set.) With this in mind, define, as in Step 3 of
Part (i),

ψ(x) := sup
m∈N

sup
{ [

c(x0, y0) − c(x1, y0)
]
+
[
c(x1, y1) − c(x2, y1)

]

+ · · · +
[
c(xm, ym) − c(x, ym)

]
; (x1, y1), . . . , (xm, ym) ∈ Γ

}
. (5.24)

From its definition, for any x ∈ X ,

ψ(x) ≥ c(x0, y0) − c(x, y0) > −∞.

(Here the assumption of c being real-valued is useful.) Then there is no difficulty in proving,
as in Step 3, that ψ(x0) = 0, that ψ is c-convex, and that π is concentrated on ∂cψ.

The rest of this step will be devoted to the measurability of ψ, ψc and ∂cψ. These are
surprisingly subtle issues, which do not arise if c is continuous; so the reader which only
cares for a continuous cost function might go directly to the next step.

First, the measurability of ψ is not clear at all from formula (5.24): This is typically an
uncountable supremum of upper semi-continuous functions, and there is no a priori reason
for this to be Borel measurable.
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Since c is lower semi-continuous and nonnegative, there is an increasing sequence (c()(∈N
of continuous nonnegative functions, such that c((x, y) converges to c(x, y) as 5 → ∞, for
all (x, y). By Egorov’s theorem, for each k ∈ N there is a Borel set Ek with π[Ek] ≤ 1/k,
such that the convergence of c( to c is uniform on Γ \ Ek. Since π (as any probability
measure on a Polish space) is regular, we can find a compact set Γk ⊂ Γ \ Ek, such that
π[Γk] ≥ 1− 2/k. There is no loss of generality in assuming that the sets Γk are increasing
in k.

On each Γk, the sequence (c() converges uniformly and monotonically to c; in particular
c is continuous on Γk. Furthermore, since π is obviously concentrated on the union of all
Γk, there is no loss of generality in assuming that S = ∪Γk. We may also assume that
(x0, y0) ∈ Γ1.

Now, let x be given in X , and for each k, 5,m, let

Fm,k,(
(
x0, y0, . . . , xm, ym

)
:=
[
c(x0, y0) − c((x1, y0)

]
+
[
c(x1, y1) − c((x2, y1)

]

+ · · · +
[
c(xm, ym) − c((x, ym)

]
,

for (x0, y0, . . . , xm, ym) ∈ Γm
k . It is clear that Fk,(,m is a continuous function (because c(

is continuous on X ×X , and c is continuous on Γk). It is defined on the compact set Γm
k ,

and it is nonincreasing as a function of 5, with

lim
(→∞

Fm,k,( = Fm,k,

where

Fm,k

(
x0, y0, . . . , xm, ym

)
:=
[
c(x0, y0) − c(x1, y0)

]
+
[
c(x1, y1) − c(x2, y1)

]

+ · · · +
[
c(xm, ym) − c(x, ym)

]
.

Now I claim that
lim
(→∞

sup
Γm

k

Fm,k,( = sup
Γm

k

Fm,k. (5.25)

Indeed, by compactness, for each 5 ∈ N there is X( ∈ Γm
k such that

sup
Γm

k

Fm,k,( = Fm,k,((X();

and up to extraction of a subsequence, one may assume that X( converges to some X.
Then by monotonicity, for any 5′ ≤ 5,

sup
Γm

k

Fm,k,( = Fm,k,((X() ≤ Fm,k,(′(X();

and if one lets 5 → ∞, with 5′ fixed, one obtains

lim sup
(→∞

sup
Γm

k

Fm,k,( ≤ Fm,k,(′(X).

Now let 5′ → ∞, to get

lim sup
(→∞

sup
Γm

k

Fm,k,( ≤ Fm,k(X) ≤ sup
Γm

k

Fm,k.

The converse inequality
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sup
Γm

k

Fm,k ≤ lim inf
(→∞

sup
Γm

k

Fm,k,(

is obvious because Fm,k ≤ Fm,k,(; so (5.25) is proven.
To summarize: If we let

ψm,k,((x) := sup
{ [

c(x0, y0) − c((x1, y0)
]
+
[
c(x1, y1) − c((x2, y1)

]

+ · · · +
[
c(xm, ym) − c((x, ym)

]
; (x1, y1), . . . , (xm, ym) ∈ Γk

}
,

then we have

lim
(→∞

ψm,k,((x) = sup
{ [

c(x0, y0) − c((x1, y0)
]
+
[
c(x1, y1) − c((x2, y1)

]

+ · · · +
[
c(xm, ym) − c((x, ym)

]
; (x1, y1), . . . , (xm, ym) ∈ Γk

}
.

It follows easily that, for each x,

ψ(x) = sup
m∈N

sup
k∈N

lim
(→∞

ψm,k,((x).

Since ψm,k,((x) is lower semi-continuous in x (as a supremum of continuous functions of
x), it follows that ψ itself is measurable.

The measurability of φ := ψc is subtle also, and at the present level of generality it is
not clear that this function is really Borel measurable. However, it can be modified on a
ν-negligible set so as to become measurable. Indeed, φ(y)−ψ(x) = c(x, y) π-almost surely,
so if one disintegrates π(dx dy) as π(dx|y) ν(dy), then φ(y) coincides, ν(dy)-almost surely,
with the Borel function φ̃(y) :=

∫
X [ψ(x) + c(x, y)]π(dx|y).

Let then Z be a Borel set of zero ν-measure such that φ̃ = φ outside of Z. Then the
subdifferential ∂cψ coincides, out of the π-negligible set X × Z, with the measurable set
{(x, y) ∈ X × Y; φ̃(y) − ψ(x) = c(x, y)}. The conclusion is that ∂cψ can be modified on a
π-negligible set so as to be Borel measurable.

(c) ⇒ (d): Just let φ = ψc.
(d) ⇒ (a): Let (ψ,φ) be a pair of admissible functions, and let π be a transference plan

such that φ − ψ = c π-almost surely. The goal is to show that π is optimal. The main
difficulty lies in the fact that ψ and φ need not be separately integrable. This problem will
be circumvented by a careful truncation procedure. For n ∈ N, w ∈ R ∪ {±∞}, define

Tn(w) =






w if |w| ≤ n

n if w > n

−n if w < −n,

and
ξ(x, y) := φ(y) − ψ(x); ξn(x, y) := Tn(φ(y)) − Tn(ψ(x)).

In particular, ξ0 = 0. It is easily checked that ξn converges monotonically to ξ; more
precisely,

- ξn(x, y) remains equal to 0 if ξ(x, y) = 0;
- ξn(x, y) increases to ξ(x, y) if the latter quantity is positive;
- ξn(x, y) decreases to ξ(x, y) if the latter quantity is negative.
As a consequence, ξn ≤ (ξn)+ ≤ ξ+ ≤ c. So (Tnφ, Tnψ) is an admissible pair in the dual

Kantorovich problem, and
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∫
ξn dπ =

∫
(Tnφ) dν −

∫
(Tnψ) dµ ≤ sup

φ′−ψ′≤c

(∫
φ′ dµ −

∫
ψ′ dν

)
. (5.26)

On the other hand, by monotone convergence and since ξ coincides with c outside of a
π-negligible set, ∫

ξ≥0
ξn dπ −−−→

n→∞

∫

ξ≥0
ξ dπ =

∫
c dπ;

∫

ξ<0
ξn dπ −−−→

n→∞

∫

ξ<0
ξ dπ = 0.

This and (5.26) imply that
∫

c dπ ≤ sup
φ′−ψ′≤c

(∫
φ′ dµ −

∫
ψ′ dν

)
;

so π is optimal.
Now we can construct the set Γ appearing in (ii). By Theorem 4.1, there is at least one

optimal transference plan, say π̃. From the implication (a) ⇒ (c), there is some ψ̃ such
that π̃ is concentrated on ∂cψ̃; just choose Γ := ∂cψ̃.

(a) ⇒ (e): Let π̃ be the optimal plan used to construct Γ , and let π be another optimal
plan. Since π and π̃ have the same cost and same marginals,

∫
c dπ =

∫
c dπ̃ = lim

n→∞

∫
(Tnφ− Tnψ) dπ̃

= lim
n→∞

∫
(Tnφ− Tnψ) dπ,

where Tn is the same truncation operator that was already used in the proof of (d) ⇒ (a).
So ∫

[c(x, y) − Tnφ + Tnψ] dπ −−−→
n→∞

0. (5.27)

As before, define ξ(x, y) := φ(y) − ψ(x); then by monotone convergence,
∫

ξ≥0
[c − Tnφ + Tnψ] dπ −−−→

n→∞

∫

ξ≥0
(c − ξ) dπ;

∫

ξ<0
[c − Tnφ + Tnψ] dπ −−−→

n→∞

∫

ξ<0
(c − ξ) dπ.

Since ξ ≤ c, the integrands here are nonnegative and both integrals make sense in R ∪
{+∞}. So by adding the two limits and using (5.27) we get

∫
(c − ξ) dπ = lim

n→∞

∫
[c − Tnφ + Tnψ] = 0.

Since ξ ≤ c, this proves that c coincides π-almost surely with ξ, which was the desired
conclusion.

(e) ⇒ (b): This is obvious since Γ is cyclically monotone by assumption. 78

Proof of Theorem 5.9, Part (iii). Let π be optimal, and let ψ be a c-convex function such
that π is concentrated on ∂cψ. Let φ := ψc. The goal is to show that under the assumption
c ≤ cX + cY , (ψ,φ) solves the dual Kantorovich problem.
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The point is to show that ψ and φ are integrable. To show this we repeat the estimates
of Step 4 in the proof of Part (i), with some variants: After securing (x0, y0) such that
φ(y0), ψ(x0), cX (x0) and cY(y0) are finite, we write

ψ(x) + cX (x) = sup
y

[
φ(y) − c(x, y) + cX (x)

]
≥ sup

y
[φ(y) − cY(y)] ≥ φ(y0) − cY(y0);

φ(y) − cY(y) = inf
x

[
ψ(x) + c(x, y) − cY(y)

]
≤ inf

x
[ψ(x) + cX (x)] ≤ ψ(x0) + cX (x0).

So ψ is bounded below by the µ-integrable function φ(y0) − cY(y0) − cX (x), and φ is
bounded above by the ν-integrable function ψ(x0)+ cX (x0)+ cY(y). So both −

∫
ψ dµ and∫

φ dν make sense in R ∪ {+∞}. Since their sum is
∫
(φ − ψ) dπ =

∫
c dπ < +∞, both

integrals are finite. So ∫
c dπ =

∫
φ dν −

∫
ψ dµ,

and it follows from Part (i) of the theorem that both π and (ψ,φ) are optimal, respectively
in the original and the dual Kantorovich problems.

To prove the last part of (iii), assume that c is continuous; then the subdifferential of
any c-convex function is a closed c-cyclically monotone set.

Let π be an arbitrary optimal transference plan, and (ψ,φ) an optimal pair of prices.
We know that (ψ,ψc) is optimal in the dual Kantorovich problem, so

∫
c(x, y) dπ(x, y) =

∫
ψc dν −

∫
ψ dµ.

Thanks to the marginal condition, this be rewritten as
∫ [

ψc(y) − ψ(x) − c(x, y)
]
dπ(x, y) = 0.

Since the integrand is nonnegative, it follows that π is concentrated on the set of pairs
(x, y) such that ψc(y)−ψ(x)− c(x, y) = 0, that is precisely the subdifferential of ψ. Thus
any optimal transference plan is concentrated on the subdifferential of any optimal ψ. So
if Γ is defined as the intersection of all subdifferentials of optimal functions ψ, then Γ also
contains the supports of all optimal plans.

Conversely, if π̃ ∈ Π(µ, ν) is a transference plan concentrated on Γ , then
∫

c dπ̃ =∫
[ψc −ψ] dπ̃ =

∫
ψc dν−

∫
ψ dµ, so π̃ is optimal. Similarly, if ψ̃ is a c-convex function such

that ∂cψ̃ contains Γ , then by the previous estimates ψ̃ and ψ̃c are integrable against µ and
ν respectively, and

∫
c dπ =

∫
[ψ̃c − ψ̃] dπ =

∫
ψ̃c dν −

∫
ψ̃ dµ, so (ψ̃, ψ̃c) is optimal. This

concludes the proof. 78

Restriction property

The dual side of the Kantorovich problem also behaves well with respect to restriction, as
shown by the next results (who may look natural, if not obvious, to the reader).

Theorem 5.16 (Restriction theorem for the price function). Let X ,Y be two Polish
spaces, and c : X × Y → R be a lower semi-continuous cost function, bounded below, and
let ψ : X → R ∪ {+∞} be a c-convex function. Let X ′ ⊂ X and Y ′ ⊂ Y be closed sets,
and let c′ be the restriction of c to X ′ × Y ′. Let further Γ ′ be a measurable c′-cyclically
monotone subset included in ∂cψ. Then, there is a c′-convex function ψ′ : X ′ → R∪{+∞}
such that ψ′ coincides with ψ on projX (Γ ′).
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Corollary 5.17 (Restriction for the duality theorem). Let X ,Y be two Polish
spaces, and c : X × Y → R be a lower semi-continuous cost function, bounded below, let
µ ∈ P (X ) and ν ∈ P (Y) be probability measures such that the optimal total cost C(µ, ν)
is finite. Let π be an optimal transference plan, and let ψ be such that π is supported on
∂cψ. Let π̃ be a measure satisfying π̃ ≤ π, and π′ := π̃/π̃[X × Y]. Let further µ′ and ν ′

be the marginals of π′, and let X ′ := Sptµ′, Y ′ := Spt ν ′. Let c′ be the restriction of the
cost function c to X ′ × Y ′. Then there is a c′-convex function ψ′ on X ′ such that π′ is
concentrated on ∂c′ψ′ and ψ′ coincides with ψ µ′-almost surely.

Proof of Theorem 5.16. Let φ := ψc, and for any x ∈ X ′ define

ψ′(x) := sup
y∈Y ′

[
φ̃(y) − c(x, y)

]
,

where

φ̃(y) :=

{
φ(y) if there is x′ ∈ X ′ such that (x̃, y) ∈ Γ ′;
−∞ otherwise.

By definition, ψ′ is a c′-convex function, and obviously

∀x ∈ X ′, ψ′(x) ≤ sup
y∈Y

[
φ(y) − c(x, y)

]
= ψ(x).

Then, for any x ∈ projX (Γ ′), there is y such that (x, y) ∈ Γ ′ ⊂ ∂cψ, and so ψ′(x) ≥
φ(y) = ψ(x). So ψ′ coincides on ψ on projX (Γ ′).

The conclusion follows since µ′ = (projX )#π′ is concentrated on projX (Γ ′). Note that
projX (Γ ′) is not a priori measurable, yet by regularity we can find an increasing sequence
of compact sets (K()(∈N included in Γ ′ such that π′ is concentrated on ∪K(; and then µ′

is concentrated on ∪projX (K(), which is measurable as a countable union of compact sets,
and still included in projX (Γ ′). 78

Proof of Corollary 5.17. It follows from Theorem 5.9 that π is concentrated on ∂cψ; so π′

is concentrated on Γ ′ := ∂cψ ∩ (X ′ ×Y ′). Then the conclusion follows from Theorem 5.16.
78

Application: Stability

An important consequence of Theorem 5.9 is the stability of optimal transference plans.

Theorem 5.18 (Stability of optimal transport). Let X and Y be Polish spaces, and
let c(x, y) be a real-valued continuous cost function, inf c > −∞. Let ck be a family of
continuous cost functions converging uniformly to c on X × Y. Let (µk)k∈N and (νk)k∈N
be sequences of probability measures on X and Y respectively. Assume that µk converges
to µ (resp. νk converges to ν) weakly. For each k, let further πk be an optimal transport
plan between µk and νk. If

∀k ∈ N,

∫
ck(x, y) dπk < +∞,

then, up to extraction of a subsequence, πk converges weakly to a c-monotone transference
plan π ∈ Π(µ, ν).

If moreover

lim inf
k∈N

∫
ck dπk < +∞,

then the optimal total transport cost C(µ, ν) between µ and ν is finite, and π is an optimal
transference plan.
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Corollary 5.19 (Compactness of the set of optimal plans). Let X and Y be Polish
spaces, and let c(x, y) be a real-valued continuous cost function, inf c > −∞. Let K and L
be two compact subsets of P (X ) and P (Y) respectively. Then the set of optimal transference
plans π between µ ∈ K and ν ∈ L is itself compact in P (X × Y).

Proof of Theorem 5.18. Since µk and νk are convergent sequences, by Prokhorov’s theorem
they form tight sets, and then by Lemma 4.3 the measures πk all lie in a tight set of X ×Y;
so we can extract a further subsequence, still denoted (πk) for simplicity, which converges
weakly to some π ∈ Π(µ, ν).

To prove that π is c-monotone, the argument is essentially the same as in Step 2 of the
proof of Theorem 5.9(i). Indeed, by Theorem 5.9, each πk is concentrated on a ck-cyclically
monotone set; so π⊗N

k is concentrated on the set Ck(N) of ((x1, y1), . . . , (xN , yN )) such that
∑

1≤k≤N

ck(xi, yi) ≤
∑

1≤k≤N

ck(xi, yi+1),

where as usual yN+1 = y1. So if ε > 0 and N are given, for k large enough π⊗N
k is

concentrated on the set Cε(N) defined by
∑

1≤k≤N

c(xi, yi) ≤
∑

1≤k≤N

c(xi, yi+1) + ε.

Since this is a closed set, the same is true for π⊗N , and then by letting ε → 0 we see that
π⊗N is concentrated on the set C(N) defined by

∑

1≤k≤N

c(xi, yi) ≤
∑

1≤k≤N

c(xi, yi+1).

So the support of π is c-cyclically monotone, as desired.
Now assume that lim infk→∞

∫
ck dπk < +∞. Then

∫
c dπ ≤ lim inf

k→∞

∫
ck dπk < +∞.

In particular, C(µ, ν) < +∞; so Theorem 5.9 applies and guarantees the optimality of π.
78

Theorem 5.18 admits the following corollary about the stability of transport maps.

Corollary 5.20 (Stability of the transport map). With the same assumptions and
notation as in Theorem 5.18, further assume that Y is a smooth Riemannian manifold,
that there exist measurable maps Tk, T : X → Y such that

πk = (Id , Tk)#µk; π = (Id , T )#µ;

and that π is the unique optimal transference plan between µ and ν. Then

∀ε > 0 µk

[{
d(Tk, T ) > ε

}]
−−−→
k→∞

0,

where d denotes the distance in Y. In particular, if µk = µ for all k, then Tk converges to
T in µ-probability.
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Proof of Corollary 5.20. By Theorem 5.18 and uniqueness of the optimal coupling between
µ and ν, we know that πk = (Id , Tk)#µk converges weakly to π = (Id , T )#µ.

Let δ > 0 be given, and let y0 ∈ Y be arbitray. There is a compact set K ⊂ X
such that µ[X \ K] ≤ δ. Since Y is a Riemannian manifold, there is R > 0 such that
µ[{d(y0, T (x)) > R}] = ν[{d(y0, y) > R}] ≤ δ. Let Tδ(x) be defined by Tδ(x) = T (x)
if x ∈ K and d(y0, T (x)) ≤ R; and Tδ(x) = y0 otherwise. The map Tδ takes values
in a compact subset of a Riemannian manifold, which can be covered by finitely many
diffeomorphisms valued in some subset of Rm. By using a partition of unity and the usual
Lusin theorem for functions valued in Rm, we can construct a continuous function T̃δ,
constant outside of a compact set, such that µ[{T̃δ 3= Tδ}] ≤ δ; and as a consequence
µ[{T̃δ 3= T}] ≤ 3δ; Then

π
[{

(x, y); y 3= T̃δ(x)
}]

≤ π
[{

(x, y); y 3= T (x)
}]

+ 3δ.

Let then Oδ := {(x, y) ∈ X × Y; d(y, T̃ (x)) < δ}. Since T̃ is continuous, Oδ is open, so

1 = π[Oδ] ≤ lim inf
δ→0

πk[Oδ].

So πk[Oδ ] → 1, which means

µk

[{
x ∈ X ; d(Tk(x), T̃ (x)) < δ

}]
−−−→
k→∞

1.

This concludes the argument. 78

Application: Dual formulation of transport inequalities

Let
C(µ, ν) = inf

π∈Π(µ,ν)

∫
c dπ (5.28)

stand for the value of the optimal transport cost of transport between µ and ν.
If ν is a given reference measure, inequalities of the form

∀µ ∈ P (X ), inf
π∈Π(µ,ν)

∫
c dπ ≤ F (µ)

arise in several branches of mathematics; some of them will be studied in Chapter 22. It is
useful to know that if F is a convex function of µ, then there is a nice dual reformulation
of these inequalities in terms of the Legendre transform of F . This is the content of the
following theorem.

Theorem 5.21 (Dual transport inequalities). Let X , Y be two Polish spaces, and ν
a given probability measure on Y. Let F : P (X ) → R ∪ {+∞} be a convex lower semi-
continuous function on P (X ), and Λ its Legendre transform on Cb(X ); more explicitly, it
is assumed that






∀µ ∈ P (X ), F (µ) = sup
ϕ∈Cb(X )

∫

X
ϕ dµ − Λ(ϕ)

∀ϕ ∈ Cb(X ), Λ(ϕ) = sup
µ∈P (X )

∫

X
ϕ dµ − F (µ).

(5.29)
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Let further c : X × Y → R ∪ {+∞} be a lower semi-continuous cost function. Then, the
following two statements are equivalent:

(i) ∀µ ∈ P (X ), C(µ, ν) ≤ F (µ);

(ii) ∀φ ∈ Cb(Y), Λ

(∫

Y
φ dν − φc

)
≤ 0, where φc(x) := supy[φ(y) − c(x, y)].

Moreover, if Φ : R → R is an increasing convex function, and Φ∗ is its Legendre
transform, then the following two statements are equivalent:

(i’) ∀µ ∈ P (X ), Φ(C(µ, ν)) ≤ F (µ);

(ii’) ∀φ ∈ Cb(Y), ∀t ≥ 0 Λ

(
t

∫

Y
φ dν − tφc − Φ∗(t)

)
≤ 0.

Remark 5.22. The writing in (ii) or (ii’) is not very rigorous since Λ is a priori defined
on the set of bounded continuous functions, and φc might not belong to that set. (It is
clear that φc is bounded from above, but this is all that can be said.) However, from (5.29)
Λ is a nondecreasing function of ϕ, so there is in practice no problem to extend it to a
more general class of measurable functions. In any case, the correct way to interpret the
left-hand side in (ii) is

Λ

(∫

Y
φ dν − φc

)
= sup

ψ≥φc
Λ

(∫

Y
φ dν − ψ

)
,

where ψ in the infimum is assumed to be bounded continuous.

Remark 5.23. One may simplify (ii’) by taking the supremum over t; since Λ is nonin-
creasing, the result is

Λ

(
Φ

(∫

Y
φ dν − φc

))
≤ 0. (5.30)

(This shows in particular that the equivalence (i) ⇔ (ii) is a particular case of the equiv-
alence (i’) ⇔ (ii’).) However, in certain situations it is better to use the inequality (ii’)
rather than (5.30); see for instance Proposition 22.2.

Example 5.24. The most famous example of inequality of the type of (i) is when F (µ) is
the Kullback information with respect to µ, that is F (µ) = Hν(µ) =

∫
ρ log ρ dν, where ρ

is the density of µ with respect to the reference probability measure ν; and by convention
F (µ) = +∞ if µ is not absolutely continuous with respect to ν. Then one has the explicit
formula

Λ(ϕ) = log
(∫

eϕ dν

)
.

So the two functional inequalities

∀µ C(µ, ν) ≤ Hν(µ)

and
∀φ

∫
e−φc

dν ≤ e−
R
φ dν

are equivalent.
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Proof of Theorem 5.21. First assume that (i) is satisfied. Then for all ψ ≥ φc,

Λ

(∫

Y
φ dν − ψ

)
= sup

µ∈P (X )

{∫

X

(∫

Y
φ dν − ψ

)
dµ − F (µ)

}

= sup
µ∈P (X )

{∫

Y
φ dν −

∫

X
ψ dµ − F (µ)

}

≤ sup
µ∈P (X )

[
C(µ, ν) − F (µ)

]
≤ 0,

where the most easy part of Theorem 5.9 (that is, inequality (5.4)) was used to go from
the but-to-last line to the last one. Then (ii) follows upon taking the supremum over ψ.

Conversely, assume that (ii) is satisfied. Then, for any pair (ψ,φ) ∈ Cb(X )×Cb(Y) one
has, by (5.29),

∫

Y
φ dν −

∫

X
ψ dµ =

∫

X

(∫

Y
φ dν − ψ

)
dµ ≤ Λ

(∫

Y
φ dν − ψ

)
+ F (µ).

Taking the supremum over all ψ ≥ φc yields
∫

Y
φ dν −

∫

X
φc dµ ≤ Λ

(∫

Y
φ dν − φc

)
+ F (µ).

By assumption, the first term in the right-hand side is always nonpositive; so in fact
∫

Y
φ dν −

∫

X
φc dµ ≤ F (µ).

Then (i) follows upon taking the supremum over φ ∈ Cb(Y) and applying Theorem 5.9 (i).

Now let us consider the equivalence between (i’) and (ii’). Since Φ is increasing on R,
it is easy to check that its Legendre transform Φ∗ takes the value +∞ on (−∞, 0). So the
Legendre inversion formula becomes

∀r ∈ R, Φ(r) = sup
t∈R+

[
rt − Φ∗(t)

]
.

(The important thing is that the supremum is over R+ and not R.)
If (i’) is satisfied, then for all φ ∈ Cb(X ), for all ψ ≥ φc and for all t ∈ R+,

Λ

(
t

∫
φ dν − tψ − Φ∗(t)

)
= sup

µ∈P (X )

[(
t

∫
φ dν − tψ − Φ∗(t)

)
dµ − F (µ)

]

= sup
µ∈P (X )

[
t

(∫

X
φ dν −

∫
ψ dµ

)
− Φ∗(t) − F (µ)

]

≤ sup
µ∈P (X )

[
tC(µ, ν) − Φ∗(t) − F (µ)

]

≤ sup
µ∈P (X )

[
Φ(C(µ, ν)) − F (µ)

]
≤ 0,

where the inequality tr ≤ Φ(r) + Φ∗(t) was used.
On the other hand, if (ii’) is satisfied, then for all (φ,ψ) ∈ Cb(X ) × Cb(Y) and t ≥ 0,
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t

∫
φ dν − t

∫
ψ dµ − Φ∗(t) =

∫

X

(∫

Y
tφ dν − tψ − Φ∗(t)

)
dµ

≤ Λ

(
t

∫
φ dν − tψ − Φ∗(t)

)
+ F (µ);

then by taking the supremum over ψ ≥ φc one obtains

t C(µ, ν) − Φ∗(t) ≤ Λ

(
t

∫
φ dν − tφc − Φ∗(t)

)
+ F (µ)

≤ F (µ);

then (i’) follows by taking the supremum over t ≥ 0. 78

Application: Solvability of the Monge problem

As a last application of Theorem 5.9, I shall now present the criterion which is used in
the large majority of proofs of existence of a deterministic optimal coupling (or Monge
transport).

Theorem 5.25 (Criterion for solvability of the Monge problem). Let X and Y be
two Polish spaces, and let c : X × Y → R be a lower semi-continuous cost function. Let
µ ∈ P (X ) and ν ∈ P (Y) be two Borel probability measures, and let C(µ, ν) the optimal
total transport cost between µ and ν. If

(i) C(µ, ν) < +∞;
(ii) For any c-convex function ψ : X → R ∪ {+∞}, the set of x ∈ X such that ∂cψ(x)

contains more than one element is µ-negligible;
Then, there is a unique (in law) optimal coupling (X,Y ) of (µ, ν), and it is deterministic.
It is characterized (among all possible couplings) by the existence of a c-convex function
ψ such that, almost surely, Y ∈ ∂cψ(X). In particular, the Monge problem with initial
measure µ and final measure ν admits a unique solution.

Proof of Theorem 5.25. The argument is almost obvious. By Theorem 5.9(ii), there is a
c-convex function ψ, and a measurable set Γ ⊂ ∂cψ such that any optimal plan π is
concentrated on Γ . By assumption there is a Borel set Z such that µ[Z] = 0 and ∂cψ(x)
contains at most one element if x /∈ Z. So for any x ∈ projX (Γ ) \ Z, there is exactly one
y ∈ Y such that (x, y) ∈ Γ , and we can then define T (x) = y.

Let now π be any optimal coupling. As I just said, it has to be concentrated on Γ ; and
since Z × Y is π-negligible, it is also concentrated on Γ \ (Z × Y), which is precisely the
set of all couples of the form (x, T (x)), or the graph of T . It follows that π is the Monge
transport associated with the map T .

The argument above is in fact a bit sloppy, since I did not check the measurability of T .
So I shall show below how to slightly modify the construction of T to make sure that it is
measurable. The reader who does not want to bother about measurability issues can skip
the rest of the proof.

Let (K()(∈N be a nondecreasing sequence of compact sets, all of them included in
Γ \ (Z × Y), such that π[∪K(] = 1. (The family (K() exists because π, just as any Borel
measure on a Polish space, is regular.) If 5 is given, then for any x lying in the compact set
J( := projX (K() we can define T((x) as the unique y such that (x, y) ∈ K(. Then we can
define T on ∪J( by the requirement that for each 5, T restricts to T( on J(. Because K( is
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compact, it is trivial to check the continuity of the map T( on J(; and then it follows that
T is a Borel map. Even if it is not defined on the whole of Γ \ (Z × Y), it is still defined
on a set of full µ-measure, so the proof can be concluded just as before. 78

Bibliographical Notes

There are many ways to state the Kantorovich duality, and even more ways to prove it.
There are also several economic interpretations, that belong to folklore. The one which I
formulated in this chapter is a variant of one that I learnt from Caffarelli. Related economic
interpretations underlie some algorithms, such as the fascinating “auction algorithm” de-
veloped by Bertsekas (see [50, Chapter 7], or the various surveys written by Bertsekas on
the subject).

A common convention consists in taking the pair (−ψ,φ) as the unknown. (The latter
pair was denoted (ϕ,ψ) in [365, Chapter 1], which will probably upset the reader.) This has
the advantage to make some formulas more symmetric: The c-transform becomes ϕc(y) =
infx[c(x, y)−ϕ(x)], and then ψc(x) = infy[c(x, y)−ψ(y)], so this is the same formula going
back and forth between functions of x and functions of y, upon exchange of x and y. Since
in general X and Y have nothing in common, this symmetry is essentially cosmetic. The
conventions used in this chapter lead to a somewhat natural “economic” interpretation,
and will also lend themselves better to a time-dependent treatment. Moreover, they also
agree with the conventions used in the Aubry–Mather–Fathi weak KAM theory [160, 47].
It might be good to make the link more explicit. In weak KAM theory, X = Y is a
Riemannian manifold M , a Lagrangian cost function is given on the tangent bundle TM ,
and c(x, y) is a continuous cost function defined from the dynamics, as the minimum action
that one should spend to go from x to y (as later in Chapter 7). Since in general c(x, x) 3= 0,
it is not absurd to consider the optimal transport cost C(µ, µ) between a measure µ and
itself. If M is compact, it is easy to show that there exists a µ that minimizes C(µ, µ).
To the optimal transport problem between µ and µ, Theorem 5.9 associates a minimal
and a maximal closed c-cyclically monotone sets, respectively Γmin and Γmax ⊂ M × M .
These sets can be identified with subsets of TM via the embedding (initial position, final
position) "−→ (initial position, initial velocity). Under that identification, Γmin and Γmax

are called respectively the Mather and Aubry sets; they carry valuable information about
the underlying dynamics. For mnemonic purposes, to recall which is which, the reader
might use the resemblance of the name “Mather” with the word “measure”. (The Mather
set is the one cooked up from the supports of the probability measures.)

In the particular case when c(x, y) = |x−y|2/2 in Euclidean space, then it is customary
to expand this as |x|2/2 − x · y + |y|2/2, and change unknowns by including |x|2/2 and
|y|2/2 into ψ and φ respectively, then change signs and reduce to the cost function x · y,
which is the one appearing naturally in the Legendre duality of convex functions. This is
explained carefully in [365, Chapter 2], where reminders and references about the theory
of convex functions in Rn are also provided.

The duality theorem was proven by Kantorovich and Rubinstein in the particular case
when c(x, y) is the distance on a compact space; then the statement was generalized by
Dudley [145, 147], who also showed that even the completeness can be dispended with (the
proof in the first reference contains a gap which was filled by de Acosta [128, Appendix B],
following an idea suggested by Dudley in Saint-Flour, 25 years ago!). Rüschendorf [173,
317], Fernique [164], Szulga [345], Kellerer [226], and probably others, contributed to the
problem. Another short proof was also communicated to me by Feyel.
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Modern treatments most often use variants of the Hahn-Banach theorem, see for in-
stance [306, 365]. The proof presented in [365, Theorem 1] proves the duality when X ,Y
are compact, then treats the general case by an approximation argument; this is somewhat
tricky but has the advantage to avoid the general version of the axiom of choice, since it
uses the Hahn-Banach theorem only in the separable space C(K), where K is compact.

Ramachandran and Rüschendorf [309, 310] investigated the Kantorovich duality out
of the setting of Polish spaces, and found out a necessary and sufficient condition, called
“perfection”, for its validity.

In the case when the cost function is a distance, the optimal transport problem coin-
cides with the Kantorovich transshipment problem, for which more duality theorems are
available, and a vast literature has been written; see [306] for results and references.

Around the mid-eighties, it was understood that the study of the dual problem, and
in particular the existence of a maximizer, could lead to precious qualitative information
about the solution of the Monge–Kantorovich problem. This point of view was empha-
sized by Knott and Smith [229], Brenier [69, 72], Rachev and Rüschendorf [321, 306],
Gangbo [176], Gangbo and McCann [178, 179], McCann [269] and others. Then Ambrosio
and Pratelli proved the existence of a maximizing pair under the precise conditions 5.12;
see [17, Theorem 3.2]. Under adequate assumptions, one can also prove the existence of a
maximizer for the dual problem by direct arguments which do not use the original problem
(see for instance [365, Chapter 2]).

The notion of c-convexity, as a generalization of the usual notion of convexity, was
studied by several authors, in particular Rüschendorf [321].

For the proof of Theorem 5.9, I borrowed from McCann [266] the idea of recover-
ing c-cyclical monotonicity from approximation by combinations of Dirac masses; from
Rüschendorf [320] the method used to construct ψ from Γ ; from Schachermayer and Te-
ichmann [328] the clever truncation procedure used in the proof of Part (ii); apart from
that the general scheme of proof is more or less the one used by Ambrosio and Pratelli [17],
and Ambrosio, Gigli and Savaré [15]. On the whole, the proof avoids not only the use of
the axiom of choice, but also any version of the Hahn-Banach theorem; and it also leads to
the best known results. In my opinion this does compensate for its being somewhat tricky.

About the proof of the Kantorovich duality, it is interesting to notice that “duality
for somebody implies duality for everybody” (a rule which is true in other branches of
analysis): In the present case, constructing one particular cyclically monotone transference
plan allows one to prove the duality, which leads to the conclusion that all transference
plans should be cyclically monotone. By the way, the latter statement could also be proven
directly with the help of a bit of measure theoretical abstract nonsense, see e.g. [178].

The use of the law of large numbers for empirical measures might be natural for a prob-
abilistic audience, but one should not forget that this is a subtle result: For any bounded
continuous test function, the usual law of large numbers yields convergence out of a negligi-
ble set, but then one has to find a negligible set that works for all bounded continuous test
functions. Dudley [147, Theorem 11.4.1] proves this for general separable metric spaces,
giving credit to Varadarajan for this theorem. In the community of dynamical systems,
these results are known as part of the so-called Krylov-Bogoljubov theory, in relation with
ergodic theorems; see e.g. Oxtoby [295] for a compact space.

The equivalence between the properties of optimality (of a transference plan) and cycli-
cal monotonicity, for quite general cost functions and probability measures, was a widely
open problem until recently; it was explicitly listed as Open Problem 2.25 in [365] for a
quadratic cost function in Rn. The current state of the art is that
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- the equivalence is false for a general lower semi-continuous function with possibly
infinite values, as shown by a clever counterexample of Ambrosio and Pratelli [17];

- the equivalence is true for a continuous cost function with possibly infinite values, as
shown by Pratelli [302];

- the equivalence is true for a real-valued lower semi-continuous cost function, as shown
by Schachermayer and Teichmann [328]; this is the result that I chose to present in these
notes.

Schachermayer and Teichmann gave a nice interpretation of the Ambrosio–Pratelli
counterexample and suggested that the correct notion in the whole business is not cycli-
cal monotonicity, but a variant which they named “strong cyclical monotonicity condi-
tion” [328].

As I am writing these notes, it seems that the final resolution of this equivalence issue
will soon be available, but at the price of a journey into the very guts of measure theory. The
following construction was explained to me by Bianchini. (Skip if you fear abstraction.) Let
c be an arbitrary lower semi-continuous cost function with possibly infinite values, and let π
be a cyclically monotone plan. Let Γ be a cyclically monotone set with π[Γ ] = 1. Define an
equivalence relation R on Γ as follows: (x, y) ∼ (x′, y′) if there is a finite number of couples
(xk, yk), 0 ≤ k ≤ N , such that: (x, y) = (x0, y0); either c(x0, y1) < +∞ or c(x1, y0) < +∞;
(x1, y1) ∈ Γ ; either c(x1, y2) < +∞ or c(x2, y1) < +∞; etc. until (xN , yN ) = (x′, y′). The
relation R divides Γ into equivalence classes (Γα)α∈Γ/R. Let p be the map which to a
point x associates its equivalence class x. The set Γ/R in general has no topological or
measurable structure, but we can equip it with the largest σ-algebra making p measurable.
On Γ × (Γ/R) introduce the product σ-algebra. If now the graph of p is measurable for
this product measure, then π should be optimal in the Monge–Kantorovich problem.

In most applications, the cost function is continuous, and often rather simple. How-
ever, it is sometimes useful to consider cost functions that achieve the value +∞, as in the
“secondary variational problem” considered by Ambrosio and Pratelli [17] or by Bernard
and Buffoni [48]. Such is also the case for the optimal transport in Wiener space con-
sidered by Feyel and Üstünel [165, 166, 168, 167], for which the cost function c(x, y) is
the square norm of x − y in the Cameron–Martin space (so it is +∞ if x − y does not
belong to that space). In this setting, optimizers in the dual problem can be constructed
via finite-dimensional approximations, but it is not known whether there is a more direct
construction by c-monotonicity.

When condition (5.9) (or its weakened version (5.12)) is relaxed, it is not clear in general
that the dual Kantorovich problem admits a maximizing pair. Yet this is true for instance
in the case of optimal transport in Wiener space; this is an indication that condition (5.12)
might not be the “correct” one, although at present no better general condition is known.

Theorem 5.16 was inspired by a recent work of Fathi and Figalli [161], in which a
restriction procedure is used to solve the Monge problem for certain cost functions arising
from Lagrangian dynamics in unbounded phase spaces; see Theorem 10.26 below for more
information.

Theorem 5.21 appears in a more or less explicit form in various works, especially for the
important example F (µ) =

∫
ρ log ρ dν, where ρ stands for the density of µ with respect

to ν (and F (µ) = +∞ if µ is singular with respect to ν); see for instance [307].
Finally, a few words about basic measure-theoretical tools. The regularity of Borel

measures on Polish spaces is proven in [147, p. 225]. Lusin’s theorem states the following:
If F : X → R is a measurable function defined on a locally compact measure space with
finite mass, then for any ε > 0 there is a continuous function F̃ : X → R with compact
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support, such that F and F̃ coincide up to a set of measure at most ε. This statement
easily extends to functions valued in Rm.





6

The Wasserstein distances

Assume, as before, that you are in charge of the transport of goods between producers and
consumers, whose respective spatial distributions are modelled by probability measures.
The more producers and consumers are far away from each other, the more difficult will be
your job, and you would like to summarize the degree of difficulty with just one quantity.
For that purpose it is natural to consider, as in (5.28), the optimal transport cost
between the two measures:

C(µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y), (6.1)

where c(x, y) is the cost for transporting one unit of mass from x to y. Here we do not
care about the shape of the optimizer but only in the value of this optimal cost.

One can think of (6.1) as a kind of distance between µ and ν, but in general it does
not, strictly speaking, satisfy the axioms of a distance function. However, when the cost
is defined in terms of a distance, it is easy to cook up a distance from (6.1).

Definition 6.1 (Wasserstein distances). Let (X , d) be a metric space, and let p ∈
[1,+∞). For any two probability measures µ, ν on X , the Wasserstein distance of order p
between µ and ν is defined by the formula

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫

X
d(x, y)p dπ(x, y)

)1/p

(6.2)

= inf
{[

E d(X,Y )p
] 1

p
, law (X) = µ, law (Y ) = ν

}
.

Example 6.2. Wp(δx, δy) = d(x, y). In this example, the distance does not depend on p;
but this is not the rule.

At the present level of generality, Wp is not a distance in the strict sense, because it
might take the value +∞; but otherwise it does satisfy the axioms of a distance, as will
be checked right now.

Proof that Wp satisfies the axioms of a distance. First, it is clear that Wp(µ, ν) = Wp(ν, µ).
Next, let µ1, µ2 and µ3 be three probability measures on X , and let (X1,X2) be an

optimal coupling of (µ1, µ2) (for the cost function c = dp), and (X2,X3) an optimal
coupling of (µ2, µ3). By the Gluing Lemma (recalled in Chapter 1), there exist random
variables (X ′

1,X
′
2,X

′
3) with law (X ′

1,X
′
2) = law (X1,X2) and law (X ′

2,X
′
3) = law (X2,X3).

In particular, (X ′
1,X

′
3) is a coupling of (µ1, µ3), so



76 6 The Wasserstein distances

Wp(µ1, µ3) ≤
(
E d(X ′

1,X
′
3)

p
) 1

p ≤
(

E
(
d(X ′

1,X
′
2) + d(X ′

2,X
′
3)
)p) 1

p

≤
(

E d(X ′
1,X

′
2)

p
) 1

p +
(
E d(X ′

2,X
′
3)

p
) 1

p

= Wp(µ1, µ2) + Wp(µ2, µ3),

where the inequality leading to the second line is an application of the Minkowski inequality
in Lp(P ), and the last equality follows from the fact that (X ′

1,X
′
2) and (X ′

2,X
′
3) are optimal

couplings. So Wp satisfies the triangular inequality.
Finally, assume that Wp(µ, ν) = 0; then there exists a transference plan which is entirely

concentrated on the diagonal (y = x) in X ×X . So ν = Id #µ = µ. 78

To complete the construction it is natural to restrict Wp to a subset of P (X ) × P (X )
on which it takes finite values.

Definition 6.3 (Wasserstein space). With the same conventions as in Definition 6.1,
the Wasserstein space of order p is defined as

Pp(X ) :=
{

µ ∈ P (X );
∫

X
d(x0, x)p dµ(x) < +∞

}
,

where x0 ∈ X is arbitrary. This space does not depend on the choice of the point x0. Then
Wp defines a (finite) distance on Pp(X ).

In words, the Wasserstein space is the space of probability measures which have a finite
moment of order p. In these notes, it will always be equipped with the metric Wp.

Proof that Wp is finite on Pp. Let π be a transference plan between two elements µ and ν
in Pp(X ). Then the inequality

d(x, y)p ≤ 2p−1
[
d(x, x0)p + d(x0, y)p

]

shows that d(x, y)p is π(dx dy)-integrable as soon as d(·, x0)p is µ-integrable and d(x0, ·)p
is ν-integrable. 78

Remark 6.4. The combination of Theorem 5.9 and Particular Case 5.4 leads to the useful
duality formula for the Kantorovich–Rubinstein distance: For any µ, ν ∈ P1(X ),

W1(µ, ν) = sup
‖ψ‖Lip≤1

{∫

X
ψ dµ −

∫

X
ψ dν

}
. (6.3)

Remark 6.5. A simple application of Hölder’s inequality shows that

p ≤ q =⇒ Wp ≤ Wq. (6.4)

In particular, the Wasserstein distance of order 1, W1, is the weakest of all. The most useful
exponents in the Wasserstein distances are p = 1 (Kantorovich–Rubinstein distance)
and p = 2. As a general rule, the W1 distance is more flexible and convenient for getting
bounds, while the W2 distance better reflects the geometric features of the problem, and
is better adapted when there is more structure; it also scales better with the dimension.
Results in W2 distance are usually stronger, and more difficult to establish, than results
in W1 distance.
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Convergence in Wasserstein sense

Here is a characterization of convergence in the Wasserstein space.

Definition 6.6 (Weak convergence in Pp). Let (X , d) be a Polish space, and p ∈
[1,∞). Let (µk)k∈N and µ be elements of Pp(X ). Then (µk) is said to converge weakly in
Pp(X ) if any one of the following equivalent properties is satisfied for some (and then any)
x0 ∈ X :

(i) µk converges weakly to µ and
∫

d(x0, x)p dµk(x) −→
∫

d(x0, x)p dµ(x);

(ii) µk converges weakly to µ and lim sup
k→∞

∫
d(x0, x)p dµk(x) ≤

∫
d(x0, x)p dµ(x);

(iii) µk converges weakly to µ and lim
R→∞

lim sup
k→∞

∫

d(x0,x)≥R
d(x0, x)p dµk(x) = 0.

(iv) For all continuous functions ϕ with |ϕ(x)| ≤ C
(
1 + d(x0, x)p

)
, C ∈ R, one has

∫
ϕ(x) dµk(x) −→

∫
ϕ(x) dµ(x).

Theorem 6.7 (Wp metrizes Pp). Let (X , d) be a Polish space, and p ∈ [1,∞); then
the Wasserstein distance Wp metrizes the weak convergence in Pp(X ). In other words, if
(µk)k∈N is a sequence of measures in Pp(X ) and µ is another measure in P (X ), then the
statements

µk converges weakly in Pp(X ) to µ

and
Wp(µk, µ) −→ 0

are equivalent.

Here are two immediate corollaries of this theorem (the first one results from the tri-
angular inequality):

Corollary 6.8 (Continuity of Wp). If (X , d) is a Polish space, and p ∈ [1,∞), then Wp

is continuous on Pp(X ). More explicitly, if µk (resp. νk) converges to µ (resp. ν) weakly
in Pp(X ) as k → ∞, then

Wp(µk, νk) −→ Wp(µ, ν).

Remark 6.9. On the contrary, if these convergences are only usual weak convergences,
then one can only conclude that Wp(µ, ν) ≤ lim inf Wp(µk, νk): the Wasserstein distance
is lower semi-continuous on P (X ) (just like the optimal transport cost C, for any lower
semi-continuous cost function c; recall the proof of Theorem 4.1).

Corollary 6.10 (metrizability of the weak topology). Let (X , d) be a Polish space.
If d̃ is a bounded distance inducing the same topology as d (e.g. d̃ = d/(1 + d)), then
the convergence in Wasserstein sense for the distance d̃ is equivalent to the usual weak
convergence of probability measures in P (X ).

Before starting the proof of Theorem 6.7, it will be good to make some more comments.
The short version of that theorem is that Wasserstein distances metrize weak convergence.
This sounds good, but after all, there are many ways to metrize weak convergence. Here
below are some of the most popular ones, defined either in terms of measures µ, ν, or in
terms of random variables X, Y with law (X) = µ, law (Y ) = ν:
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• the Lévy-Prokhorov distance:

dP (µ, ν) = inf
{
ε > 0; inf P

[
d(X,Y ) > ε

]
≤ ε

}
; (6.5)

• the bounded Lipschitz distance (also called the Fortet-Mourier distance):

dbL(µ, ν) = sup
{∫

ϕ dµ −
∫

ϕ dν; ‖ϕ‖∞ + ‖ϕ‖Lip ≤ 1
}

; (6.6)

• the weak-∗ distance (on a locally compact metric space):

dw∗(µ, ν) =
∞∑

k=0

2−k

∣∣∣∣
∫

ϕk dµ −
∫

ϕk dν

∣∣∣∣ , (6.7)

where (ϕk)k∈N is a dense sequence in C0(X );
• the Toscani metric (on P2(Rn))

dT (µ, ν) = sup
ξ∈Rn\{0}





∣∣∣∣

∫
e−ix·ξ dµ(x) −

∫
e−ix·ξ dν(x)

∣∣∣∣
|ξ|2



 (i2 = −1) (6.8)

(Here I implicitly assume that µ, ν have the same mean, otherwise dT (µ, ν) might
be infinite; one can also introduce variants of dT by changing the exponent 2 in the
denominator.)

So why bother with Wasserstein distances? There are several answers to that question:

1. Wasserstein distances are rather strong, especially in the way they take care of large
distances in X ; this is a definite advantage over, for instance, the weak-∗ distance
(which in practice is so weak that I advice the reader to never use it). It is not so
difficult to combine an information of convergence in Wasserstein distance with some
smoothness bound, in order to get convergence in stronger distances.

2. The definition of Wasserstein distances makes them convenient to use in many problems
where optimal transport is naturally involved; as in many problems coming from partial
differential equations. This is an advantage over, for instance, the Toscani metric which
is a bit more artificial.

3. The Wasserstein distances have a rich duality; this is especially useful for p = 1, in
view of (6.3) (compare with the definition of the bounded Lipschitz distance). Passing
back and forth from the original to the dual definition is often technically convenient.

4. Wasserstein distances are defined by an infimum, which from a technical point of
view often makes them relatively easy to bound from above: The construction of any
coupling between µ and ν yields a bound on the distance between µ and ν. In the same
line of ideas, any C-Lipschitz mapping f : X → X ′ induces a C-Lipschitz mapping
Pp(X ) → Pp(X ′) (the proof is obvious).

5. Wasserstein distances incorporate a lot of the geometry of the space. For instance, the
mapping x "−→ δx is an isometry between X and Pp(X ); but there are much deeper
links. This partly explains why Pp(X ) is often very well adapted to statements that
combine weak convergence and geometry.

To prove Theorem 6.7 I shall use the following lemma, which has interest on its own
and will be useful again later.
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Lemma 6.11 (Cauchy sequences in Wp are tight). Let X be a Polish space, let p ≥ 1
and let (µk)k∈N be a Cauchy sequence in Pp(X ), equipped with the distance Wp. Then (µk)
is tight.

The proof is not so obvious and the reader might skip it at first reading.

Proof of Lemma 6.11. Let (µk)k∈N be a Cauchy sequence in Pp(X ): This means that

Wp(µk, µ() −→ 0 as k, 5 → ∞.

In particular,
∫

d(x0, x)p dµk(x) = Wp
(
δx0 , µk

)p ≤
[
Wp(δx0 , µ1) + Wp(µ1, µk)

]p

remains bounded as k → ∞.
Since Wp ≥ W1, the sequence (µk) is also Cauchy in W1 sense. Let ε > 0 be given, and

let N ∈ N be such that
k ≥ N =⇒ W1(µN , µk) < ε2. (6.9)

Then for any k, there exists j ∈ {1, . . . , N} such that W1(µj , µk) < ε2 (if k ≥ N , this
is (6.9); if k < N , just choose j = k).

Since the finite set {µ1, . . . , µN} is tight, there is a compact set K such that µj[X \K] <
ε for all j ∈ {1, . . . , N}. By compactness, K can be covered by a finite number of small
balls: K ⊂ B(x1, ε) ∪ . . . ∪ B(xm, ε).

Now write
U := B(x1, ε)

⋃
. . .
⋃

B(xm, ε);

Uε :=
{
x ∈ X ; d(x,U) < ε

}
⊂ B(x1, 2ε)

⋃
. . .
⋃

B(xm, 2ε);

φ(x) :=
(

1 − d(x,U)
ε

)

+

.

Note that 1U ≤ φ ≤ 1Uε and φ is (1/ε)-Lipschitz. By using these bounds and the
Kantorovich–Rubinstein duality (6.3), we find that for j ≤ N and k arbitrary,

µk[Uε] ≥
∫

φ dµk

=
∫

φ dµj +
(∫

φ dµk −
∫

φ dµj

)

≥
∫

φ dµj −
W1(µk, µj)

ε

≥ µj[U ] − W1(µk, µj)
ε

.

On one hand, µj [U ] is at least 1 − ε if j ≤ N ; on the other hand, for each k we can find
j = j(k) such that W1(µk, µj) ≤ ε2. So in fact

µk[Uε] ≥ 1 − ε− ε2

ε
= 1 − 2ε.

At this point we have shown the following: For each ε > 0 there is a finite family
(xi)1≤i≤m such that all measures µk give mass at least 1−2ε to the set Z := ∪B(xi, 2ε). The
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point is that Z might not be compact. There is a classical remedy: Repeat the reasoning
with ε replaced by ε2−p+1, so there will be (xi)1≤i≤m(p) such that

µk

[
X \

⋃

1≤i≤m(p)

B(xi, ε2−p)
]
≤ ε2−p.

It follows that
µk[X \ S] ≤ ε,

where
S :=

⋂

1≤p≤∞

⋃

1≤i≤m(p)

B(xi, ε2−p).

By construction, S can be covered by finitely many balls of radius δ, where δ is arbitrarily
small (just choose p large enough that ε2−p < δ, and then B(xi, ε2−p) will be included
in B(xi, δ)). Thus S is totally bounded (i.e. it can be covered by finitely many balls of
arbitrarily small radius). It is also closed, as an intersection of finite unions of closed sets.
Since X is a complete metric space, it follows from a classical result in topology that S is
compact. This concludes the proof of Lemma 6.11. 78

Proof of Theorem 6.7. Let (µk)k∈N be such that µk → µ in distance Wp; the goal is to show
that µk converges to µ in Pp(X ). First, by Lemma 6.11, the sequence (µk)k∈N is tight, so
there is a subsequence (µk′) such that µk′ converges weakly to some probability measure
µ̃. Then by Lemma 4.2,

Wp(µ̃, µ) ≤ lim inf
k′→∞

W1(µk′ , µ) = 0.

So µ̃ = µ, and the whole sequence (µk) has to converge to µ. This however is not the end,
since it only shows the weak convergence in the usual sense, not the convergence in Pp(X ).

For any ε > 0 there exists a constant Cε > 0 such that for all nonnegative real numbers
a, b,

(a + b)p ≤ (1 + ε) ap + Cε bp.

Combining this inequality with the usual triangle inequality, we see that whenever x0, x
and y are three points in X, one has

d(x0, x)p ≤ (1 + ε) d(x0, y)p + Cε d(x, y)p. (6.10)

Now let (µk) be a sequence of probability measures in Pp(X ) such that Wp(µk, µ) −→
0, and for each k, let πk be an optimal transport plan between µk and µ. Integrating
inequality (6.10) against πk and using the marginal property, we find that

∫
d(x0, x)p dµk(x) ≤ (1 + ε)

∫
d(x0, y)p dµ(y) + Cε

∫
d(x, y)p dπk(x, y).

But of course, ∫
d(x, y)p dπk(x, y) = Wp(µk, µ)p −−−→

k→∞
0.

Therefore,

lim sup
k→∞

∫
d(x0, x)p dµk(x) ≤ (1 + ε)

∫
d(x0, x)p dµ(x).
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Letting ε → 0, we see that Property (ii) of Definition 6.6 holds true; so µk does converge
weakly in Pp(X ) to µ.

Conversely, assume that µk converges weakly in Pp(X ) to µ; and again, for each k,
introduce an optimal transport plan πk between µk and µ. So

∫
d(x, y)p dπk(x, y) −→ 0.

By Prokhorov’s theorem, (µk) forms a tight sequence; also {µ} is tight. By Lemma 4.3,
the sequence (πk) is itself tight in P (X × X ). So, up to extraction of a subsequence, still
denoted by (πk), one may assume that

πk −→ π weakly in P (X × X ).

Since each πk is optimal, Theorem 5.18 guarantees that π is an optimal coupling of µ
and µ, so this is the (completely trivial) coupling π = (Id , Id )#µ (in terms of random
variables, Y = X). Since this is independent of the extracted subsequence, actually π is
the limit of the whole sequence (πk).

Now let x0 ∈ X and R > 0. If d(x, y) > R, then at least one (say the largest) of the
two numbers d(x, x0) and d(x0, y) has to be greater than R/2, and no less than d(x, y)/2.
In a fancy writing,

1d(x,y)≥R ≤ 1[d(x,x0)≥R/2 and d(x,x0)≥d(x,y)/2] + 1[d(x0,y)≥R/2 and d(x0,y)≥d(x,y)/2].

So, obviously
[
d(x, y)p − Rp

]
+

≤ d(x, y)p 1[d(x,x0)≥R/2 and d(x,x0)≥d(x,y)/2] + d(x, y)p 1[d(x0,y)≥R/2 and d(x0,y)≥d(x,y)/2]

≤ 2pd(x, x0)p 1d(x,x0)≥R/2 + 2pd(x0, y)p 1d(x0,y)≥R/2.

It follows that

Wp(µk, µ)p =
∫

d(x, y)p dπk(x, y)

=
∫ [

d(x, y) ∧ R
]p

dπk(x, y) +
∫ [

d(x, y)p − Rp
]
+

dπk(x, y)

≤
∫ [

d(x, y) ∧ R
]p

dπk(x, y) + 2p
∫

d(x,x0)≥R/2
d(x, x0)p dπk(x, y)

+ 2p
∫

d(x0,y)>R/2
d(x0, y)p dπk(x, y)

=
∫ [

d(x, y) ∧ R
]p

dπk(x, y) + 2p
∫

d(x,x0)≥R/2
d(x, x0)p dµk(x)

+ 2p
∫

d(x0,y)≥R/2
d(x0, y)p dνk(y).

Since πk converges weakly to π, the first term goes to 0 as k → ∞. So

lim sup
k→∞

Wp(µk, µ)p ≤ 2p lim sup
k→∞

∫

d(x,x0)≥R/2
d(x, x0)p dµk(x)+2p lim sup

k→∞

∫

d(x0,y)≥R/2
d(x0, y)p dνk(y) = 0.

This concludes the argument. 78
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Control by total variation

The total variation is a classical notion of distance between probability measures. There
is, by the way, a classical probabilistic representation formula for total variation,

‖µ − ν‖TV = 2 inf P [X 3= Y ], (6.11)

where the infimum is over all couplings (X,Y ) of (µ, ν), which can be seen as a very
particular case of Kantorovich duality for the cost function 1x '=y.

It seems natural that a control in Wasserstein distance should be weaker than a control
in total variation. This is not completely true, because total variation does not take into
account large distances. But one can control Wp by weighted total variation.

Theorem 6.12 (Wasserstein distances are controlled by weighted total varia-
tion). Let µ and ν be two probability measures on a Polish space (X , d). Let p ∈ [1,∞)
and x0 ∈ X . Then

Wp(µ, ν) ≤ 2
1
p′

(∫
d(x0, x)p d|µ − ν|(x)

) 1
p

,
1
p

+
1
p′

= 1. (6.12)

Particular Case 6.13. In the case p = 1, if the diameter of X is bounded by D, this
bound becomes W1(µ, ν) ≤ D ‖µ − ν‖TV .

Remark 6.14. The integral in the right-hand side of (6.12) can be interpreted as the
Wasserstein distance W1 for the particular cost function [d(x0, x) + d(x0, y)]1x '=y.

Proof of Theorem 6.12. Let π be the transference plan obtained by keeping fixed all the
mass shared by µ and ν, and distributing the rest uniformly: this is

π = (Id , Id )#(µ ∧ ν) +
1
a

(µ − ν)+ ⊗ (µ − ν)−,

where µ ∧ ν = µ − (µ − ν)+ and a = (µ − ν)−[X] = (µ − ν)+[X]. A more sloppy but
probably more readable way to write π is

π(dx dy) = (µ ∧ ν)(dx) δy=x +
1
a

(µ − ν)+(dx) (µ − ν)−(dy).

By using the definition of Wp, the definition of π, the triangle inequality for d, the elemen-
tary inequality (A + B)p ≤ 2p−1(Ap + Bp), and the definition of a, we find that

Wp(µ, ν)p ≤
∫

d(x, y)p dπ(x, y)

=
1
a

∫
d(x, y)p d(µ − ν)+(x) d(µ − ν)−(y)

≤ 2p−1

a

∫ [
d(x, x0)p + d(x0, y)p

]
d(µ − ν)+(x) d(µ − ν)−(y)

≤ 2p−1

[∫
d(x, x0)p d(µ − ν)+(x) +

∫
d(x0, y)p d(µ − ν)−(y)

]

= 2p−1
∫

d(x, x0)p d
[
(µ − ν)+ + (µ − ν)−

]
(x)

= 2p−1
∫

d(x, x0)p d|µ − ν|(x).

78
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Topological properties of the Wasserstein space

As a general rule, the Wasserstein space Pp(X ) inherits many properties of the basis space
X . Here is a first illustration:

Theorem 6.15 (Topological properties of the Wasserstein space). Let X be a
complete separable metric space and p ∈ [1,+∞). Then the Wasserstein space Pp(X ),
metrized by the Wasserstein distance Wp, is also a complete separable metric space. In
short: The Wasserstein space over a Polish space is itself a Polish space. Moreover, any
probability measure can be approximated by a sequence of probability measures with finite
support.

Remark 6.16. If X is compact, then Pp(X ) is also compact; but if X is only locally
compact, then Pp(X ) is not locally compact.

Proof of Theorem 6.15. The fact that Pp(X ) is a metric space was already explained, so
let us turn to the proof of separability. Let D be a dense sequence in X , and let P be
the space of probability measures that can be written

∑
ajδxj , where the aj are rational

coefficients, and the xj are finitely many elements in D. It will turn out that P is dense
in Pp(X ).

To prove this, let ε > 0 be given, and x0 be an arbitrary element of D. If µ lies in
Pp(X ), then there exists a compact set K ⊂ X such that

∫

X\K
d(x0, x)p dµ(x) ≤ εp.

Cover K by a finite family of balls B(xk, ε/2), 1 ≤ k ≤ N , with centers xk ∈ D. Then
define

B′
k = B(xk, ε) \

⋃

j<k

B(xj , ε).

Then all B′
k are disjoint and still cover K.

Define f on X by

f(B′
k ∩ K) = {xk}, f(X \ K) = {x0}.

Then, for all x ∈ K, d(x, f(x)) ≤ ε. So
∫

d(x, f(x))p dµ(x) ≤ εp
∫

K
dµ(x) +

∫

X\K
d(x, x0)p dµ(x)

≤ εp + εp = 2 εp.

Since (Id , f) is a coupling of µ and f#µ, it follows that Wp(µ, f#µ) ≤ 2εp.
Of course, f#µ can be written as

∑
ajδxj , 0 ≤ j ≤ N . This shows that µ might

be approximated, with arbitrary precision, by a finite combination of Dirac masses. To
conclude, it is sufficient to show that the coefficients aj might be replaced by rational
coefficients, up to a very small error in Wasserstein distance. So let D be a bound on the
diameter of x0, then by Theorem 6.12,

Wp




∑

j≤N

ajδxj ,
∑

j≤N

bjδxj



 ≤ 2
1
p′ D

∑

j≤N

|aj − bj|
1
p ,
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and obviously the latter quantity can be made as small as possible for some well-chosen
rational coefficients bj .

Now let us prove the completeness. Let again (µk)k∈N be a Cauchy sequence in Pp(X ).
By Lemma 6.11, it admits a subsequence (µk′) which converges weakly (in the usual sense)
to some measure µ. Then,

∫
d(x0, x)p dµ(x) ≤ lim inf

k→∞

∫
d(x0, x)p dµk′(x) < +∞,

so µ belongs to Pp(X ). Moreover, by lower semi-continuity of Wp,

Wp(µ, µ(′) ≤ lim inf
k′→∞

Wp(µk′ , µ(′),

so in particular
lim sup
(′→∞

Wp(µ, µ(′) ≤ lim sup
k′,(′→∞

Wp(µk′ , µ(′) = 0,

which means that µ(′ converges to µ in Wp sense (and not just in the sense of weak
convergence). So (µk) is a Cauchy sequence with a converging subsequence, and it follows
by a classical argument that the whole sequence is converging. 78

Bibliographical Notes

The terminology of Wasserstein distance is quite questionable, since (a) these dis-
tances were discovered and rediscovered by several authors throughout the twentieth cen-
tury, including (in chronological order) Gini [186], Kantorovich [220], Wasserstein [361],
Mallows [254] and Tanaka [349] (other important early contributors being Salvemini,
Dall’Aglio, Hoeffding, Fréchet, Rubinstein, and maybe others); and (b) Wasserstein was
only interested in the case p = 1. By the way, also the spelling of Wasserstein is doubtful:
the original spelling was Vasershtein. All these issues are discussed in a historical note
by Rüschendorf [316], who advocates the denomination of “minimal Lp-metric” instead of
“Wasserstein distance”.

In spite of these remarks, I will stick to the latter denomination, partly because it
appears in many papers published since the end of the nineties (including my own), so
that many researchers in partial differential equations or geometry agree on it. After all,
even if this convention is a bit unfair since it does not give credit to all contributors, at
least it does give credit to somebody.

Gini considered the special case where the random variables are discrete and lie on
the real line; like Mallows later, he was interested by applications in statistics. Tanaka
was interested by applications to partial differential equations. Both Mallows and Tanaka
worked with the case p = 2, while Gini was interested both in p = 1 and p = 2, and
Hoeffding and Fréchet worked with general p.

Wasserstein distances were used by Dobrushin in various areas of statistical mechanics,
and Dobrushin advertised for them a lot, see e.g. [143, 144]. The Toscani metric is useful
in the theory of the Boltzmann equation, see [364, Section 4.2] and references quoted
therein. The Toscani metric and its variants are also rather handy for studying rates
of convergence in the central limit theorem, or certain stable limit theorems [187]. The
Lévy-Prokhorov metric appears in a number of textbooks, such as Dudley [147, p. 394].
For the taxonomy of probability metrics and their history, the unavoidable reference is
the monograph by Rachev [307], which lists dozens and dozens of metrics together with
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their main properties and applications. (Many of them are variants, particular cases or
extensions of the Wasserstein and Lévy-Prokhorov metrics.)

Applications of the Wasserstein distances are too numerous to be quoted here; they
will be encountered again in the sequel. For the moment let me just mention Tanaka’s
work on the Boltzmann equation [349, 350], which is reviewed in [365, Section 7.5]; and a
surprising recent contribution by Werner [369], who showed that the Wasserstein distance
is well adapted to quantify some variants of the uncertainty principle in quantum physics.

The equivalence between the four statements in Definition 6.6 is proven in [365, Theo-
rem 7.12]. I borrowed the proof of Lemma 6.11 from Bolley [61]; and the scheme of proof
of Theorem 6.7 from Ambrosio, Gigli and Savarè [15]. There are alternative proofs of
Theorem 6.7 in the literature, for instance in [365].

The representation formula (6.11) for the total variation distance is a particular case
of Strassen’s duality theorem, see for instance [365, Section 1.4]. Remark 6.14 is taken
from [188].

Theorem 6.12 is a copy-paste from [365, Proposition 7.10], which itself was a slight
adaptation of [306, Lemma 10.2.3].

Theorem 6.15 belongs to folklore and has probably been proven many times; Sznit-
man [344] refers to Dobrushin for a proof of completeness. Other arguments are due to
Rachev [307], and Ambrosio, Gigli and Savaré [15]. In the latter reference the proof is very
simple but makes use of the deep Kolmogorov extension theorem. Here I followed a much
more elementary argument due to Bolley [61].

The statement in Remark 6.16 is proven in [15, Remark 7.1.9].





7

Displacement interpolation

Now I shall discuss a time-dependent version of optimal transport leading to a continu-
ous displacement of probability measures. There are several motivations for that extension:

- a time-dependent model gives a more complete description of the transport;
- the richer mathemtical structure will be useful later on.
As in the previous chapter I shall assume that the initial and final probability measures

are defined on the same Polish space (X , d). The main additional structure assumption
is that the cost is associated with an action, which is a way to measure the cost of
displacement along a continuous curve, defined on a given time-interval, say [0, 1]. So the
cost function between an initial point x and a final point y is obtained by minimizing the
action among paths that go from x to y:

c(x, y) = inf
{
A(γ); γ0 = x, γ1 = y; γ ∈ C

}
. (7.1)

Here C is a certain class of continuous curves, to be specified in each particular case of
interest, on which the action functional A is defined.

Of course, Assumption (7.1) is meaningless unless one requires some specific structure
on the action functional (otherwise, just choose A(γ) = c(γ0, γ1)...). A good notion of
action should provide a recipe for choosing optimal paths, and in particular a recipe
to interpolate between points in X . It will turn out that under soft assumptions, this
interpolation recipe between points can be “lifted” to an interpolation recipe between
probability measures. This will provide a time-dependent notion of optimal transport, that
will be called displacement interpolation (by opposition to the standard linear interpolation
between probability measures).

This is a key chapter in these notes, and I have worked hard to attain a high level of
generality, at the price of somewhat lengthy arguments. So the reader should not hesitate
to skip proofs at first reading, concentrating on the statements and explanations.

Deterministic interpolation via action-minimizing curves

To better understand what an action functional should be, let us start with some examples
and informal discussions. Consider a model where the unknown is the position of a given
physical system in some position space, say a Riemannnian manifold M . (See the Appendix
for reminders about Riemannian geometry if needed.) We learn from classical physics that
in the absence of a potential, the action is the integral over time of the (instantaneous)
kinetic energy:
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A(γ) =
∫ 1

0

|γ̇t|2

2
dt,

where γ̇t stands for the velocity (or time-derivative) of the curve γ at time t. More generally,
an action is classically given by the time-integral of a Lagrangian along the path:

A(γ) =
∫ 1

0
L(γt, γ̇t, t) dt. (7.2)

Here L is defined on TM × [0, 1], where the smooth manifold M is the position space
and the tangent bundle TM is the phase space, that is the space of all possible positions
and velocities. It is natural to work in TM because one often deals with second-order
differential equations on M (such as Newton’s equations), which transform into first-order
equations on TM . Typically L would take the form

L(x, v, t) =
|v|2

2
− V (x) (7.3)

where V is a potential; but much more complicated forms are admissible. When V is
continuously differentiable, it is a simple particular case of the formula of first variation
(recalled in the Appendix) that minimizers of (7.3), with given end-points, satisfy Newton’s
equation

d2x

dt2
= −∇V (x). (7.4)

To make sure that A(γ) is well-defined, it is natural to assume that the path γ is contin-
uously differentiable, or piecewise continuously differentiable, or at least almost everywhere
differentiable as a function of t. A classical and general setting is that of absolutely con-
tinuous curves: By definition, if (X , d) is a metric space, a continuous curve γ : [0, 1] → X
is said to be absolutely continuous if there exists a function 5 ∈ L1([0, 1]; dt) such that for
all intermediate times t0 < t1 in [0, 1],

d(γt0 , γt1) ≤
∫ t1

t0

5(t) dt. (7.5)

More generally, it is said to be absolutely continuous of order p if formula (7.5) holds with
some 5 ∈ Lp([0, 1]; dt).

If γ is absolutely continuous, then the function t "−→ d(γt0 , γt) is differentiable almost
everywhere, and its derivative is integrable. But the converse is false: for instance, if γ is
the “devil’s staircase”, encountered in measure theory textbooks (a nonconstant function
whose distributional derivative is concentrated on the Cantor set in [0, 1]), then γ is differ-
entiable almost everywhere, and γ′(t) = 0 for almost every t, even though γ is not constant!
This motivates the “integral” definition of absolute continuity based on formula (7.5).

If X is Rn, or a smooth differentiable manifold, then absolutely continuous paths are
differentiable for Lebesgue-almost all t ∈ [0, 1] (in physical words, the velocity is well-
defined for almost all time).

Before going further, here are some simple and important examples. For all of them,
the class of admissible curves is the space of absolutely continuous curves.

Example 7.1. In X = Rn, choose L(x, v, t) = |v| (Euclidean norm of the velocity). Then
the action is just the length functional, while the cost c(x, y) = |x − y| is the Euclidean
distance. Minimizing curves are straight lines, with arbitrary parametrization: γt = γ0 +
s(t)(γ1 − γ0), where s : [0, 1] → [0, 1] is nondecreasing and absolutely continuous.
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Example 7.2. In X = Rn again, choose L(x, v, t) = c(v), where c is strictly convex. By
Jensen’s inequality,

c(γ1 − γ0) = c

(∫ 1

0
γ̇t dt

)
≤
∫ 1

0
c(γ̇t) dt,

and this is an equality if and only if γ̇t is constant. It follows that minimizers of the action
are straight lines with constant velocity : γt = γ0 + t(γ1 − γ0). Then, of course,

c(x, y) = c(y − x).

Remark 7.3. This example shows that rather different Lagrangians can have the same
minimizing curves.

Example 7.4. Let X = M be a smooth Riemannian manifold, TM its tangent bundle,
and L(x, v, t) = |v|p, p ≥ 1. Then the cost function is d(x, y)p, where d is the geodesic
distance on M . There are two quite different cases:

- If p > 1, minimizing curves are defined by the equation d2γt/dt2 = 0 (zero
acceleration), to be understood as (d/dt)γ̇t = 0, where (d/dt) stands for the covariant
derivative along the path γ (once again, see the reminders in the Appendix if necessary).
Such curves have constant speed ((d/dt)|γ̇t| = 0), and are called minimizing, constant-
speed geodesics, or simply geodesics.

- If p = 1, minimizing curves are geodesic curves parametrized in an arbitrary way.

Example 7.5. Let again X = M be a smooth Riemannian manifold, and now consider
a general Lagrangian L(x, v, t), assumed to be strictly convex in the velocity variable v.
The characterization and study of extremal curves for such Lagrangians, under various
regularity assumptions, is one of the most classical topics in the calculus of variations.
Here are some of the basic — which does not mean trivial — results in the field. In all the
sequel, the Lagrangian L is a C1 function defined on TM × [0, 1].

- By the first variation formula (whose proof is sketched in the Appendix), minimizing
curves should satisfy the Euler-Lagrange equation

d

dt

[
(∇vL)(γt, γ̇t, t)

]
= (∇xL)(γt, γ̇t, t), (7.6)

which is a generalization of (7.4). At least this equation should be satisfied for minimizing
curves that are sufficiently smooth, say piecewise C1.

- Assume that L is strictly convex and superlinear in the velocity variable, in the
following sense:

∀(x, t)






v "−→ L(x, v, t) is convex

L(x, v, t)
|v| −−−−→

|v|→∞
+∞

(7.7)

Then v "−→ ∇vL is invertible, and (7.4) can be rewritten as a differential equation on the
new unknown ∇vL(γ, γ̇, t).

- If there exists K,C > 0 such that

L(x, v, t) ≥ K|v|− C,

then the action of a curve γ is bounded below by KL(γ) − C, where L is the length; it
follows that all action-minimizing curves starting from a given compact K0 and ending in
a given compact K1 stay within a bounded region.
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- If minimizing curves depend smoothly on their position and velocity at some time,
then there is also a bound on the velocities along minimizers that join K0 to K1. Indeed,
there is a bound on

∫ 1
0 L(x, v, t) dt; so there is a bound on L(x, v, t) for some t; so there is

a bound on the velocity at some time, and then this bound is propagated in time.
- If in addition inequality ∇2

vL > 0 holds true (more rigorously, ∇2
vL(x, ·, t) ≥ K(x)gx

for all x, where g is the metric and K(x) > 0), then the new equation has locally Lipschitz
coefficients, and the Cauchy-Lipschitz theorem can be applied to guarantee the unique
local existence of Lipschitz continuous solutions to (7.6). Under the same assumptions on
L, one can show directly that minimizers are of class at least C1, and therefore satisfy (7.6).
Conversely, solutions of (7.6) are locally (in time) minimizers of the action.

- Finally, the convexity of L makes it possible to introduce its Legendre transform
(again, with respect to the velocity variable):

H(x, p, t) := sup
v∈TxM

(
p · v − L(x, v, t)

)
,

which is called the Hamiltonian; then one can recast (7.6) in terms of a Hamiltonian
system, and access to the rich mathematical world of Hamiltonian dynamics. As soon as
L is strictly convex superlinear, then the Legendre transform (x, v) → (x,∇vL(x, v, t)) is
a homeomorphism, so assumptions about (x, v) can be re-expressed in terms of (x, p =
∇vL(x, v, t)).

- If L does not depend on t, then H(x,∇vL(x, v)) is constant along minimizing curves
(x, v) = (γt, γ̇t); more generally, (d/dt)H(x,∇vL(x, v)) = (∂tH)(x,∇vL(x, v)).

Some of the above-mentioned assumptions will come back often in the sequel, so I shall
summarize the most interesting ones in the following definition:

Definition 7.6 (Classical conditions on a Lagrangian function). Let M be a Rie-
mannian manifold, and L(x, v, t) a Lagrangian on TM × [0, 1]. In this course, it is said
that L satisfies the classical assumptions if

(a) L is C1 in all variables;
(b) At each (x, t), L is a strictly convex superlinear function of v, in the sense of (7.7);

(c) There are constants K,C > 0 such that for all t, x, v, L(x, v, t) ≥ K|v|− C;
(d) Minimizers are solutions of a well-defined locally Lipschitz flow; that is, there is a

locally Lipschitz map (x0, v0, t0; t) → Xt(x0, v0, t0) on TM × [0, 1] × [0, 1], such that each
minimizer satisfies γ(t) = Xt(t0, γ(t0), γ̇(v0)).

The latter assumption is automatically satisfied if L is of class C2, ∇2
vL > 0 everywhere

and L does not depend on t.

This looks general enough, however there are interesting cases where X does not have
enough differentiable structure for the velocity vector to be well-defined (tangent spaces
might not exist, for lack of smoothness). In such a case, it is still possible to define the
speed along the curve:

|γ̇t| := lim sup
ε→0

d(γt, γt+ε)
|ε| . (7.8)

This generalizes the natural notion of speed, which is the norm of the velocity vector. Thus
it makes perfect sense to write a Lagrangian of the form L(x, |v|, t) in a general metric
space X ; here L might be essentially any measurable function on X × R+ × [0, 1]. (To
ensure that

∫ 1
0 L dt makes sense in R ∪ {+∞}, it is natural to assume that L is bounded

below.)
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Example 7.7. Let (X , d) be a metric space. Define the length of an absolutely continuous
curve by the formula

L(γ) =
∫ 1

0
|γ̇t| dt. (7.9)

Then minimizing curves are called geodesics. They may have variable speed, but, just as
on a Riemannian manifold, one can always reparametrize them (that is, replace γ by γ̃
where γ̃t = γs(t), with s continuous increasing) in such a way that they have constant
speed. In that case d(γs, γt) = |t − s| L(γ) for all s, t ∈ [0, 1].

Example 7.8. Let again (X , d) be a metric space, but now consider the action

A(γ) =
∫ 1

0
c(|γ̇t|) dt,

where c is strictly convex and strictly increasing (say c(|v|) = |v|p, p > 1). Then,

c
(
d(γ0, γ1)

)
≤ c(L(γ)) = c

(∫ 1

0
|γ̇t| dt

)
≤
∫ 1

0
c(|γ̇t|) dt,

with equality in both inequalities if and only if γ is a constant-speed, minimizing geodesic.
Thus c(x, y) = c

(
d(x, y)

)
and minimizing curves are also geodesics, but with constant

speed. Note that the distance can be recovered from the cost function, just by inverting c.
As an illustration, if p > 1, and c(|v|) = |v|p, then

d(x, y) = inf
{∫ 1

0
|γ̇t|p dt; γ0 = x, γ1 = y

} 1
p

.

In a given metric space, geodesics might not always exist, and it can even be the case
that non-constant continuous curves do not exist (think of a discrete space). So to continue
the discussion we shall have to impose appropriate assumptions on our metric space, and
our cost function.

Here comes an important observation. When one wants to compute “in real life” the
length of a curve, one does not use formula (7.9), but rather subdivides the curve into very
small pieces, and approximates the length of each small piece by the distance between its
endpoints. The finer the subdivision, the greater the measured approximate length (this is
a consequence of the triangular inequality). So by taking finer and finer subdivisions we get
an increasing family of measurements, whose upper bound may be taken as the measured
length. This is actually an alternative definition of the length, which agrees with (7.9) for
absolutely continuous curves, but does not require any further regularity assumption than
plain continuity:

L(γ) = sup
N∈N

sup
0=t0<t1<...<tN =1

[
d(γt0 , γt1) + · · · + d(γtN−1 , γtN )

]
. (7.10)

Then one can define a length space as a metric space (X , d) in which, for any two
x, y ∈ X ,

d(x, y) = inf
γ∈C([0,1];X )

{
L(γ); γ0 = x, γ1 = y

}
. (7.11)

If in addition X is complete and locally compact, then the infimum is a minimum, in
which case the space is said to be strictly intrinsic. (By abuse of notation, one often says
just “length space” for “strictly intrinsic length space”; another terminology is “geodesic
space”.) Such spaces play an important role in modern nonsmooth geometry.
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Formulas (7.10) and (7.11) show an intimate link between the length and the distance:
The length determines the distance by minimization, but conversely the distance deter-
mines the length by subdivision and approximation. The idea behind it is that the length
of an “infinitesimal curve” is determined solely by the endpoints. A similar relation holds
true for an action which is defined by a general Lagrangian of the form (7.2): indeed, if γ
is differentiable at t, then

∫ t+ε

t
L
(
γτ , γ̇τ , τ

)
dτ > εL(γt, γ̇t, t),

and the vector γ̇t is uniquely determined, up to an error O(ε), by γt and γt+ε. Such would
not be the case if the function L would also depend on, say, the acceleration of the curve.

This reconstruction property plays an important role and it is natural to enforce it
in an abstract generalization. To do so, it will be useful to consider an action as a family
of functionals parametrized by the initial and the final times: So As,t is a functional on
the set of paths [s, t] → X . Then we let

cs,t(x, y) = inf
{
As,t(γ); γs = x, γt = y; γs,t ∈ C

}
. (7.12)

In words, cs,t(x, y) is the minimal work needed to go from point x at initial time s, to
point y at final time t.

Example 7.9. Consider the Lagrangian L(x, |v|, t) = |v|p. Then

cs,t(x, y) =
d(x, y)p

(t − s)p−1
.

Note a characteristic property of these “power law” Lagrangians: The cost function de-
pends on s, t only through multiplication by a constant. In particular, minimizing curves
will be independent of s and t, up to reparametrization.

Abstract Lagrangian action

After all these preparations, the following definition should appear somewhat natural.

Definition 7.10 (Lagrangian action). Let (X , d) be a Polish space, and let ti, tf be
two real numbers. A Lagrangian action (A)ti,tf on X is a family of lower semi-continuous
functionals As,t on C([s, t];X ) (ti ≤ s < t ≤ tf), and cost functions cs,t on X × X , such
that

(i) 0 ≤ t1 < t2 < t3 ≤ 1 =⇒ At1,t2 + At2,t3 = At1,t3 ;

(ii) ∀x, y ∈ X cs,t(x, y) = inf
{
As,t(γ); γ ∈ C([s, t];X ); γs = x, γt = y

}
;

(iii) For any curve (γt)ti≤t≤tf ,

Ati,tf (γ) = sup
N∈N

sup
ti=t0≤t1≤...≤tN=tf

[
ct0,t1(γt0 , γt1) + ct1,t2(γt1 , γt2) + · · ·

· · · + ctN−1,tN (γtN−1 , γtN )
]
.

The functional A = Ati,tf will just be called the action, and the cost function c = cti,tf

the cost associated with the action. A curve γ : [ti, tf ] → X is said to be action-minimizing
if it minimizes A among all curves having the same endpoints.
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Example 7.11. (i) To recover (7.2) as a particular case of Definition 7.10, just set

As,t(γ) =
∫ t

s
L(γτ , γ̇τ , τ) dτ. (7.13)

(ii) A length space is a space in which As,t(γ) = L(γ) (here L is the length) defines a
Lagrangian action.

If [t′i, t
′
f ] ⊂ [ti, tf ] then it is clear that (A)ti,tf induces an action (A)t

′
i,t

′
f on the time-

interval [t′i, t
′
f ], just by restriction.

In the rest of this section I shall take (ti, tf ) = (0, 1), just for simplicity; of course one
can always reduce to this case by reparametrization.

Now it will be useful to introduce further assumptions about existence and compactness
of minimizing curves.

Definition 7.12 (coercive action). Let (A)0,1 be a Lagrangian action on a Polish space
X , with associated cost functions (cs,t)0≤s<t≤1. For any two times s, t (0 ≤ s < t ≤ 1),
and any two compacts Ks,Kt ∈ X , let Γ s,t

Ks→Kt
be the set of minimizing paths that start

in Ks at time s, and end in Kt at time t. The action will be called coercive if
(i) It is bounded below, in the sense that

inf
s<t

inf
γ

As,t > −∞;

(ii) If s < t are any two intermediate times, and Ks, Kt are any two nonempty compact
sets such that cs,t(x, y) < +∞ for all x ∈ Ks, y ∈ Kt, then the set Γ s,t

Ks→Kt
is compact and

nonempty.
In particular, minimizing curves between any two fixed points x, y with c(x, y) < +∞

should always exist and form a compact set.

Remark 7.13. If each As,t has compact sub-level sets (that is, {γ; As,t(γ) ≤ A} is com-
pact in C([s, t];X ) for any A ∈ R), then the lower semi-continuity of As,t, together with a
standard compactness argument (just as in Theorem 4.1) shows that there exists at least
one action-minimizing curve among the set of curves that have prescribed final and initial
points. In that case the requirement of nonemptiness in (ii) is fulfilled.

Example 7.14. (i) If X is a smooth Riemannian manifold and L(x, v, t) is a Lagrangian
satisfying the classical conditions of Definition 7.6, then the action defined by (7.13) is
coercive.

(ii) If X is a geodesic length space, then the action defined by As,t(γ) = L(γ)2/(t − s)
is coercive; in fact minimizers are constant-speed minimizing geodesic curves. On the
other hand the action defined by As,t(γ) = L(γ) is not coercive. Indeed, the possibility of
reparametrization prevents the compactness of minimizing curves.

Proposition 7.15 (Properties of Lagrangian actions). Let (X , d) be a Polish space
and (A)0,1 a coercive Lagrangian action on X . Then

(i) For all intermediate times s ≤ t, cs,t is lower semi-continuous on X×X , with values
in R ∪ {+∞};

(ii) If a curve γ on [s, t] ⊂ [0, 1] is a minimizer of As,t, then its restriction to [s′, t′] ⊂
[s, t] is also a minimizer for As′,t′ ;
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(iii) For all times t1 < t2 < t3 in [0, 1], and x1, x3 in X ,

ct1,t3(x1, x3) = inf
x2∈X

(
ct1,t2(x1, x2) + ct2,t3(x2, x3)

)
; (7.14)

and if the infimum is achieved at some point x2, then there is a minimizing curve which
goes from x1 at time t1 to x3 at time t3, and passes through x2 at time t2.

(iv) A curve γ is a minimizer of A if and only if, for all intermediate times t1 < t2 < t3
in [0, 1],

ct1,t3(γt1 , γt3) = ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3); (7.15)

(v) If the cost functions cs,t are continuous, then the set Γ of all action-minimizing
curves is closed in the uniform topology;

(vi) For all times s < t, there is a Borel map Ss→t : X × X → C([s, t];X ), such that
for all x, y ∈ X , S(x, y) belongs to Γ s,t

x→y. In words, there is a measurable recipe to join
any two endpoints x and y by a minimizing curve γ : [s, t] → X .

Remark 7.16. The statement in (iv) is a powerful formulation of the minimizing property.
It is often quite convenient from the technical point of view, even in a smooth setting,
because it does not involve any time-derivative.

Remark 7.17. The continuity assumption in (v) is satisfied in most cases of interest. For
instance, if As,t(γ) = L(γ)2/(t − s), then cs,t(x, y) = d(x, y)2/(t − s), which is obviously
continuous. Continuity also holds true in the other model example whereX is a Riemannian
manifold and the cost is obtained from a Lagrangian function L(x, v, t) on TM × [0, 1]; a
proof is sketched in the Appendix.

Proof of Proposition 7.15. Let us prove (i). By definition of the coercivity, c(x, y) is never
−∞. Let (xk)k∈N and (yk)k∈N be sequences converging to x and y respectively. Then
the family (xk) ∪ {x} forms a compact set Ks, and the family (yk) ∪ {y} also forms a
compact set Kt. By assumption, for each k we can find a minimizing curve γk : [s, t] → X
joining xk to yk, so it lies within Γ s,t

Ks→Kt
which is compact. Thus from (γk)k∈N we can

extract a subsequence which converges uniformly to some minimizing curve γ. The uniform
convergence implies that xk = γk(s) → γ(s), yk = γk(t) → γ(t), so γ joins x to y. The
lower semi-continuity of As,t implies that As,t(γ) ≤ lim inf As,t(γk), so

cs,t(x, y) ≤ As,t(γ) ≤ lim inf As,t(γk) = lim inf cs,t(xk, yk).

This establishes the lower semi-continuity of the cost cs,t.
Property (ii) is obvious: if the restriction of γ to [s′, t′] is not optimal, introduce γ̃ on

[s′, t′] such that As′,t′(γ̃) < As′,t′(γ). Then the path obtained by concatenating γ on [s, s′],
γ̃ on [s′, t′] and γ again on [t′, t], has a strictly lower action As,t than γ, which is impossible.
(Obviously, this is the same line of reasoning as in the proof of the “restriction property”
of Theorem 4.5.)

Now, to prove (iii), introduce minimizing curves γ1→2 joining x1 at time t1, to x2 at
time t2, and γ2→3 joining x2 at time t2, to x3 at time t3. Then define γ on [t1, t3] by
concatenation of γ1→2 and γ2→3. From the axioms of Definition 7.10,

ct1,t3(x1, x3) ≤ At1,t3(γ) = At1,t2(γ1→2) + At2,t3(γ2→3) = ct1,t2(x1, x2) + ct2,t3(x2, x3).

The inequality in (ii) follows by taking the infimum over x2. Moreover, if there is equality,
that is,
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ct1,t2(x1, x2) + ct2,t3(x2, x3) = ct1,t3(x1, x3),

then equality holds everywhere in the above chain of inequalities, so the curve γ achieves
the optimal cost ct1,t3(x1, x3), while passing through x2 at time t2.

It is a consequence of (ii) that any minimizer should satisfy (7.15), since the restrictions
of γ to [t1, t2] and to [t2, t3] should both be minimizing. Conversely, let γ be a curve
satisfying (7.15) for all (t1, t2, t3) with t1 ≤ t2 ≤ t3. By induction, it follows that for each
subdivision 0 = t0 ≤ t1 ≤ . . . ≤ tN = 1,

c0,1(γ0, γ1) =
∑

j

ctj ,tj+1(γtj , γtj+1).

By point (iii) in Definition 7.10, it follows that c0,1(γ0, γ1) = A0,1(γ), which proves (iv).
If 0 ≤ t1 < t2 < t3 ≤ 1, let now Γ (t1, t2, t3) stand for the set of all curves satisfy-

ing (7.15). If all functions cs,t are continuous, then Γ (t1, t2, t3) is closed for the topology
of uniform convergence. Then Γ is the intersection of all Γ (t1, t2, t3), so it is closed also;
this proves statement (v). (Now there is a similarity with the proof of Theorem 5.18.)

For given times s < t, let Es,t be the “endpoints” mapping, defined on C([s, t];X ) by
γ "−→ (γs, γt). By assumption, any two points are joined by at least one minimizing curve,
so Es,t is onto X × X . It is clear that Es,t is a continuous map between Polish spaces,
and by assumption E−1

s,t (x, y) is compact for all x, y. It follows by general theorems of
“measurable selection” (see the references in the bibliographical notes) that Es,t admits a
measurable right-inverse Ss→t, i.e. Es,t ◦ Ss→t = Id . This proves statement (vi). 78

Interpolation of random variables

Action-minimizing curves provide a fairly general framework to interpolate points, that
can be seen as deterministic random variables. What happens when we want to interpolate
between genuinely random variables, in a way that is most economic? Since a deterministic
point can be identified with a Dirac mass, this new problem contains both the classical
action-minimizing problem and the Monge–Kantorovich problem.

Here is a natural recipe. Let c be the cost associated with the Lagrangian action, and
let µ0, µ1 be two given laws. First introduce an optimal coupling (X0,X1) of (µ0, µ1).
Then introduce a random action-minimizing path (Xt)0≤t≤1 joining X0 to X1. (We shall
see later that such a thing always exists.) Then the random variable Xt is an interpolation
of X0 and X1; or equivalently the law µt is an interpolation of µ0 and µ1. This procedure
is called displacement interpolation, by opposition to the linear interpolation µt =
(1− t)µ0 + tµ1. Note that there is a priori no uniqueness of the displacement interpolation.

One of the concepts that we just introduced deserves careful attention.

Definition 7.18 (dynamical optimal coupling). Let (X , d) be a metric space, (A) a
Lagrangian action on X , c the associated cost, and Γ the set of action-minimizing curves.
A dynamical optimal transference plan is a probability measure Π on Γ such that

π0,1 := (e0, e1)#Π

is an optimal transference plan between µ0 and µ1. Equivalently, Π is the law of a random
action-minimizing curve whose endpoints constitute an optimal coupling of µ0 and µ1.

A random curve whose law is a dynamical optimal transference plan between µ0 and µ1

is called a dynamical optimal coupling of (µ0, µ1).
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The next theorem is the main result of this chapter. It shows that the law at time t of
a dynamical optimal coupling can be seen as a minimizing path in the space of probability
measures. In the important case when the cost is a power of the distance, the corollary
stated right after the theorem shows that displacement interpolation can be thought of
as a geodesic path in the space of probability measures. An informal slogan would be “A
geodesic in the space of laws is the law of a geodesic”! The theorem also shows that such
interpolations can be constructed under quite weak assumptions.

Theorem 7.19 (Displacement interpolation). Let (X , d) be a Polish space, and (A)0,1

a coercive Lagrangian action on X , such that the associated cost functions cs,t are contin-
uous. Whenever 0 ≤ s < t ≤ 1, denote by Cs,t(µ, ν) the optimal transport cost between
the probability measures µ and ν with cost cs,t; write c = c0,1 and C = C0,1. Let µ0 and
µ1 be any two probability measures on X , such that the optimal transport cost C(µ0, µ1) is
finite. Then, given a continuous path (µt)0≤t≤1, the following properties are equivalent:

(i) For each t ∈ [0, 1], µt is the law of γt, where (γt)0≤t≤1 is a random action-minimizing
curve such that (γ0, γ1) is an optimal coupling of (µ0, µ1);

(ii) For any three intermediate times t1 < t2 < t3 in [0, 1],

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) = Ct1,t3(µt1 , µt3);

(iii) The path (µt)0≤t≤1 is a minimizing curve for the coercive action functional defined
on P (X ) by

As,t(µ) = sup
N∈N

sup
s=t0<t1<...<tN=t

N−1∑

i=0

Cti,ti+1(µti , µti+1) (7.16)

= inf
γ

EAs,t(γ), (7.17)

where the last infimum is over all random curves γ : [s, t] → X such that law (γτ ) = µτ

(s ≤ τ ≤ t).
In that case (µt)0≤t≤1 is said to be a displacement interpolation between µ0 and µ1.

There always exists at least one such curve.
Finally, if K0 and K1 are two compact subsets of P (X ), such that C0,1(µ0, µ1) < +∞

for all µ0 ∈ K0, µ1 ∈ K1, then the set of dynamical optimal transference plans Π with
(e0)#Π ∈ K0 and (e1)#Π ∈ K1 is compact.

Theorem 7.19 admits two important corollaries that are stated below:

Corollary 7.20 (displacement interpolation as geodesics). Let (X , d) be a complete
separable, locally compact length space. Let p > 1 and let Pp(X ) be the space of probability
measures on X with finite moment of order p, metrized by the Wasserstein distance Wp.
Then, given any two µ0, µ1 ∈ Pp(X ), and a continuous curve (µt)0≤t≤1, valued in P (X ),
the following properties are equivalent:

(i) µt is the law of γt, where γ is a random (minimizing, constant-speed) geodesic such
that (γ0, γ1) is an optimal coupling;

(ii) (µt)0≤t≤1 is a geodesic curve in the space Pp(X ).
Moreover, if µ0 and µ1 are given, there always exists at least one such curve. More gener-
ally, if K0 ⊂ Pp(X ) and K1 ⊂ Pp(X ) are compact subsets of P (X ), then the set of geodesic
curves (µt)0≤t≤1 with µ0 ∈ K0 and µ1 ∈ K1 is compact and nonempty; and also the set of
dynamical optimal transference plans Π with (e0)#Π ∈ K0, (e1)#Π ∈ K1 is compact and
nonempty.
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Corollary 7.21 (Uniqueness of displacement interpolation). With the same as-
sumptions as in Theorem 7.19, if

(a) there is a unique optimal transference plan π between µ0 and µ1;
(b) π(dx0 dx1)-almost surely, there is a unique action-minimizing curve joining x0 to

x1;
then there is a unique displacement interpolation (µt)0≤t≤1 joining µ0 to µ1.

Remark 7.22. In Corollary 7.20, As,t(γ) =
∫ t
s |γ̇τ |

p dτ . Then action-minimizing curves in
X are the same, whatever the value of p > 1. Yet geodesics in Pp(X ) are not the same for
different values of p, because a coupling of (µ0, µ1) which is optimal for a certain value of
p, might well not be for another value.

Remark 7.23. Theorem 7.19 applies just as well to Lagrangian functions L(x, v, t) on
a Riemannian manifold TM , as soon as L is C2 and satisfies the classical conditions of
Definition 7.6. Then µt is the law at time t of a random solution of the Euler-Lagrange
equation (7.6).

Remark 7.24. In Theorem 7.19, the minimizing property of the path (µt) is expressed
in a weak formulation, which makes sense with a lot of generality. This theorem however
leaves open certain natural questions:

- Is there a differential equation for geodesic curves, or more generally optimal paths
(µt)0≤t≤1? Of course, the answer to that question is related to the possibility of defining a
tangent space in the space of measures.

- Is there a more explicit formula for the action on the space of probability measures,
say for a simple enough action on X ? Can it be written as

∫ 1
0 L(µt, µ̇t, t) dt? Of course, in

Corollary 7.20 this is the case with L = |µ̇|p, but this expression is not very “explicit”.
- Are geodesic paths non-branching? (Does the velocity at initial time uniquely deter-

mine the final measure µ1?)
- Can one identify simple conditions for the existence of a unique geodesic path between

two given probability measures?
All these questions will be answered affirmatively in the sequel of these notes, under

suitable regularity assumptions on the space, the action or the probability measures.

Remark 7.25. The assumption of local compactness in Corollary 7.20 is not superficial: it
is used to guarantee the coercivity of the action. For spaces that are not locally compact,
there might be an analogous theory, but it is certainly more tricky. First of all, selec-
tion theorems are not immediately available if one does not assume compactness of the
set of geodesics joining two given endpoints. More importantly, the convergence scheme
used below to construct a random geodesic curve from a time-dependent law might fail to
work. Here we are encountering a general principle in probability theory: Analytic char-
acterizations of stochastic processes (like those based on semigroups, generators, etc.) are
essentially available only in locally compact spaces. In spite of all that, there are some
representation theorems for Wasserstein geodesics that do not need local compactness; see
the bibliographical notes for details.

The proof of Theorem 7.19 is not so difficult, but a bit cumbersome because of mea-
surability issues. For training purposes, the reader might rewrite it in the simpler case
where any pair of points is joined by a unique geodesic (as in the case of Rn). To help
understanding, I shall first sketch the main idea.
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Main idea in the proof of Theorem 7.19. The delicate part consists in showing that if (µt)
is a given action-minimizing curve, then there exists a random minimizer γ such that
µt = law (γt). This γ will be constructed by dyadic approximation, as follows. First let
(γ(0)

0 , γ(0)
1 ) be an optimal coupling of (µ0, µ1). (Here the notation γ(0)

0 could be replaced by
just x0, it does not mean that there is some curve γ(0) behind.) Then let (γ(1)

0 , γ(1)
1/2) be an

optimal coupling of (µ0, µ1/2), and ((γ′)(1)1/2, γ
(1)
1 ) be an optimal coupling of (µ1/2, µ1). By

gluing these couplings together, I can actually assume that (γ′)(1)1/2 = γ(1)
1/2, so that I have

a triple (γ(1)
0 , γ(1)

1/2, γ
(1)
1 ) in which the first two components on one hand, and the last two

components on the other hand, constitute optimal couplings.
Now the key observation is that if (γt1 , γt2) and (γt2 , γt3) are optimal couplings of

(µt1 , µt2) and (µt2 , µt3) respectively, and the µtk satisfy the equality appearing in (ii), then
also (γt1 , γt3) should be optimal. Indeed, by taking expectation in the inequality

ct1,t3(γt1 , γt3) ≤ ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3)

and using the optimality assumption, one obtains

E ct1,t3(γt1 , γt3) ≤ Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3).

Now the fact that (µt) is action-minimizing imposes

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) = Ct1,t3(µt1 , µt3).

So actually
E ct1,t3(γt1 , γt3) ≤ Ct1,t3(µt1 , µt3),

which means that indeed (γt1 , γt3) is an optimal coupling of (µt1 , µt3) for the cost function
ct1,t3 .

So (γ(1)
0 , γ(1)

1 ) is an optimal coupling of (µ0, µ1). Now we can proceed in the same
manner and define, for each k, a random discrete path (γ(k)

j 2−k) such that (γ(k)
s , γ(k)

t ) is an
optimal coupling for all times s, t of the form j/2k . These are only discrete paths, but it
is possible to extend them into paths (γ(k)

t )0≤t≤1 that are minimizers of the action. Of
course, if t is not of the form j/2k, there is no reason why law (γ(k)

t ) would coincide with
µt. But now we shall be able to pass to the limit as k → ∞, for each dyadic time, and
then conclude by a density argument. 78

Complete proof of Theorem 7.19. First, if As,t(γ) is bounded below by a constant −C,
independently of s, t and γ, then the same is true of the cost functions cs,t and of the total
costs Cs,t. So all the quantities appearing in the proof will be well-defined, the value +∞
being possibly attained. Moreover, the action As,t defined by the formula in (iii) will also
be bounded below by the same constant −C, so Property (i) of Definition 7.12 will be
satisfied.

Let now µ0 and µ1 be given. According to Theorem 4.1, there exists at least one optimal
transference plan π between µ0 and µ1, for the cost c = c0,1. Let S0→1 be the mapping
appearing in Proposition 7.15(vi), and define

Π := (S0→1)#π.

Then Π defines the law of a random geodesic γ, and the identity E0,1 ◦S0→1 = Id implies
that the end-points of γ are distributed according to π. This proves the existence of a
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path satisfying (i). Now the main part of the proof consists in checking the equivalence of
properties (i) and (ii). This will be performed in four steps.

Step 1. Let (µt)0≤t≤1 be any continuous curve in the space of probability measures,
and let t1, t2, t3 be three intermediate times. Let πt1→t2 be an optimal transference plan
between µt1 and µt2 for the transport cost ct1,t2 , and similarly let πt2→t3 be an optimal
transference plan between µt2 and µt3 for the transport cost ct2,t3. By the Gluing Lemma of
Chapter 1 one can construct random variables (γt1 , γt2 , γt3) such that law (γt1 , γt2) = πt1→t2

and law (γt2 , γt3) = πt2→t3 (in particular, law (γti) = µti for i = 1, 2, 3). Then, by (7.14),

Ct1,t3(µt1 , µt3) ≤ E ct1,t3(γt1 , γt3) ≤ E ct1,t2(γt1 , γt2) + E ct2,t3(γt2 , γt3)
= Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3).

This inequality holds for any path, optimal or not.
Step 2. Assume that (µt) satisfies (i), so there is a dynamical optimal transference

plan Π such that µt = (et)#Π. Let γ be a random minimizing curve with law Π, and
consider the obvious coupling (γt1 , γt2) (resp. (γt2 , γt3)) of (µt1 , µt2) (resp. (µt2 , µt3)). Then
from the definition of the optimal cost and the minimizing property of γ,

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) ≤ E ct1,t2(γt1 , γt2) + E ct2,t3(γt2 , γt3)
= EAt1,t2(γ) + EAt2,t3(γ) = EAt1,t3(γ) = E ct1,t3(γt1 , γt3). (7.18)

Now choose t1 = 0, t2 = t, t3 = 1. Since by assumption (γ0, γ1) is an optimal coupling
of (µ0, µ1), the above computation implies

C0,t(µ0, µt) + Ct,1(µt, µ1) ≤ C0,1(µ0, µ1),

and since the reverse inequality holds as a consequence of Step 1, actually

C0,t(µ0, µt) + Ct,1(µt, µ1) = C0,1(µ0, µ1).

Moreover, equality has to hold in (7.18) (for that particular choice of intermediate times),
so that C0,t(µ0, µt) = E c0,t(γ0, γt), which means that (γ0, γt) should actually be an optimal
coupling of (µ0, µt); similarly, (γt, γ1) should be an optimal coupling of (µt, µ1).

Next choose t1 = 0, t2 = s, t3 = t, and apply the previous deduction to discover that
(γs, γt) is an optimal coupling of (µs, µt). After inserting this information in (7.18) with
s = t2 and t = t3, we recover

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) ≤ Ct1,t3(µt1 , µt3).

This together with Step 1 proves that (µt) satisfies Property (ii). So far we have proven
(i) ⇒ (ii).

Step 3. Assume that (µt) satisfies Property (ii); then we can perform again the same
computation as in Step 1, but now all the inequalities have to be equalities. This implies
that the random variables (γt1 , γt2 , γt3) satisfy:

(a) (γt1 , γt3) is an optimal coupling of (µt1 , µt3) for the cost ct1,t3 ;
(b) ct1,t3(γt1 , γt3) = ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3) almost surely.

Armed with that information, we proceed as follows. We start from an optimal cou-
pling (γ0, γ1) of (µ0, µ1), with joint law π0→1. Then as in Step 1 we construct a triple
(γ(1)

0 , γ(1)
1
2

, γ(1)
1 ) with law (γ(1)

0 ) = µ0, law (γ(1)
1
2

) = µ 1
2
, law (γ(1)

1 ) = µ1, such that (γ(1)
0 , γ(1)

1
2

)
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is an optimal coupling of (µ0, µ 1
2
) for the cost c0, 12 and (γ(1)

1
2

, γ(1)
1 ) is an optimal coupling of

(µ 1
2
, µ1) for the cost c

1
2 ,1. From (a) and (b) above we know that (γ(1)

0 , γ(1)
1 ) is an optimal

coupling of (µ0, µ1) (but law (γ(1)
0 , γ(1)

1 ) might be different from law (γ0, γ1)), and moreover
c0,1(γ(1)

0 , γ(1)
1 ) = c0, 1

2 (γ(1)
0 , γ(1)

1
2

) + c
1
2
,1(γ(1)

1
2

, γ(1)
1 ) almost surely.

Now it is possible to iterate the construction, introducing more and more midpoints.
By a reasoning similar to the one above and an induction argument, one can construct,
for each integer k ≥ 1, random variables (γ(k)

0 , γ(k)
1
2k

, γ(k)
2
2k

, γ(k)
3
2k

, . . . γ(k)
1 ) in such a way that

(a) for any two i, j ≤ 2k, (γ(k)
i

2k
, γ(k)

j

2k

) constitutes an optimal coupling of (µ i
2k

, µ j

2k
),

(b) for any three indices i1, i2, i3 ≤ 2k, one has

c
i1
2k ,

i3
2k
(
γ(k)

i1
2k

, γ(k)
i3
2k

)
= c

i1
2k ,

i2
2k
(
γ(k)

i1
2k

, γ(k)
i2
2k

)
+ c

i2
2k ,

i3
2k
(
γ(k)

i2
2k

, γ(k)
i3
2k

)
.

At this stage it is convenient to extend the random variables γ(k), which are only de-
fined for times j/2k, into (random) continuous curves (γ(k)

t )0≤t≤1. For that we use Propo-
sition 7.15(vi) again, and for t ∈ (i/2k, (i + 1)/2k) we define

γt := et

(
S i

2k , i+1
2k

(γ i
2k

, γ i+1
2k

)
)
.

(Recall that et is just the evaluation at time t.) Then the law Π(k) of (γt)0≤t≤1 is a
probability measure on the set of continuous curves in X .

Now I claim that Π(k) is actually concentrated on minimizing curves (Skip at first
reading and go directly to Step 4.) To prove this, it is sufficient to check the criterion
in Proposition 7.15(iv), involving three intermediate times t1, t2, t3. By construction, the
criterion holds true if all these times belong to the same time-interval [i/2k, (i + 1)/2k ],
and also if they are all of the form j/2k; the problem consists in “crossing subintervals”.
Let us show that

(i − 1) 2−k < s < i 2−k ≤ j 2−k < t < (j + 1) 2−k

=⇒






c
i−1
2k , i+1

2k
(
γ i−1

2k
, γ i+1

2k

)
= c

i−1
2k ,s(γ i−1

2k
, γs

)
+ cs,t(γs, γt) + ct, j+1

2k
(
γt, γ i+1

2k

)

cs,t(γs, γt) = cs, i
2k (γs, γ i

2k
) + c

i
2k , j

2k (γ i
2k

, γ j

2k
) + c

j

2k ,t(γ j

2k
, γt)

(7.19)

To prove this, we start with

c
i−1
2k , i+1

2k (γ i−1
2k

, γ i+1
2k

) ≤ c
i−1
2k ,s(γ i−1

2k
, γs) + cs,t(γs, γt) + ct, i+1

2k (γt, γ i+1
2k

)

≤c
i−1
2k ,s(γ i−1

2k
, γs) + cs, i

2k (γs, γ i
2k

) + c
i

2k , i+1
2k (γ i

2k
, γ i+1

2k
)

+ . . . + c
j

2k ,t(γ j

2k
, γt) + ct, j+1

2k (γt, γ j+1

2k
). (7.20)

Since we have used minimizing curves to interpolate on each dyadic subinterval,

c
i−1
2k ,s(γ i−1

2k
, γs) + cs, i

2k (γs, γ i
2k

) = c
i−1
2k , i

2k (γ i−1
2k

, γ i
2k

),

etc. So the right-hand side of (7.20) coincides with
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c
i−1
2k , i

2k (γ i−1
2k

, γ i
2k

) + . . . + c
j

2k , j+1

2k (γ j

2k
, γ j+1

2k
),

and we know from the construction of Π(k) that this is just c
i−1
2k , j+1

2k (γ i−1
2k

, γ j+1

2k
). So there

has to be equality everywhere in (7.20), which leads to (7.19). After that it is an easy game
to conclude the proof of the minimizing property for arbitrary times t1, t2, t3.

Step 4. To recapitulate: Starting from a curve (µt)0≤t≤1, we have constructed a family
of probability measures Π(k) which are all concentrated on the set Γ of minimizing curves,
and satisfy (et)#Π(k) = µt for all t = j/2k. It remains to pass to the limit as k → ∞. For
that we shall check the tightness of the sequence (Π(k))k∈N. Let ε > 0 be arbitrary. Since
µ0, µ1 are tight, there are compact sets K0, K1 such that µ0[X \K0] ≤ ε, µ1[X \K1] ≤ ε.
From the coercivity of the action, the set Γ 0,1

K0→K1
of action-minimizing curves joining K0

to K1 is compact, and Π
[
Γ \ Γ 0,1

K0→K1

]
is (with obvious notation)

P
[
(γ0, γ1) /∈ K0 × K1

]
≤ P [γ0 /∈ K0] + P [γ1 /∈ K1] = µ0[X \ K0] + µ1[X \ K1] ≤ 2ε.

This proves the tightness of the family (Π(k)). So one can extract a subsequence thereof,
still denoted Π(k), that converges weakly to some probability measure Π.

By Proposition 7.15(v), Γ is closed; so Π is still supported in Γ . Moreover, for all
dyadic time t = i/2( in [0, 1], we have, if k is larger than 5, (et)#Π(k) = µt, and by passing
to the limit we find that (et)#Π = µt also.

By assumption, µt depends continuously on t. So, to conclude that (et)#Π = µt for all
times t ∈ [0, 1] it now suffices to check the continuity of (et)#Π as a function of t. In other
words, if ϕ is an arbitrary bounded continuous function on X , one has to show that

ψ(t) = Eϕ(γt)

is a continuous function of t if γ is a random geodesic with law Π. But this is a simple
consequence of the continuity of t "−→ γt (for all γ), and Lebesgue’s dominated convergence
theorem. This concludes Step 4, and the proof of (ii) ⇒ (i).

Next, let us check that the two expressions for As,t in (iii) do coincide. This is about
the same computation as in Step 1 above. Let s < t be given, let (µτ )s≤τ≤t be a continuous
path, and let (ti) be a subdivision of [s, t]. Let further γ be such that law (γτ ) = µτ , and let
(Xs,Xt) be an optimal coupling of (µs, µt), for the cost function cs,t. Further let (γτ )s≤τ≤t

be a random continuous path, such that law (γτ ) = µτ for all τ ∈ [s, t]. Then
∑

i

Cti,ti+1(µti , µti+1) ≤ Cs,t(µs, µt) = E cs,t(Xs,Xt) ≤ E cs,t(γs, γt) ≤ EAs,t(γ),

where the but-to-last inequality follows from the fact that (γs, γt) is a coupling of (µs, µt),
and the last inequality is a consequence of the definition of cs,t. This shows that

∑

i

Cti,ti+1(µti , µti+1) ≤ EAs,t(γ).

On the other hand, there is equality in the whole chain of inequalities if t0 = s, t1 = t,
Xs = γs, Xt = γt, and γτ is a (random) action-minimizing curve. So the two expressions
in (iii) do coincide.

Now let us address the equivalence between (ii) and (iii). First, it is clear that As,t is
lower semi-continuous, since it is defined as a supremum of lower semi-continuous func-
tionals. Then the inequality At1,t3 ≥ At1,t2 + At2,t3 holds true for all intermediate times
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t1 < t2 < t3 (this is a simple consequence of the definitions), and the converse inequality
is a consequence of the general inequality

s < t2 < t =⇒ Cs,t2(µs, µt2) ≤ Cs,t2(µs, µt2) + Ct2,t(µt2 , µt),

which we proved in Step 1 above. So Property (i) in Definition 7.10 is satisfied. To check
Property (ii) of that Definition, take any two probability measures µs, µt and introduce
a displacement interpolation (µτ )s≤τ≤t for the Lagrangian action restricted to [s, t]. Then
Property (ii) of Theorem 7.19 implies that As,t(µ) = Cs,t(µs, µt). Finally, Property (iii) in
Definition 7.10 is also satisfied by construction. In the end, (A) does define a Lagrangian
action, with induced cost functionals Cs,t.

To conclude the proof of Theorem 7.19 it only remains to check the coercivity of the
action; then the equivalence of (i), (ii) and (iii) will follow from Proposition 7.15(iv). Let
s < t be two given times in [0, 1], and let Ks,Kt be compact sets of probability measures
such that Cs,t(µs, µt) < +∞ for all µs ∈ Ks, µt ∈ Kt. Action-minimizing curves for As,t

can be written as law (γτ )s≤τ≤t, where γ is a random action-minimizing curve [s, t] → X
such that law (γs) ∈ Ks, law (γt) ∈ Kt. One can use an argument similar to the one in
Step 4 above to prove that the laws Π of such minimizing curves form a tight, closed set; so
we have a compact set of dynamical transference plans Πs,t, that are probability measures
on C([s, t];X ). The problem is to show that the paths (eτ )#Πs,t constitute a compact set
in C([s, t];P (X )). Since the continuous image of a compact is compact, it suffices to check
that the map

Πs,t "−→ ((eτ )#Πs,t)s≤τ≤t

is continuous from P (C([s, t];X )) to C([s, t];P (X )). To do so, it will be convenient to
metrize P (X ) with the Wasserstein distance W1, replacing if necessary d by a bounded,
topologically equivalent distance. (Recall Corollary 6.10.) Then the uniform distance
on C([s, t];X ) is also bounded and there is an associated Wasserstein distance W1 on
P (C([s, t];X )). Let Π and Π̃ be two dynamical optimal transference plans, and let
((γτ ), (γ̃τ )) be an optimal coupling of Π and Π̃; let also µτ , µ̃τ be the associated displace-
ment interpolations; then the required continuity follows from the chain of inequalities

sup
t∈[0,1]

W1(µt, µ̃t) ≤ sup
t∈[0,1]

E d(γt, γ̃t) ≤ E sup
t∈[0,1]

d(γt, γ̃t) = W1(Π, Π̃).

This proves that displacement interpolations with endpoints lying in given compact sets
themselves form a compact set, and this concludes the proof of the coercivity of the action
(As,t). 78

Remark 7.26. In the proof of the implication (ii) ⇒ (i), instead of defining Π(k) on the
space of continuous curves, one could instead work with Π(k) defined on discrete times,
construct by compactness a consistent system of marginals on X 2!+1, for all 5, and then
invoke Kolmogorov’s existence theorem to get a Π which is defined on a set of curves.
Things however are not that simple, since Kolmogorov’s theorem constructs a random
measurable curve which is not a priori continuous. Here one has the same conceptual
difficulty as in the construction of Brownian motion as a probability measure on continuous
paths.

Proof of Corollary 7.20. Introduce the family of actions

As,t(γ) =
∫ t

s
|γ̇τ |p dτ.
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Then
cs,t(x, y) =

d(x, y)p

(t − s)p−1
,

and all our assumptions hold true for this action and cost. (The assumption of local
compactness is used to prove that the action is coercive, see the Appendix.) The important
point now is that

Cs,t(µ, ν) =
Wp(µ, ν)p

(t − s)p−1
.

So, according to the remarks in Example 7.8, Property (ii) in Theorem 7.19 means that
(µt) is in turn a minimizer of the action associated with the Lagrangian |µ̇|p, i.e. a geodesic
in Pp(X ). Note that if µt is the law of a random optimal geodesic γt at time t, then

Wp(µt, µs)p ≤ E d(γs, γt)p = E (t − s)p d(γ0, γ1)p = (t − s)p Wp(µ0, µ1)p,

so the path µt is indeed continuous (and actually 1-Lipschitz) for the distance Wp. 78

Proof of Corollary 7.21. By Theorem 7.19, any displacement interpolation has to take the
form (et)#Π, where Π is a probability measure on action-minimizing curves such that
π := (e0, e1)#Π is an optimal transference plan. By assumption, there is exactly one such
π. Let Z be the set of couples (x0, x1) such that there is more than one minimizing curve
joining x0 to x1; by assumption π[Z] = 0. For (x0, x1) /∈ Z, there is a unique geodesic
γ = S(x0, x1) joining x0 to x1. So Π has to coincide with S#π. 78

Displacement interpolation between intermediate times

Let again µ0 and µ1 be any two probability measures, (µt)0≤t≤1 a displacement interpo-
lation associated with a dynamical optimal transference plan Π, and (γt)0≤t≤1 a random
action-minimizing curve with law (γ) = Π. In particular (γ0, γ1) is an optimal coupling
of (µ0, µ1). With the help of the previous arguments, it is almost obvious that (γt0 , γt1)
is also an optimal coupling of (µt0 , µt1). What may look at first sight more surprising is
that if (t0, t1) 3= (0, 1), this is the only optimal coupling, at least if action-minimizing
curves are not “branching”. Furthermore, there is a restriction property, which generalizes
Theorem 4.5 This is the content of the next theorem.

Theorem 7.27 (Interpolation from intermediate times). Let X be a Polish space
equipped with a coercive action (A) on C([0, 1];X ). Let Π ∈ P (C([0, 1];X )) be a dynamical
optimal transport plan. For any t0, t1 in [0, 1] with 0 ≤ t0 < t1 ≤ 1, define its time-
restriction Πt0,t1 as (rt0,t1)#Π, where rt0,t1(γ) is the restriction of γ to the interval [t0, t1].
Then,

(i) Πt0,t1 is a dynamical optimal coupling for the action (A)t0,t1 on the time interval
[t0, t1];

(ii) If Π̃ is a nonnegative measure on C([t0, t1];X ), such that Π̃ ≤ Πt0,t1 and
Π̃[C([t0, t1];X )] > 0, then

Π ′ :=
Π̃

Π̃
[
C([t0, t1];X )

]

is a dynamical optimal coupling between µ′
t0 := (et0)#Π ′ and µ′

t1 := (et1)#Π ′;
(iii) Assume further that action-minimizing curves are uniquely and measurably de-

termined by their restriction to a nontrivial time-interval, and (t0, t1) 3= (0, 1). Then,



104 7 Displacement interpolation

Π ′ in (ii) is the unique dynamical optimal coupling between µ′
t0 and µ′

t1 . In particular,
(π′)t0,t1 := (et0 , et1)#Π ′ is the unique optimal transference plan between µ′

t0 and µ′
t1 ; and

µ′
t := (et)#Π ′ (t0 ≤ t ≤ t1) defines the unique displacement interpolation between µ′

t0 and
µ′

t1 .
(iv) Under the same assumptions as (iii), for any t ∈ (0, 1), (Π ⊗ Π)(dγ dγ̃)-almost

surely,
[γt = γ̃t] =⇒ [γ = γ̃].

In other words, the curves seen by Π cannot cross at intermediate times. Moreover, one
can define a measurable map Ft : X → Γ (X ) such that, Π-almost surely, Ft(γt) = γ.

Remark 7.28. In Chapter 8 we shall work in the setting of smooth Riemannian manifolds
and derive a quantitative variant of the “no-crossing” property expressed in (iv).

Corollary 7.29. Let (X , d) be a complete separable, locally compact length space. Let p > 1
and let Pp(X ) be the space of probability measures on X with finite moment of order p,
metrized by the Wasserstein distance Wp. Assume that X is nonbranching, in the sense
that a geodesic γ : [0, 1] → X is uniquely determined by its restriction to a nontrivial
time-interval. Then also Pp(X ) is nonbranching. Conversely, if Pp(X ) is nonbranching,
then X is nonbranching.

Proof of Theorem 7.27. Let γ be a random geodesic with law Π. Let γ0,t0 , γt0,t1 and γt1,1

stand for the restrictions of γ to the time intervals [0, t0], [t0, t1] and [t1, 1], respectively.
Then

C0,t0(µ0, µt0) + Ct0,t1(µt0 , µt1) + Ct1,1(µt1 , µ1) ≤ E c0,t0(γ0,t0) + E ct0,t1(γt0,t1) + E ct1,1(γt1,1)

= E c0,1(γ) = C0,1(µ0, µ1)

≤ C0,t0(µ0, µt0) + Ct0,t1(µt0 , µt1) + Ct1,1(µt1 , µ1).

So there has to be equality in all the inequalities, and it follows that

E ct0,t1(γt0 , γt1) = Ct0,t1(µt0 , µt1).

So γt0,t1 is optimal, and Πt0,t1 is a dynamical optimal transference plan. Statement (i) is
proven.

As a corollary of (i), πt0,t1 = (et0 , et1)#Πt0,t1 is an optimal transference plan between µt0

and µt1 . Let π̃ := (et0 , et1)#Π̃. The inequality Π̃ ≤ Πt0,t1 is preserved by push-forward, so
π̃ ≤ πt0,t1 . Also π̃[X ×X ] = Π̃[C([t0, t1];X )] > 0. By Theorem 4.5, π′ := π̃/π̃[X ×X ] is an
optimal transference plan between its marginals. But π′ coincides with (et0 , et1)#Π ′, and
since Π ′ is concentrated (just as Π) on action-minimizing curves, Theorem 7.19 guarantees
that Π ′ is a dynamical optimal transference plan between its marginals. This proves (ii).

To prove (iii), assume, without loss of generality, that t0 > 0; then an action-minimizing
curve γ is uniquely and measurably determined by its restriction γ0,t0 to [0, t0]. In other
words, there is a measurable function F 0,t0 : Γ 0,t0 → Γ , defined on the set of all γ0,t0 , such
that any action-minimizing curve γ : [0, 1] → X can be written as F 0,t0(γ0,t0). Similarly,
there is a measurable function F t0,t1 such that F t0,t1(γt0,t1) = γ.

By construction, Π̃ is concentrated on the curves γ0,t0 , that are the restrictions to [t0, t1]
of the action-minimizing curves γ. Let Π := (F t0,t1)#Π̃; this is a probability measure on
C([0, 1];X ). Of course Π ≤ (F t0,t1)#Πt0,t1 = Π; so by (ii), Π/Π [C([0, 1];X )] is optimal.
(In words, Π is obtained from Π by extending to the time-interval [0, 1] those curves
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which appear in the sub-plan Π ′.) Then it is easily seen that Π ′ = (et0 , et1)#Π, and
Π[C([0, 1];X )] = Π ′[C([t0, t1];X )]. So it suffices to prove Theorem 7.27(iii) in the case
when Π̃ = Πt0,t1 , and this will be assumed in the sequel.

Let now γ be a random geodesic with law Π, and Π0,t0 = law (γ0,t0), Πt0,t1 =
law (γt0,t1), Πt1,1 = law (γt1,1). By (i), Πt0,t1 is a dynamical optimal transference plan be-
tween µt0 and µt1 ; let Π̃t0,t1 be another such plan. The goal is to show that Π̃t0,t1 = Πt0,t1 .

Disintegrate Π0,t0 and Π̃t0,t1 along their common marginal µt0 and glue them together.
This gives a probability measure on C([0, t0);X )×X ×C((t0, t1];X ), supported on triples
(γ, g, γ̃) such that γ(t) → g as t → t−0 , γ̃(t) → g as t → t+0 . Such triples can be identified
with continuous functions on [0, t1], so what we have is in fact a probability measure on
C([0, t1];X ). Repeat the operation by gluing this with Πt1,1, so as to get a probability
measure Π on C([0, 1];X ).

Let then γ be a random variable with law Π: By construction, law (γ0,t0) = law (γ0,t0),
and law (γt1,1) = law (γt1,1), so

E c0,1(γ) ≤ E c0,t0(γ0,t0) + E ct0,t1(γt0,t1) + E ct1,1(γt1,1)

= E c0,t0(γ0,t0) + E ct0,t1(γt0,t1) + E ct1,1(γt1,1)

= C0,t0(µ0, µt0) + Ct0,t1(µt0 , µt1) + Ct1,1(µt1 , µ1) = C0,1(µ0, µ1).

So Π is a dynamical optimal transference plan between µ0 and µ1. It follows from Theo-
rem 7.19 that there is a random action-minimizing curve γ̂ with law (γ̂) = Π. In particular,

law (γ̂0,t0) = law (γ0,t0); law (γ̂t0,t1) = law (γ̃t0,t1).

But by assumption there is a measurable function F (F = rt0,t1 ◦ F 0,t0 such that
gt0,t1 = F (g0,t0), for any action-minimizing curve g. Then

law (γ̃t0,t1) = law (γ̂t0,t1) = law (F (γ̂0,t0)) = law (F (γ0,t0)) = law (γt0,t1).

This proves the uniqueness of the dynamical optimal transference plan joining µ′
t0 to µ′

t1 .
The remaining part of (iii) is obvious since any optimal plan or displacement interpolation
has to come from a dynamical optimal transference plan, according to Theorem 7.19.

Now we turn to the proof of (iv). Since π = (e0, e1)#Π is cyclically monotone (Theo-
rem 5.9), we have, Π ⊗Π(dγ dγ̃)-almost surely,

c0,1(γ0, γ1) + c0,1(γ̃0, γ̃1) ≤ c0,1(γ0, γ̃1) + c0,1(γ̃0, γ1). (7.21)

If γ and γ̃ are two such paths, assume that γt = γ̃t = X for some t ∈ (0, 1). Then

c0,1(γ0, γ̃1) ≤ c0,t(γ0,X) + ct,1(X, γ̃1), (7.22)

and similarly
c0,1(γ̃0, γ1) ≤ c0,t(γ̃0,X) + ct,1(X, γ1). (7.23)

By adding up (7.22) and (7.23), we get

c0,1(γ0, γ̃1) + c0,1(γ̃0, γ1) ≤
[
c0,t(γ0,X) + ct,1(X, γ1)

]
+
[
c0,t(γ̃0,X) + ct,1(X, γ̃1)

]

= c0,1(γ0, γ1) + c0,1(γ̃0, γ̃1).

Since the reverse inequality holds true by (7.21), equality has to hold in all intermediate
inequalities, for instance in (7.22). Then it is easy to see that the path γ defined by
γ(s) = γ(s) for 0 ≤ s ≤ t, and γ(s) = γ̃(s) for s ≥ t, is a minimizing curve. Since it
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coincides with γ on a nontrivial time-interval, it has to coincide with γ everywhere, and
similarly it has to coincide with γ̃ everywhere. So γ = γ̃.

The previous conclusion holds true not only Π ⊗ Π almost surely, but actually for
any two minimizing curves γ, γ̃ which lie in the support of Π. Indeed, inequality (7.21)
defines a closed set C in Γ × Γ , where Γ stands for the set of minimizing curves; so
SptΠ × SptΠ = Spt(Π ⊗Π) ⊂ C.

Now let (K()(∈N be a nondecreasing sequence of compact sets contained in SptΠ,
such that Π[∪K(] = 1. For each 5, we define F( on et(K() by F((γt) = γ. This map
is continuous: Indeed, if xk ∈ et(K() converges to x, then we may always assume that
xk = (γk)t for some γk ∈ K(, and then up to extraction γk converges to γ ∈ K(, and in
particular (γk)t converges to γt, but then F((γt) = γ. Then we can define F on ∪K( as a
map which coincides with F( on each K(. (Obviously, this is the same line of reasoning as
in Theorem 5.25.) 78

Proof of Corollary 7.29. Assume that X is nonbranching. Then there exists some function
F , defined on the set of all functions γ0,t0 , where γ0,t0 is the restriction to [0, t0] of the
geodesic γ : [0, 1] → X , such that γ = F (γ0,t0).

Then F is automatically continuous. Indeed, let (γn)n∈N be such that γ0,t0
n converges

uniformly on C([0, t0];X ) to some curve g : [0, t0] → X . Since the functions γ0,t0
n are

uniformly bounded, the speeds of all the geodesics γn are uniformly bounded too, and the
curves γn([0, 1]) are all included in a compact subset of X . It follows from Ascoli’s theorem
that the sequence (γn) converges uniformly, up to extraction of a subsequence. But then
its limit γ has to be a geodesic, and its restriction to [0, t0] should coincide with g. There
is at most one such geodesic, so γ is uniquely determined, and the whole sequence γn

converges. This implies the continuity of F .
Then Theorem 7.27(iii) applies: If (µt)0≤t≤1 is a geodesic in Pp(X ), then there is only

one geodesic between µt0 and µ1. So (µt)0≤t≤1 is uniquely determined by its restriction to
[0, t0]. The same reasoning could be done for any nontrivial time-interval instead of [0, t0];
so Pp(X ) is indeed nonbranching.

The converse implication is obvious, since any geodesic γ in X induces a geodesic in
Pp(X ), namely (δγ(t))0≤t≤1. 78

Interpolation of prices

When the path µt varies in time, one can ask what becomes of the pair of “prices” (ψ,φ)
in the Kantorovich duality? The short answer is that these functions will also evolve
continuously in time, according to Hamilton–Jacobi equations.

Definition 7.30 (Hamilton–Jacobi–Hopf–Lax–Oleinik semigroup). Let X be a
metric space and (A)0,1 a coercive Lagrangian action on X , with continuous cost functions
(cs,t)0≤s<t≤1. For any two measurable functions ψ : X → R ∪ {+∞}, φ : X → R ∪ {−∞},
and any two times 0 ≤ s < t ≤ 1, define






Hs,t
+ ψ (y) = inf

x∈X

(
ψ(x) + cs,t(x, y)

)
;

Ht,s
− φ (x) = sup

y∈X

(
φ(y) − cs,t(x, y)

)
.

The family of operators (Hs,t
+ )t>s (resp. (Hs,t

− )s<t) is called the forward (resp. backward)
Hamilton–Jacobi (or Hopf–Lax, or Lax–Oleinik) semigroup.



7 Displacement interpolation 107

Roughly speaking, Hs,t
+ gives the values of ψ at time t, from its values at time s; while

Hs,t
− does the reverse. So the semigroups H− and H+ are in some sense inverse of each

other. Yet it is not true in general that Hs,t
− Hs,t

+ = Id . Proposition 7.31 below summarizes
some of the main properties of these semigroups; the denomination of “semigroup” itself
is justified by Property (ii).

Proposition 7.31. With the notation of Definition 7.30,
(i) Hs,t

+ and Hs,t
− are order-preserving, that is ψ ≤ ψ =⇒ Hs,t

± ψ ≤ Hs,t
± ψ.

(ii) Whenever t1 < t2 < t3 are three intermediate times in [0, 1],





Ht2,t3
+ Ht1,t2

+ = Ht1,t3
+

Ht2,t1
− Ht3,t2

− = Ht3,t1
− .

(iii) Whenever s < t are two times in [0, 1],

Ht,s
− Hs,t

+ ≤ Id ; Hs,t
+ Ht,s

− ≥ Id .

Proof. Properties (i) and (ii) are immediate consequences of the definitions and Proposi-
tion 7.15(iii). To check Property (iii), e.g. the first half of it, write

Ht,s
− (Hs,t

+ ψ)(x) = sup
y

inf
x′

(
ψ(x′) + cs,t(x′, y) − cs,t(x, y)

)
.

The choice x′ = x shows that the infimum above is bounded above by ψ(x), independently
of y; so Ht,s

− (Hs,t
+ ψ)(x) ≤ ψ(x), as desired. 78

The Hamilton–Jacobi semigroup is well-known and useful in geometry and dynam-
ical systems theory. On a smooth Riemannian manifold, when the action is given by
a Lagrangian L(x, v, t), strictly convex and superlinear in the velocity variable, then
S+(t, ·) := H0,t

+ ψ0 solves the differential equation

∂S+

∂t
(x, t) + H

(
x,∇S+(x, t), t

)
= 0, (7.24)

where H = L∗ is obtained from L by Legendre transform in the v variable, and is called
the Hamiltonian of the system. This equation provides a bridge between a Lagrangian
description of action-minimizing curves, and an Eulerian description: From S+(x, t) one
can reconstruct a velocity field sv(x, t) = ∇pH

(
x,∇S+(x, t), t

)
, in such a way that integral

curves of the equation ẋ = v(x, t) are minimizing curves. Well, rigorously speaking, that
would be the case if S+ were differentiable! But things are not so simple because S+ is not in
general differentiable everywhere, so the equation has to be interpreted in a suitable sense
(called viscosity sense). It is important to note that if one uses the backward semigroup
and defines S−(x, t) := Ht,1

− ψt, then S− formally satisfies the same equation as S+, but
the equation has to be interpreted with a different convention (backward viscosity). This
will be illustrated by the next example.

Example 7.32. On a smooth Riemannian manifold M , consider the simple Lagrangian
cost L(x, v, t) = |v|2/2; then the associated Hamiltonian is just H(x, p, t) = |p|2/2. If S is
a C1 solution of ∂S/∂t + |∇S|2/2 = 0, then the gradient of S can be interpreted as the
velocity field of a family of minimizing geodesics. But if S0 is a given Lipschitz function
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and S+(t, x) is defined by the forward Hamilton–Jacobi semigroup starting from initial
datum S0, one only has (for all t, x)

∂S+

∂t
+

|∇−S+|2

2
= 0,

where
|∇−f |(x) := lim sup

y→x

[f(y) − f(x)]−
d(x, y)

, z− = max(−z, 0).

Conversely, if one uses the backward Hamilton–Jacobi semigroup to define a function
S−(x, t), then

∂S−
∂t

+
|∇+S−|2

2
= 0, |∇+f |(x) := lim sup

y→x

[f(y) − f(x)]+
d(x, y)

, z+ = max(z, 0).

When the Lagrangian is more complicated, things may become much more intricate. The
standard convention is to use the forward Hamilton–Jacobi semigroup by default.

Now we shall see that the Hamilton–Jacobi semigroup provides a simple answer to
the problem of interpolation in dual variables. In the next statement, X is again a Polish
space, (A)0,1 a coercive Lagrangian action on X , with associated cost functions cs,t; and
Cs,t stands for the optimal total cost in the transport problem with cost cs,t.

Theorem 7.33 (Interpolation of prices). With the same assumptions and nota-
tion as in Definition 7.30, let µ0, µ1 be two probability measures on X , such that
C0,1(µ0, µ1) < +∞, and let (ψ0,φ1) be a pair of c0,1-conjugate functions such that any
optimal plan π0,1 between µ0 and µ1 has its support included in ∂c0,1ψ0. (Recall Theo-
rem 5.9; under adequate integrability conditions, the pair (ψ0,φ1) is just a solution of the
dual Kantorovich problem.) Let further (µt)0≤t≤1 be a displacement interpolation between
µ0 and µ1. Whenever s < t are two intermediate times in [0, 1], define

ψs := H0,s
+ ψ0, φt := Ht,1

− φ1.

Then (ψs,φt) is optimal in the dual Kantorovich problem associated to (µs, µt) and cs,t.
In particular,

Cs,t(µs, µt) =
∫

φt dνt −
∫

ψs dµs,

and
φt(y) − ψs(x) ≤ cs,t(x, y),

with equality (µs ⊗ µt)(dx dy)-almost surely.

Proof. From the definitions,

φt(y) − ψs(x) − cs,t(x, y) = sup
y′, x′

[
φ1(y′) − ct,1(y′, y) − ψ0(x′) − c0,s(x′, x) − cs,t(x, y)

]
.

Since c0,s(x′, x) + cs,t(x, y) + ct,1(y, y′) ≥ c0,1(x′, y′), it follows that

φt(y) − ψs(x) − cs,t(x, y) ≤ sup
y′, x′

[
φ1(y′) − ψ0(x′) − c0,1(x′, y′)

]
≤ 0.

So φt(y) − ψs(x) ≤ cs,t(x, y). This inequality does not depend on the fact that (ψ0,φ1) is
a tight pair of prices, in the sense of (5.5), but only on the inequality φ1 − ψ0 ≤ c0,1.
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Next, introduce a random action-minimizing curve γ such that µt = law (γt). Since
(ψ0,φ1) is an optimal pair, we know from Theorem 5.9 that, almost surely,

φ1(γ1) − ψ0(γ0) = c0,1(γ0, γ1).

From the identity c0,1(γ0, γ1) = c0,s(γ0, γs) + cs,t(γs, γt) + ct,1(γt, γ1) and the definition of
ψs and φt, it follows that

cs,t(γs, γt) =
[
φ1(γ1) − ct,1(γt, γ1)

]
−
[
ψ0(γ0) + c0,s(γ0, γs)

]
≤ φt(γt) − ψs(γs).

This shows that actually cs,t(γs, γt) = φt(γt) − ψs(γs) almost surely, so (ψs,φt) has to be
optimal in the dual Kantorovich problem from µs = law (γs) to µt = law (γt). 78

Remark 7.34. In the limit case s → t, the above results become
{
φt ≤ ψt

φt = ψt µt-almost surely

... but it is not true in general that φt = ψt everywhere in X .

Exercise 7.35. After reading the rest of Part I, the reader can come back to this exercise
and check his or her understanding by proving that, for a quadratic Lagrangian,

(i) The displacement interpolation between two balls in Euclidean space is always a ball,
with linearly increasing radius (here I am identifying a set with the uniform probability
measure on this set);

(ii) More generally, the displacement interpolation between two ellipsoids is always an
ellipsoid;

(iii) But the displacement interpolation between two sets is in general not a set;
(iv) The displacement interpolation between two spherical caps on the sphere is in

general not a spherical cap;
(v) The displacement interpolation between two antipodal spherical caps on the sphere

is unique, while the displacement interpolation between two antipodal points can be real-
ized in an infinite number of ways.

Appendix: Paths in metric structures

This Appendix is a kind of crash basic course in Riemannian geometry, and nonsmooth
generalizations thereof. Much more details can be obtained from the references cited in
the bibliographical notes.

A Riemannian manifold is a (finite-dimensional) manifold M equipped with a metric
g: this means that g defines a scalar product on each tangent space TxM , varying smoothly
with x. So if v and w at tangent vectors at x, the notation v · w really means gx(v,w),
where gx is the metric at x. The degree of smoothness of g depends on the context, but it
is customary to consider C3 manifolds with a C2 metric. For the purpose of these notes,
the reader might assume C∞ smoothness.

Let γ : [0, 1] → M be a smooth path, denoted (γt)0≤t≤1. (For me the words “path” and
“curve” are synonymous.) For each t ∈ (0, 1), the time-derivative at time t is — by the
very definition of tangent space — the tangent vector v = γ̇t in TγtM . The scalar product
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g gives a way to measure the norm of that vector: |v|TxM =
√

v · v. Then one can define
the length of γ by the formula

L(γ) =
∫ 1

0
|γ̇t| dt, (7.25)

and the distance, or geodesic distance, between two points x and y by the formula

d(x, y) = inf
{
L(γ); γ0 = x, γ1 = y

}
. (7.26)

After that it is easy to extend the length formula to absolutely continuous curves. Note
that any one of the three objects (metric, length, distance) determines the other two;
indeed, the metric can be recovered from the distance via the formula

|γ̇0| = lim
t↓0

d(γ0, γt)
t

, (7.27)

and the usual polarization identity

g(v,w) =
1
4

[
g(v + w, v + w) − g(v − w, v − w)

]
.

Let TM stand for the collection of all TxM , x ∈ M , equipped with a manifold structure
which is locally product. A point in TM is a couple (x, v) with v ∈ TxM . The map
π : (x, v) "−→ x is the projection of TM onto M ; it is obviously smooth and surjective. A
function M → TM is called a vector field: It is given by a tangent vector at each point.
So a vector field really is a map f : x → (x, v), but by abuse of notation one often writes
f(x) = v. If γ : [0, 1] → M is an injective path, one defines a vector field along γ as a path
ξ : [0, 1] → TM such that π ◦ ξ = γ.

If p = p(x) is a linear form varying smoothly on TxM , then it can be identified, thanks
to the metric g, to a vector field ξ, via the formula

p(x) · v = ξ(x) · v,

where v ∈ TxM , and the dot in the left-hand side just means “p(x) applied to v”, while
the dot in the right-hand side stands for the scalar product defined by g. As a particular
case, if p is the differential of a function f , the corresponding vector field ξ is the gradient
of f , denoted by ∇f or ∇xf .

If f = f(x, v) is a function on TM , then one can differentiate it with respect to x or
with respect to v. Since T(x, v)TxM > TxM , both dxf and dvf can be seen as linear forms
on TxM ; this allows to define ∇xf and ∇vf , the “gradient with respect to the position
variable” and the “gradient with respect to the velocity variable”.

Differentiating functions does not pose any particular conceptual problem, but differ-
entiating vector fields is quite a different story. If ξ is a vector field on M , then ξ(x) and
ξ(y) live in different vector spaces, so it does not a priori make sense to compare them,
unless one identifies in some sense TxM and TyM . (Of course, one could say that ξ is
a map M → TM and define its differential as a map TM → T (TM) but this is of little
use, because T (TM) is “too large”; it is much better if we can come up with a reasonable
notion of derivation which produces a map TM → TM .)

There is in general no canonical way to identify TxM and TyM if x 3= y; but there
is a canonical way to identify Tγ0M and TγtM as t varies continuously. This operation is
called parallel transport, or Levi-Civita transport. A vector field which is transported in
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a parallel way along the curve γ will “look constant” to an observer who lives in M and
travels along γ. If M is a surface embedded in R3, parallel transport can be described as
follows: Start from the tangent plane at γ(0), and then press your plane onto M along γ,
in such a way that there is no friction (no slip, no rotation) between the plane and the
surface.

With this notion it becomes possible to compute the derivative of a vector field along
a path: If γ is a path and ξ is a vector field along γ, then the derivative of ξ is the another
vector field along γ, say t → ξ̇(t), defined by

ξ̇(t0) =
d

dt

∣∣∣∣
t=t0

θt→t0(ξ(γt)),

where θt→t0 is the parallel transport from TγtM to Tγt0
M along γ. This makes sense

because θt→t0ξ(γt) is an element of the fixed vector space Tγt0
M . The path t → ξ̇(t) is a

vector field along γ, called the covariant derivative of ξ along γ, and denoted by ∇γ̇ξ,
or, if there is no possible confusion about the choice of γ, Dξ/Dt (or simply dξ/dt). If
M = Rn, then ∇γ̇ξ coincides with (γ̇ ·∇)ξ.

It turns out that the value of ξ̇(t0) only depends on γt0 , on the values of ξ in a neigh-
borhood of γt0 , and on the velocity γ̇t0 (not on the whole path γt). Thus if ξ is a vector
field defined in the neighborhood of a point x, and v is a tangent vector at x, it makes
sense to define ∇vξ by the formula

∇vξ(x) =
Dξ

Dt
(γ0), γ0 = x, γ̇0 = v.

The quantity ∇vξ(x) is “the covariant derivative of the vector field ξ at x in the direction
v.” Of course, if ξ and v are two vector fields, one can define a vector field ∇vξ by
the formula (∇vξ)(x) = (∇v(x)ξ)(x). The linear operator v → ∇vξ(x) is the covariant
gradient of ξ at x; it is a linear operation TxM → TxM .

It is worth noticing explicitly that the notion of covariant derivation coincides with
the convective derivation used in fluid mechanics (for instance in Euler’s equation for
an incompressible fluid). I shall sometimes adopt the notation classically used in fluid
mechanics: (∇ξ)v = v · ∇ξ. (On the contrary, the notation (∇ξ) · v should rather be
reserved for (∇ξ)∗v, where (∇ξ)∗ is the adjoint of ∇ξ; then 〈v ·∇ξ, w〉 = 〈v,∇ξ · w〉 and
we are back to the classical conventions of Rn.)

The procedure of parallel transport allows one to define the covariant derivation; con-
versely, the equations of parallel transport along γ can be written as Dξ/Dt = 0, where
D/Dt is the covariant derivative along γ. So it is equivalent to define the notion of covariant
derivation, or to define the rules of parallel transport.

There are (at least) three points of view about the covariant derivation. The first one
is the extrinsic point of view: Let us think of M as an embedded surface in RN ; that is,
M is a subset of RN , it is equipped with the topology induced by RN , and the quadratic
form gx is just the usual Euclidean scalar product on RN , restricted to TxM . Then the
covariant derivative is just defined by

ξ̇(t) = ΠTγtM

(
d(ξ(γt))

dt

)
,

where ΠTxM stands for the orthogonal projection (in RN ) onto TxM . In short, the covariant
derivative is the projection of the usual derivative onto the tangent space.

While this definition is very simple, it does not reveal the fact that the covariant
derivation and parallel transport are intrinsic notions, which are invariant under isometry
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and do not depend on the embedding of M into RN , but just on g. An intrinsic way to
define covariant derivation is as follows: It is uniquely characterized by the two natural
rules

d

dt
〈ξ, ζ〉 = 〈ξ̇, ζ〉 + 〈ξ, ζ̇〉; D

Dt
(fξ) = ḟ ξ + f ξ̇, (7.28)

where the dependence of all the expressions on t is implicit; and by the not so natural rule

∇ζξ −∇ξζ = [ξ, ζ].

Here [ξ, ζ] is the Lie bracket of ξ and ζ, which is defined as the unique vector field such
that for any function F ,

(dF ) · [ξ, ζ] = d(dF · ξ) · ζ − d(dF · ζ) · ξ.

Further note that in the second formula of (7.28) the symbol ḟ stands for the usual
derivative of t → f(γt); while the symbols ξ̇ and ζ̇ stand for the covariant derivatives of
the vector fields ξ and ζ along γ.

A third point of view on covariant derivation is based on coordinates. Let x ∈ M ,
then there is a neighborhood O of x which is diffeomorphic to some open subset U ⊂ Rn.
Let Φ be a diffeomorphism U → O, and let (e1, . . . , en) be the usual basis of Rn. Then a
point m in O is said to have coordinates (y1, . . . , yn) if m = Φ(y1, . . . , yn); and a vector
v ∈ TmM is said to have components v1, . . . , vk if d(y1,...,yn)Φ · (v1, . . . , vk) = v. Then the
coefficients of the metric g are the functions gij defined by g(v, v) =

∑
gijvivj .

The coordinate point of view reduces everything to “explicit” computations and for-
mulas in Rn; for instance the derivation of a function f along the ith direction is defined
as ∂if := (∂/∂yi)(f ◦ Φ). This point of view is conceptually simple, but rapidly leads
to cumbersome expressions. A central role in these formulas is played by the Christoffel
symbols, which are defined by

Γ k
ij :=

1
2

n∑

k=1

(
∂igjk + ∂jgki − ∂kgij

)
gkm,

where (gij) is by convention the inverse of (gij). Then the covariant derivation along γ is
given by the formula (

Dξ

Dt

)k

=
dξk

dt
+
∑

ij

Γ k
ij γ̇

i ξj.

Be it in the extrinsic or the intrinsic or the coordinate point of view, the notion of
covariant derivative is one of the cornerstones on which differential Riemannian geometry
has been constructed.

Another important concept is that of Riemannian volume, which I shall denote by
vol . It can be defined intrinsically as the n-dimensional Hausdorff measure associated
with the geodesic distance (where n is the dimension of the manifold). In coordinates,
vol (dx) =

√
det(g) dx. The Riemannian volume plays the same role as the Lebesgue

measure in Rn.

After these reminders about Riemannian calculus, we can go back to the study of action
minimization. Let L(x, v, t) be a smooth Lagrangian on TM × [0, 1]. To find an equation
satisfied by the curves which minimize the action, we can compute the differential of the
action. So let γ be a curve, and h a small variation of that curve. (This amounts to
considering a family γs,t in such a way that γ0,t = γt and (d/ds)γs,t = h(t).) Then the
infinitesimal variation of the action A at γ, along the variation h, is
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dA(γ) · h =
∫ 1

0

(
∇xL(γt, γ̇t, t) · h(t) + ∇vL(γt, γ̇t, t) · ḣ(t)

)
dt.

Thanks to (7.28) we can make an integration by parts with respect to the time variable,
and get

dA(γ) · h =
∫ 1

0

(
∇xL − d

dt
(∇vL)

)
(γt, γ̇t, t) · h(t) dt

+ (∇xL)(γ1, γ̇1, 1) · h(1) − (∇xL)(γ0, γ̇0, 0) · h(0). (7.29)

This is the first variation formula.
When the endpoints x, y of γ are fixed, then the tangent curve h vanishes at t = 0 and

t = 1. Since h is otherwise arbitrary, it is easy to deduce the equation for minimizers:

d

dt
∇vL = ∇xL. (7.30)

More explicitly, if a differentiable curve (γt)0≤t≤1 is minimizing, then

d

dt

(
∇vL(γt, γ̇t, t)

)
= ∇xL(γt, γ̇t, t), 0 < t < 1.

This is the Euler-Lagrange equation associated with the Lagrangian L; to memorize
it, it is convenient to write it as

d

dt

∂L

∂ẋ
=

∂L

∂x
, (7.31)

so that the two time-derivatives in the left-hand side formally “cancel out”. Note carefully
that the left-hand side of the Euler-Lagrange equation involves the time-derivative of a
curve which is valued in TM ; so (d/dt) in (7.31) is in fact a covariant derivative along the
minimizing curve γ, the same operation as we denoted before by ∇γ̇ , or D/Dt.

The most basic example is when L(x, v, t) = |v|2/2. Then ∇vL = v and the equation
reduces to dv/dt = 0, or ∇γ̇ γ̇ = 0, which is the usual equation of vanishing acceleration.
Curves with zero acceleration are called geodesics; their equation, is coordinates, is

γ̈k +
∑

ij

Γ k
ij γ̇

i γ̇j = 0.

(Note: γ̈k is the second derivative of t → γk(t), not the kth component of γ̈.) The speed
of such a curve γ is constant, and to stress this fact one can say that these are constant-
speed geodesics, by opposition with general geodesics that can be reparametrized in an
arbitrary way. Most of the time I shall just say “geodesics” for constant-speed geodesics.
It is equivalent to say that a geodesic γ has constant speed, or that its length between two
times s < t is proportional to t − s.

We have just seen that minimizing curves have zero acceleration, and the converse is
also true locally, that is if γ1 is very close to γ0. A curve which minimizes the action
between its endpoints is called a minimizing geodesic, or minimal geodesic, or simply a
geodesic. The Hopf-Rinow theorem guarantees that if the manifold M (seen as a metric
space) is complete, then any two points in M are joined by at least one minimal geodesic.
There might be several minimal geodesics joining two points x and y (to see this, consider
two antipodal points on the sphere), but geodesics are

- non-branching: Two geodesics that are defined on a time interval [0, t] and coincide on
[0, t′] for some t′ > 0 have to coincide on the whole of [0, t]. Actually, a stronger statement
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holds true: The velocity of the geodesic at time t = 0 uniquely determines the final position
at time t = 1 (this is a consequence of the uniqueness statement in the Cauchy-Lipschitz
theorem);

- locally unique: For any given x, there is rx > 0 such that any y in the ball Brx(x)
can be connected to x by a single geodesic γ = γx→y, and then the map y "−→ γ̇(0) is a
diffeomorphism (this corresponds to parametrize the endpoint by the initial velocity);

- almost everywhere unique: For any x, the set of points y that can be connected to
x by several (minimizing!) geodesics is of zero measure. A way to see this is to note that
the square distance function d2(x, ·) is locally semi-concave, and therefore differentiable
almost everywhere. (See Chapter 10 for background about semi-concavity.)

The set Γx,y of (minimizing, constant speed) geodesics joining x and y might not be
single-valued, but in any case it is compact in C([0, 1],M), even if M is not compact. To see
this, note that (i) the image of any element of Γx,y lies entirely in the ball B

(
x, d(x, y)

)
, so

Γx,y is uniformly bounded, (ii) elements in Γx,y are d(x, y)-Lipschitz, so they constitute an
equi-Lipschitz family; (iii) Γx,y is closed because it is defined by the equations γ(0) = x,
γ(1) = y, L(γ) ≤ d(γ0, γ1) (the length functional L is not continuous with respect to
uniform convergence, but it is lower semicontinuous, so an upper bound on the length
defines a closed set); (iv) M is locally compact, so Ascoli’s compactness theorem applies
to functions with values in M .

A similar argument shows that for any two given compact sets Ks and Kt, the set of
geodesics γ such that γs ∈ Ks and γt ∈ Kt is compact in C([s, t];M). So the Lagrangian
action defined by As,t(γ) = L(γ)2/(t − s) is coercive in the sense of Definition 7.12.

Most of these statements can be generalized to the action coming from a Lagrangian
function L(x, v, t) on TM × [0, 1], if L is C2 and satisfies the classical conditions of Defi-
nition 7.6. In particular the associated cost functions will be continuous. Here is a sketch
of proof: Let x and y be two given points, and let xk → x and yk → y be converging
sequences. For any ε > 0, small enough,

cs,t(xk, yk) ≤ cs,s+ε(xk, x) + cs+ε,t−ε(x, y) + ct−ε,t(y, yk). (7.32)

It is easy to show that there is a uniform bound K on the speeds of all minimizing curves
which achieve the costs appearing above. Then the Lagrangian is uniformly bounded on
these curves, so cs,s+ε(xk, x) = O(ε), ct−ε,t(y, yk) = O(ε). Also it does not affect much the
Lagrangian (evaluated on candidate minimizers) to reparametrize [s+ε, t−ε] into [s, t] by
a linear change of variables, so cs+ε,t−ε(x, y) converges to cs,t(x, y) as s → t. This proves
the upper semi-continuity, and therefore the continuity, of cs,t.

In fact there is a finer statement: cs,t is superdifferentiable. This notion will be explained
and developed later in Chapter 10.

After the Euclidean space, Riemannian manifolds constitute in some sense the most
regular metric structure used by mathematicians. A Riemannian structure comes with
many nice features (calculus, length, distance, geodesic equations); it also has a well-
defined dimension n (the dimension of the manifold) and carries a natural volume, which
can be defined equivalently as the n-dimensional Hausdorff measure associated with the
distance, or by an explicit formula (in charts) involving the determinant of the metric.

Finsler structures constitute a generalization of the Riemannian structure: one has a
differentiable manifold, with a norm on each tangent space TxM , but that norm does
not necessarily come from a scalar product. One can then define lengths of curves, the
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induced distance as for a Riemannian manifold, and prove the existence of geodesics, but
the geodesic equations are more complicated.

Another generalization is the notion of length space (or intrinsic length space), in
which one does not necessarily have tangent spaces, yet one assumes the existence of a
length L and a distance d which are compatible, in the sense that






L(γ) =
∫ 1

0
|γ̇t| dt, |γ̇t| := lim sup

ε→0

d
(
γt, γt+ε

)

|ε| ,

d(x, y) = inf
{
L(γ); γ0 = x, γ1 = y

}
.

In practice the following criterion is sometimes useful: A complete metric space (X , d)
is a length space if and only if for any two points in X , and any ε > 0 one can find an
ε-midpoint of (x, y), that is a point mε such that

∣∣∣∣
d(x, y)

2
− d(x,mε)

∣∣∣∣ ≤ ε,

∣∣∣∣
d(x, y)

2
− d(y,mε)

∣∣∣∣ ≤ ε.

Minimizing paths are fundamental objects in geometry. A length space in which any
two points can be joined by a minimizing path, or geodesic, is called a strictly intrinsic
length space, or geodesic space, or just (by abuse of language) a length space. There is a
criterion in terms of midpoints: A complete metric space (X , d) is a geodesic space if and
only if for any two points in X there is a midpoint, that is of course some m ∈ X such
that

d(x,m) = d(m, y) =
d(x, y)

2
.

There is another useful criterion: If the metric space (X , d) is a complete, locally compact
length space, then it is geodesic. This is an analogue of the Hopf-Rinow theorem in Rie-
mannian geometry. One can also reparametrize geodesic curves in such a way that their
speed is constant, or equivalently that for all intermediate times s and t, their length
between times s and t coincides with the distance between their positions at times s and t.

The same proof that I sketched for Riemannian manifolds applies in geodesic spaces, to
show that the set Γx,y of (minimizing, constant speed) geodesics joining x to y is compact;
more generally, the set ΓK0→K1 of geodesics γ with γ0 ∈ K0 and γ1 ∈ K1 is compact,
as soon as K0 and K1 are compact. So there are important common points between the
structure of a length space and the structure of a Riemannian manifold. From the practical
point of view, some main differences are that (i) there is no available equation for geodesic
curves, (ii) geodesics may “branch”, (iii) there is no guarantee that geodesics between x
and y are unique for y very close to x, (iv) there is neither a unique notion of dimension,
nor a canonical reference measure, (v) there is no guarantee that geodesics will be almost
everywhere unique.

Bibliographical Notes

There are plenty of classical textbooks on Riemannian geometry, with variable degree
of pedagogy, among which the reader may consult [108], [142], [175]. For an introduc-
tion to the classical theory of calculus of variations in dimension 1, see for instance [160,
Chapters 2-3], [83], or [113]. For an introduction to the Hamiltonian formalism in classical
mechanics, one may use the very pedagogical treatise by Arnold [24], or the more complex
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one by Thirring [351]. For an introduction to analysis in metric spaces, see Ambrosio and
Tilli [18]. A wonderful introduction to the theory of length spaces can be found in Burago,
Burago and Ivanov [81]. In the latter reference, a Riemannian manifold is defined as a
length space which is locally isometric to Rn equipped with a quadratic form gx depend-
ing smoothly on the point x. This definition is not standard, but it is equivalent to the
classical definition, and in some sense more satisfactory if one wishes to emphasize the
metric point of view.

I introduced the abstract concept of “coercive Lagrangian action” for the purpose of
these notes, but this concept looks so natural to me that I would be somewhat surprised
if it had not been previously discussed in the literature, maybe in a disguised form.

Probability measures on action-minimizing curves might look a bit scary when en-
countered for the first time, but they were actually rediscovered several times by various
researchers, so they are arguably natural objects: See in particular the works by Bernot,
Caselles and Morel [49] on irrigation problems; by Bangert [36] and Hohloch [211] on prob-
lems inspired by geometry and dynamical systems; by Ambrosio on transport equations
with little or no regularity [12, 15]. In fact, in the context of partial differential equations,
this approach already appears in the much earlier works of Brenier [71, 73, 74, 76] on the
incompressible Euler equation and related systems. One technical difference is that Brenier
considers probability measures on the huge (non-metrizable) space of measurable paths,
while the other above-mentioned authors only consider much smaller spaces consisting of
continuous, or Lipschitz-continuous functions. There are important subtleties with prob-
ability measures on non-metrizable spaces, and I strongly advise the reader to stay away
from them.

Also in relation with the irrigation problem, Buttazzo, Santambrogio and Brancolini [84]
have considered paths in the space of probability measures, however these authors do not
really consider measures on trajectories.

The Hamilton–Jacobi equation with a quadratic cost function (L(x, v, t) = |v|2) will be
considered in more detail in Chapter 22; see in particular Proposition 22.13. For further
information about Hamilton–Jacobi equations, there is an excellent book by Cannarsa and
Sinestrari [94]. Of course the Hamilton–Jacobi equation is closely related to the concept of
c-convexity: for instance, it is equivalent to say that ψ is c-convex, or that it is a solution at
time 0 of the backward Hamilton–Jacobi semigroup starting at time 1 (with some arbitrary
datum).

Measurable selection theorems provide conditions under which one may select elements
satisfying certain conditions in a measurable way. The theorem which I used at the end
of the proof of Proposition 7.15 is one of the most classical of these theorems; see Del-
lacherie [133] for a modern proof.

Interpolation arguments involving changes of variables have a long history. The concept
and denomination of displacement interpolation was introduced by McCann [267] in the
particular case of the quadratic cost in Euclidean space. Soon after, it was understood by
Brenier that this procedure could formally be recast as an action minimization problem
in the space of measures, which would reduce to the classical geodesic problem when the
probability measures are Dirac masses. In Brenier’s approach, the action is defined, at
least formally, by

A(µ) = inf
v(t,x)

{∫ 1

0

∫
|v(t, x)|2 dµt(x) dt;

∂µ

∂t
+ ∇ · (vµ) = 0

}
,

and then one has the Benamou-Brenier formula

W2(µ0, µ1)2 = inf A(µ),



7 Displacement interpolation 117

where the infimum is taken among all paths (µt)0≤t≤1 satisfying certain regularity condi-
tions. Brenier himself gave two sketches of proof for this formula [42, 77], and another for-
mal argument was suggested by Otto and the author [292, Section 3]. Rigorous proofs were
later provided by several authors under various assumptions [365, Theorem 8.1] [201][15,
Chapter 8] (the latter reference contains the most precise results). We shall come back to
these formulas later on, after a more precise qualitative picture of optimal transport has
emerged.

There was a rather amazing precursor to the idea of displacement interpolation, in the
form of Nelson’s theory of “stochastic mechanics”. Nelson tried to build up a formalism in
which quantum effects would be explained by stochastic fluctuations. For this purpose he
considered an action minimization problem which was also studied by Guerra and Morato:

inf E
∫ 1

0
|Ẋt|2 dt,

where the infimum is over all random paths (Xt)0≤t≤1 such that law (X0) = µ0, law (X1) =
µ1, and in addition (Xt) solves the stochastic differential equation

dXt

dt
= σ

dBt

dt
+ ξ(t,Xt),

where σ > 0 is some coefficient, Bt is a standard Brownian motion, and ξ is a drift, which
is an unknown in the problem. (So the minimization is over all possible couplings (X0,X1)
but also over all drifts!) This formulation is very similar to the Benamou-Brenier formula
just alluded to, only there is the additional Brownian noise in it, so it is more complex
in some sense. Moreover, the expected value of the action is always infinite, so one has to
renormalize it to make sense of Nelson’s problem. Nelson made the incredible discovery
that after a change of variables, minimizers of the action produced solutions of the free
Schrödinger equation in Rn. He developed his approach for some time, and finally gave up
because it was introducing unpleasant nonlocal features. Part of the story can be found in
Nelson’s book [282], see also Carlen [95] and references therein.

It was Otto [290] who first explicitly reformulated the Benamou-Brenier formula as the
equation for a geodesic distance on a Riemannian setting, from a formal point of view.
Then Ambrosio and co-workers pointed out that if one is not interested in the equations of
motion, but just in the geodesic property, it is simpler to use the metric notion of geodesic
in a length space [15]. Those issues were also developed by other authors working with
slightly different formalisms [15, 102, 97].

All the above-mentioned works were mainly concerned with displacement interpolation
in Rn. Agueh [1] also considered the case of cost c(x, y) = |x − y|p (p > 1) in Euclidean
space. Then displacement interpolation on Riemannian manifolds was studied, from a
heuristic point of view, by Otto and myself [292]. Some useful technical tools were in-
troduced in the field by Cordero-Erausquin, McCann and Schmuckenschläger [118] for
Riemannian manifolds; Cordero-Erausquin adapted them to the case of rather general
strictly convex cost functions in Rn [116].

The displacement interpolation for more general cost functions, arising from a smooth
Lagrangian, was constructed by Bernard and Buffoni [47], who first introduced in this
context Property (ii) in Theorem 7.19. At the same time, they made the explicit link with
the Mather minimization problem, which will appear in the next chapters.

In all these works, displacement interpolation took place in a smooth structure, resulting
in particular in the uniqueness (almost everywhere) of minimizing curves used in the
interpolation. Displacement interpolation in length spaces, as presented in this chapter,
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via the notion of dynamical transference plan, was developed more recently by Lott and
myself [247]. Theorem 7.19 in these notes is new; it was essentially obtained by rewriting
the proof in [247] with enough generality added to include the setting of Bernard and
Buffoni.

The observation in Remark 7.25 came from a discussion with S. Evans, who pointed out
to me that it was difficult, if not impossible, to get characterizations of random processes
expressed in terms of the measures when working in state spaces that are not locally
compact (such as the space of real trees). In spite of that remark, recently Lisini [244] was
able to obtain representation theorems for general absolutely continuous paths (µt)0≤t≤1

in the Wasserstein space Pp(X ) (p > 1), as soon as
∫
‖µ̇t‖p

Pp
dt < ∞, where X is just a

Polish space and ‖µ̇t‖Pp is the metric speed in Pp(X ). He shows that such a curve may
be written as (et)#Π, where Π is the law of a random absolutely continuous curve γ; as
a consequence, he could generalize Corollary 7.20 by removing the assumption of local
compactness. Lisini also established a metric replacement for the relation of conservation
of mass: For almost all t,

E |γ̇t|p ≤ ‖µ̇‖p
Pp

.

He further applied his results to various problems about transport in infinite-dimensional
Banach spaces.

Displacement interpolation in the case p = 1 is quite subtle because of the possibility
of reparametrization; it was carefully discussed in the Euclidean space by Ambrosio [10].
Recently, Bernard and Buffoni [48] shed some new light on that issue by making explicit the
link with the Mather–Mañé problem. Very roughly, the distance cost function is a typical
representative of cost functions that arise from Lagrangians, if one also allows minimization
over the choice of the time-interval [0, T ] ⊂ R (rather than fixing, say, T = 1). This extra
freedom accounts for the degeneracy of the problem.
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The Monge–Mather shortening principle

Monge himself made the following important observation. Consider the transport cost
c(x, y) = |x − y| in the Euclidean plane, and two couples (x1, y1), (x2, y2), such that an
optimal transport maps x1 to y1 and x2 to y2. (In our language, (x1, y1) and (x2, y2) are
two points in the support of an optimal coupling π.) Then either all four points lie on a
single line, or the two line segments [x1, y1], [x2, y2] do not cross, except maybe at their
endpoints. The reason is easy to grasp: If the two lines would cross at a point which is not
an endpoint of both lines, then, by triangular inequality we would have

|x1 − y2| + |x2 − y1| < |x1 − y1| + |x2 − y2|,

and this would contradict the fact that the support of π is c-cyclically monotone. Stated
otherwise: Given two crossing line segments, we can shorten the total length of the paths
by replacing these lines by the new transport lines [x1, y2] and [x2, y1].

y1
y2

x1

x2

Fig. 8.1. Here the cost is Euclidean distance; if x1 is sent to y1 and x2 to y2, then it is cheaper to send x1

to y2 and x2 to y1.

Quadratic cost function

For cost functions that do not satisfy a triangular inequality, Monge’s argument does not
apply, and pathlines can cross. However, it is often the case that the crossing of the curves
(with the time variable explicitly taken into account) is forbidden. Here is the most basic
example: Consider the quadratic cost function in Euclidean space (c(x, y) = |x − y|2),
and let (x1, y1) and (x2, y2) belong to the support of some optimal coupling. By cyclical
monotonicity,
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|x1 − y1|2 + |x2 − y2|2 ≤ |x1 − y2|2 + |x2 − y1|2. (8.1)

Let then
γ1(t) = (1 − t)x1 + t y1, γ2(t) = (1 − t)x2 + t y2

be the two minimizing curves respectively joining x1 to y1, and x2 to y2. Then it may
happen that γ1(s) = γ2(t) for some s, t ∈ [0, 1]. But if there is a t0 ∈ (0, 1) such that
γ1(t0) = γ2(t0) =: X, then

|x1 − y2|2 + |x2 − y1|2 = |x1 − X|2 + |X − y2|2 − 2
〈
X − x1,X − y2

〉

+ |x2 − X|2 + |X − y1|2 − 2
〈
X − x2,X − y1

〉

= [t20 + (1 − t0)2]
(
|x1 − y1|2 + |x2 − y2|2

)
+ 4 t0(1 − t0)

〈
x1 − y1, x2 − y2

〉

≤
[
t20 + (1 − t0)2 + 2 t0(1 − t0)

] (
|x1 − y1|2 + |x2 − y2|2

)

= |x1 − y1|2 + |x2 − y2|2,

and the inequality is strict unless x1 − y1 = x2 − y2, in which case γ1(t) = γ2(t) for all
t. But strict inequality contradicts (8.1). The conclusion is that two distinct interpolation
trajectories cannot meet at intermediate times.

It is natural to ask whether this conclusion can be reinforced into a quantitative state-
ment. The answer is yes. In fact there is a beautiful identity:

∣∣∣
(
(1 − t)x1 + ty1

)
−
(
(1 − t)x2 + ty2

)∣∣∣
2

= (1 − t)2|x1 − x2|2 + t2|y1 − y2|2

+ t(1 − t)
(
|x1 − y2|2 + |x2 − y1|2 − |x1 − y1|2 − |x2 − y2|2

)
. (8.2)

To appreciate the consequences of (8.2), let

γ1(t) = (1 − t)x1 + ty1, γ2(t) = (1 − t)x2 + ty2.

Then (8.2) implies

max
(
|x1 − x2, |y1 − y2|

)
≤ max

(
1
t
,

1
1 − t

)
|γ1(t) − γ2(t)|.

Since |γ1(t) − γ2(t)| ≤ max(|x1 − x2|, |y1 − y2|) for all t ∈ [0, 1], one can conclude that

∀t0 ∈ (0, 1), sup
0≤t≤1

|γ1(t) − γ2(t)| ≤ max
(

1
t0

,
1

1 − t0

)
|γ1(t0) − γ2(t0)|. (8.3)

(By the way, this inequality is easily seen to be optimal.) So the uniform distance between
the whole paths γ1 and γ2 can be controlled by their distance at some time t0 ∈ (0, 1).

General statement and applications to optimal transport

For the purpose of a seemingly different problem, Mather (not aware of Monge’s work,
neither of optimal transport) discovered an estimate which relies on the same idea as
Monge’s shortening argument — only much more complicated — for general cost functions
on Lagrangian manifolds. He obtained a quantitative version of these estimates, in a form
quite similar to (8.3).
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Mather’s proof uses three kinds of assumptions: (i) the existence of a second-order
differential equation for minimizing curves; (ii) an assumption of regularity on the La-
grangian, and (iii) an assumption of strict convexity of the Lagrangian. To quantify the
strict convexity, I shall use the following concept: A continuous function L on Rn will be
said to be (2 + κ)-convex if it satisfies a (strict) convexity inequality of the form

L(v) + L(w)
2

− L

(
v + w

2

)
≥ K|v − w|2+κ

for some constant K > 0.
The next statement is a slight generalization of Mather’s estimate; if the reader finds

it too dense, he or she can go directly to Corollary 8.2 which is simpler, and sufficient for
the rest of this course.

Theorem 8.1 (Mather’s shortening lemma). Let M be a smooth Riemannian man-
ifold, equipped with its geodesic distance d, and let c(x, y) be a cost function on M × M ,
defined by a Lagrangian L(x, v, t) on TM × [0, 1]. Let x1, x2, y1, y2 be four points on M
such that

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1).

Let further γ1 and γ2 be two action-minimizing curves respectively joining x1 to y1 and x2

to y2. Let V be a bounded neighborhood of the graphs of γ1 and γ2 in M × [0, 1], and S a
strict upper bound on the maximal speed along these curves. Define

V :=
⋃

(x,t)∈V

(
x,BS(0), t

)
⊂ TM × [0, 1].

In words, V is a neighborhood of γ1 and γ2, convex in the velocity variable.
Assume that (i) Minimizing curves for L are solution of a Lipschitz flow, in the sense

of Definition 7.6 (e);
(ii) L is of class C1,α in V with respect to the variables x and v, for some α ∈ (0, 1]

(so ∇xL and ∇vL are Hölder-α; Hölder-1 meaning Lipschitz);
(iii) L is (2 + κ)-convex in V, with respect to the v variable;

Then, for any t0 ∈ (0, 1), there is a constant Ct0 = C(L,V, t0), and a positive exponent
β = β(α,κ) such that

sup
0≤t≤1

d
(
γ1(t), γ2(t)

)
≤ Ct0 d

(
γ1(t0), γ2(t0)

)β
. (8.4)

Furthermore, if α = 1 and κ = 0, then β = 1 and Ct0 = C(L,V)/min(t0, 1 − t0).

If L is of class C2, superlinear and ∇2
vL > 0 everywhere, then Assumption (iii) will be

true by convexity with κ = 0, and, as we already discussed in Example 7.5, Assumption (i)
will also be satisfied since minimizing curves will solve a differential equation of the form
γ̈(t) = f

(
γ(t), γ̇(t), t

)
, where f is Lipschitz in V. So we have the following corollary:

Corollary 8.2 (Mather’s shortening lemma again). Let M be a smooth Riemannian
manifold and let L = L(x, v, t) be a C2 Lagrangian on TM × [0, 1], satisfying the classical
assumptions of Definition 7.6, together with ∇2

vL > 0. Let c(x, y) be the cost function
associated to L, and let d(x, y) be the usual geodesic distance on M . Then, for any compact
K ⊂ M there is a constant CK such that, whenever x1, y1, x2, y2 are four points in K with
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c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1),

and γ1, γ2 are action-minimizing curves joining respectively x1 to y1 and x2 to y2, then
for any t0 ∈ (0, 1),

sup
0≤t≤1

d
(
γ1(t), γ2(t)

)
≤ CK

min(t0, 1 − t0)
d
(
γ1(t0), γ2(t0)

)
. (8.5)

The short version of the conclusion is that the distance between γ1 and γ2 is controlled,
uniformly in t, by the distance at any time t0 ∈ (0, 1). In particular, the initial and final
distance between these curves is controlled by their distance at any intermediate time. (But
the final distance is not controlled by the initial distance!) Once again, inequalities (8.4)
or (8.5) are quantitative versions of the qualitative statement that the two curves, if
distinct, cannot cross except maybe at initial and final time.

Example 8.3. The cost function c(x, y) = d(x, y)2 corresponds to the Lagrangian function
L(x, v, t) = |v|2, which obviously satisfies the assumptions of Corollary 8.2. In that case
the exponent β = 1 is admissible. Moreover, it is natural to expect that the constant CK

can be controlled in terms of just a lower bound on the sectional curvature of M . I shall
come back to this issue later in this chapter.

Example 8.4. The cost function c(x, y) = d(x, y)1+α does not satisfy the assumptions
of Corollary 8.2 for 0 < α < 1. Even if the associated Lagrangian L(x, v, t) = |v|1+α

is not smooth, the equation for minimizing curves is just the geodesic equation, so that
Assumption (i) in Theorem 8.1 is still satisfied. Then, by tracking exponents in the proof
of Theorem 8.1, one can find that (8.4) holds true with β = (1 + α)/(3 − α). But this is
far from optimal: By taking advantage of the homogeneity of the power function, one can
prove that the exponent β = 1 is also admissible, for all α ∈ (0, 1). (It is the constant,
rather than the exponent, which deteriorates as α ↓ 0.) I shall explain this argument in
the Appendix, in the Euclidean case, and leave the Riemannian case as a delicate exercise.
This example suggests that Theorem 8.1 still leaves room for improvement.

The proof of Theorem 8.1 is a bit involved and before presenting it I prefer to discuss
some applications in terms of optimal couplings.

Theorem 8.5 (The transport from intermediate times is Lipschitz). On a Rie-
mannian manifold M , let c be a cost function satisfying the assumptions of Corollary 8.2.
Then, for any dynamical optimal transport Π supported in a compact set K, one has,
Π ⊗Π(dγ dγ̃)-almost surely,

sup
0≤t≤1

d
(
γ(t), γ̃(t)

)
≤ CK(t0) d

(
γ(t0), γ̃(t0)

)
. (8.6)

In particular, if (µt)0≤t≤1 is a displacement interpolation between any two compactly
supported probability measures on M , and t0 ∈ (0, 1) is given, then for any t ∈ [0, 1] the
map

Tt0→t : γ(t0) "−→ γ(t)

is well-defined µt0-almost surely and Lipschitz continuous on its domain; and it is in fact
the unique solution of the Monge problem between µt0 and µt. In other words, the coupling
(γ(t0), γ(t)) is an optimal deterministic coupling.
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µ0 = δx0

µ1

Fig. 8.2. On this example the map γ(0) → γ(1/2) is not well-defined, but the map γ(1/2) → γ(0) is well-
defined and Lipschitz, just as the map γ(1/2) → γ(1). Also µ0 is singular, but µt is absolutely continuous
as soon as t > 0.

Example 8.6. On Rn with c(x, y) = |x−y|2, let µ0 = δ0 and let µ = law (X) be arbitrary.
Then it is easy to check that µt = law (tX), and in fact the random geodesic γ(t) is just
tγ(1). So γ(t) = tγ(t0)/t0, which obviously provides a deterministic coupling.

Proof of Theorem 8.5. The proof consists only in formalizing things that by now may look
essentially obvious to the reader. First, (e0, e1, e0, e1)#(Π ⊗ Π) = π ⊗ π, where π is an
optimal coupling between µ0 and µ1. So if a certain property holds true π ⊗ π-almost
surely for quadruples, it also holds true Π ⊗Π-almost surely for the endpoints of couples
of curves.

Since π is optimal, it is c-cyclically monotone (Theorem 5.9 (ii)), so, π⊗π(dx dy dx̃ dỹ)-
almost surely,

c(x, y) + c(x̃, ỹ) ≤ c(x, ỹ) + c(x̃, y).

Thus, Π ⊗Π(dγ dγ̃)-almost surely,

c(γ(0), γ(1)) + c(γ̃(0), γ̃(1)) ≤ c(γ(0), γ̃(1)) + c(γ̃(0), γ(1)).

Then (8.6) follows from Corollary 8.2.
Let S be the support of Π; by assumption this is a compact set. Since the inequal-

ity (8.6) defines a closed set of couples of geodesics, actually it has to hold true for all
couples (γ, γ̃) ∈ S × S.

Now define the map Tt0→t on the compact set et0(S) (that is, the union of all γ(t0),
when γ varies over the compact set S), by the formula Tt0→t(γ(t0)) = γ(t). This map is
well-defined, for if two geodesics γ and γ̃ in the support of Π are such that γ(t0) = γ̃(t0),
then inequality (8.6) imposes γ = γ̃. The same inequality shows that Tt0→t is actually
Lipschitz-continuous, with Lipschitz constant CK/min(t0, 1 − t0).

All this shows that (γ(t0), Tt0(γ(t0))) is indeed a Monge coupling of (µt0 , µt), with
a Lipschitz map. To complete the proof of the theorem, it only remains to check the
uniqueness of the optimal coupling; but this follows from Theorem 7.27(iii). 78

The second application is a result of “preservation of absolute continuity”.

Theorem 8.7 (absolute continuity of displacement interpolation). Let M be a
Riemannian manifold, and let L(x, v, t) be a C2 Lagrangian on TM× [0, 1], bounded below,
superlinear and strictly convex in the velocity variable, with ∇2

vL > 0; let c be the associated
cost function. Let µ0 and µ1 be two probability measures on M such that the optimal cost
C(µ0, µ1) is finite, and let (µt)0≤t≤1 be a displacement interpolation between µ0 and µ1. If
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either µ0 or µ1 is absolutely continuous with respect to the volume on M , then also µt is
absolutely continuous for all t ∈ (0, 1).

Proof of Theorem 8.7. Let us assume for instance that µ1 is absolutely continuous, and
prove that µt0 is also absolutely continuous (0 < t0 < 1).

First consider the case when µ0 and µ1 are compactly supported. Then the whole
displacement interpolation is compactly supported, and Theorem 8.5 applies, so there is a
Lipschitz map T such that T#µt0 = µ1.

Now if N is a set of zero volume, the inclusion N ⊂ T−1(T (N)) implies

µ[N ] ≤ µ
[
T−1(T (N))

]
= (T#µ)[T (N)] = ν[T (N)], (8.7)

and the latter quantity is 0 since vol [T (N)] ≤ ‖T‖n
Lip vol [N ] = 0. Then ν[T (N)] = 0 since

ν is absolutely continuous with respect to vol . So (8.7) shows that µ[N ] = 0 for any Borel
set N of zero volume, and this means precisely that µ is absolutely continuous.

Actually, the previous computation is not completely rigorous because T (N) is not
necessarily Borel measurable; but this is not serious since T (N) can still be included in a
negligible Borel set, and then the proof can be repaired in an obvious way.

Now let us turn to the general case where µ0 and µ1 are not assumed to be compactly
supported. This situation will be handled by a restriction argument. Assume by contra-
diction that µt0 is not absolutely continuous. Then there exists a set Zt0 with zero volume,
such that µt0 [Zt0 ] > 0. Let Z := {γ ∈ Γ (M); γt0 ∈ Zt0}. Then

Π[Z] = P [γt0 ∈ Zt0 ] = µt0 [Zt0 ] > 0.

By regularity, there exists a compact K ⊂ Z, such that Π[K] > 0. Let then

Π ′ :=
1K Π

Π[K]
,

and let π′ := (e0, e1)#Π ′ be the associated transference plan, and µ′
t = (et)#Π ′ the

marginal of Π ′ at time t. In particular,

µ′
1 ≤

(e0)#Π
Π[K]

=
µ1

Π[K]
,

so µ′
1 is still absolutely continuous.

Obviously, the support of Π ′ is included in that of Π, so Π ′ is concentrated on action-
minimizing curves. It is easy to check that (µ′

t)0≤t≤1 is still a continuous path in the space
of probability measures. On the other hand, by Theorem 4.5, π′ is an optimal transference
plan between µ′

0 and µ′
1. By Theorem 7.19, (µ′

t) is a displacement interpolation. Now, µ′
t0

is concentrated on et0(K) ⊂ et0(Z) ⊂ Zt0 , so µ′
t0 is singular. But the first part of the proof

rules out this possibility, because µ′
0 and µ′

1 are respectively supported in e0(K) and e1(K),
which are compact, and µ′

1 is absolutely continuous. 78

Proof of Mather’s estimates

Now, let us turn to the proof of Theorem 8.1. It is certainly more important to grasp the
idea of the proof than to follow the calculations, so the reader might at first reading be
content with the following explanations and skip the rigorous proof.
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Idea of the proof of Theorem 8.1. Assume, to fix the ideas, that γ1 and γ2 cross each other
at a point m0 and at time t0. Close to m0, these two curves look like two straight lines
crossing each other, with respective velocities v1 and v2. Now cut these curves on the time
interval [t0−τ, t0+τ ] and on that interval introduce “deviations” (like a plumber installing
a new piece of pipe to short-cut a damaged region of a channel) that join the first curve
to the second, and vice versa.

γ1(0) γ2(0)

γ1γ2

Fig. 8.3. Principle of Mather’s proof: Let γ1 and γ2 be two action-minimizing curves. If at time t0 the two
curves γ1 and γ2 pass too close to each other, one can devise shortcuts (here drawn as straight lines).

This amounts to replacing (on a short interval of time) two curves with approximate
velocities v1 and v2, by two curves with approximate velocities (v1 + v2)/2. Since the
time-interval where the modification occurs is short, everything is concentrated in the
neighborhood of (m0, t0), so the modification in the Lagrangian action of the two curves
is approximately

(2τ)
(

2L

(
m0,

v1 + v2

2
, t0

)
−
[
L(m0, v1, t0) + L(m0, v2, t0)

])
.

Since L(m0, ·, t0) is strictly convex, this quantity is negative if v1 3= v2, which means
that the total action has been strictly improved by the modification. But then c(x1, y2) +
c(x2, y1) < c(x1, y1)+c(x2, y2), in contradiction with our assumptions. The only possibility
out is that v1 = v2, i.e. at the crossing point the curves have the same position and the
same velocity; but then, since they are solutions of a second-order differential inequality,
these curves have to coincide for all times. 78

Now it only remains to make this argument quantitative: If the two curves pass close
to each other at time t0, then their velocities at that time will also be close to each other,
and so the trajectories have to be coincide for all times in [0, 1]. Unfortunately this will
not be so easy.

Rigorous proof of Theorem 8.1. Step 1: Localization. The goal of this step is to show
that the problem reduces to a local computation, that can be performed as if we were in
Euclidean space, and that it is sufficient to control the difference of the velocities at time
t0 (as in the above sketchy explanation). If the reader is ready to believe in these two
statements, then he or she can go directly to Step 2.
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For brevity, write γ1 ∪ γ2 for the union of the images of the minimizing paths γ1 and
γ2. For any point x in projM (V ), there is a small ball Brx(x) which is diffeomorphic to an
open set in Rn, and by compactness one can cover a neighborhood of γ1 ∪ γ2 by a finite
number of such balls Bj, each of them having radius no less than δ > 0. Without loss of
generality, all these balls are included in projM (V ), and it can be assumed that whenever
two points X1 and X2 in γ1 ∪ γ2 are separated by a distance less than δ/4, then there is
one of the balls Bj that contains Bδ/4(X1) ∪ Bδ/4(X2).

Now, if γ1(t0) and γ2(t0) are separated by a distance at least δ/4, then the conclusion
is obvious. Otherwise, choose τ small enough that τS ≤ δ/4 (recall that S is the maximum
speed along the curves); then on the time-interval [t0 − τ, t0 + τ ] the curves never leave the
balls Bδ/4(X1)∪Bδ/4(X2), and therefore the whole trajectories of γ1 and γ2 on that time-
interval have to stay within a single ball Bj. If one takes into account positions, velocities
and time, the system is confined within Bj × BS(0) × [0, 1] ⊂ V.

On any of these balls Bj, one can introduce a Euclidean system of coordinates, and
perform all computations in that system (write L in those coordinates, etc.) The distance
induced on Bj by that system of coordinates will not be the same as the original Rie-
mannian distance, but it can be bounded from above and below by multiples thereof. So
we can pretend that we are really working with a Euclidean metric, and all conclusions
that are obtained, involving only what happens inside the ball Bj, will remain true up to
changing the bounds. Then, for the sake of all computations, we can freely add points as
if we were working in Euclidean space.

If it can be shown, in that system of coordinates, that
∣∣γ̇1(t0) − γ̇2(t0)

∣∣ ≤ C
∣∣γ1(t0) − γ2(t0)

∣∣, (8.8)

then this means that (γ1(t0), γ̇1(t0)) and (γ2(t0), γ̇2(t0)) are very close to each other in
TM ; more precisely they are separated by a distance which is O

(
d(γ1(t0), γ2(t0))

)
. Then

by Assumption (i) and Cauchy-Lipschitz theory this bound will be propagated backward
and forward in time, so the distance between (γ1(t), γ̇1(t)) and (γ2(t), γ̇2(t)) will remain
bounded by O

(
d(γ1(t0), γ2(t0))

)
. So to conclude the argument it is sufficient to prove (8.8).

Step 2: Construction of shortcuts. First some notation: Let us write x1(t) = γ1(t),
x2(t) = γ2(t), v1(t) = γ̇1(t), v2(t) = γ̇2(t), and also X1 = x1(t0), V1 = v1(t0), X2 = x2(t0),
V2 = v2(t0). The goal is to control |V1 − V2| by |X1 − X2|.

Let x12(t) be defined by

x12(t) =






x1(t) for t ∈ [0, t0 − τ ];

x1(t)+x2(t)
2 +

(
τ+t−t0

2τ

) (x2(t0+τ)−x1(t0+τ)
2

)
+
(
τ−t+t0

2τ

) (x1(t0−τ)−x2(t0−τ)
2

)

for t ∈ [t0 − τ, t0 + τ ];
x2(t) for t ∈ [t0 + τ, 1].

Note that x12 is a continuous function of t; it is a path that starts along γ1, then switches
to γ2. Let v12(t) stand for its time-derivative:

v12(t) =






v1(t) for t ∈ [0, t0 − τ ];

v1(t)+v2(t)
2 + 1

2τ

([
x2(t0−τ)+x2(t0+τ)

2

]
−
[

x1(t0−τ)+x1(t0+τ)
2

])

for t ∈ [t0 − τ, t0 + τ ];
v2(t) for t ∈ [t0 + τ, 1].
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Then the path x21(t) and its time-derivative v21(t) are defined symetrically. These defini-
tions are rather natural: First we try to construct paths on [t0− τ, t0 + τ ] whose velocity is
about the half of the velocities of γ1 and γ2; then we correct these paths by adding simple
functions (linear in time) to make them match the correct endpoints.

x21x12

Fig. 8.4. The paths x12(t) and x21(t) obtained by using the shortcuts to switch from one original path to
the other.

I shall conclude this step with some basic estimates about the paths x12 and x21 on
the time-interval [t0 − τ, t0 + τ ]. For a start, note that

x12 −
x1 + x2

2
= −

(
x21 −

x1 + x2

2

)
, v12 −

v1 + v2

2
= −

(
v21 −

v1 + v2

2

)
. (8.9)

In the sequel, the symbol O(m) will stand for any expression which is bounded by Cm,
where C only depends on V and on the regularity bounds on the Lagrangian L on V. From
Cauchy-Lipschitz theory and Assumption (i),

|v1 − v2|(t) + |x1 − x2|(t) = O
(
|X1 − X2| + |V1 − V2|

)
, (8.10)

and then by plugging this back in the equation for minimizing curves we obtain

|v̇1 − v̇2|(t) = O
(
|X1 − X2| + |V1 − V2|

)
.

Upon integration in times, these bounds imply

x1(t) − x2(t) = (X1 − X2) + O
(
τ(|X1 − X2| + |V1 − V2|)

)
; (8.11)

v1(t) − v2(t) = (V1 − V2) + O
(
τ(|X1 − X2| + |V1 − V2|)

)
, (8.12)

and therefore also

x1(t) − x2(t) = (X1 − X2) + (t − t0) (V1 − V2) + O
(
τ2(|X1 − X2| + |V1 − V2|)

)
. (8.13)

As a consequence of (8.12), if τ is small enough (depending only on the Lagrangian L),
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|v1 − v2|(t) ≥
|V1 − V2|

2
− O

(
τ |X1 − X2|

)
. (8.14)

Next, from Cauchy-Lipschitz again,

x2(t0 + τ) − x1(t0 + τ) = X2 − X1 + τ(V2 − V1) + O
(
τ2(|X1 − X2| + |V1 − V2|)

)
;

and since a similar expression holds true with τ replaced by −τ , one has
[
x1(t0 + τ) + x2(t0 + τ)

2

]
−
[
x1(t0 − τ) + x2(t0 − τ)

2

]

= (X2 − X1) + O
(
τ2(|X1 − X2| + |V1 − V2|)

)
. (8.15)

It follows that

v12(t) −
v1(t) + v2(t)

2
= O

( |X1 − X2|
τ

+ τ |V1 − V2|
)
. (8.16)

After integration in time and use of (8.15) again, one obtains

x12(t) −
x1(t) + x2(t)

2
=
[
x12(t0) −

x1(t0) + x2(t0)
2

]
+ O

(
|X1 − X2| + τ2|V1 − V2|

)

= O
(
|X1 − X2| + τ2|V1 − V2|

)
(8.17)

In particular,
|x12 − x21|(t) = O

(
|X1 − X2| + τ2|V1 − V2|

)
. (8.18)

Step 3: Taylor formulas and regularity of L. Now I shall evaluate the behavior of
L along the old and the new paths, using the regularity assumption (ii). From that point
on, I shall drop the time variable for simplicity (but it is implicit in all the computations).
First,

L(x1, v1) − L

(
x1 + x2

2
, v1

)
= ∇xL

(
x1 + x2

2
, v1

)
·
(

x1 − x2

2

)
+ O

(
|x1 − x2|1+α

)
;

similarly

L(x2, v2) − L

(
x1 + x2

2
, v2

)
= ∇xL

(
x1 + x2

2
, v2

)
·
(

x1 − x2

2

)
+ O

(
|x1 − x2|1+α

)
.

Moreover,

∇xL

(
x1 + x2

2
, v1

)
−∇xL

(
x1 + x2

2
, v2

)
= O(|v1 − v2|α).

The combination of these three identities, together with estimates (8.11) and (8.12), yields
(
L(x1, v1) + L(x2, v2)

)
−
(
L
(x1 + x2

2
, v1

)
+ L

(x1 + x2

2
, v2

))

= O
(
|x1 − x2|1+α + |x1 − x2| |v1 − v2|α

)

= O
(
|X1 − X2|1+α + τ |V1 − V2|1+α + |X1 − X2| |V1 − V2|α

+ τ1+α |V1 − V2| |X1 − X2|α
)
.
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Next, in an analogous way,

L(x12, v12)−L
(
x12,

v1 + v2

2

)
= ∇vL

(
x12,

v1 + v2

2

)
·
(
v12−

v1 + v2

2
)

+ O

(∣∣v12 −
v1 + v2

2
∣∣1+α

)
,

L(x21, v21)−L
(
x21,

v1 + v2

2

)
= ∇vL

(
x21,

v1 + v2

2

)
·
(
v21−

v1 + v2

2
)

+ O

(∣∣v21 −
v1 + v2

2
∣∣1+α

)
,

∇vL

(
x12,

v1 + v2

2

)
−∇vL

(
x21,

v1 + v2

2

)
= O

(
|x12 − x21|α

)
.

Combining this with (8.9), (8.16) and (8.18), one finds
(
L(x12, v12) + L(x21, v21)

)
−
(
L
(
x12,

v1 + v2

2
)

+ L
(
x21,

v1 + v2

2
))

= O
(∣∣v12 −

v1 + v2

2
∣∣1+α +

∣∣v12 −
v1 + v2

2
∣∣ |x12 − x21|α

)

= O

(
|X1 − X2|1+α

τ1+α
+ τ1+α|V1 − V2|1+α

)
.

After that,

L
(
x12,

v1 + v2

2

)
= L

(x1 + x2

2
,
v1 + v2

2

)
+ ∇xL

(x1 + x2

2
,
v1 + v2

2

)
·
(
x12 −

x1 + x2

2

)

+ O

(∣∣x12 −
x1 + x2

2
∣∣1+α

)
,

L
(
x21,

v1 + v2

2

)
= L

(x1 + x2

2
,
v1 + v2

2

)
+ ∇xL

(x1 + x2

2
,
v1 + v2

2

)
·
(
x21 −

x1 + x2

2

)

+ O

(∣∣x21 −
x1 + x2

2
∣∣1+α

)
,

and now by (8.9) the terms in ∇x cancel each other exactly upon sommation, so the
bound (8.17) leads to
(
L
(
x12,

v1 + v2

2
)

+ L
(
x21,

v1 + v2

2
))

− 2L
(x1 + x2

2
,
v1 + v2

2

)

= O

(∣∣x21 −
x1 + x2

2
∣∣1+α

)

= O
(
|X1 − X2|1+α + τ2+2α|V1 − V2|1+α

)
.

Step 4: Comparison of actions and strict convexity.
From our minimization assumption,

A(x1) + A(x2) ≤ A(x12) + A(x21),

which of course can be rewritten
∫ t0+τ

t0−τ

(
L(x1(t), v1(t), t) + L(x2(t), v2(t), t) − L(x12(t), v12(t), t)

− L(x21(t), v21(t), t)
)

dt ≤ 0. (8.19)
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From Step 3, we can replace in the integrand all the positions by (x1 + x2)/2, and v12,
v21 by (v1 + v2)/2, up to a small error. Collecting the various error terms, and taking into
account the smallness of τ , one obtains (dropping the t variable again)

1
2τ

∫ t0+τ

t0−τ

{
L
(x1 + x2

2
, v1

)
+ L

(x1 + x2

2
, v2

)
− 2L

(x1 + x2

2
,
v1 + v2

2

)}
dt

≤ C
( |X1 − X2|1+α

τ1+α
+ τ |V1 − V2|1+α

)
. (8.20)

On the other hand, from the convexity condition (iii) and (8.14),

1
2τ

∫ t0+τ

t0−τ

{
L
(x1 + x2

2
, v1

)
+ L

(x1 + x2

2
, v2

)
− 2L

(x1 + x2

2
,
x1 + x2

2

)}
dt (8.21)

≥ K
1
2τ

∫ t0+τ

t0−τ
|v1 − v2|2+κ dt

≥ K ′
(
|V1 − V2|− Aτ |X1 − X2|

)2+κ
.

If |V1 − V2| ≤ (Aτ + 1)|X1 − X2|, then the proof is finished. Otherwise this means that
|V1−V2|−Aτ |X1 −X2| ≥ |V1 −V2|, and then the combination of (8.19) and (8.21) implies

|V1 − V2|2+κ ≤ C
( |X1 − X2|1+α

τ1+α
+ τ |V1 − V2|1+α

)
.

If |V1 − V2| = 0, then the proof is finished. Otherwise, the conclusion follows by choosing
τ small enough that Cτ |V1 − V2|1+α ≤ (1/2)|V1 − V2|2+κ.

In the particular case when κ = 0 and α = 1, one has

|V1 − V2|2 ≤ C

(
|X1 − X2|2

τ2
+ τ |V1 − V2|2

)
,

and if τ is small enough this implies just

|V1 − V2| ≤ C
|X1 − X2|

τ
. (8.22)

The upper bound on τ depends on the regularity and strict convexity of τ in V, but
also on t0 since τ cannot be greater than min(t0, 1 − t0). This is actually the only way in
which t0 explicitly enters the estimates. So inequality (8.22) concludes the argument. 78

Remark 8.8. It is clear from the proof that one can compute a suitable exponent β,
but also get more precise information upon the dependence of β on L by refining the
smoothness assumptions, say ∇xL is Hölder-α continuous in x, Hölder-δ continuous in v,
etc.

Complement: Ruling out focalization by shortening

This section is about the application of the shortening technique to a classical problem in
Riemannian geometry; it may be skipped at first reading.

Let M be a smooth Riemannian manifold and let L = L(x, v, t) be a C2 Lagrangian on
TM × [0, 1], satisfying the classical assumptions of Definition 7.6, together with ∇2

vL > 0.
Let us assume that there is a well-defined map (t, x0, v0) → Xt(x0, v0), where Xt(x0, v0) is
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the position at time t of a system started from x0 at time 0, with initial velocity v0 and
obeying the Euler–Lagrange equations of motion, given as a differential equation of second
order with Lipschitz dependence.

It is said that there is focalization on another point x′ = Xt′(x0, v0), t′ > 0, if the
differential map dv0Xt′(x0, ·) is singular (not invertible). In words, this means that starting
from x0 it is very difficult to make the curve explore a whole neighborhood of x′ by varying
its initial velocity; instead, trajectories have a tendency to “concentrate” at time t′ along
certain preferred directions around x′.

The reader can test his or her understanding of the method exposed in the previous
section by working out the details of the following

Problem 8.9 (Focalization is impossible before the cut locus). With the same
notation as before, let γ : [0, 1] → M be a minimizing curve starting from some initial
point x0. By using the same strategy of proof as for Mather’s estimates, show that, starting
from x0, focalization is impossible at γ(t∗) if 0 < t∗ < 1. Hint: A possible reasoning is as
follows:

(a) Notice that the restriction of γ to [0, t∗] is the unique minimizing curve on the
time-interval [0, t∗], joining x0 to x∗ = γ(t∗);

(b) Take y close to x∗ and introduce a minimizing curve γ̃ on [0, t∗], joining x0 to y;
show that the initial velocity ṽ0 of γ̃ is close to the initial velocity v0 of γ if y is close
enough to x∗;

(c) Bound the difference between the action of γ and the action of γ̃ by O(d(x∗, y));
(recall that the size of the speeds along γ and γ̃ is bounded by a uniform constant, depending
only of the behavior of L in some compact set around γ)

(d) Construct a path x0 → γ(1) by first going along γ̃ up to time t = t∗ − τ (τ small
enough), then using a shortcut from γ̃(t∗ − τ) to γ(t∗ + τ), finally going along γ up to
time 1. Show that the gain of action is at least of the order of τ |V − Ṽ |2 −O(d(x∗, y)2/τ),
where V = γ̇(t∗) and Ṽ = ˙̃γ(t∗). Deduce that |V − Ṽ | is at most of the order O(d(x∗, y)/τ).

(e) Conclude that |v0 − ṽ0| = O(d(x∗, y)/τ). Use a contradiction argument to deduce
that the differential map dv0Xt(x0, ·) is invertible, and more precisely that its inverse is of
size O((1 − t∗)−1) as a function of t∗.

In the important case when L(x, v, t) = |v|2, what we have proven is a well-known
result in Riemannian geometry; to explain it I shall first recall the notions of cut locus
and focal points.

Let γ be a minimizing geodesic, and let tc be the largest time such that for all t < tc,
γ is minimizing between γ0 and γt. Roughly speaking, γ(tc) is the first point along the
geodesic ceases to be minimizing; γ may or may not be minimizing between γ(0) and γ(tc),
but it is certainly not minimizing between γ(0) and γ(tc+ε), for any ε > 0. Then the point
γ(tc) is said to be a cut point of γ0 along γ. When the initial position x0 of the geodesic
is fixed and the geodesic varies, the set of all cut points constitutes the cut locus of x0.

Next, two points x0 and x′ are said to be focal (or conjugate) if x′ can be written
as expx0

(t′v0), where the differential dv0 expx0
(t′·) is not invertible. As before, this means

that x′ can be obtained from x0 by a geodesic γ with γ̇(0) = v0, such that it is difficult to
explore a whole neighborhood of x′ by slightly changing the initial velocity v0.

With these notions, the main result of Problem 8.9 can be summarized as follows:
Focalization never occurs before the cut locus. It can occur either at the cut locus, or after.
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Example 8.10. Consider the sphere S2. Let N be the North Pole, then it has only one
cut point, which is also its focal point, namely the South Pole S. Now fix a geodesic γ
going from γ(0) = N to γ(1) = S, and deform your sphere out of a neighborhood of γ[0, 1],
so as to dig a shortcut that allows to go from N to γ(1/2) in a more efficient way than
using γ. This will create a new cut point along γ, and S will not be a cut point along γ
any longer (it might still be a cut point along some other geodesic). On the other hand, S
will still be the only focal point along γ.

Remark 8.11. If x and y are not conjugate, and joined by a unique minimizing geodesic
γ, then it is easy to show that there is a neighborhood U of y such that any z in U
is also joined to x by a unique minimizing geodesic. Indeed, any minimizing geodesic
has to be close to γ, therefore its initial velocity should be close to γ̇0; and by the local
inversion theorem, there are neighborhoods W0 of γ̇0 and U of y such that there is a unique
correspondence between the initial velocity γ̇ ∈ W0 of a minimizing curve starting from x,
and the final point γ(1) ∈ U . This shows that the cut locus of a point x can be separated
into two categories:

(a) those points y for which there are at least two distinct minimizing geodesics going
from x to y;

(b) those points y for which there is a unique minimizing geodesic, but which are focal
points of x.

Introduction to Mather’s theory

In this section I shall present an application of Theorem 8.1 to the theory of Lagrangian
dynamical systems. This is mainly to give the reader an idea of Mather’s motivations,
and to let him or her better understand the link between optimal transport and Mather’s
theory. These results will not play any role in the sequel of the notes.

Theorem 8.12 (Lipschitz graph Theorem). Let M be a compact Riemannian man-
ifold, let L = L(x, v, t) be a Lagrangian function on TM × R, and let T > 0, such that

(a) L is T -periodic in the t variable, i.e. L(x, v, t + T ) = L(x, v, t);
(b) L is of class C2 in all variables;
(c) ∇2

vL is strictly positive everywhere, and L is superlinear in v.
Define as usual the action by As,t(γ) =

∫ t
s L(γτ , γ̇τ , τ) dτ . Let cs,t be the associated cost

function on M ×M , and Cs,t the corresponding optimal cost functional on P (M)×P (M).
Let µ be a probability measure solving the minimization problem

inf
µ∈P (X )

C0,T (µ, µ), (8.23)

and let (µt)0≤t≤T be a displacement interpolation between µ0 = µ and µT = µ. Extend (µt)
into a T -periodic curve R → P (M) defined for all times. Then

(i) For all t0 < t1, (µt)t0≤t≤t1 still defines a displacement interpolation;
(ii) The optimal transport cost Ct,t+T (µt, µt) is independent of t;
(iii) For any t0 ∈ R, and for any k ∈ N, µt0 is a minimizer for Ct0,t0+kT (µ, µ).

Moreover, there is a random curve (γt)t∈R, such that
(iv) For all t ∈ R, law (γt) = µt;
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(v) For all times t0 < t1, the curve (γt)t0≤t≤t1 is action-minimizing;
(vi) The map γ0 → γ̇0 is well-defined and Lipschitz;

Remark 8.13. Since c0,T is not assumed to be nonnegative, the optimal transport prob-
lem (8.23) is not trivial.

Remark 8.14. If L does not depend on t, then one can apply the previous result for any
T = 2−(, and then use a compactness argument to construct a constant curve (µt)t∈R satis-
fying Properties (i)-(vi) above. In particular µ0 is a stationary measure for the Lagrangian
system.

Before giving its proof, let me explain briefly why Theorem 8.12 is interesting from
the point of view of the dynamics. A trajectory of the dynamical system defined by the
Lagrangian L is a curve γ which is locally action-minimizing; that is, one can cover the
time-interval by small subintervals on which the curve is action-minimizing. It is a classical
problem in mechanics to construct and study periodic trajectories having certain given
properties. Theorem 8.12 does not construct a periodic trajectory, but at least it constructs
a random trajectory γ (or equivalently a probability measure Π on the set of trajectories)
which is periodic on the mean: The law µt of γt satisfies µt+T = µt. This can also be
thought of as a probability measure Π on the set of all possible trajectories of the system.

Of course this in itself is not too striking, since there may be a great deal of invariant
measures for a dynamical system, and some of them are often easy to construct. The
important point in the conclusion of Theorem 8.12 is that the curve γ is not “too random”,
in the sense that the random variable (γ(0), γ̇(0)) takes values in a Lipschitz graph. (If
(γ(0), γ̇(0)) were a deterministic element in TM , this would mean that Π just sees a
single periodic curve. Here we may have an infinite collection of curves, but still it is not
“too large”.)

Another remarkable property of the curves γ is the fact that the minimization property
holds along any time-interval in R, not necessarily small.

Example 8.15. Let M be a compact Riemannian manifold, and L(x, v, t) = |v|2/2−V (x),
where V has a unique maximum x0. Then Mather’s procedure selects the probability
measure δx0 , and the stationary curve γ ≡ x0.

It is a natural question whether we can construct more “interesting” measures and
curves by Mather’s procedure. A way to do so is to change the Lagrangian, for instance by
replacing L(x, v, t) by Lω := L(x, v, t) + ω(x) · v, where ω is a vector field on M . Indeed,

- If ω is closed (as a differential form), that is if ∇ω is a symmetric operator, then Lω

and L have the same Euler–Lagrange equations, so the associated dynamical system is the
same;

- If ω is exact, that is if ω = ∇f for some function f : M → R, then Lω and L have
the same minimizing curves.

As a consequence, one may explore various parts of the dynamics by letting ω vary over
the finite-dimensional group obtained by taking the quotient of the closed forms by the
exact forms. In particular, one can make sure that the expected mean “rotation number”
E 1

T

∫ T
0 γ̇ dt takes nontrivial values as ω varies.

Proof of Theorem 8.12. First, C0,T (µ, µ) is clearly a lower semi-continuous function of µ,
and it is bounded below by T (inf L) > −∞, so the minimization problem (8.23) does
admit a solution.
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So define µ0 = µT = µ, then define µt by displacement interpolation for 0 < t < T ,
and extend the result by periodicity.

Let k ∈ N be given and let µ̃ be a minimizer for the minimization problem

inf
µ∈P (M)

C0,kT (µ, µ).

We shall see later that actually µ is a solution of this problem. For the moment, let (µ̃t)t∈R
be obtained first by taking a displacement interpolation between µ̃0 = µ̃ and µ̃kT = µ̃;
and then by extending the result by kT -periodicity.

On one hand,

C0,kT (µ, µ) = C0,kT (µ0, µkT ) ≤
k−1∑

j=0

CjT, (j+1)T (µjT , µ(j+1)T ) = k C0,1(µ, µ). (8.24)

On the other hand, by definition of µ,

C0,T (µ, µ) ≤ C0,T
(1

k

k−1∑

j=0

µ̃jT ,
1
k

k−1∑

j=0

µ̃jT

)
= C0,T

(1
k

k−1∑

j=0

µ̃jT ,
1
k

k−1∑

j=0

µ̃(j+1)T

)
. (8.25)

Since C0,T (µ, ν) is a convex function of (µ, ν) (Theorem 4.7),

C0,T
(1

k

k−1∑

j=0

µ̃jT ,
1
k

k−1∑

j=0

µ̃(j+1)T

)
≤ 1

k

k−1∑

j=0

CjT, (j+1)T (µ̃jT , µ̃(j+1)T )

=
1
k
C0,kT (µ̃0, µ̃kT ), (8.26)

where the last equality is a consequence of Property (ii) in Theorem 7.19. Inequalities (8.25)
and (8.26) together imply

C0,1(µ, µ) ≤ 1
k

C0,kT (µ̃0, µ̃kT ) =
1
k

C0,kT (µ̃, µ̃).

Since the reverse inequality holds true by (8.24), in fact all the inequalities in (8.24), (8.25)
and (8.26) have to be equalities. In particular,

C0,kT (µ0, µkT ) =
k−1∑

j=0

CjT, (j+1)T (µjT , µ(j+1)T ). (8.27)

Let us now check that the identity

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) = Ct1,t3(µt1 , µt3) (8.28)

holds true for any three intermediate times t1 < t2 < t3. By periodicity, it suffices to do
this for t1 ≥ 0. If 0 ≤ t1 < t2 < t3 ≤ T , then (8.28) is true by the property of displacement
interpolation. If jT ≤ t1 < t2 < t3 ≤ (j+1)T , this is also true because of the T -periodicity.
In the remaining cases, we may choose k large enough that t3 ≤ kT . Then

C0,kT (µ0, µkT ) ≤ C0,t1(µ0, µt1) + Ct1,t3(µt1 , µt3) + Ct3,kT (µt3 , µkT )

≤ C0,t1(µ0, µt1) + Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) + Ct3,kT (µt3 , µkT )

≤
∑

Csj,sj+1(µsj , µsj+1), (8.29)
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where the times sj are obtained by ordering of {0, T, 2T, . . . , kT} ∪ {t1, t2, t3}. On each
time-interval [5T, (5 + 1)T ] we know that (µt) is a displacement interpolation, so we can
apply Theorem 7.19(ii), and as a result bound the right-hand side of (8.29) by

∑

(

C(T,((+1)T (µ(T , µ((+1)T ). (8.30)

(Consider for instance the particular case when 0 < t1 < t2 < T < t3 < 2T ; then one can
write C0,t1 + Ct1,t2 + Ct2,T = C0,T , and also CT,t3 + Ct3,2T = CT,2T . So C0,t1 + Ct1,t2 +
Ct2,T + CT,t3 + Ct3,2T = C0,T + CT,2T .)

But (8.30) is just C0,kT (µ0, µkT ), as shown in (8.27). So there is in fact equality in all
these inequalities, and (8.28) follows. Then by Theorem 7.19, (µt) defines a displacement
interpolation between any two of its intermediate values. This proves (i). At this stage we
have also proven (iii) in the case when t0 = 0.

Now for any t ∈ R, one has, by (8.28) and the T -periodicity,

C0,T (µ0, µT ) = C0,t(µ0, µt) + Ct,T (µt, µT ) = Ct,T (µt, µT ) + CT,t+T (µT , µt+T )

= Ct,t+T (µt, µt+T ),

which proves (ii).
Next, let t0 be given, and repeat the same whole procedure with the initial time 0

replaced by t0: That is, introduce a minimizer µ̃ for Ct0,t0+T (µ, µ), etc. This gives a curve
(µ̃t)t∈R with the property that Ct,t+T (µ̃t, µ̃t) = C0,T (µ̃0, µ̃0). It follows that

Ct0,t0+T (µt0 , µt0+T ) = C0,T (µ, µ) ≤ C0,T (µ̃0, µ̃0)

= Ct0,t0+T (µ̃t0 , µ̃t0) = Ct0,t0+T (µ̃, µ̃) ≤ Ct0,t0+T (µt0 , µt0).

So there is equality everywhere, and µt0 is indeed a minimizer for Ct0,t0+T (µ, µ). This
proves the remaining part of (iii).

Next, let (γt)0≤t≤T be a random minimizing curve on [0, T ], such that law (γt) = µt,
as in Theorem 7.19. For each k, define (γk

t )kT≤t≤(k+1)T as a copy of (γt)0≤t≤T . Since µt is
T -periodic, law (γk

kT ) = law (γk
(k+1)T ) = µ0, for all k. So we can glue together these random

curves, just as in the proof of Theorem 7.27, and get random curves (γt)t∈R such that
law (γt) = µt for all t ∈ R, and each curve (γt)kT≤t≤(k+1)T is action-minimizing. Property
(iv) is then satisfied by construction.

Property (v) can be proven by a principle which we already used in the proof of The-
orem 7.19. Let us check for instance that γ is minimizing on [0, 2T ]. For this one has to
show that (almost surely)

ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3) = ct1,t3(γt1 , γt3), (8.31)

for any choice of intermediate times t1 < t2 < t3 in [0, 2T ]. Assume, without real loss of
generality, that 0 < t1 < t2 < T < t3 < 2T . Then

Ct1,t3(µt1 , µt3) ≤ E ct1,t3(γt1 , γt3)
≤ E

[
ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3)

]

≤ E ct1,t2(γt1 , γt2) + E ct2,T (γt2 , γT ) + E cT,t3(γT , γt3)

= Ct1,t2(µt1 , µt2) + Ct1,t2(µt1 , µt2) + Ct2,T (µt2 , µT ) + CT,t3(µT , µt3)
= Ct1,t3(µt1 , µt3),
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where the property of optimality of the path (µt)t∈R was used in the last step. So all these
inequalities are equalities, and in particular

E
[
ct1,t3(γt1 , γt3) − ct1,t2(γt1 , γt2) − ct2,t3(γt2 , γt3)

]
= 0.

Since the integrand is nonpositive, it has to vanish almost surely. So (8.31) is satisfied
almost surely, for given t1, t2, t3. Then the same inequality holds true almost surely for all
choices of rational times t1, t2, t3; so by continuity of γ it holds true almost surely for all
times. This concludes the proof of (v).

From general principles of Lagrangian mechanics, there is a uniform bound on the
speeds of all the curves (γt)−T≤t≤T (this is because γ−T and γT lie in a compact set). So
for any given ε > 0 we can find δ such that 0 ≤ t ≤ δ implies d(γ0, γt) ≤ ε. Then if ε is
small enough the map (γ0, γt) → (γ0, γ̇(0)) is Lipschitz. (This is another well-known fact in
Lagrangian mechanics.) But from Theorem 8.5, applied with the intermediate time t0 = 0
on the time-interval [−T, T ], we know that γ0 "−→ γt is well-defined (almost surely) and
Lipschitz continuous. It follows that γ0 → γ̇0 is also Lipschitz continuous. This concludes
the proof of Theorem 8.12. 78

The story does not end up here. First, there is a powerful dual point of view to Mather’s
theory, based on solutions to the dual Kantorovich problem; this is a maximization problem
defined by

sup
∫

(φ− ψ) dµ, (8.32)

where the supremum is over all probability measures µ on M , and all pairs of Lipschitz
functions (ψ,φ) such that

∀(x, y) ∈ M × M, φ(y) − ψ(x) ≤ c0,T (x, y).

Next, Theorem 8.12 suggests that some objects related to optimal transport might
be interesting to describe a Lagrangian system. This is indeed the case, and the notions
defined below are useful and well-known in the theory of dynamical systems:

Definition 8.16 (Useful transport quantities describing a Lagrangian system).
For each displacement interpolation (µt)t≥0 as in Theorem 8.12, define

(i) the Mather critical value as the opposite of the mean optimal transport cost:

−M = c :=
1
T

C0,T (µ, µ) =
1

kT
C0,kT (µ, µ); (8.33)

(ii) the Mather set as the closure of the union of the supports of all measures V#µ0,
where (µt)t≥0 is a displacement interpolation as in Theorem 8.12 and V is the Lipschitz
map γ0 → (γ0, γ̇0);

(iii) the Aubry set as the set of all (γ0, γ̇0) such that there exists a solution (φ,ψ) of
the dual problem (8.32) such that H0,T

+ ψ(γ1) − ψ(γ0) = c0,T (γ0, γ1).

Up to the change of variables (γ0, γ̇0) → (γ0, γ1), the Mather and Aubry sets are just
the same as Γmin and Γmax appearing in the bibliographical notes of Chapter 5.

Example 8.17. Take a one-dimensional pendulum. For small values of the total energy,
the pendulum is confined in a periodic motion, making just small oscillations, going back
and forth around its equilibrium position and describing an arc of circle in physical space.
For large values, it also has a periodic motion but now it goes always in the same direction,
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and describes a complete circle (“revolution”) in physical space. But if the system is given
just the right amount of energy, it will describe a trajectory that is intermediate between
these two regimes, and consists in going from the vertical upward position (at time −∞)
to the vertical upward position again (at time +∞) after exploring all intermediate angles.
There are two such trajectories (one clockwise, and one counterclockwise), which can be
called revolutions of infinite period; and they are globally action-minimizing. When ξ = 0,
the solution of the Mather problem is just the Dirac point on the unstable equilibrium
x0, and the Mather and Aubry sets Γ are reduced to {(x0, x0)}. When ξ varies in R, this
remains the same until ξ reaches a certain critical value; above that value, the Mather
measures are supported by revolutions. At the critical value, the Mather and Aubry sets
differ: the Aubry set (viewed in the variables (x, v)) is the union of the two revolutions of
infinite period.

Fig. 8.5. On the left figure, the pendulum oscillates with little energy between two extreme positions;
its trajectory is an arc of circle which is described clockwise, then counterclockwise, then clockwise again,
etc. On the right figure, the pendulum has much more energy and draws complete circles again and again,
either clockwise or counterclockwise.

The dual point of view in Mather’s theory, and the notion of Aubry set, are intimately
related to the so-called weak KAM theory, in which stationary solutions of Hamilton–
Jacobi equations play a central role. The next theorem partly explains the link between
the two theories.

Theorem 8.18 (Mather’s theory and stationary solutions of Hamilton–Jacobi
equations). With the same notation as in Theorem 8.12, assume that the Lagrangian L
does not depend on t, and let ψ be a Lipschitz function on M , such that H0,t

+ ψ = ψ + ct
for all times t ≥ 0; that is, ψ is invariant by the forward Hamilton–Jacobi semigroup,
except for the addition of a constant which varies linearly in time. Then, necessarily c = c,
and the pair (ψ,H0,T

+ ψ) = (ψ,ψ + cT ) is optimal in the dual Kantorovich problem with
measures (µ, µ) and cost function c0,T .

Remark 8.19. The equation H0,1
+ ψ = ψ + ct is a way to reformulate the stationary

Hamilton–Jacobi equation H(x,∇ψ(x)) + c = 0. Yet another reformulation would be
obtained by changing the forward Hamilton–Jacobi for the backward one. Theorem 8.18
does not guarantee the existence of such stationary solutions, it just states that if such so-
lutions exist, then the value of the constant c is uniquely determined and can be related to
a Monge–Kantorovich problem. In weak KAM theory, one then establishes the existence of
these solutions by independent means; see the references suggested in the bibliographical
notes for much more information.

Proof of Theorem 8.18. To fix the ideas, let us impose T = 1. Let ψ be such that H0,1
+ ψ =

ψ + c, and let µ be any probability measure on M ; then
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∫
(H0,1

+ ψ) dµ −
∫

ψ dµ =
∫

c dµ = c.

It follows from the easy part of the Kantorovich duality that C0,1(µ, µ) ≥ c. By taking the
infimum over all µ ∈ P (M), we conclude that c ≥ c.

To prove the reverse inequality, it suffices to construct a particular probability measure
µ such that C0,1(µ, µ) ≤ c. The idea is to look for µ as a limit of probability measures
distributed uniformly over some well-chosen long minimizing trajectories. Before starting
this construction, we first remark that since M is compact, there is a uniform bound C
on L(γ(t), γ̇(t)), for all action-minimizing curves γ : [0, 1] → M ; and since L is time-
independent, this statement trivially extends to all action-minimizing curves defined on
time-intervals [t0, t1] with |t0 − t1| ≥ 1. Also ψ is uniformly bounded on M .

Let now x be an arbitrary point in M ; for any T > 0 we have, by definition of the
forward Hamilton–Jacobi semigroup,

(H−T,0
+ ψ)(x) = inf

{
ψ(γ(−T )) +

∫ 0

−T
L(γ(s), γ̇(s)) ds; γ(0) = x

}
,

where the infimum is over all action-minimizing curves γ : [−T, 0] → M ending at x.
(The advantage to work with negative times is to fix one of the endpoints; in the present
context where M is compact this is nonessential, but it would become important if M
were noncompact.) By compactness, there is a minimizing curve γ = γ(T ); then, by the
definition of γ(T ) and the stationarity of ψ,

1
T

∫ 0

−T
L
(
γ(T )(s), γ̇(T )(s)

)
ds =

1
T

[
(H−T,0

+ ψ)(x) − ψ(γ(T )(−T ))
]

=
1
T

(
ψ(x) + cT − ψ(γ(T )(−T ))

)

= c + O

(
1
T

)
.

In the sequel, I shall write just γ for γ(T+1). Of course the estimate above remains
unchanged upon replacement of T by T + 1, so

1
T

∫ 0

−(T+1)
L(γ(s), γ̇(s)) ds = c + O

(
1
T

)
.

Then define

µT :=
1
T

∫ −1

−(T+1)
δγ(s) ds; νT :=

1
T

∫ 0

−T
δγ(s) ds,

and θ : γ(s) → γ(s + 1). It is clear that θ#µT = νT ; moreover,

c0,1(γ(s), θ(γ(s))) = c0,1(γ(s), γ(s + 1)) =
∫ s+1

s
L(γ(u), γ̇(u)) du.

Thus

C0,1(µT , νT ) ≤ 1
T

∫ −1

−(T+1)
c0,1(γ(s), θ(γ(s))) ds

=
1
T

∫ −1

−(T+1)

(∫ s+1

s
L(γ(u), γ̇(u)) du

)
ds

=
1
T

∫ 0

−(T+1)
L(γ(u), γ̇(u)) a(u) du, (8.34)
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where

a(u) =
∫

1s≤u≤s+1 ds =






1 if −T ≤ u ≤ −1;
−u if u ≥ −1;
u + T + 1 if u ≤ −T .

Replacing a by 1 in the integrand of (8.34) involves modifying the integral on a set of
measure at most 2; so

C0,1(µT , νT ) ≤ 1
T

∫ 0

−(T+1)
L(γ(u), γ̇(u)) du + O

(
1
T

)
= c + O

(
1
T

)
. (8.35)

Since P (M) is compact, the family (µT )T∈N converges, up to extraction of a subse-
quence, to some probability measure µ. Then (up to extraction of the same subsequence)
νT also converges to µ, since

‖µT − νT ‖TV =
1
T

∥∥∥
∫ −T

−(T+1)
δγ(s) ds +

∫ 0

−1
δγ(s) ds

∥∥∥
TV

≤ 2
T

.

Then from (8.35) and the lower semi-continuity of the optimal transport cost,

C0,1(µ, µ) ≤ lim inf
T→∞

C0,1(µT , νT ) ≤ c.

This concludes the proof. 78

The next exercise may be an occasion to manipulate the concepts introduced in this
section.

Exercise 8.20. With the same assumptions as in Theorem 8.12, assume that L is sym-
metric in v; that is, L(x,−v, t) = L(x, v, t). Show that c0,T (x, y) = c0,T (y, x). Take an
optimal measure µ for the minimization problem (8.23), and let π be an associated opti-
mal transference plan. By gluing together π and π̌ (obtained by exchanging the variables
x and y), construct an optimal transference plan for the problem (8.23) with T replaced
by 2T , such that each point x stays in place. Deduce that the curves γ are 2T -periodic.
Show that c0,2T (x, x) = C0,2T (µ, µ), and deduce that c0,T (x, y) is π-almost surely constant.
Construct ψ such that H0,2T

+ ψ = ψ + 2cT , µ-almost surely. Next assume that L does not
depend on t, and use a compactness argument to construct a ψ and a stationary measure
µ, such that H0,t

+ ψ = ψ + ct, for all t ≥ 0, µ-almost surely. Note that Theorem 8.18 re-
inforces this result in two ways: It does not assume the symmetry of L (which is a huge
simplification), and the equation H0,t

+ ψ = ψ + ct does not hold just µ-almost surely, but
everywhere in M .

Possible extensions of Mather’s estimates

As noticed in Example 8.4, it would be desirable to have a sharper version of Theorem 8.1
which would contain as a special case the correct exponents for the Lagrangian function
L(x, v, t) = |v|1+α, 0 < α < 1.

But even for a “uniformly convex” Lagrangian there are several extensions of Theo-
rem 8.1 which would be of interest, such as (a) getting rid of the compactness assumption;
and (b) getting rid of the smoothness assumptions. I shall discuss both problems in the
most typical case L(x, v, t) = |v|2, i.e. c(x, y) = d(x, y)2.



140 8 The Monge–Mather shortening principle

Intuitively, Mather’s estimates are related to the behavior of geodesics (they should not
diverge too fast), and to the convexity properties of the square distance function d2(x0, ·).
Both features are well captured by lower bounds on the sectional curvature of the
manifold. There is by chance a generalized notion of sectional curvature bounds, due to
Alexandrov, which makes sense in a general metric space, without any smoothness; metric
spaces which satisfy these bounds are called Alexandrov spaces. (This notion will be
explained in more detail in Chapter 26.) In such spaces, one could hope to solve problems
(a) and (b) at the same time. Although the proofs in the present chapter strongly rely on
smoothness, I would be ready to believe in the following statement (which might be not
so difficult to prove):

Open Problem 8.21. Let (X , d) be an Alexandrov space with curvature bounded below by
K ∈ R, and let x1, x2, y1, y2 be four points in X such that

d(x1, y1)2 + d(x2, y2)2 ≤ d(x1, y2)2 + d(x2, y1)2.

Let further γ1 and γ2 be two constant-speed geodesics respectively joining x1 to y1 and x2

to y2. Then, for any t0 ∈ (0, 1), there is a constant Ct0 , depending only on K and t0, and
maybe on an upper bound on all the distances involved, such that

sup
0≤t≤1

d
(
γ1(t), γ2(t)

)
≤ Ct0 d

(
γ1(t0), γ2(t0)

)
.

To conclude this discussion, I shall mention a much rougher “shortening lemma”, which
has the advantage to hold true in general metric spaces, even without curvature bounds. In
such a situation, in general there may be branching geodesics, so a bound on the distance
at one intermediate time is clearly not enough to control the distance between the positions
along the whole geodesic curves. One cannot hope either to control the distance between
the velocities of these curves, since the velocities might not be well-defined. On the other
hand, we may take advantage of the property of preservation of speed along the minimizing
curves, since this remains true even in a nonsmooth context. The next theorem exploits
this to show that if geodesics in a displacement interpolation pass nearby each other at
some intermediate time, then their lengths have to be approximately equal.

Theorem 8.22. Let (X , d) be a metric space, and let γ1, γ2 be two constant-speed, mini-
mizing geodesics such that

d
(
γ1(0), γ1(1)

)2 + d
(
γ2(0), γ2(1)

)2 ≤ d
(
γ1(0), γ2(1)

)2 + d
(
γ2(0), γ1(1)

)2
.

Let L1 and L2 stand for the respective lengths of γ1 and γ2, and let D be a bound on the
diameter of (γ1 ∪ γ2)([0, 1]). Then

|L1 − L2| ≤
C
√

D√
t0(1 − t0)

√
d
(
γ1(t0), γ2(t0)

)
,

for some numeric constant C.

Proof. Write d12 = d(x1, y2), d21 = d(x2, y1), X1 = γ1(t0), X2 = γ2(t0). From the mini-
mizing assumption, the triangular inequality and explicit calculations,

0 ≤ d2
12 + d2

21 − L2
1 − L2

2

≤
(
t0 L1 + d(X1,X2) + (1 − t0)L2

)2
+
(
t0 L2 + d(X1,X2) + (1 − t0)L1

)2
− L2

1 − L2
2

= 2 d(X1,X2)
(
L1 + L2 + d(X1,X2)

)
− 2 t0(1 − t0) (L1 − L2)2.
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As a consequence,

|L1 − L2| ≤

√
L1 + L2 + d(X1,X2)

t0(1 − t0)
√

d(X1,X2),

as desired. 78

Appendix: Lipschitz estimates for power cost functions

The goal of this Appendix is to prove the following shortening lemma for the cost function
c(x, y) = |x − y|1+α in Euclidean space.

Theorem 8.23 (Shortening lemma for power cost functions). Let α ∈ (0, 1), and
let x1, y1, x2, y2 be four points in Rn, such that

|x1 − y1|1+α + |x2 − y2|1+α ≤ |x1 − y2|1+α + |x2 − y1|1+α. (8.36)

Let further
γ1(t) = (1 − t)x1 + t y1, γ2(t) = (1 − t)x2 + t y2.

Then, for all t0 ∈ (0, 1) there is a constant K = K(α, t0) > 0 such that

|γ1(t0) − γ2(t0)| ≥ K sup
0≤t≤1

|γ1(t) − γ2(t)|.

Remark 8.24. The proof below is not constructive, so I won’t have any quantitative
information on the best constant K(α, t). It is natural to think that for each fixed t, the
constant K(α, t) (which only depends on α) will go to 0 as α ↓ 0. When α = 0, the
conclusion of the Proposition is false: Just think of the case when x1, y1, x2, y2 are aligned.
But this is the only case where the conclusion fails, so it might be that a modified statement
still holds true.

Proof of Theorem 8.23. First note that it suffices to work in the affine space generated by
x1, y1, x2, y2, which is of dimension at most 3; hence all the constants will be independent
of the dimension n. For notational simplicity, I shall assume that t0 = 1/2, which has no
important influence on the computations. Let X1 := γ1(1/2), X2 := γ2(1/2). It is sufficient
to show that

|x1 − x2| + |y1 − y2| ≤ C |X1 − X2|

for some constant C, independent of x1, x2, y1, y2.
Step 1: Reduction to a compact problem by invariance. Exchanging the roles

of x and y, we might assume that |x2 − y2| ≤ |x1 − y1|, and then by translation invariance
that x1 = 0, by homogeneity that |x1 − y1| = 1 (treat separately the trivial case x1 = y1),
and by rotation invariance that y1 = e is a fixed unit vector.

Let R := |x2|, then |y2 − x2| ≤ 1 implies that |X2| ≥ R − 1/2, and since |X1| ≤ 1/2, it
follows that |X1 −X2| ≥ R − 1. Similarly, |x1 − x2| ≤ R + 1 and |y1 − y2| ≤ R + 2. So the
conclusion is obvious if R ≥ 2. Otherwise, |x2| and |y2| lie in the ball B3(0).

Step 2: Reduction to a perturbation problem by compactness. For any positive
integer k, let (x(k)

2 , y(k)
2 ) be such that (|x1 − x2| + |y1 − y2|)/|X1 − X2| is minimized by

(x1, y1, x
(k)
2 , y(k)

2 ) under the constraint |X1 − X2| ≥ k−1.
By compactness, such a configuration does exist, and the value Ik of the infimum goes

down with k, and converges to
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I := inf
(
|x1 − x2| + |y1 − y2|

|X1 − X2|

)
, (8.37)

where the infimum is taken over all configurations such that X1 3= X2. However, from
the strict convexity of |x|1+α it follows that inequality (8.36) prevents X1 = X2, unless
(x1, y1) = (x2, y2), in which case there is nothing to prove. So it is really sufficient to show
that I > 0.

Since the sequence (x(k)
2 , y(k)

2 ) takes values in a compact set, there is a subsequence
thereof (still denoted (x(k)

2 , y(k)
2 )) which converges to some (x(∞)

2 , y(∞)
2 ). By continuity,

condition (8.36) holds true with (x2, y2) = (x(∞)
2 , y(∞)

2 ). If one has (with obvious nota-
tion) |X1 −X(∞)

2 | > 0, then the configuration (x1, y1, x
(∞)
2 , y(∞)

2 ) achieves the minimum I
in (8.37), and that minimum is positive. So the only case that remains to treat is when
X(∞)

2 = X1. Then, by strict convexity, condition (8.36) imposes x(∞)
2 = x1, y(∞)

2 = y1.
Equivalently, x(k)

2 converges to x1, and y(k)
2 to y1. All this shows that it suffices to treat

the case when x2 is very close to x1 and y2 is very close to y1.

Step 3: Expansions. Now let

x2 = x1 + δx, y2 = y1 + δy, (8.38)

where δx and δy are vectors of small norm (recall that x1 − y1 has unit norm). Of course

X1 − X2 =
δx + δy

2
, x1 − x2 = δx, y1 − y2 = δy;

so to conclude the proof it is sufficient to show that
∣∣∣∣
δx + δy

2

∣∣∣∣ ≥ K(|δx| + |δy|), (8.39)

as soon as |δx| and |δy| are small enough, and (8.36) is satisfied.
By using the formulas |a + b|2 = |a|2 + 2〈a, b〉 + |b|2 and

(1 + ε)
1+α

2 = 1 +
(1 + α)

2
ε − (1 + α)(1 − α)

8
ε2 + O(ε3),

one easily deduces from (8.36) that

|δx − δy|2 − |δx|2 − |δy|2 ≤ (1 − α)
[
〈δx − δy, e〉2 − 〈δx, e〉2 − 〈δy, e〉2

]
+ O

(
|δx|3 + |δy|3

)
.

This can be rewritten

〈δx, δy〉 − (1 − α)〈δx, e〉 〈δy, e〉 ≥ O(|δx|3 + |δy|3).

Consider the new scalar product

〈〈v,w〉〉 := 〈v,w〉 − (1 − α)〈v, e〉 〈w, e〉

(which is indeed a scalar product because α > 0), and denote the associated norm by ‖v‖.
Then the above conclusion can be summarized into

〈〈δx, δy〉〉 ≥ O
(
‖δx‖3 + ‖δy‖3

)
. (8.40)

It follows that
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∥∥∥∥
δx + δy

2

∥∥∥∥
2

=
1
4

(
‖δx‖2 + ‖δy‖2 + 2〈〈δx, δy〉〉

)

≥ 1
4
(‖δx‖2 + ‖δy‖2) + O(‖δx‖3 + ‖δy‖3).

So inequality (8.39) is indeed satisfied if |δx| + |δy| is small enough. 78

Exercise 8.25. Extend this result to the cost function d(x, y)1+α on a Riemannian mani-
fold, when γ and γ̃ stay within a compact set. Hints: This is a difficult exercise, only for a
reader that feels very comfortable. One can use a reasoning similar to that in Step 2 of the
above proof, introducing a sequence (γ(k), γ̃(k)) which is asymptotically “worst possible”,
and converges, up to extraction of a subsequence, to (γ(∞), γ̃(∞)). There are three cases: (i)
γ(∞) and γ̃(∞) are distinct geodesic curves which cross; this is ruled out by Theorem 8.1.
(ii) γ(k) and γ̃(k) converge to a point; then everything becomes local and one can use
the result in Rn, Theorem 8.23. (iii) γ(k) and γ̃(k) converge to a nontrivial geodesic γ(∞);
then these curves can be approximated by infinitesimal perturbations of γ(∞), which are
described by differential equations (Jacobi equation).

Remark 8.26. Of course it would be much better to avoid the compactness arguments
and derive the bounds directly, but I don’t see how to proceed.

Bibliographical Notes

Monge’s observation about the impossibility of crossing appears in his seminal 1781
memoir [276]. The argument is likely to apply whenever the cost function satisfies a triangle
inequality, which is always the case in what Bernard and Buffoni have called the Monge–
Mañé problem [48]. I don’t know of a quantitative version of it.

A very simple argument, due to Brenier, shows how to construct, without any cal-
culations, configurations of points that lead to line-crossing for a quadratic cost [365,
Chapter 10, Problem 1].

There are several possible computations to obtain inequalities of the style of (8.3). The
use of the identity (8.2) is inspired from a result by Figalli, which is described below.

Mather’s shortening lemma was published in 1991 [260, p. 186]; it was the key technical
estimate in the proof of his “Lipschitz Graph Theorem” [260, Theorem 2]. Theorem 8.12
is a variant of Mather’s theorem, appearing (up to minor modifications) in a recent work
by Bernard and Buffoni [47, Theorem C]. The core of the proof is also taken from that
work.

The “weak KAM theory” was developed by several authors, in particular Fathi [?, ?].
The reader can also consult the lecture notes [160], or the review works [330, 169].

The proof of Theorem 8.18, as I wrote it, is a minor variation of an argument shown
to me by Fathi.

From its very beginning, the weak KAM theory has been associated with the theory of
viscosity solutions of Hamilton–Jacobi equations. An early work on the subject (anterior
to Mather’s papers) is an unpublished preprint by P.-L. Lions, Papanicolaou and Varad-
han [243]. Recently, the weak KAM theory has been related to the large-time behavior of
Hamilton–Jacobi equations [?, ?, ?, ?]. Aubry sets are also related with the C1 regularity
of Hamilton–Jacobi equations [?, ?, ?]. See also Evans and Gomes [157, 158, ?, ?] and the
references therein for an alternative point of view.

In this chapter I presented Mather’s problem in terms of trajectories and transport cost.
There is an alternative presentation in terms of invariant measures, following an idea by
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Mañé. In Mañé’s version of the problem, the unknown is a probability measure µ(dx dv) on
the tangent bundle TM ; it is stationary in the sense that ∇x(v µ) = 0 (this is a stationary
kinetic transport equation), and it should minimize the action

∫
L(x, v)µ(dx dv). Then

one can show that µ is actually invariant under the Lagrangian flow defined by L. As
Gomes pointed out to me, this approach has the drawback that the invariance of µ is not
built in from the definition; but it has several nice advantages:

- it makes the graph theorem trivial if L is strictly convex: Indeed, one can always
collapse the measure µ, at each x ∈ M , onto the barycenter ξ(x) =

∫
v µ(dv|x); this

operation preserves the invariance of the measure, and decreases the cost unless µ was
already supported on a graph.

- this is a linear programming problem, with dual problem infϕ supx H(∇xϕ, x); the
value of this infimum is but another way to characterize the effective Hamiltonian H
(see [?]).

- this is a good starting point for some generalizations, see for instance [?].
The “no-crossing” property of optimal trajectories, and the resulting estimates about

absolute continuity of the displacement interpolant, were some of the key technical tools
used by McCann [267] to establish convexity properties of certain functionals along dis-
placement interpolation in Rn for a quadratic cost. Later this was generalized to Rieman-
nian manifolds by Cordero-Erausquin, McCann and Schmuckenschläger [118]; Cordero-
Erausquin [116] also adapted the techniques of the latter paper to treat rather general
convex cost functions in Euclidean space. More recently, Bernard and Buffoni suggested
that the use of Mather’s lemma could simplify and generalize these estimates; this is
the approach which I have implemented in these notes. Bernard and Buffoni themselves
preferred to base their proofs on the theory of Hamilton–Jacobi equations, which is less
elementary.

The use of a restriction property to prove the absolute continuity of the displacement
interpolant without any compactness assumption was inspired by a discussion with Sturm
on a related subject. It was also Sturm who asked me whether Mather’s estimates could
be generalized to Alexandrov spaces with curvature bounded below.

The theorem according to which a Lipschitz map T dilates the n-dimensional Hausdorff
measure by a factor at most ‖T‖n

Lip is an almost immediate consequence of the definitions
of Hausdorff measure, see e.g. [81, Proposition 1.7.8].

Alexandrov spaces are discussed at length in the very pedagogical monograph by
Burago, Burago and Ivanov [81]. Several characterizations of Alexandrov spaces are given
there, and their equivalence is established. For instance, an Alexandrov space has curvature
bounded below by K if the square distance function d(z, ·)2 is “no more convex” than the
square distance function in the model space having constant sectional curvature K. Also
geodesics in an Alexandrov space cannot diverge faster than geodesics in the model space,
in some sense. These properties explain why it is possible to believe that such spaces are a
natural generalized setting for optimal transport. Upper bounds on the sectional curvature,
on the other hand, do not seem to be of any help.

Figalli recently solved the Open Problem 8.21 in the special case K = 0 (nonnegative
curvature), with a very simple and sharp argument. He actually showed that if γ1 and
γ2 are any two minimizing, constant-speed geodesics in an Alexandrov space (X , d) with
nonnegative curvature, and γ1(0) = x1, γ2(0) = x2, γ1(1) = y1, γ2(1) = y2, then

d(γ1(t), γ2(t)) ≥ (1 − t)2 d(x1, x2)2 + t2 d(y1, y2)2

+ t(1 − t)
[
d(x1, y2)2 + d(x2, y1)2 − d(x1, y1)2 − d(x2, y2)2

]
. (8.41)
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The general case where K might be negative seems to be quite more tricky.
Theorem 8.22 takes inspiration from the no-crossing argument in [118]. I don’t know

whether the Hölder-1/2 regularity is optimal, and I don’t know either whether it is possi-
ble/useful to obtain similar estimates for more general cost functions.





9

Solution of the Monge problem, I (Global approach)

In the present chapter and the next one I shall investigate the solvability of the Monge
problem for a Lagrangian cost function. Recall from Theorem 5.25 that it is sufficient to
identify conditions under which the initial measure µ does not see the set of points where
the subdifferential of a c-convex function ψ is multivalued.

Consider a Riemannnian manifold M , and a cost function c(x, y) on M × M , deriving
from a Lagrangian function L(x, v, t) on TM × [0, 1]. Let two probability measures µ0 and
µ1 be given, and let (µt)0≤t≤1 be a displacement interpolation, written as the law of a
random minimizing curve γ at time t.

If the Lagrangian satisfies adequate regularity and convexity properties, Theorem 8.5
shows that the coupling (γ(s), γ(t)) is always deterministic, as soon as 0 < s < 1, however
singular µ0 and µ1 might be. The question whether one can construct a deterministic
coupling of (µ0, µ1) is much more subtle, and cannot be answered without regularity as-
sumptions on µ0. In this chapter, a simple approach of this problem will be attempted,
but only with partial success, since eventually it will work out only for a particular class
of cost functions, including at least the quadratic cost in Euclidean space (arguably the
most important case).

Our main assumption on the cost function c will be the following.

Assumption (C): For any c-convex function ψ and any x ∈ M , the c-subdifferential
∂cψ(x) is pathwise connected.

Example 9.1. Consider the cost function c(x, y) = −x · y in Rn. Let y0 and y1 belong to
∂cψ(x); then, for all z ∈ Rn one has

ψ(x) + y0 · (z − x) ≤ ψ(z); ψ(x) + y1 · (z − x) ≤ ψ(z).

It follows that ψ(x)+yt · (z−x) ≤ ψ(z), where yt := (1− t)y0 + ty1. Thus the line segment
(yt)0≤t≤1 is entirely contained in the subdifferential of ψ at x. The same computation
applies to c(x, y) = |x − y|2/2, or to any cost function of the form a(x) − x · y + b(y).

Actually, there are few examples where Assumption (C) is known to be satisfied. Before
commenting more on that issue, let me illustrate the interest of this assumption by showing
how it can be used.

Theorem 9.2 (Conditions for single-valued subdifferentials). Let M be a smooth
n-dimensional manifold, and c a real-valued cost function, with c bounded below, deriving
from a Lagrangian cost function L(x, v, t) on TM × [0, 1], such that

(i) Assumption (C) is satisfied.
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(ii) The conclusion of Theorem 8.1 (Mather’s shortening lemma), in the form of in-
equality (8.4), holds true for t0 = 1/2 with an exponent β > 1 − (1/n), and a uni-
form constant. More explicitly: Whenever x1, x2, y1, y2 are four points on M satisfying
c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1), and γ1, γ2 are two action-minimizing curves
with γ1(0) = x1, γ1(1) = y1, γ2(0) = x2, γ2(1) = y2, then

sup
0≤t≤1

d
(
γ1(t), γ2(t)

)
≤ C d

(
γ1(1/2), γ2(1/2)

)
. (9.1)

Then, for any c-convex function ψ, there is a set Z ⊂ M of Hausdorff dimension at most
(n−1)/β < n (and therefore of zero n-dimensional measure), such that the c-subdifferential
∂cψ(x) contains at most one element if x /∈ Z.

Proof. Let Z be the set of points x for which ψ(x) < +∞ but ∂cψ(x) is not single-valued;
the problem is to show that Z is of dimension at most (n − 1)/β.

Let x ∈ M with ψ(x) < +∞, and let y ∈ ∂cψ(x). Introduce an action-minimizing curve
γ = γx,y joining x = γ(0) to y = γ(1). I claim that the map

F : γ

(
1
2

)
"−→ x

is well-defined on its domain of definition, which is the union of all γx,y(1/2). (I mean,
m = γ(1/2) determines x unambiguously; there cannot be two different points x for which
γ(1/2) is the same.) Indeed, assume y ∈ ∂cψ(x) and y′ ∈ ∂cψ(x′), with ψ(x) < +∞,
ψ(x′) < +∞, and let γ and γ′ be minimizing geodesics between x and y on one hand, x′

and y′ on the other hand. It follows from the definitions of subdifferential that
{
ψ(x) + c(x, y) ≤ ψ(x′) + c(x′, y)
ψ(x′) + c(x′, y′) ≤ ψ(x) + c(x, y)

Thus
c(x, y) + c(x′, y′) ≤ c(x, y′) + c(x′, y).

Then Theorem 8.1 implies that

d(x, x′) ≤ C d
(
γ
(1
2
)
, γ′

(1
2
))β

.

If follows that m = γ(1/2) determines x = F (m) unambiguously, and even that F is
Hölder-β. (Obviously, this is the same reasoning as in Theorem 8.5.)

Now, cover M by a countable number of open sets in which M is diffeomorphic to a
subset U of Rn, via some diffeomorphism ϕU . In each of these open sets U , consider the
union HU of all hyperplanes passing through a rational point, orthogonal to a unit vector
with rational coordinates. Transport this set back to M thanks to the local diffeomorphism;
now take the union over all the sets U . This gives a set D ⊂ M with the following
properties: (i) It is of dimension n−1; (ii) It meets every nontrivial continuous curve drawn
on M (to see this, write the curve locally in terms of ϕU and note that, by continuity, at
least one of the coordinates of the curve has to become rational at some time).

Next, let x ∈ Z, and let y0, y1 be two distinct elements of ∂cψ(x). By assumption
there is a continuous curve (yt)0≤t≤1 lying entirely in ∂cψ(x). For each t, introduce an
action-minimizing curve (γt(s))0≤s≤1 between x and yt (s here is the time parameter
along the curve). Define mt := γt(1/2). This is a continuous path, nontrivial (otherwise
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γ0(1/2) = γ1(1/2), but two minimizing trajectories starting from x cannot cross in their
middle, otherwise they have to coincide for all times by (9.1)). So there has to be some t
such that yt ∈ D. Moreover, the map F constructed above is constant on D: F (yt) = x
for all t. It follows that x ∈ F (D).

As a conclusion, Z ⊂ F (D). Since D is of Hausdorff dimension n−1 and F is β-Hölder,
it follows that the dimension of F (D) is at most (n − 1)/β. 78

x

m0

m1

y0

y1

Fig. 9.1. Scheme of proof for Proposition 9.2. Here there is a curve (yt)0≤t≤1 lying entirely in ∂cψ(x), and
there is a nontrivial path (mt)0≤t≤1 obtained by taking the midpoint between x and yt. This path has to
meet D; but its image by γ(1/2) → γ(0) is {x}, so x ∈ F (D).

Now come the consequences in terms of Monge transport.

Corollary 9.3 (Solution of the Monge problem, I). Let M be a Riemannian mani-
fold, let c be a cost function on M ×M , with associated cost functional C, and let µ, ν be
two probability measures on M . Assume that

(i) C(µ, ν) < +∞;
(ii) The assumptions of Theorem 9.2 are satisfied;
(iii) µ attributes zero probability to sets of dimension at most (n − 1)/β.

Then, there exists a unique (in law) optimal coupling (x, y) of µ and ν; it is deterministic,
and characterized (among all couplings of (µ, ν)) by the existence of a c-convex function
ψ such that

y ∈ ∂cψ(x) almost surely. (9.2)

Equivalently, there is a unique optimal transport plan π; it is deterministic, and charac-
terized by the existence of a c-convex ψ such that (9.2) holds true π-almost surely.

Proof of Corollary 9.3. The conclusion is obtained by just putting together Theorems 9.2
and 5.25. 78

Now we have solved the Monge problem in an absolutely painless way; but under what
assumptions? It is a frustrating open problem that Assumption (C), simple as it may
seem, is not known to be true for rather general cost functions. In fact, the realization
of this condition seems to involve subtle features of the cost function, and is probably
false in general; see the bibliographical notes for more details. The only case in which we
can conclude, right now, is the cost function c(x, y) = −x · y. For that cost function the
notion of c-convexity reduces to plain convexity (plus lower semi-continuity), and the c-
subdifferential of a convex function ψ is just its usual subdifferential, so it will be denoted
by ∂ψ. Moreover, under an assumption of finite second moments, for the Monge problem
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this cost is just as good as the quadratic Euclidean distance, since |x−y|2 = |x|2−2x·y+|y|2,
and

∫
(|x|2 + |y|2) dπ(x, y) is independent of the choice of π ∈ Π(µ, ν). So at present we

are able to solve the case of the square Euclidean distance under an assumption of finite
second moments. Since this is still one of the most important cases for applications, I shall
state the result as a separate theorem.

Theorem 9.4 (Monge problem for quadratic cost, first result). Let c(x, y) =
|x − y|2 in Rn. Let µ, ν be two probability measures on Rn such that

∫
|x|2 dµ(x) +

∫
|y|2 dν(y) < +∞ (9.3)

and µ does not give mass to sets of dimension at most n− 1. (This is true in particular if
µ is absolutely continuous with respect to the Lebesgue measure.) Then there is a unique
(in law) optimal coupling (x, y) of µ and ν; it is deterministic, and characterized (among
all couplings of (µ, ν)) by the existence of a lower semi-continuous convex function ψ such
that

y ∈ ∂ψ(x) almost surely (9.4)

for some lower semi-continuous convex function ψ. In other words, there is a unique
optimal transference π; it is a Monge transport plan, and it is characterized by the existence
of a lower semi-continuous convex function ψ whose subdifferential contains Sptπ.

Remark 9.5. The assumption that µ does not give mass to sets of dimension at most n−1
is optimal for the existence of a Monge coupling, as can be seen by choosing µ = H1|{0}×[0,1]

(the one-dimensional Hausdorff measure concentrated on the segment {0} × [0, 1] in R2),
and ν = (1/2)H1|{−1}×[0,1]∪{+1}×[0,1]. It is also optimal for the uniqueness, as can be seen
by taking µ = (1/2)H1

{0}×[−1,1] and ν = (1/2)H1
[−1,1]×{0}. In fact, whenever µ, ν ∈ P2(Rn)

are supported on orthogonal subspaces of Rn, then any transference plan is optimal! To see
this, define a convex function ψ by ψ = 0 on Conv(Sptµ), ψ = +∞ elsewhere; then ψ∗ = 0
on Conv(Spt ν), so ∂ψ contains Sptµ × Spt ν, and any transference plan is contained in
∂ψ.

Fig. 9.2. The source measure is drawn in thick line, the target measure in thin line; the cost function is
quadratic. On the left, there is a unique optimal coupling but no optimal Monge coupling. On the right,
there are many optimal couplings, in fact any transference plan is optimal.

In the next chapter, we shall see that Theorem 9.4 can be improved in at least two
ways: The equation (9.4) can be rewritten y = ∇ψ(x); and the assumption (9.3) can be
replaced by the weaker assumption C(µ, ν) < +∞ (finite optimal transport cost).

Bibliographical Notes
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It is classical that the image of a set of Hausdorff dimension d by a Lipschitz map is
contained in a set of Hausdorff dimension at most d: See for instance [156, p. 75]. There is
no difficulty in modifying the proof to show that the image of a set of Hausdorff dimension
d by a Hölder-β map is contained in a set of dimension at most d/β.

The proof of Theorem 9.2 is adapted from a classical argument according to which a
real-valued convex function ψ on Rn has a single-valued subdifferential everywhere out of a
set of dimension at most n−1; see [4]. The key estimate for the proof of the latter theorem
is that (Id + ∂ψ)−1 exists and is Lipschitz; but this can be seen as a very particular case
of the Mather shortening lemma. In the next chapter another line of argumentation for
that differentiability theorem, more local, will be provided.

Assumption (C) is alluded to briefly in a paper by Ma, Trudinger and Wang [250,
Section 7.5]. For cost functions of the form c(x − y), where c is convex on Rn, these
authors suggested that it is related to a certain complicated condition involving fourth-
order derivatives of c, which is useful (and possibly mandatory) for the regularity of c-
convex functions arising in optimal transport. They further conjectured that c(x, y) =
|x − y|p should satisfy Assumption (C) for p ∈ [1, 2]; but they proved that it does not
for p > 2. If it is true that Assumption (C) is satisfied for p ∈ (1, 2), then this can be
combined with Proposition 8.23 to immediately extend Theorem 9.4 to such cost functions,
with obvious changes:

- choose c(x, y) = |x − y|p/p (say), 1 < p < 2;
- replace moments of order 2 by moments of order p;
- replace the equation y ∈ ∂ψ(x) by y ∈ ∂cψ(x), where now ψ is c-convex.
Theorems of unique solvability of the Monge problem for such cost functions were

proven long ago by Gangbo and McCann [179], with a different method.
A condition which is stronger than Assumption (C) is that ∂cψ(x) should be c-

convex [246]. This roughly means the following: The map y → −∇xc(x, y) should be
injective, and if Fx stands for its inverse, then for all y, y′ ∈ ∂cψ(x),

∀t ∈ [0, 1] Fx
(
−(1 − t)∇xc(x, y) − t∇xc(x, y′)

)
∈ ∂cψ(x).

It was recently proved by Loeper [246] that this condition is essentially equivalent to the
condition suggested by Ma, Trudinger and Wang, and also that it is essentially mandatory
to develop a regularity theory for optimal transport. But it seems very unlikely that the
condition of c-convexity of the c-subdifferentials is generic.

Loeper also managed to prove that Assumption (C) is satisfied when c(x, y) is the
squared geodesic distance on the Riemannian sphere. Combining this with Mather’s es-
timates (Theorem 8.1), we can easily adapt the proof of Theorem 9.4 into a theorem of
unique solvability of the Monge problem for the quadratic distance on the sphere, as soon
as µ does not see sets of dimension at most n − 1. Such a theorem was first obtained by
McCann [269], with a completely different argument.

It might still be, that the proof of Theorem 9.3 can be cleverly modified to treat cases
where Assumption (C) is not necessarily satisfied. But so far the scheme of proof only
applies to very specific cases, in contrast with the method that will be presented in the
next chapter.

The paternity of Theorem 9.4 is shared by Brenier [69, 72] on one hand, Rachev and
Rüschendorf [322] on the other hand; it builds upon earlier work by Knott and Smith [229],
who already knew that an optimal coupling lying entirely in the subdifferential of a convex
function would be optimal. Brenier rewrote the result as a beautiful polar factorization
theorem, which is presented in detail in [365, Chapter 3].
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The nonuniqueness statement in Remark 9.5 was formulated by McCann [266]. Related
problems (existence and uniqueness of optimal couplings between measures supported on
polygons) are discussed by Gangbo and McCann [?], in relation with problems of shape
recognition.

Other forms of Theorem 9.4 appear in Rachev and Rüschendorf [306], in particular an
extension to an infinite-dimensional case (Hilbert spaces); the proof is reproduced in [365,
Second Proof of Theorem 2.9]. All these proofs are based on duality; then more direct
proofs, which do not use the Kantorovich duality explicitly, were found by Gangbo [176],
and also Caffarelli [90] (who gives credit to Varadhan for this approach).

A probabilistic approach of Theorem 9.4 was studied by Mikami and Thieullen [?].
The idea is to consider a minimization problem over paths which are not geodesics, but
geodesics perturbed by some noise; then to let the noise vanish. This is related to Nelson’s
approach of quantum mechanics, which I briefly mentioned in the bibliographical notes of
Chapter 7.

McCann [266] extended Theorem 9.4 by removing the assumption of bounded second
moment and even the weaker assumption of finite transport cost: Whenever µ does not
charge sets of dimension n − 1, there exists a unique coupling of (µ, ν) which takes the
form y = ∇Ψ(x), where Ψ is a lower semi-continuous convex function. The tricky part
in this statement is the uniqueness. This theorem will be proven in the next chapter (see
Theorem 10.36 and Remark ??).
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Solution of the Monge problem, II (Local approach)

In the previous chapter, we tried to establish the almost sure single-valuedness of the
c-subdifferential by an argument involving “global” topological properties, such as con-
nectedness. Since this strategy worked out only in certain particular cases, we shall now
explore a different approach, based on local properties of c-convex functions. The idea is
that the global question “Is the c-subdifferential of ψ at x single-valued or not?” might
be much more subtle to attack than the local question “Is the function ψ differentiable at
x or not?” For a large class of cost functions, these questions are in fact equivalent; but
these different formulations suggest different strategies. So in this chapter, the emphasis
will be on tangent vectors and gradients, rather than elements of the c-subdifferential.

A heuristic argument

Let ψ be a c-convex function on a Riemannian manifold M , and φ = ψc. Assume that
y ∈ ∂cψ(x); then, from the definition of c-subdifferential, one has, for all x̃ ∈ M ,

{
φ(y) − ψ(x) = c(x, y)
φ(y) − ψ(x̃) ≤ c(x̃, y).

(10.1)

It follows that
ψ(x) − ψ(x̃) ≤ c(x̃, y) − c(x, y). (10.2)

Now the idea is to see what happens when x̃ → x, along a given direction. So let w be
a tangent vector at x, and consider a path ε → x̃(ε), defined for ε ∈ [0, ε0), with initial
position x and initial velocity w. (For instance, x̃(ε) = expx(εw); or in Rn, just consider
x̃(ε) = x+εw). Assume that ψ and c(·, y) are differentiable at x, divide both sides of (10.2)
by ε > 0 and pass to the limit:

−∇ψ(x) · w ≤ ∇xc(x, y) · w. (10.3)

If then one changes w for −w, the inequality will be reversed. So necessarily

∇ψ(x) + ∇xc(x, y) = 0. (10.4)

If x is given, this is an equation for y. Since our goal is to show that y is determined by x,
then it will for sure help if (10.4) admits at most one solution, and this will obviously be
the case if ∇xc(x, ·) is injective. This property (injectivity of ∇xc(x, ·)) is in fact a classical
condition in the theory of dynamical system, where it is sometimes referred to as a twist
condition.
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Three objections might immediately be raised. First, ψ is an unknown of the problem,
defined by an infimum, so why would it be differentiable? Second, the injectivity of ∇xc as
a function of y seems quite hard to check on concrete examples. Third, even if c is given
in the problem and a priori quite nice, why should it be differentiable at (x, y)? As a very
simple example, consider the square distance function d(x, y)2 on the 1-dimensional circle
S1 = R/(2πZ), identified with [0, 2π):

d(x, y) = min
(
|x − y|, 2π − |x − y|

)
.

Then d(x, y) is not differentiable as a function of x when |y−x| = π, and of course d(x, y)2

is not differentiable either.

x

d(x, 0)

0 π 2π
x

0 π 2π

d(x, 0)2

Fig. 10.1. The distance function d(·, y) on S1, and its square. The upper-pointing singularity is typical.
The square distance is not differentiable when |x − y| = π; still it is superdifferentiable, in a sense that is
explained later.

Similar problems would occur on, say, a compact Riemannian manifold, as soon as there
is no uniqueness of the geodesic joining x to y. For instance, if N and S respectively stand
for the North and South Poles on S2, then d(x, S) fails to be differentiable as a function
of x at x = N .

Of course, for almost all x this happens only for a negligible set of y’s; and the cost
function is differentiable everywhere else, so we might think that this is not a serious
problem. But who tells us that the optimal transport will not try to take each x (or a lot
of them) to a place y such that c(x, y) is not differentiable??

To solve these problems, it will be useful to use some concepts from non-smooth analy-
sis: subdifferentiability, superdifferentiability, approximate differentiability. The short an-
swers to the above problems are that (a) under adequate assumptions on the cost function,
ψ will be differentiable out of a very small set (of codimension at most 1); (b) c will be
superdifferentiable because it derives from a Lagrangian, and subdifferentiable wherever
ψ itself is differentiable; (c) where it exists, ∇xc will be injective because c derives from a
strictly convex Lagrangian.

The next three sections will be devoted to some basic reminders about differentiability
and regularity in a non-smooth context. For the convenience of the non-expert reader,
I shall provide complete proofs of the most basic results about these issues. Conversely,
readers who feel very comfortable with these notions can skip these sections.

Differentiability and approximate differentiability

Let us start with the classical definition of differentiability:

Definition 10.1 (differentiability). Let U ⊂ Rn be an open set. A function f : U → R
is said to be differentiable at x ∈ U if there exists a vector p ∈ Rn such that
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f(z) = f(x) + 〈p, z − x〉 + o(|z − x|).

The vector p is called the gradient of f at x, and denoted by ∇f(x); the map w → 〈p,w〉
is the differential of f at x.

If U is an open set of a smooth Riemannian manifold M , then f : U → R is said to
be differentiable at x if it is so when expressed in a local chart around x; or equivalently if
there is a vector p ∈ TxM such that

f(expw x) = f(x) + 〈p,w〉 + o(d(x, z)).

The vector p is again denoted by ∇f(x).

Differentiability is a pointwise concept, which is not invariant by, say, change of
Lebesgue equivalence class: If f is differentiable or even C∞ everywhere, by changing
it on a dense countable set we may obtain a function which is discontinuous everywhere,
and a fortiori not differentiable. The next notion is more flexible in this respect, since it
allows for modification on a negligible set. It relies on the useful concept of density. Recall
that a measurable set A is said to have density ρ at x if

lim
r→0

vol [A ∩ Br(x)]
vol [Br(x)]

= ρ.

It is a basic result of measure theory that a measurable set has density 1 at almost all of
its points.

Definition 10.2 (approximate differentiability). Let U be an open set of a Rieman-
nian manifold M , and let f : U → R ∪ {±∞} be a measurable function. Then f is said
to be approximately differentiable at x ∈ U if there is a measurable function f̃ : U → R,
differentiable at x, and such that the set {f̃ = f} has density 1 at x; in other words,

lim
r→0

vol
[{

z ∈ Br(x); f(z) = f̃(z)
}]

vol [Br(x)]
= 1.

Then one defines the approximate gradient of f at x by the formula

∇̃f(x) = ∇f̃(x).

Proof that ∇̃f(x) is well-defined. Since this concept is local and invariant by diffeomor-
phism, it is sufficient to treat the case when U is a subset of Rn.

Let f̃1 and f̃2 be two measurable functions on U which are both differentiable at x and
both coincide with f on a set of density 1. The problem is to show that ∇f̃1(x) = ∇f̃2(x).

For each r > 0, let Zr be the set of points in Br(x) where either f(x) 3= f̃1(x) or
f(x) 3= f̃2(x). It is clear that vol [Zr] = o(vol [Br(x)]).

Since f̃1 and f̃2 are continuous at x, one can write

f̃1(x) = lim
r→0

1
vol [Br(x)]

∫
f̃1(z) dz = lim

r→0

1
vol [Br(x) \ Zr]

∫
f̃1(z) dz

= lim
r→0

1
vol [Br(x) \ Zr]

∫
f̃2(z) dz = lim

r→0

1
vol [Br(x)]

∫
f̃2(z) dz = f̃2(x).

So let f̃(x) be the common value of f̃1 and f̃2 at x.
Next, for any z ∈ Zr, one has
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f̃1(z) = f̃(x) +
〈
∇f̃1(x), z − x

〉
+ o(r), f̃2(z) = f̃(x) +

〈
∇f̃2(x), z − x

〉
+ o(r),

so 〈
∇f̃1(x) −∇f̃2(x), z − x

〉
= o(r).

Let w := ∇f̃1(x) −∇f̃2(x); the previous estimate reads

x ∈ Zr =⇒ 〈w, z − x〉 = o(r). (10.5)

If w 3= 0, then the set of z ∈ Br(x) such that 〈w, z − x〉 ≥ r/2 has a measure at least
K vol [Br(x)], for some K > 0. If r is small enough, then vol [Zr] ≤ (K/4)vol [Br(x)] ≤
(K/2)vol [Br(x) \ Zr], so

vol
[{

z ∈ Br(x) \ Zr; 〈w, z − x〉 ≥ r

2

}]
≥ K

2
vol [Br(x) \ Zr].

Then (still for r small enough),
∫

Br(x)\Zr

∣∣〈w, z − x〉
∣∣ dy

vol [Br(x) \ Zr]
≥ Kr

4
,

in contradiction with (10.5). The conclusion is that w = 0, which is what we wanted to
prove. 78

Regularity in a non-smooth world

Regularity is a loose concept about the control of “how fast” a function varies. In the
present section I shall review some notions of regularity which apply to nonsmooth context,
and act as a replacement for, say, C1 or C2 regularity bounds.

Definition 10.3 (Lipschitz continuity). Let U ⊂ Rn be open, and let f : U → R be
given. Then

(i) f is said to be Lipschitz if there exists L < ∞ such that

∀x, z ∈ U, |f(z) − f(x)| ≤ L|z − x|.

(ii) f is said to be locally Lipschitz if, for any x0 ∈ U , there is a neighborhood O of x0

in which f is Lipschitz continuous.
If U is an open subset of a Riemannian manifold M , then f : U → R is said to be

locally Lipschitz if it is so when expressed in local charts; or equivalently if f is Lipschitz
on any compact subset of U , equipped with the geodesic distance on M .

Example 10.4. Obviously, a C1 function is locally Lipschitz, but the converse is not true
(think of f(x) = |x|).

Definition 10.5 (subdifferentiability and superdifferentiability). Let U be an open
set of Rn, and f : U → R a function. Then

(i) f is said to be subdifferentiable at x, with subgradient p, if

f(z) ≥ f(x) +
〈
p, z − x

〉
+ o(|z − x|).

The convex set of all subgradients p at x will be denoted by ∇−f(x).
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(ii) f is said to be uniformly subdifferentiable in U if there is a nondecreasing function
ω : R+ → R+, such that ω(r) = o(r) as r → 0, and

∀x ∈ U ∃p ∈ Rn; f(z) ≥ f(x) +
〈
p, z − x

〉
+ ω(|z − x|).

(iii) f is said to be locally subdifferentiable (or locally uniformly subdifferentiable) in U
if each x0 ∈ U admits a neighborhood on which f is uniformly subdifferentiable.

If U is an open set of a smooth manifold M , and f : U → R is given, then it is said to
be subdifferentiable at some point x, or uniformly subdifferentiable in U , if it is so when
expressed in local charts.

Corresponding notions of superdifferentiability and supergradients are obtained in an
obvious way by just reversing the signs of the inequalities. The convex set of supergradients
for f at x is denoted by ∇+f(x).

Examples 10.6. If f is minimum at x0 ∈ U , then 0 is a subgradient of f at x0, whatever
the regularity of f . If f has a subgradient p at x and g is smooth, then f + g has a
subgradient p +∇g(x) at x. If f is convex in U , then it is (uniformly) subdifferentiable at
every point in U , by the well-known inequality

f(z) ≥ f(x) +
〈
p, z − x

〉
,

which holds true as soon as p ∈ ∂f(x) and [x, y] ⊂ U . If f is the sum of a convex function
and a smooth function, then it is also uniformly subdifferentiable.

It is obvious that differentiability implies both subdifferentiability and superdifferen-
tiability. The converse is true, as shown by the next statement.

Proposition 10.7 (subdifferentiability and superdifferentiability imply differen-
tiability). Let U be an open set of a smooth Riemannian manifold M , and let f : U → R
be a function. Then f is differentiable at x if and only if it is both subdifferentiable and
superdifferentiable there; and then

∇−f(x) = ∇+f(x) = {∇f(x)}.

Proof of Proposition 10.7. The only nontrivial implication is that if f is both subdifferen-
tiable and superdifferentiable, then it is differentiable. Since this statement is local and in-
variant by diffemorphism, let us pretend that U ⊂ Rn. So let p ∈ ∇−f(x) and q ∈ ∇+f(x);
then

f(z) − f(x) ≥
〈
p, z − x

〉
− o(|z − x|);

f(z) − f(x) ≤
〈
q, z − x

〉
+ o(|z − x|).

It follows that 〈p − q, z − x〉 ≤ o(|z − x|), which means

lim
z→x; z '=x

〈
p − q,

z − x

|z − x|

〉
= 0.

Since the unit vector (z − x)/|z − x| can take arbitrary fixed values in the unit sphere as
z → x, it follows that p = q. Then

f(z) − f(x) =
〈
p, z − x

〉
+ o(|z − x|),

which means that f is indeed differentiable at x. This also shows that p = q = ∇f(x), and
the proof is complete. 78
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The next proposition summarizes some of the most important results about the links
between regularity and differentiability:

Theorem 10.8. Let U be an open subset of a smooth Riemannian manifold M , and let
f : U → R be a function. Let n be the dimension of M . Then

(i) If f is continuous, then it is subdifferentiable on a dense subset of U , and also
superdifferentiable on a dense subset of U ;

(ii) If f is locally Lipschitz, then it is differentiable almost everywhere (with respect to
the volume measure);

(iii) If f is locally subdifferentiable (or locally superdifferentiable), then it is differen-
tiable out of a countably (n − 1)-rectifiable set.

Remark 10.9. Statement (ii) is known as Rademacher’s theorem. The conclusion
in Statement (iii) is stronger than differentiability almost everywhere, since a (n − 1)-
rectifiable set has dimension n− 1, and is therefore negligible. In fact, as we shall see very
soon, the local subdifferentiability property is stronger than the local Lipschitz property.
Reminders about the notion of countable rectifiability are provided in the Appendix.

Proof of Theorem 10.8. First we can cover U by a countable collection of small open sets
Uk, each of which is diffeomorphic to an open subset Ok of Rn. Then, since all the concepts
involved are local and invariant under diffeomorphism, we may work in Ok. So in the sequel,
I shall pretend that U is a subset of Rn.

Let us start with the proof of (i). Let f be continuous on U , and let V be an open
subset of U ; the problem is to show that f admits at least one point of subdifferentiability
in V . So let x0 ∈ V , and let r > 0 be so small that B(x0, r) ⊂ V . Let g be defined on B
by g(x) := f(x) + |x − x0|2/2ε. Since f is continuous, g attains its minimum on B. But
g on ∂B it is bounded below by r2/ε − M , where M is an upper bound for |f | on B. If
ε < r2/(2M), then g(x0) ≤ f(x0) ≤ M < r2/ε − M < inf∂B g; so g cannot achieve its
minimum on ∂B, and has to achieve it at some point x1 ∈ B. Then g is subdifferentiable
at x1, and therefore f also. This establishes Statement (i).

The other two statements are more tricky. Let us start the proof of (ii). Let f : U → R
be a Lipschitz function. For v ∈ Rn and x ∈ U , define

Dvf(x) := lim
t→0

[
f(x + tv) − f(x)

t

]
, (10.6)

provided that this limit exists. The problem is to show that for almost all x, there is a vector
p(x) such that Dvf(x) = 〈p(x), v〉 and the limit in (10.6) is uniform in, say, v ∈ Sn−1.
Since the functions [f(x + tv)− f(x)]/t are uniformly Lipschitz in v, it is actually enough
to prove the pointwise convergence (that is, the mere existence of Dvf(x)), and then the
limit will be automatically uniform. So the goal is to show that for almost all x, the limit
Dvf(x) exists for all v, and is linear in v.

It is easily checked that
(a) Dvf(x) is homogeneous in v: Dtvf(x) = t Dvf(x);
(b) Dvf(x) is a Lipschitz function of v on its domain: in fact, |Dvf(x) − Dwf(x)| ≤

L |v − w|, where L = ‖f‖Lip;
(c) If Dwf(x) → 5 as w → v, then Dvf(x) = 5; this comes from the estimate

sup
t

∣∣∣∣

(
f(x + tv) − f(x)

t

)
−
(

f(x + tvk) − f(x)
t

)∣∣∣∣ ≤ ‖f‖Lip |v − vk|.
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For each v ∈ Rn, let Av be the set of x ∈ Rn such that Dvf(x) does not exist. The first
claim is that each Av has zero Lebesgue measure. This is obvious if v 3= 0. Otherwise, let
H = v⊥ be the hyperplane orthogonal to v, passing through the origin. For each x0 ∈ H,
let Lx0 = x0+Rv be the line parallel to v, passing through x0. The nonexistence of Dvf(x)
at x = x0 + t0v is equivalent to the nondifferentiability of t → f(x + tv) at t = t0. Since
t → f(x+tv) is Lipschitz R → R, it follows from a well-known result of real analysis that it
is differentiable for λ1-almost all t ∈ R, where λ1 stands for the one-dimensional Lebesgue
measure. So λ1[Av∩Lx0] = 0. Then by Fubini’s theorem, λn[Av ] =

∫
H λ1[Av∩Lx0] dx0 = 0,

where λn is the n-dimensional Lebesgue measure, and this proves the claim.
Now, the problem consists in extending the function Dvf in such a way that it is a

linear (not just homogeneous) function of v. Let v ∈ Rn, and let ζ be a smooth compactly
supported function. Then, by the dominated convergence theorem,

(ζ ∗ Dvf)(x) =
∫

ζ(x − y) lim
t→0

[
f(y + tv) − f(y)

t

]
dy

= lim
t→0

1
t

∫
ζ(x − y) [f(y + tv) − f(y)] dy

= lim
t→0

1
t

∫
ζ(x − y) [ζ(x − y − tv) − ζ(x − y)] f(y) dy

=
∫

〈∇ζ(x − y), v〉 f(y) dy.

(Note that ζ ∗Dvf is well-defined for any x, even if Dvf is defined only for almost all x.)
So ζ ∗Dvf depends linearly on v. In particular, if v and w are any two vectors in Rn, then

ζ ∗ [Dv+wf − Dvf − Dwf ] = 0.

Since ζ is arbitrary, it follows that

Dvf(x) + Dwf(x) = Dv+wf(x) (10.7)

for almost all x ∈ Rn \ (Av ∩ Aw ∩ Av+w), that is, for almost all x ∈ Rn.
Now it is easy to conclude. Let Bv,w be the set of all x ∈ Rn such that Dvf(x), Dwf(x)

or Dv+wf(x) is not well-defined, or (10.7) does not hold true. Let (vk)k∈N be a dense
sequence in Rn, and let B :=

⋃
j,k∈N Bvj ,vk . Then B is still Lebesgue-negligible, and for

each x /∈ B we have
Dvj+vkf(x) = Dvjf(x) + Dvkf(x). (10.8)

Since Dvf(x) is a Lipschitz continuous function of v, it can be extended uniquely into a
Lipschitz continuous function, defined for all x /∈ B and v ∈ Rn, which turns out to be
Dvf(x) in view of Property (c). By passing to the limit in (10.8), we see that Dvf(x) is
an additive function of v. We already know that it is a homogeneous function of v, so it is
in fact linear. This concludes the proof of (ii).

Now let us turn to the proof of (iii). Before going on, I shall first explain in an informal
way the main idea of the proof of statement (iii). Suppose for simplicity that we are
dealing with a convex function in Rn. If p lies in the subdifferential ∂ψ(x) of ψ at x, then
for all z ∈ Rn,

ψ(z) ≥ ψ(x) +
〈
p, z − x

〉
.

In particular, if p ∈ ∂ψ(x) and p′ ∈ ∂ψ(x′), then
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〈
p − p′, x − x′〉 ≥ 0.

If ψ is not differentiable at x, this means that ∂ψ(x) is not reduced to a single element, so it
should contain a line segment [p, p′] ⊂ Rn. For these heuristic explanations, let us fix p and
p′, and consider the set Σ of all x ∈ Rn such that [p, p′] ⊂ ∂ψ(x). Then 〈p− p′, x−x′〉 ≥ 0
for all x, x′ ∈ Σ. By exchanging the roles of p and p′, we see that actually 〈p−p′, x−x′〉 = 0.
This implies that Σ is included in a single hyerplane, orthogonal to p − p′; in particular
its dimension is at most n − 1.

Now comes the rigorous argument. Let Σ be the set of points x such that ∇−ψ(x) is
not reduced to a single element. Since ∇−ψ(x) is a convex set, for each x ∈ Σ there is a
nontrivial segment [p, p′] ⊂ ∇−ψ(x). So

Σ =
⋃

(∈N
Σ((),

where Σ(() is the set of points x such that ∇−ψ(x) contains a segment [p, p′] of length
1/5. To conclude, it is sufficient to show that each Σ(() is countably (n − 1)-rectifiable,
and for that it is sufficient to show that for each x ∈ Σ(() the dimension of the tangent
cone TxΣ(() is at most n − 1. (In case of need, see the Appendix for reminders about the
notions of countable rectifiability and tangent cone.)

So let x ∈ Σ((), and let q ∈ TxΣ((), q 3= 0. By assumption, there is a sequence xk ∈ Σ(()

such that
xk − x

tk
−→ q.

In particular |x − xk|/tk converges to the finite, nonzero limit |q|.
Now, for all k, there is a segment [pk, p′k], of length 5−1, that is contained in ∇−ψ(xk).

By compactness, up to extraction of a subsequence one has (xk, pk) → (x, p) and (xk, p′k) →
(x, p′). By continuity of ∇−ψ, both p and p′ belong to ∇−ψ(x). Then the two inequalities






ψ(x) ≥ ψ(xk) +
〈
p′k, x − xk

〉
− ω(|x − xk|)

ψ(xk) ≥ ψ(x) +
〈
p, x − xk

〉
− ω(|x − xk|)

combine to yield 〈
p − p′k, x − xk

〉
≥ −2ω(|x − xk|).

So 〈
p − p′k,

x − xk

tk

〉
≥ −2

ω(|x − xk|)
|x − xk|

|x − xk|
tk

.

Passing to the limit, we find
〈p − p′, q〉 ≥ 0.

But the roles of p and p′ can be exchanged, so actually

〈p − p′, q〉 = 0.

Since p − p′ is nonzero, this means that q belongs to the hyperplane (p − p′)⊥. So for
each x ∈ Σ((), the tangent cone TxΣ(() is included in a hyperplane. This concludes the
proof. 78
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Semi-convexity and semi-concavity

Convexity can be expressed without any reference to smoothness, yet it implies a lower
bound on the Hessian. More generally, in nonsmooth analysis, convexity-type estimates
are often used as a replacement for second-order derivative bounds. In this respect the
notion of semi-convexity is extremely convenient.

Definition 10.10 (semi-convexity). Let U be an open set of a smooth Riemanian man-
ifold and let ω : R+ → R+ be continuous nondecreasing, such that ω(r) = o(r) as r → 0.
A function f : U → R ∪ {+∞} is said to be semi-convex with modulus ω if, for any
constant-speed geodesic path (γt)0≤t≤1, whose image is included in U ,

f(γt) ≤ (1 − t)f(γ0) + tf(γ1) + t(1 − t)ω
(
d(γ0, γ1)

)
. (10.9)

It is said to be locally semi-convex if for each x0 ∈ U there is a neighborhood V of x0 in U
such that (10.9) holds true as soon as γ0, γ1 ∈ V ; or equivalently if (10.9) holds true for
some modulus ωK as long as γ stays in a compact subset K of U .

Similar definitions for semi-concavity and local semi-concavity are obtained in an ob-
vious way by reversing the sign of the inequality in (10.9).

Example 10.11. In Rn, semi-convexity with modulus ω is equivalent to the requirement
that for all x, y ∈ Rn and t ∈ [0, 1],

f
(
(1 − t)x + ty

)
≤ (1 − t) f(x) + t f(y) + t(1 − t)ω(|x − y|).

In particular, when ω = 0 this is the usual notion of convexity. In the case ω(r) = Cr2/2,
there is a differential characterization of semi-convexity in terms of Hessian matrices:
f : Rn → R is semi-convex with modulus ω(r) = Cr2/2 if and only if ∇2f ≥ −CIn. (If f
is not twice differentiable, then ∇2f should be interpreted as the distributional gradient.)

A well-known theorem of convex analysis states that a convex function is subdiffer-
entiable everywhere in the interior of its domain. The next Proposition generalizes this
statement to semi-convex functions.

Proposition 10.12 (Semi-convexity and subdifferentiability).
Let M be a smooth Riemannian manifold. Then
(i) If ψ : M → R ∪ {+∞} is locally semi-convex, then it is locally subdifferentiable in

the interior of its domain D := ψ−1(R); and ∂D is countably (n − 1)-rectifiable;
(ii) Conversely, if U is an open subset of M , and ψ : U → R is locally subdifferentiable,

then it is also locally semi-convex.
Similar statements hold true with “subdifferentiable” replaced by “superdifferentiable”

and “semi-convex” replaced by “semi-concave”.

Remark 10.13. This proposition implies that local semi-convexity and local subdifferen-
tiability are basically the same. But semi-convexity can also be stated in a global version.

Proof of Proposition 10.12. First, we can cover M by a countable union of open sets U ,
each of which satisfies the following property: There is a function ω(r) = o(r) such that
for any geodesic γ with endpoints γ0, γ1 ∈ U ,

ψ(γt) ≤ (1 − t)ψ(γ0) + tψ(γ1) + t(1 − t)ω
(
d(γ0, γ1)

)
, (10.10)
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where ω(r) = o(r). To prove the statement, it is sufficient to work in U .
Inequality (10.10) implies that the domain D of ψ is a geodesically convex subset of U ;

more precisely, if x0, x1 ∈ D ∩ U , and γ is a geodesic joining x0 to x1, then the image of
γ is entirely contained in D. It is not difficult to deduce that for any x ∈ D, the tangent
cone TxD is convex. This leaves two possibilities: Either TxD is included in a half-space,
or it is the whole of TxM .

At this point I shall admit a few facts which can be deduced from a bit of work in
Riemannian geometry. Assume that TxD = TxM . This means that for any tangent vectors
v1, . . . , vN in TxM , one can find N points y1, . . . , yN in the neighborhood of x, in such a
way that yi − x is very close to vi, for each i ∈ {1, . . . , N}. (By abuse of notation, I write
yi − x for the initial velocity of the unique geodesic joining x to yi.) If the vectors vi are
well chosen, then the vectors yi − x will form an affine basis of TxM , meaning that any
tangent vector v ∈ TxM can be written as an affine combination of the vectors yi − x.
Then it can be checked that there is a neighborhood O of x such that any point in O can
be obtained by taking successive barycenters of the points y1, . . . , yN . (By assumption the
barycenter [y, y′]t of y and y′ with coefficient t is the point γt, where γ is a geodesic with
γ0 = y and γ1 = y′.) So ψ will be bounded above, on O by max(ψ(y1), . . . ,ψ(yN )), plus a
remainder which only depends on the neighborhood and the modulus of semi-convexity.

To summarize: If TxD = TxM , then ψ is bounded above in a neighborhood of x; in
particular, x lies in the interior of D. This shows that for each x ∈ ∂D, TxD is included
in a half-space, and so, by a theorem recalled in the Appendix, ∂D is countably (n − 1)-
rectifiable. This also shows that ψ is locally bounded above in the interior of its domain.

Next let again x ∈ D. If W is a sufficiently small neighborhood of x, then for any point
y ∈ W there exists ỹ ∈ W such that x is a midpoint between y and ỹ, so

ψ(x) ≤ 1
2
[ψ(y) + ψ(ỹ)].

Since ψ(ỹ) is bounded above and ψ(x) is a fixed number, it follows that ψ(y) is bounded
below for y ∈ W . The conclusion is that ψ is not only locally bounded above, but also
locally bounded below in the interior of its domain.

Now let us show that ψ is actually locally Lipschitz. Let again x ∈ D; there is a
neighborhood V of x such that whenever y and y′ belong to V , and λ ∈ [0, 1] is arbitrary,
then there is yλ such that y′ = [y, yλ]λ. Then

ψ(y′) ≤ (1 − λ)ψ(y) + λψ(yλ) + λ(1 − λ)ω
(
d(y, yλ)

)
,

so
ψ(y′) − ψ(y)

d(y, y′)
=

ψ(y′) − ψ(y)
λ d(y, yλ)

≤ ψ(yλ) − ψ(y)
d(y, yλ)

+
ω(d(y, yλ))

d(y, y′)
.

Now choose λ = r d(y, y′), so that d(y, yλ) = r (this is possible if r > 0 is small enough),
and then

ψ(y′) − ψ(y)
d(y, y′)

≤ 2M
r

+
ω(r)

r
,

where M is an upper bound for |ψ|. So the ratio (ψ(y′) − ψ(y))/d(y, y′) is uniformly
bounded above for y, y′ in V . By symmetry (exchange y and y′), there is also a uniform
lower bound for that ratio, and in the end ψ is indeed Lipschitz in V .

The next claim is that ∇−ψ is continuous. This means that if sequences xk ∈ Ω and
pk ∈ TxkM are given, with pk ∈ ∇−ψ(xk) and (xk, pk) → (x, p), then p ∈ ∇−ψ(x).

Indeed, let z be arbitrary in Ω, and for each k ∈ N, let (γk(t))0≤t≤1 be a constant speed
geodesic joining xk to z. Since (γk)k∈N is a bounded family of geodesics (in particular,
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uniformly Lipschitz), by Ascoli’s theorem it converges uniformly, up to extraction, and
it is not hard to show that the limit has to be a geodesic curve γ joining x to y. By
localization, one may assume that this geodesic curve is unique; and then one can show
that wk := γ̇k(0) converges to w := γ̇(0).

Assume that not only ψ is subdifferentiable at xk with subgradient pk, but in addition
there is a uniform modulus of subdifferentiability:

ψ(z) ≥ ψ(xk) + 〈pk, wk〉 − ω
(
d(xk, z)

)
, (10.11)

then this inequality passes to the limit as (xk, pk) → (x, p) and wk → w, and this implies
that p is a subgradient of ψ at x.

So it is sufficient to establish (10.11). For simplicity, I shall drop the index k. Let ψ be
semi-convex with modulus ω, and subdifferentiable at x, with subgradient p; let further
y be an arbitrary point in the neighborhood of x, let γ be a geodesic joining x to y, and
w := γ̇(0). Then

ψ(γ(t)) ≤ (1 − t)ψ(x) + tψ(y) + t(1 − t)ω(|w|),

so
ψ(γ(t)) − ψ(x)

t|w| ≤ ψ(y) − ψ(x)
|w| + (1 − t)

ω(|w|)
|w| .

On the other hand, by subdifferentiability,

ψ(γ(t)) − ψ(x)
t|w| ≥ 〈p, tw〉

t|w| − o(t|w|)
t|w| =

〈
p,

w

|w|
〉
− o(t|w|)

t|w| .

The combination of both inequalities yields

〈p,w〉
|w| − o(t|w|)

t|w| ≤ ψ(y) − ψ(x)
|w| + (1 − t)

ω(|w|)
|w| .

If t → 0, this implies
〈p,w〉
|w|

≤ ψ(y) − ψ(x)
|w|

+
ω(|w|)
|w|

.

But this is exactly the desired inequality (10.11).
Next, I claim that the subdifferential of ψ is locally bounded. Indeed, let x be a point

of subdifferentiability of ψ, and let y be an arbitrary point in the neighborhood of x; let
γ be a geodesic joining x to y, and w := γ̇(0), then the subdifferentiability implies

〈
p,

w

|w|
〉
≤ ψ(y) − ψ(x)

d(x, y)
+

o(d(x, y))
d(x, y)

.

It is possible to let y → x while keeping w/|w| > σ, where σ is an arbitrary unit vector in
TxM . Then

〈p,σ〉 ≤ lim sup
y→x

ψ(y) − ψ(x)
d(x, y)

.

In particular,

|p| ≤ lim sup
y→x

ψ(y) − ψ(x)
d(x, y)

,

which is bounded above by a finite constant in view of Step 4.
Now, let x ∈ Ω. By Theorem 10.8(i), there is a sequence xk → x with xk ∈ Ω and

∇−ψ(xk) 3= ∅. So let pk ∈ ∇−ψ(xk). By Step 6, the family pk is bounded as k → ∞; so it is
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possible to extract a subsequence of (xk, pk) which converges to some (x, p) ∈ TxM . Then
by Step 5, p ∈ ∇−ψ(x). The conclusion is that ψ is subdifferentiable at x. In fact, it is
even uniformly subdifferentiable in a neighborhood of x, with modulus ω. This concludes
the proof of Statement (i).

Statement (ii) is much easier. Let x ∈ U , and let V be a small neighborhood of x, such
that f is uniformly subdifferentiable in V with modulus ω. Without loss of generality,
assume that ω(r)/r is a nonincreasing function of r. Let W ⊂ V be a neighborhood of
x, small enough that any two points y, y′ in W can be joined by a unique geodesic γy,y′ ,
whose image is contained in V ; by abuse of notation I shall write y′ − y for the initial
velocity of γy,y′ .

Let then γ be a geodesic such that γ0, γ1 ∈ V ; let t ∈ [0, 1], and let p ∈ ∇−f(γt). It
follows from the subdifferentiability that

f(γ1) ≤ f(γt) + 〈p, γ1 − γt〉 + ω
(
d(γt, γ1)

)
.

Since d(γt, γ1) = (1 − t) d(γ0, γ1) and ω(r)/r is nonincreasing, it follows that

f(γ1) ≤ f(γt) + 〈p, γ1 − γt〉 + (1 − t)ω
(
d(γ0, γ1)

)
. (10.12)

Similarly,
f(γ0) ≤ f(γt) + 〈p, γ0 − γt〉 + tω

(
d(γ0, γ1)

)
. (10.13)

Now take the linear combination of (10.12) and (10.13) with coefficients t and 1− t: Since
t(γ1 − γt) + (1 − t)(γ0 − γt) = 0 (in TγtM), we recover

(1 − t) f(γ0) + t f(γ1) − f(γt) ≤ 2 t (1 − t)ω(d(γ0, γ1)).

This proves that f is semi-convex in W . 78

Assumptions on the cost function

Let M be a Riemannian manifold, let X be a closed subset of M , let Y be an arbitrary
Polish space, and let c : M × Y → R be a continuous cost function. (Most of the time, we
shall have X = M = Y.) We shall impose certain assumptions on the behavior of c as a
function of x, when x varies in the interior (in M) of X . They will be chosen among the
following list:

(Super) c(x, y) is everywhere superdifferentiable as a function of x.

(Twist) Where it exists, ∇xc(x, ·) is injective: ∇xc(x, y) = ∇xc(x, y′) =⇒ y = y′.

(Lip) c(x, y) is locally Lipschitz as a function of x, uniformly in y.

(SC) c(x, y) is locally semi-concave as a function of x, uniformly in y.

(locLip) c(x, y) is locally Lipschitz as a function of x, locally in y.

(locSC) c(x, y) is locally semi-concave as a function of x, locally in y.

(H∞)1 For any x and for any measurable set S which does not “lie on one side of
x”, in the sense that TxS is not contained in a half-space, there is a finite collection of
elements z1, . . . , zk ∈ S, and a small open ball B containing x, such that for any y outside
of a compact set,

inf
w∈B

c(w, y) ≥ inf
1≤j≤k

c(zj , y).
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(H∞)2 For any x and any neighborhood U of x there is a small ball B containing x
such that

lim
y→∞

sup
w∈B

inf
z∈U

[c(z, y) − c(w, y)] = −∞.

Our theorems of solvability of the Monge problem will be expressed in terms of these as-
sumptions. Before going any further, I shall give some informal explanations about (H∞)1

and (H∞)2, which probably look obscure to the reader. Both of them are assumptions
about the behavior of c(x, y) as y → ∞, and therefore they are void if y varies in a com-
pact set. They are essentially quantified versions of the following statement: For any y it
is possible to lower the cost to go from x to y, by starting from a well-chosen nearby point
z. For instance, if c is a radially symmetric cost on Rn × Rn, then I would choose z very
close to x, “opposite to y”.

In the rest of this section, I shall discuss some simple sufficient conditions for all these
assumptions to hold true. The first result is that Conditions (Super), (Twist), (locLip)
and (locSC) are satisfied by many Lagrangian cost functions.

Proposition 10.14 (Properties of Lagrangian cost functions). On a smooth Rie-
mannian manifold M , let c(x, y) be a cost function associated with a C1 Lagrangian
L(x, v, t). Assume that any x, y ∈ M can be joined by at least one C1 minimizing curve.
Then

(i) For any (x, y) ∈ M ×M , and any C1 action-minimizing curve γ connecting x to y,
the tangent vector −∇vL(x, γ̇0, 0) ∈ TxM is a supergradient for c(·, y) at x; in particular,
c is superdifferentiable at (x, y) as a function of x.

(ii) If L is strictly convex as a function of v, and minimizing curves are uniquely
determined by their initial position and velocity, then c satisfies a twist condition: If c is
differentiable at (x, y) as a function of x, then y is uniquely determined by x and ∇xc(x, y).
Moreover,

∇xc(x, y) + ∇vL(x, γ̇(0), 0) = 0,

where γ is the unique minimizing curve joining x to y.
(iii) If L has the property that for any two compact sets K0 and K1, the velocities of

minimizing curves starting in K0 and ending in K1 are uniformly bounded, then then c is
locally Lipschitz and locally semi-concave as a function of x, locally in y.

Example 10.15. Consider the case L(x, v, t) = |v|2. Then ∇vL = 2v; and (i) says that
−2v0 is a supergradient of d(·, y)2 at x, where v0 is the velocity used to go from x to y.
This is a generalization of the usual formula in Euclidean space:

∇x(|x − y|2) = 2(x − y) = −2(y − x).

Also (ii) says that this cost function satisfies the twist property.

Remark 10.16. The requirements in (ii) and (iii) are fulfilled if the Lagrangian L is C2

and strictly convex superlinear as a function of v (Recall Example 7.5). But it also holds
true for other interesting cases such as L(x, v, t) = |v|1+α, 0 < α < 1.

Remark 10.17. Part (i) of Proposition 10.14 means that the behavior of the (square)
distance function is typical: if one plots c(x, y) as a function of x, for fixed y, one will
always see upper-pointing crests as in Figure 10.1, never downward-pointing ones.
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Proof of Proposition 10.14. This Proposition is mainly based on the formula of first vari-
ation. Let (x, y) be given, and let γ(t)0≤t≤1 be a minimizing curve, C1 as a function of t,
joining x to y. Let γ̃ be another curve, not necessarily minimizing, joining x̃ to ỹ. Assume
that x̃ is very close to x, so that there is a unique geodesic joining x to x̃; by abuse of
notation, I shall write x̃−x for the initial velocity of this geodesic. Similarly, let us assume
that ỹ is very close to y. Then, by the formula of first variation,

A(γ̃) =
∫ 1

0
L
(
γ̇(t), γ(t), t

)
dt +

[
∇vL

(
γ(1), γ̇(1), 1

)
· (ỹ − y)

−∇vL
(
γ(0), γ̇(0), 0

)
· (x̃ − x)

]
+ ω(|x̃ − x| + |ỹ − y|), (10.14)

where ω(r)/r → 0, and ω only depends on the behavior of the manifold in a neighbor-
hood of γ, and on a modulus of continuity for the derivatives of L, on a neighborhood
of {(γ(t), γ̇(t), t)0≤t≤1}. Without loss of generality, we may assume that ω(r)/r is nonin-
creasing.

From this formula the proof of Statement (i) follows immediately: Let γ̃ be a curve
joining x̃ to ỹ = y (this curve can be constructed smoothly in local charts), then c(x̃, y) ≤
A(γ̃), so (10.14) gives

c(x̃, y) ≤ c(x, y) − 〈∇vL(x, v, 0)〉 + ω(|x̃ − x|),

which shows that −∇vL(x, v, 0) is a supergradient of c(·, y) at x.
Now for the proof of (ii): If c(·, y) is not only superdifferentiable but plainly differen-

tiable, then by Proposition 10.7 there is just one supergradient, which is the gradient, so
−∇vL(x, v, 0) = ∇xc(x, y). Since L is strictly convex with respect to the v variable, this
equation determines v uniquely. By assumption, this in turn determines the whole geodesic
γ, and in particular y.

Finally, we turn to Statement (iii). When we let x and y vary in small balls, the velocity
v along the minimizing curves will be bounded by assumption; so the function ω will also
be uniform. Then c(x, y) is locally superdifferentiable as a function of x, and the conclusion
follows from Proposition 10.12. 78

Proposition 10.14 is basically all that is needed to treat quite general cost functions on
a compact Riemannian manifold. But for noncompact manifolds, it might be very difficult
to check Assumptions (Lip), (SC) or (H∞). Here are a few examples where this can be
done.

Example 10.18. Gangbo and McCann have considered cost functions of the form c(x, y) =
c(x−y) on Rn×Rn, satisfying the following assumption: For any given r > 0 and θ ∈ (0,π),
if |y| is large enough then there is a cone Kr,θ(y, e), with apex y, direction e, height h and
angle θ, such that c takes its maximum on Kr,θ(y, e) at y. Let us check briefly that this
assumption implies (H∞)1. (The reader who feels that both assumptions are equally ob-
scure may very well skip this and jump directly to Example 10.19.) Let x and S be given
such that TxS is included in no half-space. So for each direction e ∈ Sn−1 there are points
z+ and z− in S, each of which lies on one side of the hyperplane passing through z and
having direction e. By a compactness argument, one can find a finite collection of points
z1, . . . , zk in S, an angle θ < π and a positive number r > 0 such that for all e ∈ Sn−1 and
for any w close enough to x, the truncated cone Kr,θ(w, e) contains at least one of the zj .
Equivalently, Kr,θ(w − y, e) contains zj − y. But by assumption, for |w − y| large enough
there is a cone Kr,θ(w − y, e) such that c(z − y) ≤ c(w − y) for all z ∈ Kr,θ(w − y, e). This
inequality applies to z = zj (for some j), and then c(zj − y) ≤ c(w − y).
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Example 10.19. As a particular case of the previous example, Condition (H∞)1 holds
true if c = c(x − y) is radially symmetric and strictly increasing as a function of |x − y|.

Example 10.20. Gangbo and McCann considered cost functions that also satisfied c(x, y) =
c(x − y) with c convex and superlinear. This assumption implies (H∞)2. Indeed, if x in
Rn and ε > 0 are given, let z = x − ε(x − y)/|x − y|; it suffices to show that

c(z − y) − c(x − y) −−−→
y→∞

−∞,

or equivalently, with h = z − y,

c(h) − c
(
h
(
1 − ε

|h|
))

−−−→
h→∞

+∞.

But this is true: Indeed, the inequality

c(0) ≥ c(p) + ∇c(p) · (−p)

and the superlinearity of c imply ∇c(p) · (p/|p|) → +∞ as p → ∞, and then, with the
notation hε = h(1 − ε/|h|),

c(h) − c(hε) ≥ ∇c(hε) ·
εh

|h|
= ε∇c(hε) ·

hε

|hε|

(
− ε

|h|

)
−−−−→
|h|→∞

+∞.

Example 10.21. If (M,g) is a Riemannian manifold with nonnegative sectional curvature,
then (as recalled in the Third Appendix) there is a uniform upper bound ∇2

x(d(x0, x)2/2) ≤
gx, and it follows that c(x, y) = d(x, y)2 is semi-concave with a modulus ω(r) = r2. This
condition of nonnegative curvature is quite restrictive, but there does not seem to be any
good other geometric condition implying the semi-concavity of d(x, y)2, uniformly in x and
y.

I conclude this section with an open problem:

Open Problem 10.22. Find simple sufficient conditions so that a cost deriving from a
rather general Lagrangian on an unbounded Riemannian manifold will satisfy (H∞).

Differentiability of c-convex functions

Now we are back to optimal transport, and arrive at the core of the analysis of the
Monge problem: the study of the regularity of c-convex functions. This includes c-
subdifferentiability, subdifferentiability, and plain differentiability.

In all these theorems, M is a complete Riemannian manifold of dimension n, X is
a closed subset of M such that the frontier ∂X (in M) is of dimension at most n − 1
(for instance it is locally a graph), and Y is an arbitrary Polish space. The cost function
c : X × Y → R is assumed to be continuous. The statements will be expressed in terms
of the assumptions appearing in the previous section; these assumptions will be made for
interior points, that is points which lie in the interior of X (viewed as a subset of M).

Theorem 10.23 (c-subdifferentiability of c-convex functions). Assume that (H∞)
is satisfied. Let ψ : M → R ∪ {+∞} be a c-convex function, and let Ω be the interior (in
M) of its domain ψ−1(R). Then, ψ−1(R)\Ω is a set of dimension at most n−1. Moreover,
ψ is locally bounded and c-subdifferentiable everywhere in Ω. Finally, if K is a compact
subset lying in Ω, then ∂cψ(K) is itself compact.
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Theorem 10.24 (subdifferentiability of c-convex functions). Assume that (Super)
is satisfied. Let ψ be a c-convex function, and let x be an interior point of X (in M) such
that ∂cψ(x) 3= ∅. Then ψ is subdifferentiable at x. In short:

∂cψ(x) 3= ∅ =⇒ ∇−ψ(x) 3= ∅.

More precisely, for any y ∈ ∂cψ(x), one has −∇+
x c(x, y) ⊂ ∇−ψ(x).

Theorem 10.25 (differentiability of c-convex functions). Assume that (Super)
and (Twist) are satisfied, and let ψ be a c-convex function. Then

(i) If (Lip) is satisfied, then ψ is locally Lipschitz and differentiable in X , apart from
a set of zero volume; The same is true if (locLip) and (H∞) are satisfied.

(ii) If (SC) is satisfied, then ψ is locally semi-convex and differentiable in the interior
(in M) of its domain, apart from a set of dimension at most n − 1; and the boundary of
its domain is also of dimension at most n − 1. The same is true if (locSC) and (H∞)
are satisfied.

Proof of Theorem 10.23. Let S = ψ−1(R) \ ∂X . (Here ∂X is the boundary of X in M ,
which by assumption is of dimension at most n − 1.) We shall show that if x ∈ S is such
that TxS is not included in a half-space, then ψ is bounded on a small ball around x. It
will follow that x is in fact in the interior of Ω. So for each x ∈ S \Ω, TxS will be included
in a half-space, and it will follow that S \Ω is of dimension at most n − 1. Moreover, we
shall have shown that ψ is locally bounded in Ω.

So let x be such that ψ(x) < +∞, and TxS is not included in a half-space. By assump-
tion, there are points z1, . . . , zk in S, a small ball B around x, and a compact set K ⊂ Y
such that for any y ∈ Y \ K,

inf
w∈B

c(w, y) ≥ inf
1≤j≤k

c(zj , y).

Let φ be the c-transform of ψ. Then, for any y ∈ Y \ K,

φ(y) − inf
w∈B

c(w, y) ≤ φ(y) − inf
1≤j≤k

c(zj , y) ≤ sup
1≤j≤k

ψ(zj).

So
∀w ∈ B, ∀y ∈ Y \ K, φ(y) − c(w, y) ≤ sup

1≤j≤k
ψ(zj).

When y ∈ K, we use the trivial bound φ(y) − c(w, y) ≤ ψ(x) + c(x, y) − c(w, y). So all in
all,

∀w ∈ B, ψ(w) = sup
y∈Y

[φ(y)−c(w, y)] ≤ max

(
sup

1≤j≤k
ψ(zj), sup

y∈K
c(x, y) + ψ(x) − c(w, y)

)
.

This shows that ψ is indeed bounded above on B. On the other hand, it is lower semi-
continuous with values in R∪{+∞}, and therefore also bounded below on a neighborhood
of x. All in all, ψ is bounded in a neighborhood of x.

Next, let x ∈ Ω, the goal is to show that ∂cψ(x) 3= ∅. Let U be a small neighborhood
of x, on which |ψ| is bounded by M . By assumption there is a compact set K, and a small
ball B′ in U , such that for all y outside K,

∀z ∈ B′, c(z, y) − c(x, y) ≤ −(2M + 1).
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Then, if y is outside of K, there is z such that ψ(z) + c(z, y) ≤ c(x, y) − (M + 1) ≤
ψ(x) + c(x, y) − 1, and

φ(y) − c(x, y) ≤ inf
z∈B′

[
ψ(z) + c(z, y) − c(x, y)

]
≤ ψ(x) − 1 = sup

y′∈Y
[φ(y′) − c(x, y′)] − 1.

Then the supremum of φ(y)− c(x, y) over all Y is the same as the supremum over only K.
But this is a maximization problem for an upper semi-continuous function on a compact
set, so it admits a solution. This solution is an element of ∂cψ(x).

The same reasoning can be made with x replaced by w in a small neighborhood B of
x, and then the conclusion is that ∂cψ(w) is nonempty and contained in the compact set
K, uniformly for z ∈ B. Then if K ′ ⊂ Ω is a compact set, we can cover it by a finite
number of small open balls Bj such that ∂cψ(Bj) is contained in a compact set Kj, so
that ∂cψ(K ′) ⊂ ∪Kj. Since on the other hand ∂cψ(K ′) is closed by the continuity of c, it
follows that ∂cψ(K ′) is compact. This concludes the proof of Theorem 10.23. 78

Proof of Theorem 10.24. Let x be a point of c-subdifferentiability of ψ, and let y ∈ ∂cψ(x).
Let further

φ(y) := inf
[
ψ(x) + c(x, y)

]

be the c-transform of ψ. By definition of c-subdifferentiability,

ψ(x) = φ(y) − c(x, y). (10.15)

Let xε be obtained from x by a small variation in the direction w ∈ TxM , say xε =
expx(εw). From the definition of φ, one has of course

ψ(xε) ≥ φ(y) − c(xε, y). (10.16)

Let further p ∈ ∇+
x c(x, y). By (10.15), (10.16) and the superdifferentiability of c, one

obtains

ψ(xε) ≥ φ(y) − c(xε, y)
≥ φ(y) − c(x, y) + ε〈p,w〉 + o(ε)
= ψ(x) + ε〈p,w〉 + o(ε).

where v denotes, as before, the velocity of a minimizing curve joining x to y. This shows
that ψ is indeed subdifferentiable at x, with p as a subgradient. 78

Proof of Theorem 10.25. (i) If c is locally Lipschitz as a function of x, with a uniform (in
y) constant, then also ψ(x) = supy[φ(y)− c(x, y)] is locally Lipschitz in x. Then it follows
by Theorem 10.8(ii) that it is differentiable everywhere on the interior of X , apart from a
set of zero volume.

If c is only locally Lipschitz in x and y, but condition (H∞) is ensured, then for each
compact set K in X there is a compact set K ′ in Y such that

∀x ∈ K, ψ(x) = sup
y∈∂cψ(x)

[φ(y) − c(x, y)] = sup
y∈K ′

[φ(y) − c(x, y)].

The functions inside the supremum are uniformly Lipschitz when x stays in K and y stays
in K ′, so the result of the supremum is again a locally Lipschitz function.

(ii) Let K be a compact subset of M , and let γ be a constant-speed geodesic whose
image is included in K, then by assumption, for all y,
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c(γt, y) ≥ (1 − t) c(γ0, y) + t c(γ1, y) − t(1 − t)ω
(
d(γ0, γ1)

)
,

so

ψ(γt) = sup
y

[
φ(y) − c(γt, y)

]

≤ sup
y

[
φ(y) − (1 − t) c(γ0, y) − t c(γ1, y)

]
+ t(1 − t)ω

(
d(γ0, γ1)

)

= sup
y

[
(1 − t)φ(y) − (1 − t) c(γ0, y) + tφ(y) − t c(γ1, y)

]
+ t(1 − t)ω

(
d(γ0, γ1)

)

≤ (1 − t) sup
y

[
φ(y) − c(γ0, y)

]
+ t sup

y

[
φ(y) − c(γ1, y)

]
+ t(1 − t)ω

(
d(γ0, γ1)

)

= (1 − t)ψ(γ0) + tψ(γ1) + t(1 − t)ω
(
d(γ0, γ1)

)
.

So ψ inherits the semi-concavity modulus of c as semi-convexity modulus. Then, the con-
clusion follows from Proposition 10.12 and Theorem 10.8(iii). The localization argument
is the same as in the proof of Statement (i). 78

Applications to the Monge problem

The next theorem shows how to incorporate the previous information into the optimal
transport.

Theorem 10.26 (Solution of the Monge problem II). Let M be a Riemannian
manifold, X a closed subset of M , with dim(∂X ) ≤ n−1, and Y an arbitrary Polish space.
Let c : X×Y → R be a continuous cost function, bounded below, and µ ∈ P (M), ν ∈ P (Y),
such that the optimal cost C(µ, ν) is finite. Assume that

(i) c is superdifferentiable everywhere (Assumption (Super));
(ii) ∇xc(x, ·) is injective on its domain of definition (Assumption (Twist));
(iii) Any c-convex function is differentiable µ-almost surely on its domain of c-

subdifferentiability.
Then there exists a unique (in law) optimal coupling (x, y) of (µ, ν); it is deterministic,

and there is a c-convex function ψ such that

∇ψ(x) + ∇xc(x, y) = 0 almost surely. (10.17)

If moreover (H∞) is satisfied, then
(a) the equation (10.17) characterizes the optimal coupling;
(b) let Z be the set of points where ψ is differentiable; then one can define a continuous

map x → T (x) on Z by the equation T (x) ∈ ∂cψ(x), and

Spt ν = T (Sptµ). (10.18)

Remark 10.27. As a corollary of this theorem, ∇ψ is uniquely determined µ-almost
surely, since the random variable ∇ψ(x) has to coincide (in law) with −∇xc(x, y).

Remark 10.28. Assumption (iii) can be realized in a number of ways, depending on which
part of Theorem 10.25 one wishes to use: For instance, it is true if c is Lipschitz on X ×Y
and µ is absolutely continuous; or if c is locally Lipschitz and µ, ν are compactly supported
and µ is absolutely continuous; or if c is locally semi-concave and satisfies (H∞) and µ
does not charge sets of dimension n − 1; etc.
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Example 10.29. All the assumptions of Theorem 10.26 are satisfied if X = M = Y is
compact and the Lagrangian L is C2 and satisfies the classical assumptions of Defini-
tion 7.6.

Example 10.30. All the assumptions of Theorem 10.26 are satisfied if X = M = Y = Rn,
c is a C1 strictly convex function with a bounded Hessian and µ does not charge sets of
dimension n − 1. Indeed, ∇xc will be injective by strict convexity of c; and c will be
uniformly semi-concave with a modulus Cr2, so Theorem 10.25 applies to guarantee that
c-convex functions are differentiable everywhere apart from a set of dimension at most
n − 1.

Example 10.31. All the assumptions of Theorem 10.26 are satisfied if X = M = Y and
c(x, y) = d(x, y)2, and M has nonnegative sectional curvature; recall indeed Example 10.21.
The same is true if M is compact.

Proof of Theorem 10.26. Let π be an optimal transference plan. From Theorem 5.9, there
exists a pair of c-conjugate functions (ψ,φ) such that φ(y) − ψ(x) ≤ c(x, y) everywhere,
with equality π-almost surely. Write again (10.2), at a point x of differentiability of ψ (x
should be interior to X , viewed as a subset of M), and choose x̃ = x̃(ε) = γ(ε), where
γ̇(0) = w; divide by ε > 0 and pass to the lim inf:

−∇ψ(x) · w ≤ lim inf
ε→0

c(x̃(ε), y) − c(x, y)
ε

. (10.19)

It follows that −∇ψ(x) is a subgradient of c(·, y) at x. But by assumption, there exists
at least one supergradient of c(·, y) at x, say G. From Proposition 10.7, c(·, y) really is
differentiable at x, with gradient −∇ψ(x).

So (10.17) holds true, and then one can use assumption (iii) to derive y = (∇xc)−1(x,−∇ψ(x)),
where (∇xc)−1 is the inverse of x "−→ ∇xc(x, y), viewed as a function of y and defined on
the set of x for which ∇xc(x, y) exists.

So π is concentrated on the graph of T : x → (∇xc)−1(x,−∇ψ(x)); or equivalently,
π = (Id , T )#µ. Since this conclusion does not depend on the choice of π, but only on the
choice of ψ, there is uniqueness of the optimal coupling π.

It remains to prove the last part of Theorem 10.26. From now on I shall assume that
(H∞) is satisfied. Let π be a transference plan between µ and ν, and let ψ be a c-convex
function such that (10.17) holds true.

Let Z be the set of differentiability points of ψ, and let x ∈ Z; in particular, x should
be interior to X (in M), and should belong to the interior of the domain of ψ. By The-
orem 10.23, there is some y ∈ ∂cψ(x). Let G be a supergradient of c(·, y) at x; by Theo-
rem 10.24, −G ⊂ {∇−ψ(x)} = {∇ψ(x)}. It follows that −∇ψ(x) is the only supergradient
of c(·, y) at x (as in the beginning of the proof of the present theorem); so c(·, y) really is
differentiable at x and ∇xc(x, y) + ∇ψ(x) = 0. By injectivity of ∇xc(x, ·), this equation
determines y = T (x) as a function of x ∈ Z. This proves the first part of (b), and also
shows that ∂cψ(x) = {T (x)} for any x ∈ Z.

Now, since π is concentrated on Z × Y, it follows from the equation (10.17) shows
that π really is concentrated on the graph of T . A fortiori π[∂cψ] = 1, so π is c-cyclically
monotone, and therefore optimal by Theorem 5.9. This proves (a).

Next, let us prove that T is continuous on Z. Let (xk)k∈N be a sequence in Z, converging
to x ∈ Z, and let yk = T (xk). Assumption (H∞) and Theorem 10.23 imply that ∂cψ
transforms compact sets into compact sets; so the sequence (yk)k∈N takes values in a
compact set, and up to extraction of a subsequence it converges to some y′ ∈ Y. By passing
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to the limit in the inequality defining the c-subdifferential, we recover y′ ∈ ∂cψ(x). Since
x ∈ Z, this determines y′ = T (x) uniquely, so the whole sequence (T (xk))k∈N converges to
T (x), and T is indeed continuous.

Equation (10.18) follows from the continuity of T . Indeed, the inclusion Sptµ ⊂
T−1(T (Sptµ)) implies

ν[T (Sptµ)] = µ[T−1(T (Sptµ))] ≥ µ[Sptµ] = 1;

so by definition of support, Sptν ⊂ T (Sptµ). On the other hand, if x ∈ Sptµ ∩ Z, let
y = T (x), and let ε > 0; by continuity of T there is δ > 0 such that T (Bδ(x)) ⊂ Bε(y),
and then

ν[Bε(y)] = µ
[
T−1(Bε(y))

]
≥ µ

[
T−1

(
T (Bδ(x))

)]
≥ µ[Bδ(x)] > 0;

so y ∈ Spt ν. This shows that T (Sptµ) ⊂ Spt ν, and therefore T (Sptµ) ⊂ Spt ν, as desired.
This concludes the proof of (b). 78

Removing the conditions at infinity

In this last section we shall see how to extend Theorem 10.26 to cover situations in which
no control at infinity is assumed. The short answer is that it is sufficient to replace the
gradient in (10.17) by an approximate gradient. (Actually a little bit more will be lost, see
Remarks 10.33 and 10.34 below.)

Theorem 10.32 (Solution of the Monge problem without conditions at infinity).
Let M be a Riemannian manifold and Y an arbitrary Polish space. Let c : M × Y → R

be a continuous cost function, bounded below, and let µ ∈ P (M), ν ∈ P (Y), such that the
optimal cost C(µ, ν) is finite. Assume that

(i) c is superdifferentiable everywhere (Assumption (Super));
(ii) ∇xc(x, ·) is injective on its domain of definition (Assumption (Twist));
(iii) For any closed ball B = Br](x0) and any compact set K ⊂ Y, the function c′

defined on B × K by restriction of c is such that any c′-convex function on B × K is
differentiable µ-almost surely;

(iv) µ is absolutely continuous with respect to the volume measure;
Then there exists a unique (in law) optimal coupling (x, y) of (µ, ν); it is deterministic,

and satisfies the equation

∇̃ψ(x) + ∇xc(x, y) = 0 almost surely. (10.20)

Remark 10.33. I don’t know if (10.20) is a characterization of the optimal transport.

Remark 10.34. If Assumption (iv) is weakened into (iv’) µ gives zero mass to sets of
dimension at most n − 1, then there is still uniqueness of the optimal coupling, and there
is a c-convex ψ such that y ∈ ∂cψ(x) almost surely; but it is not clear that equation (10.20)
still holds. This uniqueness result is a bit more tricky than the previous one, and I shall
postponed its proof to the next section (see Theorem 10.36).

Proof of Theorem 10.32. Let ψ be a c-convex function as in Theorem 5.9. Let π be an
optimal transport π; according to Theorem 5.9, π[∂cψ] = 1.
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Let x0 be any point in M , and y0 any point in Y. For any 5 ∈ N, let B( be the closed
ball B(](x0). Let also (K()(∈N be an increasing sequence of compact sets in Y, such that
ν[∪K(] = 1. The sets B( × K( fill up the whole of M × Y, up to a π-negligible set. Let c(
be the restriction of c to B( × K(.

If 5 is large enough, then π[B( × K(] > 0, so we can define

π( :=
1B!×K! π

π[B( × K(]
,

and then introduce the marginals µ( and ν( of π(. From Theorem 4.5, π( is optimal in
the transport problem from µ( to ν(, with cost c(. By Theorem 5.16 we can find a c(-
convex function ψ( which coincides with ψ µ(-almost surely, and actually on the whole of
S( := projM ((∂cψ) ∩ (B( × K()). (Note that S( is compact since ∂cψ is closed.)

The union of all sets S( covers projM (∂cψ), and therefore also projM (Spt(π)), apart
from a µ-negligible set. Let S̃( be the set of points in S( at which S( has density 1; we
know that S̃( coincides with S( apart from a set of zero volume. So the union of all sets
S̃( still covers M , apart from a µ-negligible set.

By assumption (iii), ψ( is differentiable apart from a µ(-negligible set Z(. Moreover, by
Theorem 10.26, the equation

∇ψ((x) + ∇xc(x, y) = 0 (10.21)

determines the unique optimal coupling between µ( and ν(, for the cost c(. (Note that ∇xc(
coincides with ∇xc when x is in the interior of B(, and µ([∂B(] = 0, so equation (10.21)
does hold true µ(-almost surely.)

Now we can define our Monge coupling. Each set Z( is µ(-negligible, so it is also µ-
negligible, and the union of all sets S̃( \ Z( still covers M , apart from a µ-negligible set.
For each (x, y) in the support of π(, such that x ∈ S̃( \ Z(, equation (10.21) holds true.

By definition of S̃, ψ( coincides with ψ on a set which has density 1 at x, so ∇ψ((x) =
∇̃ψ(x), and then (10.21) becomes

∇xc(x, y) + ∇̃ψ(x) = 0. (10.22)

This equation is independent of 5, and for almost any (x, y) in the support of π there
is 5 large enough that (x, y) lies in the support of π( and x ∈ S̃( \ Z(. The conclusion is
that (10.22) holds true π-almost surely.

Since ∇xc is injective, this equation determines y = T (x) uniquely. The conclusion is
that π is concentrated on the graph of the measurable map T defined by the equation

∇xc(x, T (x)) + ∇̃ψ(x) = 0.

The uniqueness of the optimal coupling follows obviously. 78

As an illustration of the use of Theorems 10.26 and 10.32, let us see how we can solve
the Monge problem for the square distance on a Riemannian manifold. In the following
statement, I say that M is asymptotically flat if all sectional curvatures σx at point x
satisfy

σx ≥ − C

d(x0, x)2
(10.23)

for some positive constant C and some x0 ∈ M .
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Theorem 10.35 (Monge problem for the square distance). Let M be a smooth
Riemannian manifold, and let c(x, y) = d(x, y)2. Let µ, ν be two probability measures on
M , such that the optimal cost between µ and ν is finite. If µ is absolutely continuous, then
there is a unique solution of the Monge problem between µ and ν, and it can be written as

y = T (x) = expx

(
∇̃ψ(x)

)
, (10.24)

where ψ is some d2/2-convex function. The approximate gradient can be replaced by a true
gradient if any one of the following conditions is satisfied:

(a) µ and ν are compactly supported;
(b) M has nonnegative sectional curvature;
(c) ν is compactly supported and M is asymptotically flat.

Proof. The general theorem is just a particular case of Theorem 10.32.
In case (a), we can apply Theorem 10.26(i) with X = Br](x0) = Y, where r is large

enough that Br(x0) contains all geodesics that go from Sptµ to Spt ν. Then the conclusion
holds with some c′-convex function ψ, where c′ is the restriction of c to X × Y:

ψ(x) = sup
y∈Br](x0)

[
φ(y) − d(x, y)2

2
]
.

To recover a true d2/2-function, it suffices to set φ(y) = −∞ on M \ Y, and let ψ(x) =
supy∈M [φ(y) − d(x, y)2/2].

In case (b), all functions d(·, y)2/2 are uniformly semi-concave (as recalled in the Third
Appendix), so Theorem 10.26(ii) applies.

In case (c), all functions d(·, y)2/2, where y varies in the support of ν, are uniformly
semi-concave (as recalled in the Third Appendix), so We can choose Y to be a large closed
ball containing the support of ν, and apply Theorem 10.26(ii) again. 78

Removing the assumption of finite cost

In this section, I shall investigate situations where the total transport cost might be infinite.
Unless the reader is specifically interested in such a situation, he or she is advised to skip
this section which is quite tricky.

If C(µ, ν) = +∞, there is no point in searching for an optimal transference plan.
However it does make sense to look for c-cyclically monotone plans, that will be called
generalized optimal transference plans.

Theorem 10.36 (Solution of the Monge problem without assumption of finite
total cost). Let X be a closed subset of a Riemannian manifold M such that dim(∂X ) ≤
n − 1, and let Y be an arbitrary Polish space. Let c : M × Y → R be a continuous cost
function, bounded below, and let µ ∈ P (M), ν ∈ P (Y). Assume that

(i) c is superdifferentiable everywhere (Assumption (Super));
(ii) ∇xc(x, ·) is injective on its domain of definition (Assumption (Twist));
(iii) c is locally semi-concave (Assumption (locSC));
(iv) µ does not give mass to sets of dimension at most n − 1.

Then there exists a unique (in law) coupling (x, y) of (µ, ν) such that π = law (x, y) is
c-cyclically monotone; moreover this coupling is deterministic. The measure π is called
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the generalized optimal transference plan between µ and ν. Moreover, there is a c-convex
function ψ : M → R ∪ {+∞} such that π[∂cψ] = 1.
• If Assumption (iv) is reinforced into

(iv’) µ is absolutely continuous with respect to the volume measure,
then

∇̃ψ(x) + ∇xc(x, y) = 0 π(dx dy)-almost surely. (10.25)

• If Assumption (iv) is left as it is, but one adds
(v) the cost function satisfies (H∞) or (SC),

then
∇ψ(x) + ∇xc(x, y) = 0 π(dx dy)-almost surely, (10.26)

and this characterizes the generalized optimal transport. Moreover, one can define a
continuous map x → T (x) on the set of differentiability points of ψ by the equation
T (x) ∈ ∂cψ(x), and then Spt ν = T (Sptµ).

Remark 10.37. Remark 10.33 applies also in this case.

Proof of Theorem 10.36. Let us first consider the existence problem. Let (µk)k∈N be a se-
quence of compactly supported probability measures converging weakly to µ; and similarly
let (νk)k∈N be a sequence of compactly supported probability measures converging weakly
to ν. For each index k, the total transport cost C(µk, νk) is finite; let πk be an optimal
transference plan between µk and νk. By Theorem 5.9, πk is c-cyclically monotone. By
Lemma 4.3, the sequence (πk)k∈N converges, up to extraction, to some transference plan
π ∈ Π(µ, ν). By Theorem 5.18, π is c-cyclically monotone. By Step 3 of the proof of
Theorem 5.9 (Rüschendorf’s theorem), there is a c-convex ψ such that Spt(π) ⊂ ∂cψ, in
particular π[∂cψ] = 1.

If µ is absolutely continuous, then we can proceed as in the proof of Theorem 10.32 to
show that the coupling is deterministic and that (10.25) holds true π-almost surely.

In the case when (H∞) or (SC) is assumed, then we know that ψ is c-subdifferentiable
everywhere in the interior of its domain; then we can proceed as in Theorem 10.26 to show
that the coupling is deterministic, that (10.26) holds true, and that this equation implies
y ∈ ∂cψ(x); then if we prove the uniqueness of the generalized optimal transference plan
this will show that (10.25) characterizes it.

So it all boils down to prove that under Assumptions (i)–(iv), the generalized optimal
transport is unique. This will be much more technical, and the reader is advised to skip
all the rest of the proof at first reading.

Let π be a generalized optimal coupling of µ and ν, and let ψ be a c-convex function
such that Spt(π) ⊂ ∂cψ. Let z0 ∈ X , let B( = B(z0, 5) ∪ X ; and let (K()(∈N be an
increasing sequences of compact subsets of Y, such that ν[∪K(] = 1. Let Z( := π([B(×K(],
c( := c|B!×K! , π( := 1B!×K!π/Z(, S( := projM (Sptπ(); let also µ( and ν( be the two
marginals of π(. It is easy to see that S( is still an increasing family of compact subsets of
M , and that µ[∪S(] = 1.

According to Theorem 5.16, there is a c(-convex function ψ( : B( → R ∪ {+∞} which
coincides with ψ on S(. Since c is locally semi-concave, the cost c( is uniformly semi-
concave, and ψ( is differentiable on S( apart from a set of dimension n − 1.

By Besicovich’s density theorem, the set S( has µ-density 1 at µ-almost all x ∈ S(;
that is
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µ[S( ∩ Br(x)]
µ[Br(x)]

−−−→
r→0

1.

(The proof of this uses the fact that we are working on a Riemannian manifold; see the
bibliographical notes for more information.)

Moreover, the transport plan π( induced by π on S( conicides with the deterministic
transport associated with the map

T( : x → (∇xc()−1(x,−∇ψ((x)).

Since π is the nondecreasing limit of the transports π(, it follows that π itself is determin-
istic, and associated with the transport map T that sends x to T((x) if x ∈ S(. (This map
is well-defined µ-almost surely.)

Let then

C( :=
{

x ∈ S(; x is interior to X ; S( has µ-density 1 at x;

∀k ≥ 5, ψk is differentiable at x
}
; ∇xc(x, T (x)) + ∇ψ((x) = 0

}
.

(Note: There is no reason for ∇ψ((x) to be an approximate gradient of ψ at x, because ψ(

is assumed to coincide with ψ only on a set of µ-density 1 at x, not on a set of vol -density 1
at x.....)

The sets C( form a nondecreasing family of bounded Borel sets. Moreover, C( has been
obtained from S( by deletion of a set of zero volume, and therefore of zero µ-measure. In
particular, µ[∪C(] = 1.

Let now π̃ be another generalized optimal transference plan, and let ψ̃ be a c-convex
function with Spt(π̃) ⊂ ∂cψ̃. We repeat the same construction as above with π̃ instead of
π, and get sequences (Z̃()(∈N, (π̃()(∈N, (c̃()(∈N, (ψ̃()(∈N, (C̃()(∈N, such that the C̃( form a
nondecreasing family of bounded Borel sets with µ[∪C̃(] = 1, ψ̃( coincides with ψ̃ on C̃(.
Also we find that π̃ is deterministic and determined by the transport map T̃ , where T̃
coincides with T̃( on S(.

Next, the sets C(∩C̃( also form a nondecreasing family of Borel sets, and µ[∪(C(∩C̃()] =
µ[(∪C()∩(∪C̃()] = 1 (here the nondecreasing property was used in the first equality). Also
C( ∩ C̃( has µ-density 1 at each of its points.

Assume that T 3= T̃ on a set of positive µ-measure; then there is some 5 ∈ N such that
{T 3= T̃} ∩ (C( ∩ C̃() has positive µ-measure. This implies that {T( 3= T̃(} ∩ (C( ∩ C̃() has
positive µ-measure, and then this implies that

µ
[
{∇ψ̃( 3= ∇ψ} ∩ (C( ∩ C̃()

]
> 0.

In the sequel, I shall fix such an 5.
Let x be a µ-Besicovich point of E( := (C(∩C̃()∩{∇ψ̃( 3= ∇ψ(}, i.e. a point at which E(

has µ-density 1. (Such a point exists since E( has positive µ-measure.) By adding a suitable
constant to ψ, we may assume that ψ̃(x) = ψ(x). Since ψ( and ψ̃( are semi-convex, we can
apply the implicit function theorem to deduce that there is a small neighborhood of x
in which the set {ψ( = ψ̃(} has dimension n− 1. (See Corollary 10.44 in the last Appendix
of this chapter.) Then, for r small enough, Assumption (iv) implies

µ
[
{ψ( 3= ψ̃(} ∩ Br(x)

]
= 0.

So at least one of the sets {ψ( < ψ̃(}∩Br(x) and {ψ( > ψ̃(}∩Br(x) has µ-measure at least
µ[Br(x)]/2. Without loss of generality, I shall assume that this is the set {ψ( > ψ̃(}; so
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µ
[
{ψ( > ψ̃(} ∩ Brk(x)

]
≥ µ[Brk(x)]

2
. (10.27)

Next, ψ( coincides with ψ on the set S(, which has µ-density 1 at x, and similarly ψ̃(

coincides with ψ̃ on a set of µ-density 1 at x. It follows that

µ
[
{ψ > ψ̃ ∩ {ψ( > ψ̃(} ∩ Brk(x)

]
≥ µ[Brk(x)]

(1
2
− o(1)

)
. (10.28)

Then since x is a Besicovich point of {∇ψ( 3= ∇ψ̃(} ∩ C( ∩ C̃(,

µ
[
{ψ > ψ̃ ∩ {ψ( > ψ̃(} ∩ {∇ψ( 3= ∇ψ̃(} ∩ (C( ∩ C̃() ∩ Brk(x)

]

≥ µ
[
{ψ > ψ̃ ∩ {ψ( > ψ̃(} ∩ Brk(x)

]
− µ[Brk(x) \ (C( ∩ C̃()]

≥ µ[Brk(x)]
(1

2
− o(1) − o(1)

)
.

As a conclusion,

∀r > 0 µ
[
{ψ > ψ̃} ∩ {ψ( > ψ̃(} ∩ {∇ψ( 3= ∇ψ̃(} ∩ (C( ∩ C̃() ∩ Brk(x)

]
> 0. (10.29)

Let now
A := {ψ > ψ̃}.

The proof will result from the next two claims:
Claim 1: T̃−1(T (A)) ⊂ A;
Claim 2: The set {ψ( > ψ̃(} ∩ (C( ∩ C̃() ∩ {∇ψ( 3= ∇ψ̃(} ∩ T̃−1(T (A)) lies a positive

distance away from x.
Let us postpone the proofs of these claims for a while, and see how the theorem follows

from them. Let S ⊂ A be defined by S := {ψ > ψ̃∩ {ψ( > ψ̃(}∩ {∇ψ( 3= ∇ψ̃(}∩ (C( ∩ C̃(),
and let

r := d
(
x, S ∩ T̃−1(T (A))

)
/2.

Obviously, µ[S ∩ B(x, r) ∩ T̃−1(T (A))] = 0. On the other hand, r is positive by Claim 2,
so µ[S ∩ B(x, r)] > 0 by (10.29). Then

µ
[
A \ T̃−1(T (A))

]
≥ µ

[
S ∩ B(x, r) \ T̃−1(T (A))

]
= µ[S ∩ B(x, r)] > 0.

Since T̃−1(T (A)) ⊂ A by Claim 1, this implies

µ[T̃−1(T (A))] < µ[A]. (10.30)

But then, we can write

µ[A] ≤ µ[T−1(T (A))] = ν[T (A)] = ν[T̃ (A)] = µ[T̃−1(T (A))],

which contradicts (10.30). So it all boils down to establishing Claims 1 and 2 above.
Proof of Claim 1: Let x ∈ T̃−1(T (A)). Then there exists y ∈ A such that T (y) = T̃ (x). Re-
call that T (y) ∈ ∂cψ(y) and T̃ (x) ∈ ∂cψ(x). By using the definition of the c-subdifferential
and the assumptions, we can write the following chain of identities and inequalities:
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ψ̃(x) + c(x, T̃ (x)) ≤ ψ̃(y) + c(y, T̃ (x))

= ψ̃(y) + c(y, T (y))
< ψ(y) + c(y, T (y))
≤ ψ(x) + c(x, T (y))

= ψ(x) + c(x, T̃ (x)).

It follows that ψ̃(x) < ψ(x), i.e. x ∈ A. This proves Claim 1.

Proof of Claim 2: Assume that this claim is false; then there is a sequence (xk)k∈N, valued
in {ψ( > ψ̃(} ∩ (C( ∩ C̃()∩ T̃−1(T (A)), such that xk → x. For each k, there is yk ∈ A such
that T̃ (xk) = T (yk). On C( ∩ C̃(, the transport T coincides with T( and the transport T̃
with T̃(, so T̃ (xk) ∈ ∂cψ((xk) and T (yk) ∈ ∂cψ((yk); then we can write, for any z ∈ M ,

ψ((z) ≥ ψ((yk) + c(yk, T (yk)) − c(z, T (yk))

= ψ((yk) + c(yk, T̃ (xk)) − c(z, T̃ (xk))

> ψ̃((yk) + c(yk, T̃ (xk)) − c(z, T̃ (xk))

≥ ψ̃((xk) + c(xk, T̃ (xk)) − c(z, T̃ (xk))

Since ψ( is differentiable at x and since c is locally semi-concave by assumption, we can
expand the right-hand side and obtain

ψ((z) ≥ ψ̃((xk) + c((xk, T̃ (xk))− c((z, T̃ (xk)) = ∇ψ̃((x) +∇ψ̃((x) · (xk − x) + o(|xk − x|)
−∇xc(xk, T̃ (xk)) · (z − xk) + o(|z − xk|), (10.31)

where o(|z−xk|) in the last line is uniform in k. (Here I have cheated by pretending to work
in Rn rather than on a Riemannian manifold, but all this is purely local, and invariant
under diffeomorphism; so there is really no problem to make sense of these formulas when
z is close enough to xk.) Recall that ∇xc(xk, T̃ (xk)) + ∇ψ̃((xk) = 0; so (10.31) can be
rewritten as

ψ(z) ≥ ψ̃((xk)+∇ψ̃((x)+∇ψ̃((x) · (xk −x)+ o(|xk −x|)+∇ψ̃((xk) · (z −xk)+ o(|z −xk|).
(10.32)

Then we can pass to the limit as k → ∞, remembering that ∇ψ̃( is continuous (because
ψ( is semi-convex), and get

ψ((z) ≥ ψ̃((x) + ∇ψ̃((x) · (z − x) + o(|z − x|) (10.33)

= ψ((x) + ∇ψ̃((x) · (z − x) + o(|z − x|).

On the other hand, since ψ( is differentiable at x, we have

ψ((z) = ψ((x) + ∇ψ((x) · (z − x) + o(|z − x|).

Combining this with (10.33), we see that

(∇ψ̃((x) −∇ψ((x)) · (z − x) ≤ o(|z − x|),

which is possible only if ∇ψ̃((x)−∇ψ((x) = 0. But this contradicts the definition of x. So
Claim 2 should hold true, and this concludes the proof of Theorem 10.36. 78
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The next Corollary of Theorem 10.36 is exactly similar to Theorem 10.35 except that
the classical Monge problem (search of a transport of minimum cost) has been replaced
by the generalized Monge problem (search of a c-monotone transport).

Corollary 10.38 (Generalized Monge problem for the square distance). Let M
be a smooth Riemannian manifold, and let c(x, y) = d(x, y)2. Let µ, ν be two probability
measures on M .

- If µ gives zero mass to sets of dimension at most n−1, then there is a unique solution
x → T (x) of the generalized Monge problem between µ and ν.

- If µ is absolutely continuous, then this solution can be written

y = T (x) = expx

(
∇̃ψ(x)

)
, (10.34)

where ψ is some d2/2-convex function.
- If M has nonnegative sectional curvature, or ν is compactly supported and M satis-

fies (10.23), then equation (10.34) still holds, but in addition the approximate gradient in
that equation can be replaced by a true gradient.

First Appendix: A little bit of Geometric Measure Theory

The geometric counterpart of differentiability is of course the approximation of a set S by
a tangent plane, or hyperplane, or more generally by a tangent d-dimensional space, if d
is the dimension of S.

If S is smooth, then there is no ambiguity on its dimension (a curve has dimension 1, a
surface has dimension 2, etc.) and the tangent space always exists. But if S is not smooth,
this might not be the case, at least not in the usual sense. The notion of tangent cone
(sometimes called contingent cone) often remedies this problem; it is naturally associated
with the notion of countable d-rectifiability, which acts as a replacement for the notion
of “dimension d”. Here below I shall recall some of the basic results about these concepts.

Definition 10.39 (tangent cone). If S is an arbitrary subset of Rn, and x ∈ S, then
the tangent cone TxS to S at x is defined as

TxS :=
{

lim
k→∞

xk − x

tk
; xk ∈ S, xk → x, tk > 0, tk → 0

}
.

The dimension of this cone is defined as the dimension of the vector space that it generates.

Definition 10.40 (countable rectifiability). Let S be a subset of Rn, and let d ∈ [0, n]
be an integer. Then S is said to be countably d-rectifiable if S ⊂

⋃
k∈N fk(Dk), where each

fk is Lipschitz on a measurable subset Dk of Rd. In particular, it has Hausdorff dimension
at most d.

The next theorem summarizes two results which were useful in the present chapter:

Theorem 10.41 (sufficient conditions for countable rectifiability).
(i) Let S be a measurable set in Rn, such that TxS has dimension at most d for all

x ∈ S. Then S is countably d-rectifiable.
(ii) Let S be a measurable set in Rn, such that TxS is included in a half-space, for each

x ∈ ∂S. Then ∂S is countably (n − 1)-rectifiable.
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Proof of Theorem 10.41. Let us start with Statement (i). For each x ∈ S, let πx stand for
the orthogonal projection on TxS, and let π⊥

x = Id −πx stand for the orthogonal projection
on (TxS)⊥. I claim that

∀x ∈ S, ∃r > 0; ∀y ∈ S, |x − y| ≤ r =⇒ |π⊥
x (x − y)| ≤ |πx(x − y)|. (10.35)

Indeed, assume that (10.35) is false. Then there is x ∈ S, and there is a sequence
(yk)k∈N such that |x − yk| ≤ 1/k and yet |π⊥

x (x − y)| > |πx(x − y)|, or equivalently

∣∣∣π⊥
x

(
x − yk

|x − yk|

)∣∣∣ >
∣∣∣πx

(
x − yk

|x − yk|

)∣∣∣. (10.36)

Up to extraction of a subsequence, we may assume that wk := (x− yk)/|x− yk| converges
to θ ∈ TxS with |θ| = 1. Then |πxwk| → 1 and |π⊥

x wk| → 0, which is in contradiction
with (10.36). So (10.35) is true.

Next, for each k ∈ N, let

Sk :=
{

x ∈ S; property (10.35) holds true for |x − y| ≤ 1/k
}

.

It is clear that the sets Sk cover S, so it is sufficient to prove the d-rectifiability of Sk for
a given k.

Let δ > 0 be small enough (δ < 1/2 will do). Let Πd be the set of all orthogonal
projections on d-dimensional linear spaces. Since Πd is compact, we can find a finite
family (π1, . . . ,πN ) of such orthogonal projections, such that for any π ∈ Πd there is
j ∈ {1, . . . , N} with ‖π − πj‖ ≤ δ, where ‖ · ‖ stands for the operator norm. So the set Sk

is covered by the sets
Sk( :=

{
x ∈ Sk; ‖πx − π(‖ ≤ δ

}
.

To prove the theorem, it suffices to prove that Sk( is locally rectifiable. We shall show that

x, x′ ∈ Sk(, |x − x′| ≤ 1
k

=⇒ |π⊥
( (x − x′)| ≤ L |π((x − x′)|, L =

1 + 2δ
1 − 2δ

; (10.37)

it will follow that the intersection of Sk( with a ball of diameter 1/k is contained in an
L-Lipschitz graph over π((Rn); and then the conclusion will follow immediately.

To prove (10.37), note that, if π and π′ are any two orthogonal projections, then (since
π⊥ = Id − π), ‖π⊥ − (π′)⊥‖ = ‖π − π′‖. So

|π⊥
( (x − x′)| ≤ |(π⊥

( − π⊥
x )(x − x′)| + |π⊥

x (x − x′)|
≤ |(π( − πx)(x − x′)| + |πx(x − x′)|

≤ |(π( − πx)(x − x′)| + |π((x − x′)| + |(π( − πx)(x − x′)|
≤ |π((x − x′)| + 2δ|x − x′|
≤ (1 + 2δ)|π((x − x′)| + 2δ|π⊥

( (x − x′)|.

This establishes (10.37).
Now let us turn to Statement (ii). Let F be a finite set in Sn−1 such that the balls

(B1/8(ν))ν∈F cover Sn−1. I claim that

∀x ∈ ∂S, ∃r > 0, ∃ν ∈ F, ∀y ∈ ∂S ∩ Br(x), 〈y − x, ν〉 ≤ |y − x|
2

. (10.38)
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Indeed, otherwise there is x ∈ ∂S such that for all k ∈ N and for all ν ∈ F there is yk ∈ ∂S
such that |yk − x| ≤ 1/k and 〈yk − x, ν〉 > |yk − x|/2. By assumption there is ξ ∈ Sn−1

such that
∀ζ ∈ TxS, 〈ξ, ζ〉 ≤ 0.

Let ν ∈ F be such that |ξ−ν| < 1/8 and let (yk)k∈N be a sequence as above. Since yk ∈ ∂S
and yk 3= x, there is y′k ∈ S such that |yk − y′k| < |yk − x|/8. Then

〈y′k − x, ξ〉 ≥ 〈yk − x, ν〉 − |yk − x| |ξ − ν|− |y − y′k| ≥
|yk − x|

4
≥

|x − y′k|
8

.

So 〈 y′k − x

|y′k − x| , ξ
〉
≥ 1

8
. (10.39)

Up to extraction of a subsequence, (y′k − x)/|y′k − x| converges to some ζ ∈ TxS, and then
by passing to the limit in (10.39) we have 〈ζ, ξ〉 ≥ 1/8. But by definition, ξ is such that
〈ζ, ξ〉 ≤ 0 for all ζ ∈ TxS. This contradiction establishes (10.38).

As a consequence, ∂S is included in the union of all sets A1/k,ν , where k ∈ N, ν ∈ F ,
and

Ar,ν :=
{
x ∈ ∂S; ∀y ∈ ∂S ∩ Br(x), 〈y − x, ν〉 ≤ |y − x|

2

}
.

To conclude the proof of the theorem it is sufficient to show that each Ar,ν is locally the
image of a Lipschitz function defined on a subset of an (n − 1)-dimensional space.

So let r > 0 and ν ∈ F be given, let x0 ∈ Ar,ν , and let π be the orthogonal projection
of Rn to ν⊥. (Explicitly, π(x) = x− 〈x, ν〉ν.) We shall show that on D := Ar,ν ∩Br/2(x0),
π is injective and its inverse (on π(D)) is Lipschitz. To see this, first note that for any
two x, x′ ∈ D, one has x′ ∈ Br(x), so, by definition of Ar,ν , 〈x′ − x, ν〉 ≤ |x′ − x|/2. By
symmetry, also 〈x − x′, ν〉 ≤ |x − x′|/2, so in fact

∣∣〈x − x′, ν〉
∣∣ ≤ |x − x′|

2
.

Then if z = π(x) and z′ = π(x′),

|x − x′| ≤ |z − z′| +
∣∣〈x, ν〉 − 〈x′, ν〉

∣∣ ≤ |z − z′| + |x − x′|
2

,

so |x − x′| ≤ 2 |z − z′|. This concludes the proof. 78

Second Appendix: Nonsmooth Implicit Function Theorem

Let M be an n-dimensional smooth Riemannian manifold, and x0 ∈ M . I shall say that
a set M ′ ⊂ M is a k-dimensional Cr graph (resp. k-dimensional Lipschitz graph) in a
neighborhood of x0 if there are

(i) a smooth system of coordinates around x0, say

x = ζ(x′, y),

where ζ is a smooth diffeomorphism from an open subset U of Rk × Rn−k, into a neigh-
borhood O of x0;

(ii) a Cr (resp. Lipschitz) function ϕ : O′ → Rn−k, where O′ is an open subset of Rk;
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Rn−k

M

ϕ

ζ

Rk

Fig. 10.2. k-dimensional graph

such that for all x ∈ O,
x ∈ M ′ ⇐⇒ y = ϕ(x′).

The following statement is a consequence of the classical implicit function theorem: If
f : M → R is of class Cr (r ≥ 1), f(x0) = 0 and ∇f(x0) 3= 0, then the set {f = 0} =
f−1(0) is an (n − 1)-dimensional Cr graph in a neighborhood of x0.

In this Appendix I shall consider a nonsmooth version of this theorem. The following
notion will be useful.

Definition 10.42 (Clarke subdifferential). Let f be a continuous real-valued function
defined on an open subset U of a Riemannian manifold. For each x ∈ U , define ∂f(x) as
the convex hull of all limits of sequences ∇f(xk), where all xk are differentiability points
of f and xk → x. In short:

∂f(x) = Conv
{

lim
xk→x

∇f(xk)
}

.

Further recall that if (Ai)1≤i≤m are subsets of a vector space, then
∑

Ai = {
∑

i ai; ai ∈
Ai}.

Theorem 10.43 (Nonsmooth Implicit Function Theorem). Let (fi)1≤i≤m be real-
valued Lipschitz functions defined in an open set U of an n-dimensional Riemannian man-
ifold, and let x0 ∈ U be such that

(a)
∑

fi(x0) = 0;
(b) 0 /∈

∑
∂fi(x0).

Then {
∑

fi = 0} is an (n − 1)-dimensional Lipschitz graph around x0.

Corollary 10.44 (Implicit function theorem for two semi-convex functions).
Let ψ and ψ̃ be two semi-convex functions defined in an open set U of an n-dimensional
Riemannian manifold M , and let x0 ∈ U be such that ψ, ψ̃ are differentiable at x0, and

ψ(x0) = ψ̃(x0); ∇ψ(x0) 3= ∇ψ̃(x0).

Then there is a neighborhood V of x0 such that {ψ = ψ̃} ∩ V is an (n − 1)-dimensional
Lipschitz graph; in particular, it has Hausdorff dimension exactly n − 1.
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Proof of Corollary 10.44. Let f1 = ψ, f2 = −ψ̃. Since f1 is semi-convex and f2 is semi-
concave, both ∇f1 and ∇f2 are continuous on their respective domain of definition. So
∂fi(x0) = {∇fi(x0)} (i = 1, 2) and

∑
∂fi(x0) = {

∑
∇fi(x0)} does not contain 0. Then

Theorem 10.43 implies the conclusion. 78

Proof of Theorem 10.43. The statement is purely local and invariant under C1 diffeomor-
phism, so we might assume that we are working in Rn. For each i, ∂fi(x0) ⊂ B(0, ‖fi‖Lip) ⊂
Rn, so ∂fi(x0) is a compact convex subset of Rn; then also

∑
∂fi(x0) is compact and con-

vex, and by assumption does not contain 0. By the Hahn–Banach theorem, there are
v ∈ Rn and α > 0 such that

〈p, v〉 ≥ α for all p ∈
∑

∂fi(x0). (10.40)

Then there is a neighborhood V of x0 such that
∑

〈∇fi(x), v〉 ≥ α/2 at all points x where
all functions fi are differentiable. (Otherwise there would be a sequence (xk)k∈N, converging
to x0, such that

∑
〈∇fi(xk), v〉 < α/2, but then up to extraction of a subsequence we would

have ∇fi(xk) → pi ∈ ∂fi(x0), so 〈
∑

pi, v〉 ≤ α/2 < α, which would contradict (10.40).)
Without loss of generality, we may assume that x0 = 0, v = (e1, 0, . . . , 0), V = (−β,β)×

B(0, r0), where the latter ball is a subset of Rn−1 and r0 ≤ (αβ)/(4
∑

‖fi‖Lip). Let further

Z ′ :=
{

y ∈ B(0, r0) ⊂ Rn−1; λ1
[
{t ∈ (−β,β); ∃i; ∇fi(t, y) does not exist}

]
> 0

}
;

Z = (−β,β) × Z ′; D = V \ Z.

I claim that λn[Z] = 0. To prove this it is sufficient to check that λn−1[Z ′] = 0. But Z ′

is the noincreasing limit of (Z ′
()(∈N, where

Z ′
( =

{
y ∈ B(0, r0); λ1

[
{t ∈ (−β,β); ∃i; ∇fi(t, y) does not exist}

]
≥ 1/5

}
.

By Fubini’s theorem,

λn

[{
x ∈ O; ∇fi(x) does not exist for some i

}]
≥ (λn−1[Z ′

(]) × (1/5);

and the left-hand side is equal to 0 since all fi are differentiable almost everywhere. It
follows that λn−1[Z ′

(] = 0, and by taking the limit 5 → ∞ we obtain λn−1[Z ′] = 0.
Let f =

∑
fi, and let ∂1f = 〈∇f, v〉 stand for its partial derivative with respect to

the first coordinate. The first step of the proof has shown that ∂1f(x) ≥ α/2 at each
point x where all functions fi are differentiable. So, for each y ∈ O′ \ Z ′, the function
t → f(t, y) is Lipschitz and differentiable λ1-almost everywhere on (−β,β), and it satisfies
f ′(t, y) ≥ α/2. It follows that for all t, t′ ∈ (−β,β),

t < t′ =⇒ f(t′, y) − f(t, y) ≥ (α/2) (t′ − t). (10.41)

Since holds true for all ((t, y), (t′, y)) in D×D. Since Z = V \D has zero Lebesgue measure,
it follows that D is dense in V , so (10.41) extends to all ((t, y), (t′, y)) ∈ V .

For all y ∈ B(0, r0), inequality (10.41), combined with the estimate

|f(0, y)| = |f(0, y) − f(0, 0)| ≤ ‖f‖Lip |y| ≤
αβ

4
,

guarantees that the equation f(t, y) = 0 has exactly one solution t = ϕ(y) in (−β,β).
It only remains to check that ϕ is Lipschitz on O′. Let y, z ∈ O′, then f(ϕ(y), y) =

f(ϕ(z), z) = 0, so
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∣∣f(ϕ(y), y) − f(ϕ(z), y)
∣∣ =

∣∣f(ϕ(z), z) − f(ϕ(z), y)
∣∣. (10.42)

Since the first partial derivative of f is no less than α/2, the left-hand side of (10.42)
is bounded below by (α/2)|ϕ(y) − ϕ(z)|, while the right-hand side is bounded above by
‖f‖Lip |z − y|. The conclusion is that

|ϕ(y) − ϕ(z)| ≤
2 ‖f‖Lip

α
|z − y|,

so ϕ is indeed Lipschitz. 78

Third Appendix: Curvature and the Hessian of the squared distance

The practical verification of the uniform semi-concavity of a given cost function c(x, y)
might be a very complicated task in general. In the particular case when c(x, y) = d(x, y)2,
then this problem can be related to the sectional curvature of the Riemannian manifold.
In this Appendix I shall recall some results about these links, some of them well-known,
other ones more confidential. The reader who does not know about sectional curvature
can skip this Appendix, or take a look at Chapter 14 first. In any case the proofs in this
Appendix will use some basic results in Riemannian geometry.

If M = Rn is the Euclidean space, then d(x, y) = |x−y| and there is the simple formula

∇2
x

(
|x − y|2

2

)
= In,

where the right-hand side is just the identity operator on TxRn = Tn.
If M is an arbitrary Riemannian manifold, there is no simple formula for ∇2

xd(x, y)2/2,
and this operator will in general not be defined in the sense that it can take eigenvalues
−∞ if x and y are conjugate point. However, there is still a recipe to estimate ∇2

xd(x, y)2/2
from above, and thus derive estimates of semi-concavity for d2/2.

So let x and y be any two points in M , and let γ be a minimizing geodesic joining
y to x, parametrized by arc length; so γ(0) = y, γ(d(x, y)) = x. Let H(t) stand for the
Hessian operator of x → d(x, y)2/2 at x = γ(t). On [0, d(x, y)) the operator H(t) is well-
defined (since the geodesic is minimizing, it is only at t = d(x, y) that eigenvalues −∞ may
appear). It starts at H(0) = Id and then its eigenvectors and eigenvalues vary smoothly
at t varies in (0, d(x, y)).

The unit vector γ̇(t) is an eigenvector of H(t), associated with the eigenvalue +1. The
problem is to bound the eigenvalues in the orthogonal subspace S(t) = (γ̇)⊥ ⊂ Tγ(t)M .
So let (e2, . . . , en) be an orthonormal basis of S(0), and let (e2(t), . . . , en(t)) be obtained
by parallel transport of (e2, . . . , en) along γ; it remains an orthonormal basis of S(t). To
achieve our goal, it is sufficient to bound above the quantities h(t) = 〈H(t) ·ei(t), ei(t)〉γ(t),
where i is arbitrary in {2, . . . , n}.

Since H(0) is the identity, we have h(0) = 1. To get a differential equation on h(t), we
can use a classical computation of Riemannian geometry, about the Hessian of the distance
(not squared!): If k(t) = 〈∇2d(y, x) · ei(t), ei(t)〉γ(t), then

k̇(t) + k(t)2 + σ(t) ≤ 0, (10.43)

where σ(t) is the sectional curvature of the plane generated by γ̇(t) and ei(t) inside Tγ(t)M .
Then we can relate k(t) and h(t). Indeed,
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∇x

(
d(y, x)2

2

)
= d(y, x)∇xd(y, x); ∇2

x

(
d(y, x)2

2

)
= d(y, x)∇2

xd(y, x)+∇xd(x, y)⊗∇xd(x, y).

By applying this to the tangent vector ei(t) and using the fact that ∇xd(x, y) at x = γ(t)
is just γ̇(t), we get

h(t) = d(y, γ(t)) k(t) + 〈γ̇(t), ei(t)〉2 = t k(t).

Plugging this in (10.43) results in

tḣ(t) − h(t) + h(t)2 ≤ −t2 σ(t). (10.44)

From (10.44) follow the two comparison results which were used in Theorem 10.35 and
Corollary 10.38:

(a) Assume that the sectional curvatures of M are all nonnegative. Then (10.44)
forces ḣ ≤ 0, so h remains bounded above by 1 for all times. This proves that

nonnegative sectional curvature =⇒ ∇2
x

(
d(x, y)2

2

)
≤ Id TxM . (10.45)

(If we think of the Hessian as a bilinear form, this is the same as ∇2
x(d(x, y)2/2) ≤ g,

where g is the Riemannian metric.) Inequality (10.45) is rigorous if d(x, y)2/2 is twice
differentiable at x; otherwise the conclusion should be reinterpreted as

x → d(x, y)2

2
is semi-concave with a modulus ω(r) =

r2

2
.

(b) Assume now that the sectional curvatures at point x are bounded be-
low by −C/d(x0, x)2, where x0 is an arbitrary point. In this case I shall say that M
is asymptotically flat. Then if y varies in a compact subset, we have a lower bound like
σ(t) ≥ −C ′/d(y, x)2 = −C ′/t2, where C ′ is some positive constant. So (10.44) implies

tḣ(t) ≤ C ′ + h(t) − h(t)2.

If h(t) ever becomes strictly greater than C := (1/2)+(C ′+1/4)(1/2), then the right-hand
side becomes strictly negative; so h can never go above C. The conclusion is that

M is asymptotically flat =⇒ ∀y ∈ K, ∇2
x

(
d(x, y)2

2

)
≤ C(K) Id TxM ,

where K is any compact subset of M . Again, at points where d(x, y)2/2 is not twice
differentiable, the conclusion should be reinterpreted as

x → d(x, y)2

2
is semi-concave with a modulus ω(r) = C(K)

r2

2
.

Example 10.45. Any compact manifold is asymptotically flat in the preceding sense.
Any manifold which has been obtained from Rn by modification on a compact set is also
asymptotically flat. The hyperbolic space Hn is not asymptotically flat. In fact, if y is any
given point in Hn, then the function x → d(y, x)2 is not uniformly semi-concave as x → ∞.

Remark 10.46. The exponent 2 appearing in the definition of “asymptotic flatness” above
is optimal in the sense that for any p < 2 it is possible to construct manifolds satisfying
σx ≥ −C/d(x0, x)p and on which d(x0, x)2 is not uniformly semi-concave as a function of
x.
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and Mather’s theory on the other hand.
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rather pseudo-distance, since it takes the value +∞). Their tricky analysis goes via finite-
dimensional approximations.

The use of approximate differentials as in Theorem 10.32 was initiated by Ambrosio
and collaborators [15], who used it for strictly convex cost functions in Rn. The nontrivial
adaptation to Riemannian manifolds was then done by Fathi and Figalli [161], with a
slightly more complicated approach than the one used in this chapter.

The tricky proof of Theorem 10.36 takes its roots in a uniqueness theorem by Alexan-
drov [8]. McCann [266] understood that Alexandrov’s strategy could be revisited to yield
the uniqueness of a cyclically monotone transport in Rn without the assumption of finite
total cost (Corollary 10.38 in the case when M = Rn). The tricky extension to more gen-
eral cost functions on Riemannian manifolds was performed later by Figalli. The current
proof of Theorem 10.36 is so complicated that the reader might prefer to have a look
at [365, Section 2.3.3], where the core of McCann’s proof is explained in simpler terms on
the particular case c(x, y) = |x − y|2.

The case when the cost function is the distance (c(x, y) = d(x, y)) is not covered by
Theorem 10.26, nor by any of the theorems appearing in the present chapter. This case is
actually much more tricky, be it in Euclidean space or on a manifold. The interested reader
can consult [365, Section 2.4.6] for a brief review, as well as the research papers [342, 10, 17,
93, 357, 162, 48, 16, 130, 170]. The treatment by Bernard and Buffoni [48] is particularly
appealing, for its simplicity and links to dynamical system tools.
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The optimal transport problem with a distance cost function is also related to the
so-called irrigation problem studied recently by various authors [49, 84], the Bouchitté-
Buttazzo variational problem [67, 66], and other problems as well. In this connection, see
also Pratelli [300].

To conclude, here are some remarks about some key technical ingredients used in this
chapter.

Rademacher [308] proved his theorem of almost everywhere differentiability in 1918,
for Lipschitz functions of two variables; this was later generalized to an arbitrary number
of variables. The simple argument presented in this section seems to be due to Chris-
tensen [112]; it can also be found, up to minor variants, in modern textbooks about real
analysis such as the one by Evans and Gariepy [156, pp. 81–84]. Ambrosio showed me
another simple argument which uses Lebesgue’s density theorem and the identification of
a Lipschitz function with a function whose distributional derivative is essentially bounded.

The book by Cannarsa and Sinestrari [94] is an excellent reference for semi-concavity
(or semi-convexity), and subdifferentiability (or superdifferentiability) in Rn, as well as
the links with the theory of Hamilton–Jacobi equations. It is centered on semiconcavity
rather than semiconvexity, but this is just a question of convention. In that reference it is
proven that a semiconcave function is locally Lipschitz in the interior of its domain [94,
Theorem 2.1.7]; that a subset of Rn whose tangent spaces are all of dimension at most
d is countably d-rectifiable [94, Theorem 4.1.6 and Corollary 4.1.9]; that a semi-concave
function is differentiable on the interior of its domain, apart from a countably (n − 1)-
rectifiable set [94, Corollary 4.1.13]; etc. In particular, the proof of Theorem 10.41(i) is
taken from that source. The core results in this circle of ideas and tools can be traced
back to a pioneering paper by Alberti, Ambrosio and Cannarsa [5]. Following Ambrosio’s
advice, I used the same methods to establish Theorem 10.41(ii) in the present notes.

Apart from subdifferentiability, other notions of differentiability for non-smooth func-
tions are discussed in [94], such as the Dini derivatives, the reachable gradients or the
Clarke gradient.

The theory of approximate differentiability is developed in Federer [?, Section 3.1.8]
(in the context of Euclidean space); see also Ambrosio, Gigli and Savarè [15, Section 5.5].
A central result is the fact that any approximately differentiable function coincides, up to
a set of arbitrarily small measure, with a Lipschitz function.

Besicovich’s density theorem can be found in [?]; it is based on Besicovich’s covering
lemma. This theorem is an alternative to the more classical Lebesgue density theorem
(based on Vitali’s covering lemma), which requires the doubling property. The price to
pay for Besicovich’s theorem is that it only works in Rn (or a Riemannian manifold, by
localization) rather than on a general metric space.

The nonsmooth implicit function theorem stated in the second Appendix (Theo-
rem 10.43) seems to be folklore in nonsmooth real analysis, although I am not aware of a
precise reference other than the present notes. The core of the proof of Theorem 10.43 was
explained to me by Fathi. Corollary 10.44 was discovered or rediscovered by McCann [266,
Appendix], in the case where ψ and ψ̃ are convex functions in Rn.

Everything in the Third Appendix, in particular the key differential inequality (10.44),
was explained to me by Gallot. The lower bound assumption on the sectional curvatures
σx ≥ −C/d(x0, x)2 is sufficient to get upper bounds on ∇2

xd(x, y)2 as y stays in a compact
set, but it is not sufficient to get upper bounds that are uniform in both x and y. A
counterexample is developed in [?, ?, ?, pp.213–214]

As pointed out to me by Ghys, the problem of finding a sufficient condition for the
Hessian of d(x, y)2 to be bounded above is closely related to the problem whether large
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spheres Sr(y) centered at y look flat at infinity, in the sense that their second fundamental
form is bounded like O(1/r).



11

The Jacobian equation

Transport is but a change of variables, and in many problems involving changes of variables,
it is useful to write the Jacobian equation

f(x) = g(T (x))JT (x),

where f and g are the respective densities of the probability measures µ and ν with respect
to the volume measure (in Rn, the Lebesgue measure), and JT (x) is the absolute value of
the Jacobian determinant associated with T :

JT (x) = |det(∇T (x))| = lim
r→0

vol [T (Br(x))]
vol [Br(x)]

.

There are two important things that one should check before writing the Jacobian equation:
First, T should be injective on its domain of definition; secondly, it should possess some
minimal regularity.

So how smooth should T be for the Jacobian equation to hold true? We learn in
elementary school that it is sufficient for T to be continuously differentiable, and a bit later
that it is actually enough to have T Lipschitz continuous. But that degree of regularity is
not always available in optimal transport! As we shall see in the Appendix of Chapter 12,
the transport map T might fail to be even continuous.

There are (at least) three ways out of this situation:
(i) Only use the Jacobian equation in situations where the optimal map is smooth. As

explained in Chapter 12, such situations are rare. For instance, if the cost function is the
square distance on a Riemannian manifold, M then known theorems of regularity of the
optimal transport apply only when M is the Euclidean space or the sphere; and moreover
f and g should satisfy some conditions of strict positivity.

(ii) Only use the Jacobian equation for the optimal map between µt0 and µt, where
(µt)0≤t≤1 is a compactly supported displacement interpolation, and t0 is fixed in (0, 1).
Then, according to Theorem 8.5, the transport map is essentially Lipschitz. This is the
strategy that I shall use in these notes.

(iii) Apply a more sophisticated theorem of change of variables, covering for instance
changes of variables with bounded variation (possibly discontinuous). It is in fact sufficient
that the map T be differentiable almost everywhere, or even just approximately differen-
tiable almost everywhere, in the sense of Definition 10.2. Such a theorem is stated here
without proof. The volume measure on M will be denoted just dx.

Theorem 11.1 (Jacobian equation). Let M be a Riemannian manifold, let f ∈ L1(M)
be a nonnegative integrable function on M , and let T : M → M be a Borel map. Define
µ(dx) = f(x) dx and ν := T#µ. Assume that
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(i) There exists a measurable set Σ ⊂ M , such that f = 0 almost everywhere outside
of Σ, and T is injective on Σ;

(ii) T is approximately differentiable almost everywhere on Σ, with approximate gradi-
ent ∇̃T .

Let then JT be defined almost everywhere on Σ by the equation JT (x) := |det(∇̃T (x))|.
Then ν is absolutely continuous with respect to the volume measure if and only if JT > 0
almost everywhere. In that case ν is concentrated on T (Σ), and its density is determined
by the equation

f(x) = g(T (x))JT (x). (11.1)

In an informal writing:
d(T−1)#(g vol )

dvol
= JT (g ◦ T ) vol .

Theorem 11.1 establishes the Jacobian equation as soon as, say, the optimal transport
has locally bounded variation. Indeed, in this case the map T is almost everywhere differen-
tiable, and its gradient coincides with the absolutely continuous part of the distributional
gradient ∇D′T . The property of bounded variation is obviously satisfied for the quadratic
cost in Euclidean space, since the second derivative of a convex function is a nonnegative
measure.

Example 11.2. Consider two probability measures µ0 and µ1 on Rn, with finite second
moments; assume that µ0 and µ1 are absolutely continuous with respect to Lebesgue
measure, with respective densities f0 and f1. Under those assumptions there exists a
unique optimal transport map between µ0 and µ1, and it takes the form T (x) = ∇Ψ(x)
for some convex Ψ . There is a unique displacement interpolation (µt)0≤t≤1, and it is defined
by

µt = (Tt)#µ0, Tt(x) = (1 − t)x + t T (x) = (1 − t)x + t∇Ψ(x).

By Theorem 8.7, each µt is absolutely continuous, so let ft be its density. The map ∇T
is of locally bounded variation, and it is differentiable almost everywhere, with Jacobian
matrix ∇T = ∇2Ψ , where ∇2Ψ is the Alexandrov Hessian (absolutely continuous part
of the distributional Hessian) of Ψ . Then, it follows from Theorem 11.1 that, µ0-almost
surely,

f0(x) = f1(∇Ψ(x)) det(∇2Ψ(x)).

Also, for any t ∈ [0, 1],

f0(x) = ft(Tt(x)) det(∇Tt(x))

= ft
(
(1 − t)x + t∇Ψ(x)

)
det

(
(1 − t)In + t∇2Ψ(x)

)
,

If now Tt0→t = Tt◦T−1
t0 stands for the transport map between µt0 and µt, then the equation

ft0(x) = ft(Tt0→t(x)) det(∇Tt0→t(x))

also holds true for t0 ∈ (0, 1); but now this is just the theorem of change of variables for
Lipschitz maps.

In the sequel of these notes, I shall be content with the following theorem of change of
variables.
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Theorem 11.3 (Change of variables). Let M be a Riemannian manifold, and c(x, y)
a cost function deriving from a C2 Lagrangian L(x, v, t) on TM × [0, 1], where L satisfies
the classical assumptions of Definition 7.6, together with ∇2

vL > 0. Let (µt)0≤t≤1 be a
displacement interpolation, such that µt is absolutely continuous and has density ft. Let
t0 ∈ (0, 1), and t ∈ [0, 1]; let further Tt0→t be the (µt0-a.s.) unique optimal transport from
µt0 to µt, and let Jt0→t be the associated Jacobian determinant. Let F be a nonnegative
measurable function on M × R+ such that

ft(y) = 0 =⇒ F (y, ft(y)) = 0.

Then, ∫

M
F (y, ft(y)) dy =

∫

M
F
(
Tt0→t(x),

ft0(x)
Jt0→t(x)

)
Jt0→t(x) dx.

Furthermore, for µt0-almost all x, the Jacobian determinant Jt0→t(x) is positive for all
t ∈ [0, 1].

Proof of Theorem 11.3. Let us first consider the case when (µt)0≤t≤1 is compactly sup-
ported. Let Π be a probability measure on the set of minimizing curves, such that
µt = (et)#Π. Let Kt = et(SptΠ) and Kt0 = et0(SptΠ). By Corollary 8.2, the map
γt0 → γt is well-defined and Lipschitz for all γ ∈ SptΠ. So Tt0→t(γt0) = γt is a Lip-
schitz map Kt0 → Kt. Moreover, (γt, γt0) is a deterministic coupling of (µt, µt0), and
it is optimal for the cost ct0,t obtained by exchanging the variables in ct,t0 . (That is,
ct0,t(x, y) = ct,t0(y, x).) By assumption µt is absolutely continuous, so Theorem 10.26
guarantees that the coupling (γt, γt0) is deterministic, which amounts to say that γt0 → γt

is injective apart from a set of zero probability.
Then we can use the change of variables formula with g = 1Kt , T = Tt0→t, and we find

f(x) = Jt0→t(x). Therefore, for any nonnegative measurable function G on M ,
∫

Kt

G(y) dy =
∫

Kt

G(y) d((Tt0→t)#µ)(y) =
∫

Kt0

(G◦Tt0→t) f(x) dx =
∫

Kt0

G(Tt0→t(x))Jt0→t(x) dx.

We can apply this with G(y) = F (y, ft(y)) and then replace ft(Tt0→t(x)) by ft0(x)/Jt0→t(x);
this is allowed since in the right-hand side the contribution of those x with ft(Tt0→t(x)) is
negligible, and Jt0→t(x) = 0 implies (almost surely) ft(Tt0→t(x)) = 0. So in the end

∫

Kt

F (y, ft(y)) dy =
∫

Kt0

F
(
Tt0→t(x),

ft0(x)
Jt0→t(x)

)
Jt0→t(x) dx.

Since ft(y) = 0 almost surely outside of Kt and ft0(x) = 0 almost surely outside of Kt0 ,
these two integrals can be extended to the whole of M .

Now it remains to generalize this to the case when Π is not compactly supported. (The
reader may skip this bit at first reading.) In this case we let (K()(∈N be an nondecreasing
sequence of compact sets, such that Π[∪K(] = 1. For 5 large enough, Π[K(] > 0, so we
can consider the restriction Π( of Π to K(. Then we let Kt,( and Kt0,( be the images
of K( by et and et0 , and of course µt,( = (et)#Π(, µt0,( = (et0)#Π(. Since µt and µt0 are
absolutely continuous, so are µt,( and µt0,(, so let ft,( and ft0,( be their respective densities.
The optimal map Tt0→t,( for the transport problem between µt0,( and µt,( is obtained as
before by the map γt0 → γt, so this is actually the restriction of Tt0→t to Kt0,(. So we have
the Jacobian equation

ft0,((x) = ft,((Tt0→t(x))Jt0→t(x). (11.2)
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Note that the Jacobian determinant does not depend on 5. This equation holds true almost
surely for x ∈ K(′ , as soon as 5′ ≤ 5, so we may pass to the limit as 5 → ∞ to get the
Jacobian equation

ft0(x) = ft(Tt0→t(x))Jt0→t(x). (11.3)

This equation holds true almost surely on K(′ , for each 5′, so it also holds true almost
surely.

Next, for any nonnegative measurable function G, by monotone convergence and the
first part of the proof one has
∫

UKt,!

G(y) dy = lim
(→∞

∫

Kt,!

G(y) dy = lim
(→∞

∫

Kt0,!

G(Tt0→t(x))Jt0→t(x) dx

=
∫

UK!,t0

G(Tt0→t(x))Jt0→t(x) dx.

The conclusion follows as before by choosing G(y) = F (y, ft(x)) and using the Jacobian
equation (11.3), then extending the integrals to the whole of M .

It remains to prove the assertion about Jt0→t(x) being positive for all values of t ∈ [0, 1],
and not just for almost all values of t. The transport map Tt0→t can be written γ(t0) →
γ(t), where γ is a minimizing curve determined uniquely by γ(t0). Since γ is minimizing,
we know (Recall Problem 8.9) that the map (γ0, γ̇0) → (γ0, γt0) is locally invertible. So
Tt0→t can be written as the composition of the maps F1 : γ(t0) → (γ(0), γ(t0)), F2 :
(γ(0), γ(t0)) → (γ(0), γ̇(0)) and F3 : (γ(0), γ̇(0)) → γ(t). Both F2 and F3 have positive
Jacobian determinant, at least if t < 1; so if x is chosen in such a way that F1 has positive
Jacobian determinant at x, then also Tt0→t = F3 ◦ F2 ◦ F1 will have positive Jacobian
determinant at x. 78
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does not assume that T is the gradient of a convex function. His argument is reproduced
in [365, Theorem 4.8]; to complete the proof one should complement this with Alexandrov’s
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basically follows the same pattern as in Rn. Then Cordero-Erausquin [116] treated the
case of strictly convex cost functions in Rn in a similar way.

Later Ambrosio pointed out that those results could be retrieved within the general
framework of push-forward by approximately differentiable mappings. This point of view
has the disadvantage to involve more subtle arguments, but the advantage to show that it
is not a special feature of optimal transport. It also applies to nonsmooth cost functions
such as |x − y|p. In fact it covers general strictly convex cost of the form c(x − y) as soon
as c has superlinear growth, is C1 everywhere and C2 out of the origin. A more precise
discussion of these subtle issues can be found in [15, Section 6.2.1].

It is a general feature of optimal transport with strictly convex cost in Rn that if
T stands for the optimal transport map, then the matrix ∇T , even if not necessar-
ily nonnegative symmetric, is diagonalizable with nonnegative eigenvalues; see Cordero-
Erausquin [116] and Ambrosio, Gigli and Savaré [15, Section 6.2]. From an Eulerian per-
spective, that diagonalizability property was already understood by Otto [287]. I don’t
know if there is an analogue on Riemannian manifolds.

A remarkable contribution by Cabré [85] uses the Jacobian properties of d2/2-convex
functions to investigate qualitative properties of elliptic equations (Liouville theorem,
Alexandrov-Bakelman-Pucci estimates, Krylov-Safonov-Harnack inequality) on Rieman-
nian manifolds with nonnegative sectional curvature.





12

Smoothness

If we are going to use optimal transport in practical computations, it might certainly
help to have information about its smoothness. So what regularity can be expected on
the optimal transport T ?? What characterizes T is the existence of a ψ such that (10.17)
(or (10.20)) holds true; so it is natural to search for a closed equation on ψ.

To guess the equation, let us work formally without being too demanding about regu-
larity issues, and also let us assume that we work in Rn. As we shall see, even in that case
we shall arrive at a rather negative conclusion. Let µ(dx) = f(x) dx and ν(dy) = g(y) dy
be two absolutely continuous probability measures, let c(x, y) be a smooth cost function,
and let T be a Monge transport. The differentiation of (10.17) with respect to x (once
again) leads to

∇2ψ(x) + ∇2
xc(x, T (x)) + ∇2

xyc(x, T (x)) ·∇T (x) = 0,

which can be rewritten

∇2
xxc(x, T (x)) + ∇2ψ(x) = −∇2

xyc(x, T (x)) ·∇T (x). (12.1)

The expression on the left-hand side is the Hessian of the function c(x′, T (x)) + ψ(x′),
considered as a function of x′ and then evaluated at x. Since this function is minimum
for x′ = x, its Hessian is nonnegative, so the left-hand side of (12.1) is a nonnegative
symmetric matrix; in particular its determinant is nonnegative. Take absolute values of
determinants on both sides of (12.1):

det
(
∇2

xxc(x, T (x)) + ∇2ψ(x)
)

=
∣∣det∇2

xyc(x, T (x))
∣∣ |det(∇T (x))|.

Then the Jacobian determinant in the right-hand side can be replaced by f(x)/g(T (x)),
and we arrive at

det
(
∇2

xxc(x, T (x)) + ∇2ψ(x)
)

=
∣∣det∇2

xyc(x, T (x))
∣∣ f(x)
g(T (x))

. (12.2)

This becomes a closed equation on ψ in terms of f and g, if one recalls from (10.17) that

T (x) = (∇xc)−1
(
x,−∇ψ(x)

)
, (12.3)

where the inverse is with respect to the y variable.
Unfortunately there is no simplification to expect, except in special cases. The most

important of them is the quadratic cost function, or equivalently c(x, y) = −x · y in Rn.
Then (12.2)–(12.3) reduces to
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det∇2ψ(x) =
f(x)

g(∇ψ(x))
. (12.4)

This partial differential equation is an instance of the Monge–Ampère equation, and the
regularity of its solutions has been studied by several authors. Here is a typical result: If
f and g are bounded below and smooth in the interior of their respective support, and
the support of g is convex, then the function ψ is as smooth as can be hoped — that is,
basically two degrees of regularity better than f and g themselves. This statement should
be taken cautiously; see the bibliographical notes for details.

At this point we may have the feeling that partial differential equations theory will help
our task quite a bit by providing regularity results for the optimal map in the Monge—
Kantorovich problem, at least if we rule out cases where the map is trivially discontinuous
(for instance if the support of the initial measure µ is connected, while the support of the
final measure ν is not). To a certain extent, this is true; for instance, one has the following
result: If f and g are bounded below and smooth in the interior of their respective support,
and the support of g is convex, then the function ψ in (12.2) is as smooth as can be hoped
— that is, basically two degrees of regularity better than f and g themselves. (See the
bibliographical notes for more precise formulations.)

However, the truth is that in many cases of interest, the optimal transport will not
be smooth, as I shall illustrate by some counterexamples. As a temporary conclusion: If
we want to use optimal transport in rather general situations, we’d better find ways to
do without regularity. Actually, it is one of the striking facts in the theory of optimal
transport that it can be pushed very far with almost no regularity available.

Caffarelli’s counterexample

Caffarelli understood that regularity results for (12.2) in Rn cannot be obtained unless
one adds an assumption of convexity of the target support. Without such an assumption,
the optimal transport may very well be discontinuous, as the next counterexample shows.

Theorem 12.1 (An example of discontinuous optimal transport). There are
smooth compactly supported probability densities f and g on Rn, such that the supports of f
and g are smooth and connected, f and g are strictly positive in the interior of their respec-
tive supports, and yet the optimal transport between µ(dx) = f(x) dx and ν(dy) = g(y) dy
is discontinuous.

Proof. Let f be the indicator function of the unit ball B in R2 (normalized to be a proba-
bility measure), and let g = gε be the (normalized) indicator function of a set Cε obtained
by first separating the ball into two halves B1 and B2 (say with distance 2); and then
building a thin bridge between those two halves, of width O(ε). Let also g be the nor-
malized indicator function of B1 ∪ B2: this is the limit of gε as ε ↓ 0. It is not difficult to
see that g (identified with a probability measure) can be obtained from f by a continuous
deterministic transport (after all, one can deform B continuously into Cε; just think that
you are playing with clay, then it is possible to massage the ball into Cε, without tearing
off). However, we shall see here that for ε small enough, the optimal transport cannot be
continuous.

The proof will rest on the stability of optimal transport: If T is the unique optimal
transport between µ and ν, and Tε is an optimal transport betwen µ and νε, then Tε

converges to T in µ-probability as ε ↓ 0 (Corollary 5.20).
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S+SS−

Fig. 12.1. Principle behind Caffarelli’s counterexample. The optimal transport from the ball to the “dumb-
bells” has to be discontinuous, and in effect splits the upper region S into the upper left and upper right
regions S− and S+. Otherwise, there should be some transport along the dashed lines, but for some lines
this would contradict monotonicity.

In the present case, choosing µ(dx) = f(x) dx and ν(dy) = g(y) dy, and then choosing
the cost function to be c(x, y) = |x − y|2, it is easy to figure out that the unique optimal
transport T is the one that sends (x, y) to (x − 1, y) if x < 0, and to (x + 1, y) if x > 0.

Let now S, S+ and S− be as on Figure 12.1. From the convergence in probability,
it follows that, for ε small enough, a large fraction (say 0.99) of the mass in S has to
go to S− (if it lies on the left) or to S+ (if it lies on the right). Since the continuous
image of a connected set is itself connected, there have to be some points in Tε(S) that
form a path going from S− to S+; and so there are some points x such that Tε(x) − x is
pointing downwards and to the left, say with a 45o angle. Let x be one such point. From
the convergence in probability again, many of the neighbors of x have to be transported
to S−, with nearly horizontal displacements T (x̃) − x̃. It is not difficult to check that one
of these x̃ will contradict the fact that

〈
x− x̃, T (x)−T (x̃)

〉
should always be nonnegative.

The conclusion is that when ε is small enough, the optimal map Tε is discontinuous.
The maps f and g in this example are extremely smooth (in fact constant!) in the

interior of their support, but they are not smooth as maps defined on Rn. If one wants to
produce a similar construction with functions that are smooth on Rn, this is easy: Regular-
ize f , split it in two halves again, add a thin bridge, and make a very slight regularization
of the resulting function gε. Then again the optimal transport will be discontinuous for ε
small enough. 78

Loeper’s counterexample

Loeper (building on previous work by Ma, Trudinger and Wang) understood that the
continuity of optimal transport in a general Riemannian setting could be prevented by
some geometric obstructions.

Theorem 12.2 (A further example of discontinuous optimal transport). There
is a smooth compact Riemannian surface S, and there are two smooth positive probability
densities f and g on M , such that the optimal transport between µ(dx) = f(x) dx and
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ν(dy) = g(y) dy, with a cost function equal to the square of the geodesic distance on S, is
discontinuous.

Remark 12.3. Loeper’s results are much more precise: He shows that this phenomenon
(that is, the discontinuity of the optimal transport between two smooth positive densities)
occurs on any Riemannian manifold admitting a negative sectional curvature at some point.
In fact, smoothness of optimal transport requires more than nonnegativity of the sectional
curvatures: there is a more stringent necessary (and almost sufficient) condition, expressed
in terms of derivatives of the metric up to order 4. See the bibliographic notes for more
details.

One of the key ingredients in the proof of Theorem 12.2 is the following elementary
lemma:

Lemma 12.4. Let (X , µ) and (Y, ν) be any two metric probability spaces, and let T be a
continuous map X → Y, and let π = (Id , T )#µ be the associated transport map. Then, for
each x ∈ Spt(µ), the couple (x, T (x)) belongs to the support of π.

Proof of Lemma 12.4. Let x and ε > 0 be given. By continuity of T , there is δ > 0 such
that T (Bδ(x)) ⊂ Bε(T (x)). Without loss of generality, δ ≤ ε. Then

π
[
Bε(x) × Bε(T (x))

]
= µ

[{
z ∈ X; z ∈ Bε(x) and T (z) ∈ Bε(T (x))

}]

≥ µ[Bε(x) ∩ Bδ(x)] = µ[Bδ(x)] > 0.

Since ε is arbitrarily small, this shows that π attributes positive measure to any neighbor-
hood of (x, T (x)), which proves the claim. 78

Proof of Theorem 12.2. Let S be a compact surface in R3 with the following properties: (a)
S is invariant under the symmetries x → −x, y → −y; (b) S crosses the axis (x, y) = (0, 0)
at exactly two points, namely O = (0, 0, 0) and O′; (c) S coincides in a an open ball
B(O, r) with the “horse saddle” (z = x2 − y2). (Think of S as a small piece of the horse
saddle which has been completed into a closed surface.)

Let A+ = (x0, 0, 1 + x2
0), A− = (−x0, 0, 1 + x2

0), and similarly let B+ = (0, y0, 1 − y2
0),

B− = (0,−y0, 1 − y2
0); in the sequel the symbol A± will stand for “either A+ or A−”, etc.

If x0 and y0 are small enough then A+, A−, B+, B− belong to a neighborhood of O
where S has strictly negative curvature, and the unique geodesic joining O to A± (resp.
B±) satisfies the equation (y = 0) (resp. x = 0); then the lines (O,A±) and (O,B±) are
orthogonal at O. Since we are on a negatively curved surface, Pythagore’s identity in a
triangle with a square angle is modified in favor of the diagonal, so

d(N,A±)2 + d(N,B±)2 < d(A±, B±)2.

By continuity, there is ε0 > 0 small enough that the balls B(A+, ε0), B(A−, ε0), B(B+, ε0)
and B(B−, ε0) are all disjoint and satisfy

[x ∈ B(A+, ε0)∪B(A−, ε0), y ∈ B(B+, ε0)∪B(B−, ε0)] =⇒ d(O,x)2+d(O, y)2 < d(x, y)2.
(12.5)

Next let f and g be smooth probability densities on M , even in x and y, such that
∫

B(A+,ε0)∪B(A−,ε0)
f(x) dx >

1
2
;

∫

B(B+,ε0)∪B(B− ,ε0)
g(y) dy >

1
2
. (12.6)
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Let µ(dx) = f(x) dx, ν(dy) = g(y) dy, let T be the unique optimal transport between
the measures µ and ν (for the cost function c(x, y) = d(x, y)2), and let T̃ be the optimal
transport between ν and µ. (T and T̃ are inverse of each other, at least in a measure-
theoretical sense.) I claim that either T or T̃ is discontinuous.

Indeed, suppose to the contrary that both T and T̃ are continuous. We shall first see
that necessarily T (O) = O. (The reasoning is by symmetry and elementary topological
arguments; skip this bit if you believe it.) Since the problem is symmetric with respect to
x → −x and y → −y, and since there is uniqueness of the optimal transport, T maps O
into a point that is invariant under these two transforms, that is either O or O′. Suppose
that T (O) = O′. Let U be a neighborhood of O, which does not contain O′. For any s > 0,
by continuity of T , there is a small ball B(O, r′) ⊂ U such that T (B(O, r′)) ⊂ B(O′, s);
since ν[T (B(O, r′))] = µ[T−1(T (B(O, r′)))] ≥ µ[B(O, r′)] > 0, it follows that the set T (U)
has positive density at O′. Assume now that T (O′) = O′; and take a neighborhood U ′ of
O′ such that U and U ′ lie a positive distance away of each other. By the same reasoning
as before, T (U ′) has positive density at O′. Then in any arbitrarily small neighborhood of
O′ there is a set of positive measure whose image by T̃ has to belong to U , and a set of
positive measure whose image by T̃ has to belong to U ′. This contradicts the continuity
of T̃ at O′. So necessarily T (O′) = O; but then the two points (O,O′) and (O′, O) belong
to the support of the optimal plan associated to T , which trivially contradict the cyclical
monotonicity since d(O,O′)2 + d(O′, O)2 > d(O,O)2 + d(O′, O′)2 = 0. The conclusion is
that T (O) = O; by Lemma 12.4, (O,O) belongs to the support of π.

Next, (12.6) implies that there is some transfer of mass from either B(A+, ε0) ∪
B(A−, ε0) to B(B+, ε0)∪B(B−, ε0); in other words, we can find, in the support of the opti-
mal transport, some (x, y) with x ∈ B(A+, ε0)∪B(A−, ε0) and y ∈ B(B+, ε0)∪B(B−, ε0).
From the previous step we know that (O,O) also lies in that support; then by c-
monotonicity,

d(x, y)2 + d(O,O)2 ≤ d(x,O)2 + d(y,O)2;

but this contradicts (12.5). The proof is complete. 78

Open Problem 12.5. Let f, g be two smooth positive probability measures on a compact
Riemannian manifold with negative sectional curvature somewhere, and let T be the opti-
mal transport map. Is it a priori more regular than an arbitrary BV map, and in which
sense? Can one describe its singularities? Do discontinuities typically occur along smooth
curves, or along a possibly fractal, intricate geometry?
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A+

A−

B− B+O

Fig. 12.2. Principle behind Loeper’s counterexample. This is the surface S, immersed in R3, “viewed from
above”. By symmetry, O has to stay in place. Because most of the initial mass is close to A+ and A−, and
most of the final mass is close to B+ and B−, at least some mass has to move from one of the A-balls to
one of the B-balls. But then, because of the modified (negative curvature) Pythagore inequality, it is more
efficient to replace the transport scheme (A → B, O → O), by (A → O, O → B).

under the assumption that f and g are continuous [87]. All of this is for the quadratic cost
in Rn.

Feyel and Üstünel [?] studied the infinite-dimensional Monge–Ampère equation induced
by optimal transport with quadratic cost on the Wiener space.

Caffarelli’s counterexample appears in Caffarelli [89], where it is used to prove that
the “Hessian measure” (a generalized formulation of the Hessian determinant) cannot be
absolutely continuous if the bridge is thin enough.

More general (smooth) cost functions were addressed only recently, with some pioneer-
ing works by Ma, Trudinger and Wang [250] on one hand (C2 regularity), and Loeper [245]
on the other hand (C1,α regularity). The method in [250] takes its roots in an older paper
by Wang [?, ?] on the so-called antenna reflector problem, which is an optimal transport
problem with cost c(x, y) = − log(1 − x · y), see [?] or [250, Section 7.2]. The regularity
theory was further developed in [?, 246, ?].

It was first suggested in [250] that the regularity of solutions to the Monge–Ampère
equation was closely related to Assumption (C) stated in Chapter 9. This was very much
clarified in Loeper’s recent work [246]. The counterexample which I discussed in these
notes is a very particular case of Loeper’s results; it is simple enough that one can prove
the discontinuity by much simpler arguments than in [246].

To conclude these notes, I shall try to convey a crude idea of Loeper’s results. For that
I will need the key concept of c-segment: If y0 and y1 are two given points in ∂cψ(x), then
the c-segment [y0, y1]x, joining y0 to y1, is the set of all

yθ := −(∇xc)−1(x,−(1 − θ)∇xc(x, y0) − θ∇xc(x, y1)); θ ∈ [0, 1].

Note that −∇xc(x, y0) and ∇xc(x, y1) both belong to ∇−ψ(x) (because z → ψ(z)+c(z, y0)
and z → ψ(z) + c(z, y1) are minimal at z = x), so by convexity of the subdifferential,
also −∇xc(x, yθ) = −(1 − θ)∇xc(x, y0) − θ∇xc(x, y1) ∈ ∇−ψ(x). So z → ψ(z) + c(z, yθ)
automatically admits a critical point at z = x; but there is no reason why this should be
a minimum.
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Loeper studied the regularity of optimal transport under several assumptions, that can
roughly be formulated as follows:

(a) For any c-convex ψ and any x, the c-subdifferential ∂cψ(x) is c-convex; that is, if
y0 and y1 belong to ∂cψ(x), then the c-segment [y0, y1]x is entirely contained in ∂cψ(x);

(b) For any x, and for any two unit vectors ξ and ν with ξ⊥ν,

∇2
pν∇

2
xξc(x, (∇xc)−1(x, p)) ≤ 0; (12.7)

(c) c-convex functions of class C1 are dense (for the topology of local uniform conver-
gence) in the set of all c-convex functions.

(d) Take any four points x0, x1, y0, y1, define the c-convex function

ψ(x) := max
(
−c(x, y0) − c(x0, y0), −c(x, y1) − c(x0, y1)

)
;

and let yθ be any element of the c-segment [y0, y1]x0 . Then the function

x → ψ(x) + c(x, yθ)

admits a local maximum at x0.
Then essentially Loeper establishes the equivalence between (a), (b), (c) and (d), and

shows that this condition is mandatory to have a regularity theory. If it is not fulfilled,
one can find two C∞ positive densities for which the solution of the associated “Monge–
Ampère” equation (12.2) is not even C1.

Examples of cost functions satisfying (b) are c(x, y) = (1 + |x − y|2)p/2 for 1 < p < 2.
Loeper also discusses the following reinforcement of (b):

(b’) There is a positive constant C0 such that for any x, and for any two unit vectors
ξ and ν with ξ⊥ν,

∇2
pν∇

2
xξc(x, (∇xc)−1(x, p)) ≤ −C0 (12.8)

When Assumption (b’) holds then one can develop an excellent regularity theory
for (12.2), which is even slightly better than the regularity theory in Euclidean space
for the “standard” Monge–Ampère equation (12.4). According to Loeper’s results, this is
the case for the square distance cost function on the Riemannian sphere. Actually, on the
sphere there is an additional difficulty, namely the nonsmoothness of the distance function.
But as shown first by Delanoë and Loeper [132], and then more precisely by Loeper [246],
one can take advantage of the symmetries of the sphere to control the distance to the cut
locus from below; then everything works as if the cost function were smooth. (This might
be a general feature, but Loeper’s proof seems to work only for the sphere.)

Of course, Condition (a) implies the connectedness of ∂cψ(x), Assumption (C)in Chap-
ter 9. It might even be that both conditions are equivalent.
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Qualitative picture

This chapter is devoted to a recap of the whole picture of optimal transport on a smooth
Riemannian manifold M . For simplicity I shall not try to impose the most general as-
sumptions.

Recap

Let M be a Riemannian manifold, L(x, v, t) a Lagrangian function on TM×[0, 1], satisfying
the classical assumptions of Definition 7.6, together with ∇2

vL > 0. Let c : M × M → R
be the induced cost function:

c(x, y) = inf
{∫ 1

0
L(γt, γ̇t, t) dt; γ0 = x, γ1 = y

}
.

More generally, define

cs,t(x, y) = inf
{∫ t

s
L(γτ , γ̇τ , τ) dτ ; γs = x, γt = y

}
.

So cs,t(x, y) is the optimal cost to go from point x at time s, to point y at time t.
I shall consider three cases: (i) L(x, v, t) arbitrary on a compact manifold; (ii) L(x, v, t) =

|v|2/2 on a complete manifold (so the cost is d2/2, where d is the distance); (iii)
L(x, v, t) = |v|2/2 in Rn (so the cost is |x − y|2/2). In all the sequel, I denote by µ0

the initial probability measure, and by µ1 the final one. When I say “absolutely continu-
ous” or “singular” this is in reference with the volume measure on the manifold (Lebesgue
measure in Rn).

Recall that a generalized optimal coupling is a c-cyclically monotone coupling, that
might be non optimal if the total cost is infinite. By analogy, I shall say that a generalized
displacement interpolation is a path (µt)0≤t≤1 valued in the space of probability measures,
such that µt = law (γt) and γ is a random minimizing curve such that (γ0, γ1) is a gen-
eralized optimal coupling. These notions are interesting only when the total cost between
µ0 and µ1 is infinite.

By gathering the results from the previous chapters, we obtain the following informa-
tion:

1. There always exists
- an optimal coupling (or generalized optimal coupling) (x0, x1), with law π;
- a displacement interpolation (or generalized displacement interpolation) (µt)0≤t≤1;
- a random minimizing curve γ with law Π;
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such that law (γt) = µt, and law (γ0, γ1) = π. Each curve γ is a solution of the Euler-
Lagrange equation

d

dt
∇vL(γt, γ̇t, t) = ∇xL(γt, γ̇t, t). (13.1)

In the case of a quadratic Lagrangian, this equation reduces to

d2γt

dt2
= 0,

so trajectories are just geodesics, or straight lines in Rn. Two trajectories in the support
of Π may intersect at time t = 0 or t = 1, but never at intermediate times.

2. If either µ0 or µ1 is absolutely continuous, then so is µt, for all t ∈ (0, 1).
3. If µ0 is absolutely continuous, then the optimal coupling (x0, x1) is unique (in law),

deterministic (x1 = T (x0)) and characterized by the equation

∇ψ(x0) = −∇xc(x0, x1) = ∇vL(x0, γ̇0, 0), (13.2)

where (γt)0≤t≤1 is a minimizing curve joining γ0 = x0 to γ1 = x1 (it is part of the theorem
that this curve is almost surely unique), and ψ is a c-convex function, that is, it can be
written as

ψ(x) = sup
y∈M

[
φ(y) − c(x, y)

]

for some non-trivial (i.e. not identically −∞, and never +∞) function φ. In case (ii), if
nothing is known about the behavior of the distance function at infinity, then the gradient
∇ in (13.2) should be replaced by an approximate gradient ∇̃.

4. Under the same assumptions, the (generalized) displacement interpolation (µt)0≤t≤1

is unique. This follows from the almost sure uniqueness of the minimizing curve joining γ0

to γ1, where (γ0, γ1) is the optimal coupling. (Corollary 7.21 applies when the total cost
is finite; but even if the total cost is infinite, we can apply a reasoning similar to the one
in Corollary 7.21.)

5. Without loss of generality, one might assume that

φ(y) = inf
x∈M

[
ψ(x) + c(x, y)

]

(these are true supremum and true infimum, not just up to a negligible set). Moreover,
one can assume without loss of generality

∀x, y ∈ M, φ(y) − ψ(x) ≤ c(x, y)

and
φ(x1) − ψ(x0) = c(x0, x1) almost surely.

6. It is still possible that two minimizing curves meet at time t = 0 or t = 1, but this
event may occur only on a very small set, of dimension at most n − 1.

7. All of the above remains true when one replaces µ0 at time 0 by µt at time t, with
obvious changes of notation (e.g. replace c = c0,1 by ct,1); the function φ is unchanged,
but now ψ should be changed into ψt defined by

ψt(y) = inf
x∈M

[
ψ0(x) + c0,t(x, y)

]
. (13.3)
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This ψt is a (viscosity) solution of the forward Hamilton–Jacobi equation

∂tψt + L∗(x,∇ψt(x), t) = 0.

8. The equation for the optimal transport Tt between µ0 and µt is as follows: Tt(x) =
solution at time t of the Euler-Lagrange equation starting from x with velocity

v0(x) =
(
∇vL(x, ·, 0)

)−1(∇ψ(x)). (13.4)

In particular,
- for the quadratic cost on a Riemannian manifold M , Tt(x) = expx(t∇ψ(x)): To obtain

Tt, flow for time t along a geodesic starting at x with velocity ∇ψ(x) (∇̃ψ(x) if nothing is
known about the behavior of M at infinity);

- for the quadratic cost in Rn, Tt(x) = (1 − t)x + t∇Ψ(x), where Ψ(x) = |x|2/2 +
ψ(x) defines a lower semi-continuous convex function in the usual sense. In particular,
the optimal transport from µ0 to µ1 is a gradient of convex function, and this property
characterizes it uniquely among all admissible transports.

Simple as they may seem by now, these statements summarize years of research. If the
reader has well understood them, then he or she is ready to go on with the rest of this
course. The picture is not really complete and some questions remain open, such as the
following

Open Problem 13.1. If the initial and final densities, ρ0 and ρ1, are positive everywhere,
does it follow that the intermediate densities ρt are also positive? Otherwise, can one
identify simple sufficient conditions for the density of the displacement interpolant to be
positive everywhere?

For general Lagrangian actions, the answer to this question seems to be negative, but
it is not clear that one can also construct counterexamples for, say, the basic quadratic
Lagrangian. My personal guess would be that the answer is about the same as for the
regularity theory: Positivity of the displacement interpolant is in general false except maybe
for some particular manifolds satisfying an adequate structure condition.

Standard approximation procedures

In this last section I have gathered two useful approximation results which can be used in a
great deal of problems where the probability measures are either noncompactly supported,
or singular.

In Chapter 10 we have seen how to treat the Monge problem in noncompact situations,
without any condition at infinity, thanks to the notion of approximate differentiability.
However, in practice, to treat noncompact situations, the simplest solution is often to
use again a truncation argument similar to the one used in the proof of approximate
differentiability. The next proposition displays the standard scheme that one can use to
deal with such situations.

Proposition 13.2 (Exhaustion of a noncompact transport by compact ones). Let
M be a Riemannian manifold, let c = c(x, y) be a cost function coming from a Lagrangian
L(x, v, t) satisfying the classical assumptions of Definition 7.6; and strict convexity of L
?? and let µ0, µ1 be two probability measures on M . Let π be an optimal transference plan
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between µ0 and µ1, let (µt)0≤t≤1 be a displacement interpolation and let Π be a dynamical
optimal transference plan such that (e0, e1)#Π = π, (et)#Π = µt. Let Γ be the set of
all action-minimizing curves, equipped with the topology of uniform convergence; and let
(K()(∈N be a sequence of compact sets in Γ , such that Spt(Π) ⊂ ∪K(. For 5 large enough,
Π[K(] > 0; then define

Z( := Π[K(]; Π( :=
1K!Π

Z(
;

µt,( := (et)#Π(; π( := (e0, e1)#Π(;

and let c( be the restriction of c to proj(M × M)(K(). Then for each 5, (µt,()0≤t≤1 is
a displacement interpolation and π( is an associated optimal transference plan; µt,( is
compactly supported, uniformly in t ∈ [0, 1]; and the following monotone convergences
hold true:

Z( ↑ 1; Z( π( ↑ π; Z( µt,( ↑ µt; Z(Π( ↑ Π.

If moreover µ0 is absolutely continuous, then there exists a c-convex ψ such that π is
concentrated on the graph of the transport T : x → (∇xc)−1(x,−∇̃ψ(x)), where the inverse
is with respect to the second variable. Then for any 5, µ0,( is also absolutely continuous, and
the optimal transference plan π( is deterministic. Furthermore, there is a c(-convex function
ψ( such that ψ( coincides with ψ everywhere on C( := projM (Spt(π()). Futhermore, there
is a set Z( such that vol [Z(] = 0 and for any x ∈ C( \ Z(, ∇̃ψ(x) = ∇ψ((x).

Still under the assumption that µ0 is absolutely continuous, the measures µt,( are also
absolutely continuous, and the optimal transport Tt0→t,( between µt0,( and µt,( is determin-
istic, for any given t0 ∈ [0, 1) and t ∈ [0, 1]. In addition, for any given t0 ∈ [0, 1], one
has

Tt0→t,( = Tt0→t, µt0,(-almost surely,

where Tt0→t is the optimal transport from µt0 to µt.

Proof of Proposition 13.2. The proof is quite similar to the argument used in the proof of
uniqueness in Theorem 10.36 in a time-independent context. There is no problem to make
this into a time-dependent version, since displacement interpolation behaves well under
restriction, recall Theorem 7.27. The last part of the theorem follows from the fact that
the map Tt0→t,( can be written as γt0 → γt. 78

Now let us turn to the problem of approximating singular transport problems by smooth
ones. If µ0 and µ1 are singular, there is a priori no uniqueness of the optimal transfer-
ence plans, and actually there might be a large number (possibly uncountable) of them.
However, the next theorem shows that singular optimal transference plans can always be
approximated by nice ones.

Theorem 13.3 (Regularization of singular transport problems). Let M be a Rie-
mannian manifold, and c : M×M → R be a cost function induced by a Lagrangian L(x, v, t)
that is bounded below, C2, and satisfies the classical assumptions of Definition 7.6, together
with ∇2

vL > 0. Let further µ0 and µ1 be two probability measures on M , such that the op-
timal transport cost between µ0 and µ1 is finite, and let π be an optimal transference plan
between µ0 and µ1. Then there are sequences (µk

0)k∈N, (µk
1)k∈N and (πk)k∈N such that

(i) each πk is an optimal transference plan between µk
0 and µk

1, and any one of the
probability measures µk

0, µk
1 has a smooth, compactly supported density;

(ii) µk
0 → µ0, µk

1 → µ1, πk → π in weak sense as k → ∞.
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Proof of Theorem 13.3. By Theorem 7.19, there exists a displacement interpolation (µt)0≤t≤1

between µ0 and µ1; let γ be such that µt = law (γt). The assumptions on the cost function
imply that action-minimizing curves solve a differential equation with Lipschitz coefficients,
and therefore are uniquely determined by their initial position and velocity, a fortiori by
their restriction to some time-interval [0, t0]. So for any t0 ∈ (0, 1/2), by Theorem 7.27 (ii),
(γt0 , γ1−t0) is the unique optimal coupling between µt0 and µ1−t0 . Now it is easy to con-
struct a sequence (µk

t0)k∈N such that µk
t0 converges weakly to µt0 as k → ∞, and each µk

t0 is
compactly supported with a smooth density. (To construct such a sequence, first truncate
to ensure the property of compact support, then localize to local charts by a partition of
unity, and apply a regularization in each chart.) Similarly, construct a sequence (µk

1−t0)k∈N
such that µk

1−t0 converges weakly to µ1−t0 , and each µk
1−t0 is compactly supported with

a smooth density. Let πk
t0,1−t0 be the unique optimal transference plan between µt0 and

µ1−t0 . By stability of optimal transport (Theorem 5.18), πk
t0,1−t0 converges as k → ∞ to

πt0,1−t0 = law (γt0 , γ1−t0). Then by continuity of γ, the random variable (γt0 , γ1−t0) con-
verges pointwise to (γ0, γ1) as t0 → 0; which implies that πt0,1−t0 converges weakly to π.
The conclusion follows by choosing t0 = 1/n, k = k(n) large enough. 78

Equations of displacement interpolation

In Chapter 7, we understood that a curve (µt)0≤t≤1 obtained by displacement interpolation
could be seen as a solution of an action minimizing problem in the space of measures, and
we wondered whether we could obtain some nice equations for these curves, and some
nice action-minimizing principle in the space of curves. Here now is a possible answer.
For simplicity I shall assume that there is enough control at infinity, that the notion of
approximate differentiability can be dispended with.

Consider a displacement interpolation (µt)0≤t≤1. As a consequence of Theorem 7.19, µt

can be seen as the law of γt, where the random path (γt)0≤t≤1 satisfies the Euler-Lagrange
equation (13.1), and so at time t has velocity ξt(γt), where ξt(x) :=

(
∇vL(x, ·, t)

)−1(∇ψt(x)).
By the formula of conservation of mass, recalled in the Appendix of the Introduction, µt

satisfies
∂µt

∂t
+ ∇ · (ξtµt) = 0

in the sense of distributions (be careful: wt is not necessarily a gradient, unless L is
quadratic). Then we can write down the equations of displacement interpolation:






∂µt

∂t
+ ∇ · (ξt µt) = 0

∇vL
(
x, ξt(x), t

)
= ∇ψt(x);

ψ0 is c-convex
∂tψt + L∗(x,∇ψt(x), t

)
= 0.

(13.5)

If the cost function is just the square of the distance, then these equations become





∂µt

∂t
+ ∇ · (ξtµt) = 0

ξt(x) = ∇ψt(x);
ψ0 is d2/2-convex

∂tψt +
|∇ψt|2

2
= 0.

(13.6)
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Finally, for the square of the Euclidean distance, this simplifies into





∂µt

∂t
+ ∇ · (ξtµt) = 0

ξt(x) = ∇ψt(x);
Ψ(x) := x + ψ0(x) is a convex function of x

∂tψt +
|∇ψt|2

2
= 0.

(13.7)

Quadratic cost function

In a context of Riemannian geometry, it is natural to focus on the quadratic Lagrangian
cost function, or equivalently on the cost function c(x, y) = d(x, y)2, and consider the
Wasserstein space P2(M). This will be the core of all the transport proofs in Part II of
these notes, and so a key role will be played by d2/2-convex functions. In Part III we shall
consider metric structures than are not Riemannian, but still the square of the distance
will be the only cost function. So in the remaining of this chapter I shall focus on that
particular cost.

The class of d2/2-convex functions might look a bit mysterious, and if they are so
important it would be good to have simple characterizations of them. If ψ is d2/2-convex,
then z → ψ(z)+d(z, y)2/2 should be minimum at x when y = expx(∇ψ(x)). If in addition
ψ is twice differentiable at x, then necessarily

∇2ψ(x) ≥ ∇2

[
d(·, expx ∇ψ(x))2

2

]
(x). (13.8)

However, this is only a necessary condition, and I don’t know if it implies d2/2-convexity,
alone or together with some other reasonably simple condition.

On the other hand, there is a simple and useful criterion according to which sufficiently
small functions are d2/2-convex. This statement will guarantee in particular that any
tangent vector v ∈ TM can be represented as the gradient of a d2/2-convex function.

Theorem 13.4 (C2-small functions are d2/2-convex). Let M be a Riemannian man-
ifold, and let K be a compact subset of M . Then, there is ε > 0 such that any function
ψ ∈ C2

c (M) satisfying
Spt(ψ) ⊂ K, ‖ψ‖C2

b
≤ ε

is d2/2-convex.

Example 13.5. If M = Rn, then ψ is d2/2-convex as soon as ∇2ψ ≥ −In.

Proof. Let (M,g) be a Riemannian manifold, and let K be a compact subset of M . Let
K ′ = {x ∈ M ; d(x,K) ≤ 1}. For any y ∈ M , the Hessian of x → d(x, y)2/2 is equal to
In (or, more rigorously, to the metric tensor g) at x = y; so by compactness one may find
δ > 0 such that the Hessian of x → d(x, y)2/2 remains larger than In/2 as long as y stays
in K ′ and d(x, y) < 2δ. Without loss of generality, δ < 1/2.

Now let ψ be supported in K, and such that

∀x ∈ M |ψ(x)| <
δ2

2
, |∇2ψ(x)| <

1
2
;
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write

fy(x) = ψ(x) +
d(x, y)2

2
.

If y ∈ K ′ and d(x, y) ≥ δ, then obviously fy(x) > fy(y); so the minimum of fy can
be achieved only in Bδ(y). If there are two distinct such minima, say x0 and x1, then we
can join them by a geodesic (γt)0≤t≤1 which stays within B2δ(y) and then the function
t → fy(γt) is uniformly convex (because fy is uniformly convex in B2δ(y), and minimum
at t = 0 and t = 1, which is impossible.

If on the other hand y /∈ K ′, then the minimum of fy can be achieved only if d(x, y) < 1,
which imposes ψ(x) = 0, so the minimum is necessarily at y = x.

The conclusion is that in any case, fy has exactly one minimum, which lies in Bδ(y). We
shall denote it by x = T (y), and it is characterized as the unique solution of the equation

∇ψ(x) + ∇x
d(x, y)2

2
= 0, (13.9)

where x is the unknown.
Let x be arbitrary in M , and y = expx(∇ψ(x)). Then (as a consequence of the first

variation formula), ∇x[d(x, y)2/2] = −∇ψ(x), so equation (13.9) hold true, and x = T (y).
This means that, with the notation c(x, y) = d(x, y)2/2, one has ψc(y) = ψ(x) + c(x, y).
Then ψcc(x) = sup[ψc(y) − c(x, y)] ≥ ψ(x). Since x is arbitrary, actually we have shown
that ψcc ≥ ψ; but the converse inequality is always true, so ψcc = ψ, and then ψ is
c-convex. 78

Remark 13.6. The end of the proof took advantage of a general principle, independent
of the particular cost c: If there is a surjective map T such that fy : x → ψ(x) + c(x, y) is
minimum at T (y), then ψ is c-convex.

The structure of P2(M)

It was one of the striking discoveries of the end of the nineties that the differentiable struc-
ture on a Riemannian manifold M induces a kind of differentiable structure in the space
P2(M). This idea takes substance from the following remarks: All of the path (µt)0≤t≤1

is determined from the initial velocity field ξ0(x), which in turn is determined by ∇ψ as
in (13.4). So it is natural to think of the function ∇ψ as a kind of “initial velocity” for the
path (µt). The conceptual shift here is about the same as when we decided that µt could
be seen either as the law of a random minimizing curve at time t, or as a path in the space
of measures: Now we decide that ∇ψ can be seen either as the field of the initial velocities
of our minimizing curves, or as the (abstract) velocity of the path µt at time t = 0.

There is an abstract notion of tangent space TxX (at point x) to a metric space (X , d):
in technical language, this is the pointed Gromov-Hausdorff limit of the rescaled space.
This actually is a rather natural notion: fix your point x, and zoom on it, by multiplying
all distances by a large factor ε−1, while keeping x fixed. This gives a new metric space
Xx,ε, and if one is not too curious about what happens far away from x, then the space
Xx,ε might converge in some nice sense to some limit space, that may not be a vector
space, but in any case is a cone. If that limit space exists, it is said to be the tangent space
(or tangent cone) to X at x.

In terms of that construction, the intuition sketched above is indeed correct: let P2(M)
be the metric space consisting of probability measures on M , equipped with the Wasser-
stein distance W2. If µ is absolutely continuous, then the tangent cone TµP2(M) exists



210 13 Qualitative picture

and can be identified isometrically with the closed vector space generated by d2/2-convex
functions ψ, equipped with the norm

‖∇ψ‖L2(µ;TM) :=
(∫

M
|∇ψ|2x dµ(x)

)1/2

.

(Actually, in view of Theorem 13.4, this is the same as the vector space generated by all
smooth, compactly supported gradients with respect to that norm.) With what we know
about optimal transport, this theorem is not that hard to prove, but this would require
a bit too much of geometric machinery for now. Instead, I shall spend some time on an
important result by Ambrosio, Gigli and Savaré, showing that any Lipschitz curve in the
space P2(M) admits a velocity (which for all t lives in the tangent space at µt). Surprisingly,
the proof will not require absolute continuity. I state the theorem on a compact Riemannian
manifold, but the exact same proof would work in Rn. For a general Riemannian manifold,
it might be that some conditions at infinity are needed.

Theorem 13.7 (Representation of Lipschitz measure-valued curves). Let M be a
smooth complete Riemannian manifold, and let P2(M) be the metric space of all probability
measures on M , with a finite second moment, equipped with the metric W2. Let further
(µt)0≤t≤1 be a Lipschitz-continuous path in P2(M):

W2(µs, µt) ≤ L |t − s|.

For all t ∈ [0, 1], let Ht be the Hilbert space generated by gradients of continuously differ-
entiable, compactly supported ψ:

Ht := Vect
(
{∇ψ; ψ ∈ C1

c (M)}
)L2(µt;TM)

.

Then there exists a measurable vector field ξt(x) ∈ L∞(dt; L2(dµt(x))), µt(dx) dt-almost
everywhere unique, such that ξt ∈ Ht for all t (i.e. the velocity field really is tangent along
the path), and

∂tµt + ∇ · (ξtµt) = 0 (13.10)

in weak sense.
Conversely, if the path (µt)0≤t≤1 satisfies (13.10) for some measurable vector field

(ξt(x)) whose L2(µt)-norm is bounded almost surely in t, then (µt) is a Lipschitz-continuous
curve.

The proof of Theorem 13.7 requires a bit of analytical tools, and the reader might skip
it at first reading.

Proof of Theorem 13.7. Let ψ : M → R be C1 function, with Lipschitz constant at most 1.
For all s < t in [0, 1],

∣∣∣∣

∫

M
ψ dµt −

∫

M
ψ dµs

∣∣∣∣ ≤ W1(µs, µt) ≤ W2(µs, µt). (13.11)

In particular, ζ(t) :=
∫
M ψ dµt is a Lipschitz function of t. By a classical theorem of real

analysis, the time-derivative of ζ exists for almost all time t ∈ [0, 1]. Let then πs,t be an
optimal transference plan between µs and µt (for the squared distance cost function). Let

Ψ(x, y) :=






|ψ(x) − ψ(y)|
d(x, y)

if x 3= y

|∇ψ(x)| if x = y.
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Obviously Ψ is bounded by 1, and moreover it is upper semi-continuous.
Then, if t is a differentiability point of ζ,

∣∣∣∣
d

dt

∫
ψ dµt

∣∣∣∣ ≤ lim inf
ε↓0

1
ε

∣∣∣∣

∫
ψ dµt −

∫
ψ dµt+ε

∣∣∣∣

≤ lim inf
ε↓0

1
ε

∫
|ψ(y) − ψ(x)| dπt,t+ε(x, y)

≤ lim inf
ε↓0

√∫
Ψ(x, y)2 dπt,t+ε(x, y)

√∫
d(x, y)2 dπt,t+ε(x, y)

ε

= lim inf
ε↓0

√∫
Ψ(x, y)2 dπt,t+ε(x, y)

W2(µt, µt+ε)
ε

≤ lim inf
ε↓0

√∫
Ψ(x, y)2 dπt,t+ε(x, y) L.

Since Ψ is upper semi-continuous and πt,t+ε converges weakly to δx=y (the trivial transport
plan where nothing moves) as ε ↓ 0, it follows that

∣∣∣∣
d

dt

∫
ψ dµt

∣∣∣∣ ≤ L

√∫
|Ψ(x, x)|2 dµt(x)

= L

√∫
|∇ψ(x)|2 dµt(x).

Now the key thing is that (d/dt)
∫

(ψ+C) dµt does not depend on the constant C. This
shows that (d/dt)

∫
ψ dµt really is a functional of ∇ψ, and obviously linear functional.

Then the above estimate shows that this functional is continuous with respect to the
norm in L2(dµt).

Actually, this is not completely rigorous, since this functional is only defined for almost
all t, and “almost all” here might depend on ψ. Here is a way to make things rigorous:
Let L be the set of all Lipschitz functions ψ on M with Lipschitz constant at most 1, such
that, say, ψ(x0) = 0, where x0 ∈ M is arbitrary but fixed once for all, and ψ is supported
in a fixed compact K ⊂ M . The set L is compact in the norm of uniform convergence,
and admits a dense sequence (ψk)k∈N. By a regularization argument, one can assume that
all those functions are actually of class C1. For each ψk, we know that (d/dt)

∫
ψk dµt is

differentiable for almost all t ∈ [0, 1]; and since there are only countably many ζk’s, we
know that for almost every t, each ζk is differentiable at time t. Now the map (d/dt)

∫
v dµt

is well-defined at each of these times t, for all ξ in the vector space Ht generated by all
the ψk’s; and it is continuous if that vector space is equipped with the L2(dµt) norm. It
follows from the Riesz representation theorem that for each differentiability time t there
exists a unique vector ξt ∈ Ht ⊂ L2(dµt), with norm at most L, such that

d

dt

∫
ψ dµt =

∫
ξt ·∇ψ dµt. (13.12)

This identity should hold true for any ψk, and by density it should also hold true for any
ψ ∈ C1(M), supported in K.

Let C1
K(M) be the set of ψ ∈ C1(M) that are supported in K. We just showed that there

is a negligible set of times, τK , such that (13.12) holds true for all ψ ∈ C1
K(M) and t /∈ τK .
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Now choose an increasing family of compact sets (Km)m∈N, with ∪Km = M , so that any
compact set is included in some Km. Then (13.12) will hold true for all ψ ∈ C1

c (M), as
soon as t does not belong to the union of τKm, which is still a negligible set of times.

But equation (13.12) really is the weak formulation of (13.10). Since vt is uniquely
determined in L2(dµt), for almost all t, actually the vector field vt(x) is dµt(x) dt-uniquely
determined.

To conclude the proof of the theorem, it only remains to prove the converse implication.
Let (µt) and (ξt) solve (13.10). By the equation of conservation of mass, µt = law (γt),
where γt is a (random) solution of

γ̇t = ξt(γt).

Let s < t be any two times in [0, 1]. From the formula

d(γs, γt)2 = (t − s) inf
{∫ t

s
|ζ̇τ |2 dτ ; ζs = γs, ζt = γt

}
,

we deduce

d(γs, γt)2 ≤ (t − s)
∫ t

s
|γ̇τ |2 dτ ≤ (t − s)

∫ t

s
|ξt(γt)|2 dτ.

So

E d(γs, γt)2 ≤ (t − s)
∫ t

s
|ξτ (x)|2 dµτ (x) dτ ≤ (t − s)2‖ξ‖L∞(dt; L2(dµt)).

In particular
W2(µs, µt)2 ≤ E d(γs, γt)2 ≤ L2(t − s)2,

where L is an upper bound for the norm of ξ in L∞(L2). This concludes the proof of
Theorem 13.7. 78

Remark 13.8. With hardly more work, the preceding theorem can be extended to cover
paths that are absolutely continuous of order 2, in the sense defined on p. 7. Then of course
the velocity field will not live in L∞(dt; L2(dµt)), but in L2(dµt dt).

Observe that in a displacement interpolation, the initial measure µ0 and the initial
velocity field ∇ψ0 uniquely determine the final measure µ1: this implies that geodesics
in P2(M) are nonbranching, in the strong sense that their initial position and velocity
determine uniquely their final position.

Finally, we can now derive an “explicit” formula for the action functional determining
displacement interpolations as minimizing curves. Let µ = (µt)0≤t be any Lipschitz (or ab-
solutely continuous) path in P2(M); let ξt(x) = ∇ψt(x) be the associated time-dependent
velocity field. By the formula of conservation of mass, µt can be interpreted as the law of
γt, where γ is a random solution of γ̇t = ξt(γt). Now define

A(µ) := inf
∫ 1

0
E µt |ξt(γt)|2 dt (13.13)

where the infimum is taken over all possible realizations of the random curves γ. By
Fubini’s theorem,

A(µ) = inf E
∫ 1

0
|ξt(γt)|2 dt = inf E

∫ 1

0
|γ̇t|2 dt

≥ E inf
∫ 1

0
|γ̇t|2 dt = E d(γ0, γ1)2,
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and the infimum is achieved if only if the coupling (γ0, γ1) is minimal, and the curves
γ are (almost surely) action-minimizing. This shows that displacement interpolations are
characterized as the minimizing curves for the action A. Actually A is the same as the
action appearing in Theorem 7.19 (iii), the only improvement is that now we have given
it a more explicit form in terms of vector fields.

The expression (13.13) can be made slightly more explicit by noting that the optimal
choice of velocity field is the one provided by Theorem 13.7, which is gradient, so we may
restrict the action functional to gradient velocity fields:

A(µ) :=
∫ 1

0
E µt |∇ψt|2 dt;

∂µt

∂t
+ ∇ · (∇ψt µt) = 0. (13.14)

Note the formal resemblance with a Riemannian structure: what the formula above
says is

W2(µ0, µ1)2 = inf
∫ 1

0
‖µ̇t‖2

TµtP2
dt, (13.15)

where the norm on the tangent space TµP2 is defined by

‖µ̇‖2
TµP2

= inf
{∫

|v|2 dµ; µ̇ + ∇ · (vµ) = 0
}

=
∫

|∇ψ|2 dµ; µ̇ + ∇ · (∇ψ µ) = 0.

There is an appealing physical interpretation, which really is an infinitesimal version
of the optimal transport problem. Imagine that you observe the (infinitesimal) evolution
of the density of particles moving in a continuum, but don’t know the actual velocities of
these particles. There might be many velocity fields that are compatible with the observed
evolution of density (many solutions of the continuity equation). Among all the possible
solutions, select the one with minimum kinetic energy. This energy is (up to a factor 2)
the square norm of your infinitesimal evolution.

Bibliographical Notes

Formula (13.8) appears in [118]. It has an interesting consequence which can be de-
scribed as follows: On a Riemannian manifold, the optimal transport starting from an
absolutely continuous probability measure almost never hits the cut locus; that is, the set
of x such that the image T (x) belongs to the cut locus of x is of zero probability. Although
we already know (by uniqueness of the displacement interpolation, for instance) that al-
most surely, x and T (x) are joined by a unique geodesic, this alone does not imply that
the cut locus is almost never hit, because it is possible that y belongs to the cut locus
of x and still x and y are joined by a unique minimizing geodesic. (Recall the discussion
after Problem 8.9.) But Cordero-Erausquin, McCann and Schmuckenschläger show that
if such is the case, then d(x, z)2/2 fails to be semi-convex at z = y. On the other hand,
it follows from Alexandrov’s second differentiability theorem (recalled in an Appendix to
Chapter 14) that ψ is twice differentiable almost everywhere, and then formula (13.8),
suitably interpreted, says that d(x, ·)2/2 is semi-convex at T (x) whenever ψ is twice dif-
ferentiable at x. I did not include the proof of this result in these notes, because it uses
more advanced Riemannian geometry technology.

At least in the Euclidean case, the explicit formulas for geodesic curves and action in
the space of measures were known to Brenier, no later than the mid-nineties, but from a



214 13 Qualitative picture

formal point of view. Otto [290] took a conceptual step forward by considering formally
P2(M) as an infinite-dimensional Riemannian manifold, in view of formula (13.15). For
some time it was used as a purely formal, yet quite useful, heuristics (as in [292], or later
in this course). It is only recently that rigorous constructions were performed in several
research papers, including [102, 15, 98, 247]. The treatment developed in this chapter relies
heavily on the work of Ambrosio, Gigli and Savaré [15] (in Rn). The most geometric study
is probably the one in [247, Appendix A]; but see also [15, Section 12.4].

In his PhD, Agueh [1] studied what happens to this picture when the quadratic cost
function is replaced by a power law cost function |x − y|p (p > 1). Bernard and Buf-
foni [47] made a partial investigation of the case of smooth, strictly convex Lagrangian
on a manifold, but not so much from the point which was developed in this end of this
chapter.

Displacement interpolation in presence of boundaries becomes quite tricky. See Otto [290]
for some partial study in a bounded open set of Rn with C2 boundary.

So far, the great majority of applications of optimal transport to problems of applied
mathematics have taken place in Euclidean setting, but more recently some “genuinely
Riemannian” applications have started to pop out. There was a quite original suggestion
to use optimal transport in a three-dimensional Riemannian manifold (actually, a cube
equipped with a varying metric) related to image perception and the matching of pictures
with different contrasts [134]. In a meteorological context, it is natural to consider the
sphere (as a model of the Earth), and in the study of the semi-geostrophic system one is
naturally led to optimal transport on the sphere [124, 122]; actually, it is even natural to
consider a conformal change of metric which “pinches” the sphere along its equator [124]!
For completely different reasons, optimal transport on the sphere was recently used by
Otto and Tzavaras [291] in the study of a coupled fluid-polymer model.
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This second part is devoted to the influence of geometry on the qualitative properties
of optimal transport. It will be shown that the geometry of the manifold influences the
qualitative properties of optimal transport, and that this can be quantified in particular
by the influence of Ricci curvature bounds on displacement convexity, that is the convexity
properties of certain well-chosen functionals along displacement interpolation.

Chapter 14 is a preliminary chapter devoted to a short exposition about the main prop-
erties of Ricci curvature. It is sufficiently self-contained that the reader should understand
all the rest without having to consult any extra source on Riemannian geometry. The
estimates in this chapter will be used only in Chapters 15, 16 and 17.

Chapter 15 is devoted to a powerful formal differential calculus on the Wasserstein
space, found by Otto.

Chapters 16 and 17 establish the main relations between displacement convexity and
Ricci curvature. Not only do Ricci curvature bounds imply certain properties of displace-
ment convexity, but conversely those properties in fact characterize Ricci curvature bounds.
The results in this chapter will play a key role in the rest of the course.

In Chapters 18 to 22 the main theme will be that many classical properties of Rieman-
nian manifolds, that come from Ricci curvature estimates, can be conveniently derived
from displacement convexity techniques. This includes in particular estimates about the
growth of the volume of balls, Sobolev-type inequalities, concentration inequalities, and
Poincaré inequalities.

Then in Chapter 23 it is explained how one can define certain gradient flows in the
Wasserstein space, and recover in this way certain well-known equations such as the heat
equation. In Chapter 24, some of the functional inequalities that were established in the
previous chapters are then applied to the study of these equations; and conversely, gradient
flows provide alternative proofs to some of these inequalities, as shown in Chapter 25.
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Ricci curvature

Curvature is a generic name to designate a local invariant of a metric space that quantifies
the deviation of this space from being Euclidean. (Here “local invariant” means a quantity
which is invariant under local isometries.) It is standard to define and study curvature
mainly on Riemannian manifolds, for in that setting definitions are rather simple, and the
Riemannian structure allows for “explicit” computations. In all this chapter, M will stand
for a smooth Riemannian manifold, equipped with a smooth metric g. Unless explicitly
mentioned, M will also be assumed to be complete.

The most popular curvatures are: the sectional curvature σ (for each point x and
each plane P ⊂ TxM , σx(P ) is a number), the Ricci curvature Ric (for each point x,
Ricx is a quadratic form on the tangent space TxM), and the scalar curvature S (for
each point x, Sx is a number). All of them can be obtained by reduction of the Riemann
curvature tensor. The latter is easy to define: If ∇X stands for the covariant derivation
along the vector field X, then

Riem(X,Y ) := ∇Y ∇X −∇X∇Y + ∇[X,Y ];

but it is notoriously difficult to get some intuition about its meaning, even for specialists.
The Riemann curvature can be thought of as a tensor with four indices; it can be ex-
pressed in coordinates as a nonlinear function of the Christoffel symbols and their partial
derivatives.

Of these three notions of curvature (sectional, Ricci, scalar), the sectional one is the
most precise; in fact the knowledge of all sectional curvatures is equivalent to the knowledge
of the Riemann curvature. Then the Ricci curvature is obtained by “tracing” the sectional
curvature: If e is a given unit vector in TxM and (e, e2, . . . , en) is an orthonormal basis
of TxM , then Ricx(e, e) =

∑
σx(Pj), where Pj (j = 2, . . . , n) is the plane generated by

{e, ej}. Finally, the sectional curvature is the trace of the Ricci curvature. So a control on
the sectional curvature is stronger than a control on the Ricci curvature, which in turn is
stronger than a control on the scalar curvature.

For a surface (manifold of dimension 2), these three notions reduce to just one, which
is the Gauss curvature and whose definition is elementary. Let us first describe it from an
extrinsic point of view. Let M be a two-dimensional submanifold of R3. In the neighbor-
hood of a point x, choose a unit normal vector n = n(y), then this defines locally a smooth
map n with values in S2 ⊂ R3. The tangent spaces TxM and Tn(x)S

2 are parallel planes
in R3, which can be identified unambiguously. So the determinant of the differential of n
can also be defined without ambiguity, and this determinant is called the curvature. The
fact that this quantity is invariant under isometries is one of Gauss’s most famous results,
a tour de force at the time. (To appreciate this theorem, the reader might try to prove it
by elementary means.)
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Fig. 14.1. The dashed line gives the recipe for the construction of the Gauss map; its Jacobian determinant
is the Gauss curvature.

As an illustration of this theorem: If you hold a sheet of paper straight, then its equation
(as an embedded surface in R3, and assuming that it is infinite) is just the equation of
a plane, so obviously it is not curved. Fine, but now bend the sheet of paper so that it
looks like valleys and mountains, write down the horrible resulting equations, give it to a
friend and ask him whether it is curved or not. One thing he can do is compute the Gauss
curvature from your horrible equations, find that it is identically 0, and deduce that your
surface was not curved at all. Well, it looked curved as a surface which was embedded in
R3, but from an intrinsic point of view it was not: A tiny creature living on the surface
of the sheet, unable to measure the lengths of curves going outside of the surface, would
never have noticed that you bent the sheet.

To construct isometries from (M,g) to something else, pick up any diffeomorphism
ϕ : M → M ′, and equip M ′ = ϕ(M) with the metric g′ = (ϕ−1)∗g, defined by g′x(v) =
gϕ−1(x)(dxϕ−1(v)). Then ϕ is an isometry between (M,g) and (M ′, g′). Gauss’ theorem
says that the curvature computed in (M,g) and the curvature computed in (M ′, g′) are
the same, modulo obvious changes (the curvature at point x along a plane P should be
compared with the curvature at ϕ(x) along a plane dxϕ(P )). This is why one often says
that the curvature is “invariant under the action of diffeomorphisms”.

Curvature is intimately related to the local behavior of geodesics. The general rule is
that, in presence of positive curvature, geodesics have a tendency to converge (at least
in short time), while in presence of negative curvature they have a tendency to diverge.
This tendency can usually be felt only at second or third order in time: at first order,
the convergence or divergence of geodesics is dictated by the initial conditions. So if, on
a space of (strictly) positive curvature, you start two geodesics from the same point with
velocities pointing in different directions, the geodesics will start to diverge, but then the
tendency to diverge will diminish. Here is a more precise statement, which will show at the
same time that the Gauss curvature is an intrinsic notion: From a point x ∈ M , start two
constant-speed geodesics with unit speed, and respective velocities v,w. The two curves
will then spread apart; let δ(t) be the distance between their respective positions at time
t. In a first approximation, δ(t) >

√
2(1 − cos θ) t, where θ is the angle between v and w

(this is the same formula as in Euclidean space). But a more precise study shows that

δ(t) =
√

2(1 − cos θ) t
(
1 − κx cos2(θ/2)

6
t2 + O(t4)

)
, (14.1)

where κx is the Gauss curvature at x.
Once the intrinsic nature of the Gauss curvature has been established, it is easy to define

the notion of sectional curvature for Riemannian manifolds of any dimension, embedded
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or not: If x ∈ M and P ⊂ TxM , define σx(P ) as the Gauss curvature of the surface
which is obtained as the image of P by the exponential map expx (that is, the collection
of all geodesics starting from x with a velocity in P ). Another equivalent definition is by
reduction of the Riemann curvature tensor: If {u, v} is an orthonormal basis of P , then
σx(P ) = 〈Riem (u, v) · u, v〉.

It is obvious from the first definition that the unit two-dimensional sphere S2 has
curvature +1, and that the Euclidean plane R2 has curvature 0. More generally, the sphere
Sn(R), with dimension n and radius R, has constant sectional curvature 1/R2, while the
n-dimensional Euclidean space Rn has curvature 0. The other classical example is the
hyperbolic plane, say Hn(R) = {(x, y) ∈ Rn−1 × (0,+∞)} equipped with the metric
R2(dx2 + dy2)/y2, which has constant sectional curvature −1/R2. These three families
(spheres, Euclidean, hyperbolic) constitute the only connected Riemannian manifolds with
constant sectional curvature, and they play an important role as comparison spaces.

The qualitative properties of optimal transport are also (of course) related to the be-
havior of geodesics, and so it is natural to believe that curvature has a strong influence
on the solution of optimal transport. Conversely, some curvature properties can be read
off on the solution of optimal transport. At the time of writing, these links have been best
understood in terms of Ricci curvature; so this is the point of view that will be developed
in the sequel.

This chapter is a tentative crash course on Ricci curvature. Hopefully, a reader who
has never heard about that topic before should, by the end of the chapter, know enough
about it to understand all the rest of the notes. This is by no means a complete course,
since most proofs will only be sketched and many basic results will be taken for granted.

In practice, Ricci curvature usually appears from two points of view: (a) estimates of
the Jacobian determinant of the exponential map; (b) Bochner’s formula. These are two
complementary points of view on the same phenomenon, and it is useful to know both.
Before going on, I shall make some preliminary remarks about Riemannian calculus at
second order, for functions which are not necessarily smooth.

Preliminary: second-order differentiation

All curvature calculations involve second-order differentiation of certain expressions. The
notion of covariant derivation lends itself well to those computations. A first thing to
know is that the exchange of derivatives is still possible. To express this properly, consider
a parametrized surface (s, t) → γ(s, t) in M , and write d/dt (resp. d/ds) for the differen-
tiation along γ, viewed as a function of t with s frozen (resp. as a function of s with t
frozen); and D/Dt (resp. D/Ds) for the corresponding covariant differentiation. Then, if
F ∈ C2(M), one has

D

Ds

(
dF

dt

)
=

D

Dt

(
dF

ds

)
. (14.2)

Also a crucial concept is that of Hessian operator. If f is twice differentiable on
Rn, its Hessian matrix is just (∂2f/∂xi ∂xj)1≤i,j≤n of all second-order partial derivatives.
Now if f is defined on a Riemannian manifold M , the Hessian operator at x is the linear
operator ∇2f(x) : TxM → TxM defined by the identity

∇2f · v = ∇v(∇f).

(Recall that ∇v stands for the covariant derivation in the direction v.) In short, ∇2f is
the covariant gradient of the gradient of f .
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A convenient way to compute the Hessian of a function is to differentiate it twice along
a geodesic path. Indeed, if (γt)0≤t≤1 is a geodesic path, then

d2

dt2
f(γt) =

d

dt
〈∇f(γt), γ̇t〉 =

〈
∇γ̇∇f(γt), γ̇t

〉
+
〈
∇f(γt), ∇γ̇ γ̇t

〉
= 〈∇2f(γt) · γ̇t, γ̇t〉.

In other words, if γ0 = x and γ̇0 = v ∈ TxM , then

f(γt) = f(x) + t〈∇f(x), v〉 +
t2

2
〈∇2f(x) · v, v〉 + o(t2). (14.3)

This identity can actually be used to define the Hessian operator.
A similar computation shows that for any two tangent vectors u, v at x,

D

Ds

(
d

dt
f
(
expx(su + tv)

))
= 〈∇2f(x) · u, v〉, (14.4)

where expx v is the value at time 1 of the constant speed geodesic starting from x with
velocity v. Identity (14.4) together with (14.2) shows that if f ∈ C2(M), then ∇2f(x) is
a symmetric operator, that is 〈∇2f(x) · u, v〉x = 〈∇2f(x) · v, u〉x. In that case it will be
often convenient to think of ∇f (x) as a quadratic form on TxM .

The Hessian operator is related to another fundamental second-order differential oper-
ator, the Laplacian, or Laplace–Beltrami operator. The Laplacian can be defined as the
trace of the Hessian:

∆f(x) = tr (∇2f(x)).

Another possible definition for the Laplacian is

∆f = ∇ · (∇f),

where ∇· is the divergence operator, defined as the negative of the adjoint of the gradient
in L2(M): More explicitly, if ξ is a C1 vector field on M , then its divergence is defined by

∀ζ ∈ C∞
c (M),

∫

M
(∇ · ξ) ζ dvol = −

∫

M
ξ ·∇ζ dvol .

Both definitions are equivalent; in fact, more generally the divergence of a vector field ξ
coincides with the trace of the covariant gradient of ξ. When M = Rn, ∆f is given by the
usual expression

∑
∂2

iif . More generally, in coordinates, the Laplacian reads

∆f = (det g)−1/2
∑

i

∂i
(
(det g)1/2gij ∂jf).

In the context of optimal transport, we shall be led to consider Hessian operators for
functions f that are not of class C2, and not even continuously differentiable. However,
∇f and ∇2f(x) will still be well-defined almost everywhere, and this will be sufficient to
conduct the proofs. Here I should explain what it means for a function defined almost
everywhere to be differentiable. Let ξ be a vector field defined on a domain of a neighbor-
hood U of x; when y is close enough to x, there is a unique velocity w ∈ TxM such that
y = γ1, where γ is the constant-speed geodesic starting from x with initial velocity w; for
simplicity I shall write w = y − x (to be understood as y = expx w). Then ξ is said to be
covariantly differentiable at x in the direction v, if

∇vξ(x) := lim
y→x; y−x

|y−x|→
v
|v|

|v|
(
θy→xξ(y) − ξ(x)

|y − x|

)
(14.5)
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exists, where y varies on the domain of definition of ξ, and θy→x is the parallel transport
along the geodesic joining y to x. If ξ is defined everywhere in a neighborhood of x, then
this is just the usual notion of covariant derivation. Formulas for (14.5) in coordinates are
just the same as in the smooth case.

The following theorem is the main result of second differentiability for nonsmooth
functions:

Theorem 14.1 (Second differentiability of semi-convex functions). Let M be a
smooth Riemannian manifold equipped with its volume measure, let U be an open subset of
M , and let ψ : U → R be locally semi-convex with a quadratic modulus of semi-convexity,
in the sense of Definition 10.10. Then, for almost every x ∈ U , ψ is differentiable at x
and there exists a symmetric operator A : TxM → TxM , characterized by any one of the
two equivalent properties

(i) For any v ∈ TxM , ∇v(∇ψ)(x) = Av;

(ii) ψ(expx v) = ψ(x) + 〈∇ψ(x), v〉 +
〈A · v, v〉

2
+ o(|v|2) as v → 0.

The operator A is denoted by ∇2ψ(x) and called the Hessian of ψ at x. When no confusion
is possible, the quadratic form defined by A is also called the Hessian of ψ at x.

The trace of A is denoted by ∆ψ and called the Laplacian of ψ at x. The function
x → ∆ψ(x) coincides with the density of the absolutely continuous part of the distributional
Laplacian of ψ.

Remark 14.2. The particular case when ψ is a convex function Rn → R is known as
Alexandrov’s second differentiability theorem. By extension, I shall use the ter-
minology “Alexandrov’s theorem” for the general statement where M is an arbitrary
manifold. This theorem is more often stated in terms of Property (ii) than in terms of
Property (i); but it is the latter that will be most useful for our purposes.

Remark 14.3. As the proof will show, Property (i) can be replaced by the more precise
statement involving the subdifferential of ψ: If ξ is any vector field valued in ∇−ψ (i.e.
ξ(y) ∈ ∇−ψ(y) for all y), then ∇vξ(x) = Av.

Remark 14.4. For the main part of this course, we shall not need the full strength of
Theorem 14.1, but just the particular case when ψ is continuously differentiable and ∇ψ
is Lipschitz; then the proof becomes much simpler, and ∇ψ is almost everywhere differ-
entiable in the usual sense. Still, on some occasions we shall need the full generality of
Theorem 14.1.

Beginning of proof of Theorem 14.1. Since the notion of local semi-convexity with quadratic
modulus is invariant by C2 diffeomorphism, it is sufficient to prove it when M = Rn. But
a semi-convex function in U ⊂ Rn is just the sum of a quadratic form and a locally convex
function (that is, a function which is convex in any convex subset of U). So it is actually
sufficient to consider the special case when ψ is a convex function in a convex subset of Rn.
Then if x ∈ U and B is a closed ball around x, included in U , let ψB be the restriction of ψ
to B; since ψ is Lipschitz and convex, it can be extended into a Lipschitz convex function
on the whole of Rn (take for instance the supremum of all supporting hyperplanes for ψB).
In short, to prove Theorem 14.1 it is sufficient to treat the special case of a convex function
ψ : Rn → R. At this point the argument does not involve any more Riemannian geometry,
but only convex analysis; so I shall postpone it to the Appendix (Theorem 14.23). 78
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The Jacobian determinant of the exponential map

Let M be a Riemannian manifold, and let ξ be a vector field on M (so for each x, ξ(x)
lies in TxM). Recall the definition of the exponential map T = exp ξ: Start from point x
a geodesic curve with initial velocity ξ(x) ∈ TxM , and follow it up to time 1 (it is not
required that the geodesic be minimizing all along); the position at time 1 is denoted by
expx ξ(x). As a trivial example, in Euclidean space, expx ξ(x) = x + ξ(x).

The computation of the Jacobian determinant of such a map is a classical exercise in
Riemannian geometry, whose solution involves the Ricci curvature. One can take this com-
putation as a theorem about the Ricci curvature (previously defined in terms of sectional
or Riemann curvature), or as the mere definition of the Ricci curvature.

So let x be given, and let ξ be a vector field defined in a neighborhood of x, or almost
everywhere in a neighborhood of x. Let e1, . . . , en be an orthonormal basis of TxM , and
consider small variations of x in these directions e1, . . . , en, denoted abusively by x +
δe1, . . . , x + δen. (Here x + δej should be understood as, say, expx(δej); but it might also
be any path x(δ) with ẋ(0) = ei.) As δ → 0, the infinitesimal parallelepiped Pδ built on
(x + δe1, . . . , x + δen) has volume vol [Pδ ] > δn. (It is easy to make sense of that by using
local charts.) The quantity of interest is

J (x) := lim
vol [T (Pδ)]

vol [Pδ]
.

For that purpose, T (Pδ) can be approximated by the infinitesimal parallelogram built on
T (x + δe1), . . . , T (x + δen). Explicitly,

T (x + δei) = expx+δei
(ξ(x + δei)).

(If ξ is not defined at x + δei it is always possible to make an infinitesimal perturbation
and replace x + δei by a point which is extremely close and at which ξ is well-defined. Let
me skip this nonessential subtlety.)

Assume for a moment that we are in Rn, so T (x) = x+ ξ(x). Then, by a classical result
in real analysis, J (x) = |det(∇T )| = |det(In + ∇ξ(x))|. But in the genuinely Rieman-
nian case, things are much more intricate (unless ξ(x) = 0) because the measurement of
infinitesimal volumes changes as we move along the geodesic path γ(t, x) = expx(tξ(x)).

To appreciate this continuous change, let us parallel transport along the geodesic γ
to define a new family E(t) = (e1(t), . . . , en(t)) in Tγ(t)M . Since (d/dt)〈ei(t), ej(t)〉 =
〈ėi(t), ej(t)〉 + 〈ei(t), ėj(t)〉 = 0, the basis E(t) is an orthonormal basis of Tγ(t)M for all
t. (Here the dot symbol stands for the covariant derivation along γ.) Moreover, e1(t) =
γ̇(t, x)/|γ̇(t, x)|.

To express the Jacobian of the map T = exp ξ, it will be convenient to consider the
whole collection of maps Tt = exp(tξ). For brevity, let us write

Tt(x + δE) =
(
Tt(x + δe1), . . . , Tt(x + δen)

)
;

then
Tt(x + δE) > Tt(x) + δ J,

where
J = (J1, . . . , Jn); Ji(t, x) :=

d

dδ

∣∣∣∣
δ=0

Tt(x + δei).
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E(0)

E(t)

Fig. 14.2. The orthonormal basis E, here represented by a small cube, goes along the geodesic by parallel
transport.

The vector fields Ji have been obtained by differentiating a family of geodesics depend-
ing on a parameter (here δ); such vector fields are called Jacobi fields and they sat-
isfy a characteristic linear second-order equation known as the Jacobi equation. To write
this equation, it will be convenient to express J1, . . . , Jn in terms of the basis e1, . . . , en;
so let Jij = 〈Ji, ej〉 stand for the jth component of Ji in this basis. Then the matrix
J = (Jij)1≤i,j≤n satisfies the differential equation

J̈(t) + R(t)J(t) = 0, (14.6)

where R(t) is a matrix which depends on the Riemannian structure at γ(t), and can be
expressed in terms of the Riemann curvature tensor:

Rij(t) =
〈
Riemγ(t)(γ̇(t), ei(t)) γ̇(t), ej(t)

〉

γ(t)
. (14.7)

(All of these quantities depend implicitly on the starting point x.) The reader who prefers
to stay away from the Riemann curvature tensor can take (14.6) as the equation defining
the matrix R; the only things that one should know about this matrix are that (a) R(t)
is symmetric; (b) the first row of R(t) vanishes (which is the same, modulo identification,
as R(t)γ̇(t) = 0); (c) tr R(t) = Ricγt(γ̇t, γ̇t) (which one can also adopt as a definition of
the Ricci tensor); (d) R(t) is invariant under the transform t → 1 − t, E(t) → −E(1 − t),
γt → γ1−t.

Equation (14.6) is of second order in time, and so it should come with initial conditions
for both J(0) and J̇(0). On one hand, since T0(y) = y, one has

Ji(0) =
d

dδ

∣∣∣∣
δ=0

(x + δei) = ei,

so J(0) is just the identity matrix. On the other hand,

J̇i(0) =
D

Dt

∣∣∣∣
t=0

d

dδ

∣∣∣∣
δ=0

Tt(x + δei) =
D

Dδ

∣∣∣∣
δ=0

d

dt

∣∣∣∣
t=0

Tt(x + δei)

=
D

Dδ

∣∣∣∣
δ=0

ξ(x + δei) = (∇ξ)ei,

where ∇ξ is the covariant gradient of ξ. (It is easy to justify the exchange of derivatives
by using the differentiability of ξ at x and the C∞ regularity of (t, y, ξ) → expy(tξ).) So



226 14 Ricci curvature

J(0)

J(t)

Fig. 14.3. At time t = 0, the matrices J(t) and E(t) coincide, but at later times they (may) differ, due to
geodesic distortion.

d

dt
Jij =

d

dt
〈Ji, ej〉 =

〈DJi

Dt
, ej
〉

= 〈(∇ξ)ei, ej〉.

We conclude that the initial conditions are

J(0) = In, J̇(0) = ∇ξ(x), (14.8)

where in the second expression the linear operator ∇ξ(x) is identified with its matrix in
the basis E: (∇ξ)ij = 〈(∇ξ)ei, ej〉 = 〈ei · ∇ξ, ej〉. (Be careful, this is the contrary of the
usual convention Aij = 〈Aej , ei〉; anyway, later we shall work with symmetric operators,
so it will not matter.)

From this point on, the problem is about a path J(t) valued in the space Mn(R) of real
n × n matrices, and we can forget about the geometry: Parallel transport has provided a
consistent identification of all the tangent spaces Tγ(t)M with Rn. This path depends on
x via the initial conditions (14.8), so in the sequel we shall put that dependence explicitly.
It might be very rough as a function of x, but it is very smooth as a function of t. The
Jacobian of the map Tt is defined by

J (t, x) = detJ(t, x),

and the formula for the differential of the determinant yields

J̇ (t, x) = J (t, x) tr
(
J̇(t, x)J(t, x)−1

)
, (14.9)

at least as long as J(t, x) is invertible (let’s forget about that problem for the moment).
So it is natural to set

U := J̇ J−1, (14.10)

and to look for an equation on U . By differentiating (14.10) and using (14.6), we discover
that

U̇ = J̈J−1 − J̇J−1J̇J−1 = −R − U2

(note that J and J̇ do not necessarily commute). So the change of variables (14.10) has
turned the second-order equation (14.6) into the first-order equation
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U̇ + U2 + R = 0, (14.11)

which is of Ricatti type, that is, with a quadratic nonlinearity.
By taking the trace of (14.11), we arrive at

d

dt
(tr U) + tr (U2) + tr R = 0.

Now the trace of R(t, x) only depends on γt and γ̇t; in fact, as noticed before, it is precisely
the value of the Ricci curvature at γ(t), evaluated in the direction γ̇(t). So we have arrived
at our first important equation involving Ricci curvature:

d

dt
(tr U) + tr (U2) + Ric(γ̇) = 0, (14.12)

where of course Ric(γ̇) is an abbreviation for Ricγ(t)(γ̇(t), γ̇(t)).
Equation (14.12) holds true for any vector field ξ, as long as ξ is covariantly differen-

tiable at x. But in the sequel, I shall only apply it in the particular case when ξ derives
from a function: ξ = ∇ψ; and ψ is locally semi-convex with a quadratic modulus of semi-
convexity. There are three reasons for this restriction:

(a) Only such maps arise in optimal transport;
(b) Semi-convexity of ψ guarantees the almost everywhere differentiability of ∇ψ, by

Theorem 14.1;
(c) If ξ = ∇ψ, then ∇ξ(x) = ∇2ψ(x) is symmetric and this will imply the symmetry

of U(t, x) at all times; this symmetry will allow to derive from (14.12) a closed inequality
on tr U(t, x) = J (t, x).

So from now on, ξ = ∇ψ, where ψ is semi-convex. To prove the symmetry of U(t, x),
note that U(0, x) = In and U̇(0, x) = ∇2ψ(x) (modulo identification) are symmetric,
and the time-dependent matrix R(t, x) is also symmetric, so U(t, x) and its transpose
U(t, x)∗ solve the same differential equation, with the same initial conditions. Then, by
the uniqueness statement in the Cauchy–Lipschitz theorem, they have to coincide at all
times where they are defined.

Inequality (14.12) cannot be recast as a differential equation involving only the Jacobian
determinant (or equivalently tr U(t, x)), since the quantity tr (U2) in (14.12) cannot be
expressed in terms of tr U . However, the symmetry of U allows to use the Cauchy–Schwarz
inequality, in the form

tr (U2) ≥ (tr U)2

n
;

then, by plugging this inequality into (14.12), we obtain an important differential inequality
involving Ricci curvature:

d

dt
(tr U) +

(tr U)2

n
+ Ric(γ̇) ≤ 0. (14.13)

There are several ways to rewrite this result in terms of the Jacobian J (t). For instance,
by differentiating the formula

tr U =
J̇
J ,

one obtains easily

d

dt
(tr U) +

(tr U)2

n
=

J̈
J −

(
1 − 1

n

)(
J̇
J

)2

.
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So (14.13) becomes
J̈
J −

(
1 − 1

n

)(
J̇
J

)2

≤ −Ric(γ̇). (14.14)

For later purposes, a convenient formulation consists in defining D(t) := J (t)1/n (which
one can think of as a coefficient of mean distortion), and then the left-hand side of (14.14)
is exactly nD̈/D. So

D̈
D ≤ − Ric(γ̇)

n
. (14.15)

Another useful formula is obtained by considering 5(t) := − logJ (t), and then (14.13)
writes

5̈(t) ≥ 5̇(t)2

n
+ Ric(γ̇). (14.16)

In all these formulas, we have always taken the point t = 0 as the starting time, but
it is clear that we could do just the same with any starting time t0 ∈ [0, 1], that is,
consider, instead of Tt(x) = exp(t∇ψ(x)), the map Tt0→t(x) = exp((t − t0)∇ψ(x)). Then
all the differential inequalities are unchanged; the only difference is that the Jacobian
determinant at time t = 0 is not necessarily 1.

Taking out the direction of motion

The previous formulas are quite sufficient to derive many useful geometric consequences.
However, one can refine them by taking advantage of the fact that curvature is not felt
in the direction of motion. In other words, if one is travelling along some geodesic γ,
one will never be able to detect some curvature by considering variations (in the initial
position, or initial velocity) in the direction of γ itself: the path will always be the same,
up to reparametrization. This corresponds to the property R(t)γ̇(t) = 0, where R(t) is the
matrix appearing in (14.6). In short, curvature is felt only in n − 1 directions out of n.
This loose principle often leads to a refinement of estimates by a factor (n − 1)/n.

Here is a recipe to “separate out” the direction of motion from the rest. As before,
assume that the first vector of the orthonormal basis J(0) is e1(0) = γ̇(0)/|γ̇(0)| (the
case when γ̇(0) = 0 can be treated separately). Set u// = u11 (this is the coefficient in U
which corresponds to the direction of motion only), and define U⊥ as the (n− 1)× (n− 1)
matrix obtained by removing the first line and first column in U . Of course, tr (U) =
u//+tr (U⊥). Next decompose the Jacobian determinant J into a parallel and an orthogonal
contributions:

J = J//J⊥, J//(t) = exp
(∫ t

0
u//(s) ds

)
.

Further define parallel and orthogonal distortions by

D// = J//, D⊥ = J
1

n−1

⊥ ;

and, of course,
5// = − logJ//, 5⊥ = − logJ⊥. (14.17)

Now, since the first row of R(t) vanishes, the equation (14.11) implies

u̇// = −
∑

j

u2
1j ≤ −u2

11 = −u2
//.
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It follows easily that
5̈// ≥ 5̇2//, (14.18)

or equivalently
J̈// ≤ 0, (14.19)

so D// = J// is always a concave function of t, independently of the curvature of M , and
the same holds true of course for D// which coincides with J//.

Now let us take care of the orthogonal part: By putting together (14.9), (14.10), (14.11),
(14.18), it is immediate that

5̈⊥ = − d

dt
(tr U) − 5̈// = tr (U2) + Ric(γ̇) −

∑
u2

1j .

Since tr U2 = tr (U⊥)2 + 2
∑

u2
1j , it follows that

5̈⊥ ≥ tr (U2
⊥) + Ric(γ̇). (14.20)

Then in the same manner as before, one can obtain

5̈⊥ ≥ (5̇⊥)2

n − 1
+ Ric(γ̇), (14.21)

D̈⊥
D⊥

≤ −Ric(γ̇)
n − 1

. (14.22)

To summarize: The basic inequalities for 5⊥ and 5// are the same as for 5, but with the
exponent n replaced by n − 1 in the case of 5⊥, and 1 in the case of 5//; and the number
Ric(γ̇) replaced by 0 in the case of 5//.

Positivity of the Jacobian

Unlike the distance function, the exponential map is always smooth. But this does not
prevent the Jacobian determinant J (t) to vanish, i.e. the matrix J(t) to become singular
(not invertible). Then computations such as (14.9) break down. So all the computations
performed before are only valid if J (t) is positive for all t ∈ (0, 1).

In terms of the quantity 5(t) = − logJ (t), the vanishing of the Jacobian determinant
corresponds to a divergence 5(t) → ∞. Readers familiar with ordinary differential equations
will have no trouble believing that these events are not rare: Indeed, 5 solves a Ricatti-
type equation such as (14.16), and such equations often lead to blow-up in finite time. For
instance, consider a function 5(t) that solves

5̈ ≥ (5̇)2

n − 1
+ K,

where K > 0. Consider a time t0 where 5 is minimum, so 5̇(t0) = 0. Then, 5 cannot be
defined on a time-interval larger than [t0 − T, t0 + T ], where T := π

√
(n − 1)/K . So the

Jacobian has to vanish at some time, and we even have a bound on this time. (With a
bit more work, this estimate implies the Bonnet–Myers theorem, which asserts that the
diameter of M cannot be larger than π

√
(n − 1)/K if Ric ≥ K g.)

The vanishing of the Jacobian may occur even along geodesics that are minimizing for
all times: Consider for instance ξ(x) = −2x in Rn; then the image of exp(tξ) is reduced
to a single point when t = 1/2. However, in the case of optimal transport, the Jacobian
cannot vanish at intermediate times, at least for almost all initial points: Recall indeed the
last part of Theorem 11.3. This property can be seen as a result of the very special choice
of the velocity field ξ, which is the gradient of a d2/2-convex function; or as a consequence
of the “no-crossing” property explored in Chapter 8.
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Bochner’s formula

So far, we have discussed curvature from a Lagrangian point of view, that is, by going
along a geodesic path γ(t), keeping the memory of the initial position. It is useful to be
also familiar with the Eulerian point of view, in which the focus is not on the trajectory,
but on the velocity field ξ = ξ(t, x). To switch from Lagrangian to Eulerian description,
just write

γ̇(t) = ξ
(
t, γ(t)

)
. (14.23)

In general, this can be a subtle issue because two trajectories might cross, and then
there would be no way to define a meaningful velocity field ξ(t, ·) at the crossing point.
However, if a smooth vector field ξ = ξ(0, ·) is given, then around a given point x0 the
trajectories γ(t, x) = exp(tξ(x)) do not cross in short time, and then one can define ξ(t, x)
without ambiguity. The covariant differentiation of (14.23) along ξ itself, and the geodesic
equation γ̈ = 0, yield

∂ξ

∂t
+ ∇ξξ = 0, (14.24)

which is the pressureless Euler equation. From a physical point of view, this equation
describes the velocity field of a bunch of particles which travel along geodesic curves
without interacting. The derivation of (14.24) will fail when the geodesic paths start to
cross, at which point the solution to (14.24) would typically lose smoothness and need
reinterpretation. But for the sequel, we only need (14.24) to be satisfied in short time, and
locally around x.

Now, all the discussion about Ricci curvature can be recast in Eulerian terms. Let
γ(t, x) = expx(tξ(x)); by the definition of the covariant gradient, we have

J̇(t, x) = ∇ξ(t, γ(t, x))J(t, x)

(the same formula that we had before at time t = 0). Under the identification of Rn with
Tγ(t)M provided by the basis E(t), we can identify J with the matrix J , and then

U(t, x) = J̇(t, x)J(t, x)−1 = ∇ξ
(
t, γ(t, x)

)
, (14.25)

where again the linear operator ∇ξ is identified with its matrix in the basis provided by
E.

Then tr U(t, x) = tr ∇ξ(t, x) coincides with the divergence of ξ(t, ·), evaluated at x.
By the chain rule and (14.24),

d

dt
(tr U)(t, x) =

d

dt
(∇ · ξ)(t, γ(t, x))

= ∇ ·
(
∂ξ

∂t
(t, γ(t, x)

)
+ γ̇(t, x) ·∇(∇ · ξ)(t, γ(t, x))

=
(
−∇ · (∇ξξ) + ξ ·∇(∇ · ξ)

)
(t, γ(t, x)).

So the Lagrangian formula (14.12) can be translated into the Eulerian formula

−∇ · (∇ξξ) + ξ ·∇(∇ · ξ) + tr (∇ξ)2 + Ric(ξ) = 0. (14.26)

All functions here are evaluated at (t, γ(t, x)), and of course we can choose t = 0, and
x arbitrary. So (14.26) is an identity that holds true for any smooth (say C2) vector
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field ξ on our manifold M . Of course it can also be established directly by a coordinate
computation.1

While formula (14.26) holds true for all vector field ξ, if ∇ξ is symmetric then two
simplifications arise:

(a) ∇ξξ = ∇ξ · ξ = ∇ · |ξ|
2

2
;

(b) tr (∇ξ)2 = ‖∇ξ‖2
HS, where HS stands for the Hilbert-Schmidt norm.

Then (14.26) becomes

−∆ |ξ|2

2
+ ξ ·∇(∇ · ξ) + ‖∇ξ‖2

HS + Ric(ξ) = 0. (14.27)

We shall apply it only in the case when ξ is a gradient: ξ = ∇ψ; then ∇ξ = ∇2ψ is indeed
symmetric, and the resulting formula is

−∆ |∇ψ|2

2
+ ∇ψ ·∇(∆ψ) + ‖∇2ψ‖2

HS + Ric(∇ψ) = 0. (14.28)

The identity (14.26), or its particular case (14.28), is called the Bochner–Weitzenböck–
Lichnérowicz formula, or just Bochner’s formula.2

Remark 14.5. With the ansatz ξ = ∇ψ, the pressureless Euler equation (14.24) reduces
to the Hamilton–Jacobi equation

∂ψ

∂t
+

|∇ψ|2

2
= 0. (14.29)

One can use this equation to obtain (14.28) directly, instead of first deriving (14.26). Here
equation (14.29) is to be understood in viscosity sense (otherwise there are many spurious
solutions); in fact the reader might just as well take the identity

ψ(t, x) = inf
y∈M

[
ψ(y) +

d(x, y)2

2t

]

as the definition of the solution of (14.29). Then the geodesic curves γ starting with
γ(0) = x, γ̇(0) = ∇ψ(x) are called characteristic curves of the equation (14.29).

Remark 14.6. Here I have not tried to derive Bochner’s formula for nonsmooth functions.
This could be done for semi-convex ψ, with an appropriate “compensated” definition for
−∆ |∇ψ|2

2 + ∇ψ · ∇(∆ψ). In fact, the semi-convexity of ∇ψ prevents the formation of
instantaneous shocks, and will allow the Lagrangian/Eulerian duality for a short time.

Remark 14.7. The operator U(t, x) coincides with ∇2ψ(t, γ(t, x)), which is another way
to see that it is symmetric for t > 0.
1 With the notation ∇ξ = ξ · ∇ (which is classical in fluid mechanics), and tr (∇ξ)2 = ∇ξ · ·∇ξ, for-

mula (14.26) takes the amusing form −∇ · ξ ·∇ξ + ξ ·∇∇ · ξ + ∇ξ · ·∇ξ + Ric(ξ) = 0.
2 In (14.26) or (14.28) I have written Bochner’s formula in purely “metric” terms, which will probably

look quite ugly to many geometer readers. An equivalent but more “topological” way to write Bochner’s
formula is

∆ = −∇∇∗ + Ric,

where ∆ = −(dd∗ + d∗d) is the Laplace operator on 1-forms, ∇ is the covariant differentiation (under
the identification of a 1-form with a vector field) and the adjoints are in L2(vol ). Also I should note
that the name “Bochner formula” is attributed to a number of related identities.
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From that point on, we shall only work with (14.28). Of course, by using the Cauchy–
Schwarz identity as before, we can bound below ‖∇2ψ‖2

HS by (∆ψ)2/n; therefore (14.25)
implies

∆
|∇ψ|2

2
−∇ψ ·∇(∆ψ) ≥ (∆ψ)2

n
+ Ric(∇ψ). (14.30)

Apart from regularity issues, this inequality is strictly equivalent to (14.13), and therefore
to (14.14) or (14.15).

Not so much has been lost when going from (14.28) to (14.30): there is still equality
in (14.30) at all points x where ∇2ψ(x) is a multiple of the identity.

It is also possible to take out the direction of motion, ∇̂ψ := (∇ψ)/|∇ψ|, from the
Bochner identity. The Hamilton–Jacobi equation implies ∂t∇̂ψ + ∇2ψ · ∇̂ψ = 0, so

∂t

〈
∇2ψ · ∇̂ψ, ∇̂ψ

〉
= −

〈
∇2(|∇ψ|2/2) · ∇̂ψ, ∇̂ψ

〉
− 2

〈
∇2ψ · (∇2ψ · ∇̂ψ), ∇̂ψ

〉
,

and by symmetry the latter term can be rewritten −2 |(∇2ψ) · ∇̂ψ|2. From this one easily
obtains the following refinement of Bochner’s formula: Define

∆//f =
〈
∇2f · ∇̂ψ, ∇̂ψ

〉
, ∆⊥ = ∆−∆//,

then





∆//
|∇ψ|2

2 −∇ψ ·∇∆//ψ + 2
∣∣(∇2ψ) · ∇̂ψ

∣∣2 ≥ (∆//ψ)2

∆⊥
|∇ψ|2

2 −∇ψ ·∇∆⊥ψ − 2
∣∣(∇2ψ) · ∇̂ψ

∣∣2 ≥ ‖∇2
⊥ψ‖2

HS + Ric(∇ψ).

(14.31)

This is the “Bochner formula with the direction of motion taken out”. I have to confess
that I never saw these frightening formulas anywhere, and don’t know whether they have
any use. But of course, they are equivalent to their Lagrangian counterpart, that will play
a crucial role in the sequel.

Analytic and geometric consequences of Ricci curvature bounds

Inequalities (14.13), (14.14), (14.15) and (14.30) are the “working heart” of Ricci curvature
analysis. Many gometric and analytic consequences follow from these estimates.

Here is a first example coming from analysis and partial differential equations theory: If
the Ricci curvature of M is globally bounded below (infx Ricx > −∞), then there exists a
unique heat kernel, that is a measurable function pt(x, y) (t > 0, x ∈ M , y ∈ M), integrable
in y, smooth outside of the diagonal x = y, such that f(t, x) :=

∫
pt(x, y) f0(y) dvol (y)

solves the heat equation ∂tf = ∆f with initial datum f0.
Here is another example in which some topological information can be recovered from

Ricci bounds: If M is a manifold with nonnegative Ricci curvature (for each x, Ricx ≥ 0),
and there exists a line in M , that is, a geodesic γ which is minimizing for all values of
time t ∈ R, then M is isometric to R×M ′, for some Riemannian manifold M ′. This is the
splitting theorem, in a form proven by Cheeger and Gromoll.

Many quantitative statements can be obtained from (i) a lower bound on the Ricci
curvature and (ii) an upper bound on the dimension of the manifold. Here below is a
(grossly nonexhaustive) list of some famous such results. In the statements to come, M
is always assumed to be a smooth complete Riemannian manifold, vol stands for the
Riemannian volume on M , ∆ for the Laplace operator and d for the Riemannian distance;
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K is the lower bound on the Ricci curvature, and n is the dimension of M . Also, if A is
a measurable set, then Ar will denote its r-neighborhood, that is the set of points that
lie at distance at most r from A. Finally, the “model space” is the connected Riemannian
manifold with constant sectional curvature which has the same dimension as M , and a
Ricci curvature equal to K (more rigorously, Kg, where g is the metric tensor on the model
space).

1. Volume growth estimates: The Bishop–Gromov inequality (also called Riemannian
volume comparison theorem) states that the volume of balls does not increase faster than
the volume of balls in the model space. In formulas: for all x ∈ M ,

vol [Br(x)]
V (r)

is a nonincreasing function of r,

where

V (r) =
∫ r

0
S(r′) dr′, S(r) = cn,K






sinn−1

(√
K

n − 1
s

)
if K > 0

sn−1 if K = 0

sinhn−1

(√
|K|

n − 1
s

)
if K < 0.

Here of course S(r) denotes the surface of Br(0) in the model space, that is the (n − 1)-
dimensional volume of ∂Br(0), and cn,K is a nonessential normalizing constant.

2. Diameter estimates: The Bonnet–Myers theorem states that, if K > 0, then M
is compact and more precisely

diam (M) ≤ π

√
n − 1

K
,

with equality for the model sphere.
3. Spectral gap inequalities: If K > 0, then the spectral gap λ1 of the nonnegative

operator −∆ is bounded below:

λ1 ≥ nK

n − 1
,

with equality again for the model sphere.
4. (Sharp) Sobolev inequalities: If K > 0 and n ≥ 2, let µ = vol /vol [M ] be the

normalized volume measure on M ; then for any smooth function on M ,

‖f‖2
L2' (µ) ≤ ‖f‖2

L2(µ) +
4

Kn(n − 2)
‖∇f‖2

L2(µ), 28 =
2n

n − 2
,

and those constants are sharp for the model sphere.
5. Heat kernel bounds: There are many of them, in particular the celebrated Li–Yau

estimates: If K ≥ 0, then the heat kernel pt(x, y) satisfies

pt(x, y) ≤ C

vol [B√
t(x)]

exp
(
− d(x, y)2

2Ct

)
,
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for some constant C which only depends on n. For K < 0, a similar bound holds true,
only now C depends on K and there is an additional factor eCt. There are also pointwise
estimates on the derivatives of log pt, in relation with Harnack inequalities.

The list could go on. More recently, Ricci curvature has been at the heart of Perel-
man’s solution (so it seems) of the celebrated Poincaré conjecture, and more generally the
topological classification of three-dimensional manifolds. Indeed, Perelman’s argument is
based on Hamilton’s idea to use Ricci curvature in order to define a “heat flow” in the
space of metrics, via the partial differential equation

∂g

∂t
= −2Ric(g), (14.32)

where Ric(g) is the Ricci tensor associated with the metric g — which can be thought of
as something like −∆g. The flow defined by (14.32) is called the Ricci flow. Some time
ago, Hamilton had already used its properties to show that a compact simply connected
three-dimensional Riemannian manifold with positive Ricci curvature is automatically
diffeomorphic to the sphere S3.

Change of reference measure and effective dimension

For various reasons, one is often led to consider a reference measure ν that is not the
volume measure vol , but, say, ν(dx) = e−V (x) vol (dx), for some function V : M → R,
which in this chapter will always be assumed to be of class C2. The metric–measure space
(M,d, ν), where d stands for the geodesic distance, may be of interest in its own right, or
may appear as a limit of Riemannian manifolds, in a sense that will be studied in Part III
of these notes.

Of course, such a change of reference measure affects Jacobian determinants; so Ricci
curvature estimates will lose their geometric meaning unless one changes the definition
of Ricci tensor to take the new reference measure into account. This might perturb the
dependence of all the estimates on the dimension, so it might also be a good idea to
introduce an “effective dimension” N , which will always be larger than the true dimension
n.

The most well-known example may be the Gaussian measure in Rn, which I shall
denote by γ(n) (do not confuse it with a geodesic!). It is a matter of experience that most
theorems which we encounter about the Gaussian measure can be written just the same in
dimension 1 or in dimension n, or even in infinite dimension, when properly interpreted. In
fact, the effective dimension of (Rn, γ(n)) is infinite, in a certain sense, whatever n. I admit
that this perspective might look strange, and might be the result of lack of imagination;
but in any case, it will fit very well into the picture (in terms of sharp constants for
geometric inequalities, etc.)

So let again
Tt(x) = γ(t, x) = expx

(
t∇ψ(x)

)
;

now the Jacobian determinant is

J (t, x) = lim
r↓0

ν
[
Tt(Br(x))

]

ν[Br(x)]
=

e−V (Tt(x))

e−V (x)
J0(t, x).

where J0 is the Jacobian corresponding to V ≡ 0 (that is, to ν = vol ).
Then (with dots still standing again for derivation with respect to t),
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(logJ )·(t, x) = (logJ0)·(t, x) − γ̇(t, x) ·∇V (γ(t, x)),

(logJ )··(t, x) = (logJ0)··(t, x) −
〈
∇2V (γ(t, x)) · γ̇(t, x), γ̇(t, x)

〉
.

For later purpose it will be useful to keep track of all error terms in the inequalities.
So rewrite (14.12) as

(tr U)· +
(tr U)2

n
+ Ric(γ̇) = −

∥∥∥∥U −
(

tr U

n

)
In

∥∥∥∥
2

HS

. (14.33)

Then the left-hand side in (14.33) becomes

(logJ0)·· +
[(logJ0)·]2

n
+ Ric(γ̇)

= (logJ )·· + 〈∇2V (γ) · γ̇, γ̇〉 +
[(logJ )· + γ̇ ·∇V (γ)]2

n
+ Ric(γ̇).

By using the identity

a2

n
=

(a + b)2

N
− b2

N − n
+

n

N(N − n)

(
b − a

N − n

n

)2

, (14.34)

we see that
[
(logJ )· + γ̇ ·∇V (γ)

]2

n

=
[
(logJ )·

]2

N
− (γ̇ ·∇V (γ))2

N − n
+

n

N(N − n)

[(
N − n

n

)
(logJ )· +

N

n
γ̇ ·∇V (γ)

]2

=
(
logJ )·

]2

N
− (γ̇ ·∇V (γ))2

N − n
+

n

N(N − n)

[
N − n

n
(logJ0)· + γ̇ ·∇V (γ)

]2

=
[
(logJ )·

]2

N
− (γ̇ ·∇V (γ))2

N − n
+

n

N(N − n)

[
N − n

n
tr U + γ̇ ·∇V (γ)

]2

To summarize these computations it will be useful to introduce some more notation:
first, as usual, the negative logarithm of the Jacobian determinant:

5(t, x) := − logJ (t, x); (14.35)

and then, the modified Ricci tensor:

RicN,ν := Ric + ∇2V − ∇V ⊗∇V

N − n
, (14.36)

where the tensor product ∇V ⊗∇V is a quadratic form on TM , defined by its action on
tangent vectors as (

∇V ⊗∇V
)
x
(v) = (∇V (x) · v)2;

so

RicN,ν(γ̇) = (Ric + ∇2V )(γ̇) − (∇V · γ̇)2

N − n
.

Note that Ric∞,ν = Ric + ∇2V , while Ricn,vol = Ric.
The conclusion of the preceding computations is that
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5̈ =
5̇2

N
+ RicN,ν(γ̇) +

∥∥∥∥U −
(

tr U

n

)
In

∥∥∥∥
2

HS

+
n

N(N − n)

[(
N − n

n

)
tr U + γ̇ ·∇V (γ)

]2

(14.37)

When N = ∞ this takes a simpler form:

5̈ = Ric∞,ν(γ̇) +
∥∥∥∥U −

(
tr U

n

)
In

∥∥∥∥
2

HS

(14.38)

When N < ∞ one can introduce

D(t) := J (t)
1
N ,

and then formula (14.37) becomes

− N
D̈
D

= RicN,ν(γ̇) +
∥∥∥∥U −

(
tr U

n

)
In

∥∥∥∥
2

HS

+
n

N(N − n)

[(
N − n

n

)
tr U + γ̇ ·∇V (γ)

]2

(14.39)

Of course, it is a trivial corollary of (14.37) and (14.39) that





5̈ ≥ 5̇2

N
+ RicN,ν(γ̇)

−N
D̈
D

≥ RicN,ν(γ̇).

(14.40)

Finally, if one wishes, one can also take out the direction of motion (skip at first reading
and go directly to the next section). Define, with self-explicit notation,

J⊥(t, x) = J0,⊥(t, x)
e−V (Tt(x))

e−V (x)
,

and 5⊥ = − logJ⊥, D⊥ = J
1
N
⊥ . Now, in place of (14.33), use

(tr U⊥)· +
(tr U⊥)2

n − 1
+ Ric(γ̇) = −

∥∥∥∥U⊥ −
(

tr U⊥
n − 1

)
In−1

∥∥∥∥
2

HS

−
n∑

j=2

u2
1j (14.41)

as a starting point. Then computations quite similar to the ones above lead to

5̈⊥ =
(5̇⊥)2

N − 1
+ RicN,ν(γ̇)

+
∥∥∥∥U⊥ −

(
tr U⊥
n − 1

)
In−1

∥∥∥∥
2

HS

+
n − 1

(N − 1)(N − n)

[(
N − n

n − 1

)
tr U + γ̇ ·∇V (γ)

]2

+
n∑

j=2

u2
1j .

(14.42)

In the case N = ∞, this reduces to

5̈⊥ = Ric∞,ν(γ̇) +
∥∥∥∥U⊥ −

(
tr U⊥
n − 1

)
In−1

∥∥∥∥
2

HS

+
n∑

j=2

u2
1j ; (14.43)
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and in the case N < ∞, to

− N
D̈⊥
D⊥

= RicN,ν(γ̇)

+
∥∥∥∥U⊥ −

(
tr U⊥
n − 1

)
In−1

∥∥∥∥
2

HS

+
n − 1

(N − 1)(N − n)

[(
N − n

n − 1

)
tr U + γ̇ ·∇V (γ)

]2

+
n∑

j=2

u2
1j ;

(14.44)

and as corollaries, 




5̈⊥ ≥ (5̇⊥)2

N − 1
+ RicN,ν(γ̇)

−N
D̈⊥
D⊥

≥ RicN,ν(γ̇).

(14.45)

Generalized Bochner formula and Γ2 formalism

Of course there is an Eulerian translation of all that. This Eulerian formula can be derived
either from the Lagrangian calculation, or from the Bochner formula, by a calculation
parallel to the above one; the latter approach is conceptually simpler, while the former is
faster. In any case the result is best expressed in terms of the differential operator

L = ∆−∇V ·∇, (14.46)

and can be written

L
|∇ψ|2

2
−∇ψ ·∇Lψ =

(Lψ)2

N
+ RicN,ν(∇ψ)

+

(∥∥∥∥∇
2ψ −

(
∆ψ

n

)
In

∥∥∥∥
2

HS

+
n

N(N − n)

[(
N − n

n

)
∆ψ + ∇V ·∇ψ

]2
)

. (14.47)

It is convenient to reformulate this formula in terms of the Γ2 formalism. Given a
general linear operator L, one defines the associated Γ operator (or carré du champ) by
the formula

Γ (f, g) =
1
2
[
L(fg) − fLg − gLf

]
.

Note that Γ is a bilinear operator, which in some sense encodes the deviation of L from
being a derivation operator. In our case, for (14.46),

Γ (f, g) = ∇f ·∇g.

Next introduce the Γ2 operator (or carré du champ itéré) by

Γ2(f, g) =
1
2
[
LΓ (fg) − Γ (f, Lg) − Γ (g, Lf)

]
.

In the case of (14.46), the important formula for later purpose is

Γ2(ψ) := Γ2(ψ,ψ) = L
|∇ψ|2

2
−∇ψ ·∇(Lψ). (14.48)

Then our previous computations can be rewritten as
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Γ2(ψ) =
(Lψ)2

N
+ RicN,ν(∇ψ)

+

(∥∥∥∥∇
2ψ −

(
∆ψ

n

)
In

∥∥∥∥
2

HS

+
n

N(N − n)

[(
N − n

n

)
∆ψ + ∇V ·∇ψ

]2
)

. (14.49)

Of course, a trivial corollary is

Γ2(ψ) ≥ (Lψ)2

N
+ RicN,ν(∇ψ). (14.50)

And as the reader has certainly guessed, now one can take out the direction of motion
(this computation is provided for completeness but will not be used): As before, define

∇̂ψ =
∇ψ

|∇ψ| ,

then if f is a smooth function, let ∇2
⊥f be ∇2f restricted to the space orthogonal to ∇ψ,

and ∆⊥f = tr (∇2
⊥f), i.e.

∆⊥f = ∆f −
〈
∇2f · ∇̂ψ, ∇̂ψ

〉
,

and next,
L⊥f = ∆⊥f −∇V ·∇f,

Γ2,⊥(ψ) = L⊥
|∇ψ|2

2
−∇ψ ·∇(L⊥ψ) − 2

∣∣(∇2ψ) · ∇̂ψ
∣∣2 − 2|(∇2ψ) · ∇̂ψ|2.

Then

Γ2,⊥(ψ) =
(L⊥ψ)2

N − 1
+ RicN,ν(∇ψ)

+
∥∥∥∥∇

2
⊥ψ −

(
∆⊥ψ

n − 1

)
In−1

∥∥∥∥
2

+
n − 1

(N − 1)(N − n)

[(
N − n

n − 1

)
∆⊥ψ + ∇V ·∇ψ

]2

+
n∑

j=2

(∂1jψ)2.

Curvature-Dimension bounds

It is convenient to declare that a Riemannian manifold M , equipped with its volume
measure, satisfies the curvature-dimension estimate CD(K,N) if its Ricci curvature is
bounded below by K and its dimension is bounded above by N : Ric ≥ K, n ≤ N . (As
usual, Ric ≥ K is a shorthand for “∀x, Ricx ≥ Kgx.”) The number K might be positive
or negative. If the reference measure is not the volume, but ν = e−V vol , then the correct
definition is RicN,ν ≥ K.

Most of the previous discussion is summarized by Theorem 17.15 below, which is all
the reader needs to know about Ricci curvature to understand the rest of the proofs in
these notes. For convenience I shall briefly recall the notation:

- measures: vol is the volume on M , ν = e−V vol is the reference measure;
- tensors: Ric is the Ricci curvature bilinear form, ∇2 is the Hessian operator, RicN,ν

is the modified Ricci tensor defined by RicN,ν = Ric +∇2V − (∇V ⊗∇V )/(N −n), where
the Hessian operator ∇2V (x) is identified with its associated bilinear form;

- operators: ∆ is the Laplace(–Beltrami) operator on M , L is the modified Laplace
operator defined by L = ∆−∇V ·∇, and Γ2(ψ) = L(|∇ψ|2/2) −∇ψ ·∇(Lψ);
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- functions: ψ is an arbitrary function; in formulas involving the Γ2 formalism it will be
assumed to be of class C3, while in formulas involving Jacobian determinants it will only
be assumed to be semi-convex;

- geodesic paths: If ψ is a given function on M , γ(t, x) = Tt(x) = expx

(
(t − t0)∇ψ(x)

)

is the geodesic starting from x with velocity γ̇(t0, x) = ∇ψ(x), evaluated at time t ∈ [0, 1];
it is assumed that J (t, x) does not vanish for t ∈ (0, 1); the starting time t0 may be the
origin t0 = 0, but may also be any time in [0, 1];

- Jacobian determinants: J (t, x) is the Jacobian determinant of Tt(x) (with respect
to the reference measure ν, not with respect to the standard volume), 5 = − logJ , and
D = J 1/N is the mean distortion associated with (Tt);

- the dot means differentiation with respect to time;
- finally, the subscript ⊥ in J⊥, D⊥, Γ2,⊥ means that the direction of motion γ̇ = ∇ψ

has been taken out (see above for precise definitions).

Theorem 14.8. Let M be a smooth Riemannian manifold of dimension n, and let K ∈ R,
N ∈ [n,∞]. Then, the conditions below are all equivalent if they are required to hold true
for arbitrary data; if they are fulfilled then M is said to satisfy a CD(K,N) curvature-
dimension bound:

(i) RicN,ν ≥ K;

(ii) Γ2(ψ) ≥ (Lψ)2

N
+ K|∇ψ|2;

(iii) 5̈ ≥ (5̇)2

N
+ K|γ̇|2.

If N < ∞, then this is also equivalent to

(iv) D̈ +
(

K|γ̇|2

N

)
D ≤ 0.

Moreover, these inequalities are also equivalent to

(ii’) Γ2,⊥(ψ) ≥ (L⊥ψ)2

N − 1
+ K|∇ψ|2;

(iii’) 5̈⊥ ≥ (5̇⊥)2

N − 1
+ K|γ̇|2;

and, in the case N < ∞,

(iv’) D̈⊥ +
(

K|γ̇|2

N − 1

)
D⊥ ≤ 0.

Remark 14.9. Note carefully that the inequalities (i)-(iv’) are required to be true always:
For instance (ii) should be true for all ψ, all x and all t ∈ (0, 1). The equivalence is that
[(i) true for all x] is equivalent to [(ii) true for all ψ, all x and all t], etc.

Examples 14.10 (One-dimensional CD(K,N) model spaces). (a) Let K > 0 and
1 < N < ∞, consider

M =

(

−
√

N − 1
K

π

2
,

√
N − 1

K

π

2

)

⊂ R,

equipped with the usual distance on R, and the reference measure

ν(dx) = cosN−1

(√
K

N − 1
x

)
dx;
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then M satisfies CD(K,N), although the Hausdorff dimension of M is of course 1. Note
that M is not complete, but this is not a problem since CD(K,N) is a local property. (We
can also replace M by its closure, but then it is a manifold with boundary.)

(b) For K < 0, 1 ≤ N < ∞, the same conclusion holds true if one considers M = R
and

ν(dx) = coshN−1

(√
|K|

N − 1
x

)
dx.

(c) For any N ∈ [1,∞), an example of one-dimensional space satisfying CD(0, N) is
provided by M = (0,+∞), equipped with the reference measure xN−1 dx;

(d) For any K ∈ R, take M = R and equip it with the reference measure

ν(dx) = e−
Kx2

2 dx;

then M satisfies CD(K,∞).

Sketch of proof of Theorem 14.8. It is clear from our discussion in this chapter that (i)
implies (ii) and (iii); and (iii) is equivalent to (iv) by elementary manipulations about
derivatives. (Moreover, (ii) and (iii) are equivalent modulo smoothness issues, by Eule-
rian/Lagrangian duality.)

It is less clear why, say, (ii) would imply (i). This comes from formulas (14.37)
and (14.49). Indeed, assume (ii) and choose an arbitrary x0 ∈ M , and v0 ∈ Tx0M . Con-
struct a C3 function ψ such that

∇ψ(x0) = v0, ∇2ψ(x0) = λ0 In, ∆ψ(x0)(= nλ0) = − n

N − n

(
∇V (x0) · v0

)
.

(This is fairly easy by using local coordinates, or distance and exponential functions.) Then
all the remainder terms in (14.49) will vanish at x0, so that

K|v0|2 = K|∇ψ(x0)|2 ≤
(
Γ2(ψ) − (Lψ)2

N

)
(x0) = RicN,ν

(
∇ψ(x0)

)
= RicN,ν(v0).

So indeed RicN,ν ≥ K.
The proof goes in the same way for the equivalence between (i) and (ii’), (iii’), (iv’):

again the problem is to understand why (ii’) implies (i), and the reasoning is almost the
same as before; the key point being that the extra error terms in ∂1jψ, j 3= 2, all vanish
at x0. 78

Many interesting inequalities can be derived from CD(K,N). It was successfully advo-
cated by Bakry and other authors during the past two decades that CD(K,N) should be
considered as a property of the generalized Laplace operator L. On the contrary, it will
be advocated in this course that CD(K,N) is a property of the solution of the optimal
transport problem, when the cost function is the square of the geodesic distance. Of course,
both points of view have their advantages and their drawbacks.

From differential to integral curvature-Dimension bounds

There are two ways to characterize the concavity of a function f(t) on a time-interval,
say [0, 1]: the differential inequality f̈ ≤ 0, or the integral bound f

(
(1 − λ) t0 + λ t1

)
≥
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(1−λ)f(t0)+λf(t1). If the latter is required to hold true for all t0, t1 ∈ [0, 1] and λ ∈ [0, 1],
then the two formulations are equivalent.

There are two classical generalizations. The first one states that the differential inequal-
ity f̈ + K ≤ 0 is equivalent to the integral inequality

f
(
(1 − λ) t0 + λ t1

)
≥ (1 − λ) f(t0) + λ f(t1) +

K t(1 − t)
2

(t0 − t1)2.

Another one is as follows: The differential inequality

f̈(t) + Λf(t) ≤ 0 (14.51)

is equivalent to the integral bound

f
(
(1 − λ) t0 + λ t1

)
≥ τ (1−λ)(|t0 − t1|) f(t0) + τ (λ)(|t0 − t1|) f(t1), (14.52)

where

τ (λ)(θ) =






sin(λθ
√
Λ)

sin(θ
√
Λ)

if Λ > 0

λ if Λ = 0

sinh(λθ
√
−Λ)

sinh(θ
√
−Λ)

if Λ < 0.

A more precise statement and a proof are provided in a second appendix.
This leads to the following integral characterization of CD(K,N):

Theorem 14.11 (Integral curvature-dimension bounds). Let M be a smooth Rie-
mannian manifold, equipped with a reference measure ν = e−V vol , and let d be the geodesic
distance on M . Let K ∈ R and N ∈ [1,∞]. Then, with the same notation as in Theo-
rem 14.8, M satisfies CD(K,N), if and only if the following inequality is always true (for
any semi-convex ψ, and almost any x, as soon as J (t, x) does not vanish for t ∈ (0, 1)):

D(t, x) ≥ τ (1−t)
K,N D(0, x) + τ (t)

K,N D(1, x) (N < ∞) (14.53)

5(t, x) ≤ (1 − t) 5(0, x) + t 5(1, x) − K t(1 − t)
2

d(x, y)2 (N = ∞), (14.54)

where y = expx(∇ψ(x)) and, in case N < ∞,

τ (t)
K,N =






sin(tα)
sinα

if K > 0

t if K = 0

sinh(tα)
sinhα if K < 0

and

α =

√
|K|
N

d(x, y) (α ∈ [0,π] if K > 0).
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Proof of Theorem 14.11. If N < ∞, inequality (14.53) is obtained by transforming the
differential bound of (iii) in Theorem 14.8 into an integral bound, after noticing that |γ̇| is
a constant all along the geodesic γ, and equals d(γ0, γ1). Conversely, to go from (14.53) to
Theorem 14.8(iii), we select a geodesic γ, then reparametrize the geodesic (γt)t0≤t≤t1 into
a geodesic on [0, 1], apply (14.53) to the reparametrized path and discover that

D(t, x) ≥ τ (1−λ)
K,N D(t0, x) + τ (λ)

K,N D(t1, x) t = (1 − λ)t0 + λt1;

where now α =
√
|K|/N d(γ(t0), γ(t1)). It follows that D(t, x) satisfies (14.52) for any

choice of t0, t1; and this is equivalent to (14.51).
The reasoning is the same for the case N = ∞, starting from inequality (ii) in Theo-

rem 14.8. 78

The next result states that the the coefficients τ (t)
K,N obtained in Theorem 14.11 can be

automatically improved if N is finite and K 3= 0, by taking out the direction of motion:

Theorem 14.12 (Integral curvature-dimension bounds with direction of motion
taken out). Let M be a smooth Riemannian manifold, equipped with a reference measure
ν = e−V vol , and let d be the geodesic distance on M . Let K ∈ R and N ∈ [1,∞). Then,
with the same notation as in Theorem 14.8, M satisfies CD(K,N) if and only if the
following inequality is always true (for any semi-convex ψ, and almost any x, as soon as
J (t, x) does not vanish for t ∈ (0, 1)):

D(t, x) ≥ τ (1−t)
K,N D(0, x) + τ (t)

K,N D(1, x) (14.55)

where now

τ (t)
K,N =






t
1
N

(
sin(tα)
sinα

)1− 1
N

if K > 0

t if K = 0

t
1
N

(
sinh(tα)
sinhα

)1− 1
N

if K < 0

and

α =
√

|K|
N − 1

d(x, y) (α ∈ [0,π] if K > 0).

Remark 14.13. When N < ∞ and K > 0 Theorem 14.12 contains the Bonnet–Myers
theorem according to which d(x, y) ≤ π

√
(N − 1)/K . With Theorem 14.11 the bound was

only π
√

N/K .

Proof of Theorem 14.12. The proof that (14.55) implies CD(K,N) is done in the same way
as for (14.53). (In fact (14.55) is stronger than (14.53).)

As for the other implication: Start from (14.22), and transform it into an integral bound:

D⊥(t, x) ≥ σ(1−t)
K,N D⊥(0, x) + σ(t)

K,N D⊥(1, x),

where σ(t)
K,N = sin(tα)/ sinα if K > 0; t if K = 0; sinh(tα)/ sinhα if K < 0. Next

transform (14.19) into the integral bound
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D//(t, x) ≥ (1 − t)D//(0, x) + tD//(1, x).

Then both estimates can be combined thanks to Hölder’s identity:

D(t, x) = D⊥(t, x)1−
1
N D//(t, x)

1
N

≥
(
σ(1−t)

K,N D(0, x) + σ(t)
K,N D(1, x)

)1− 1
N
(
(1 − t)D//(0, x) + tD//(1, x)

) 1
N

≥ (σ(1−t)
K,N )1−

1
N (1 − t)

1
N D(0, x) + (σ(t)

K,N)
1
N t

1
N D//(1, x).

Then inequality (14.55) follows. 78

Estimate (14.55) is sharp in general. The following reformulation yields an appealing
interpretation of CD(K,N) in terms of comparison spaces. In the sequel, I will write Jac x

for the (unoriented) Jacobian determinant evaluated at point x, computed with respect to
a given reference measure.

Corollary 14.14 (curvature-dimension bounds by comparison). Let M be a Rie-
mannian manifold equipped with a reference measure ν = e−V vol , V ∈ C2(M). Define the
J -function of M on [0, 1] × R+ × R+ by the formula

JM,ν(t, δ, J) := inf
{
Jac x(exp(tξ)); |ξ(x)| = δ; Jac x(exp(ξ)) = J

}
, (14.56)

where the infimum is over all vector fields ξ defined around x, such that ∇ξ(x) is sym-
metric, and Jac x(exps ξ) 3= 0 for 0 ≤ s < 1. Then, for any K ∈ R, N ∈ [1,∞] (K ≤ 0 if
N = 1),

(M, ν) satisfies CD(K,N) ⇐⇒ JM,ν ≥ J (K,N),

where J (K,N) is the J -function of the model space considered in Examples 14.10.
If N is an integer, then J (K,N) is also the J -function of the N -dimensional model

space

S(K,N) =






SN
(√N − 1

K

)
if K > 0,

RN if K = 0,

HN
(√N − 1

−K

)
if K < 0,

equipped with its volume measure.

Corollary 14.14 follows from Theorem 14.12 by a direct computation of the J -function
of the model spaces. In the case of S(K,N), one can also make a direct computation, or note
that all the inequalities which we used to obtain (14.55) turn into equalities for suitable
choices of parameters.

Remark 14.15. There is a quite similar (and more well-known) formulation of lower sec-
tional curvature bounds which goes as follows. Define the L-function of a manifold M by
the formula

LM (t, δ, L) = inf
{
d
(
expx(tv), expx(tw)

)
; |v| = |w| = δ; d(expx v, expx w) = L

}
,
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where the infimum is over tangent vectors v,w ∈ TxM . Then M has sectional curvature
larger than κ if and only if LM ≥ L(κ), where L(κ) is the L-function of the reference space
S(κ), which is S2(1/

√
κ) if κ > 0, R2 if κ = 0, and H2(1/

√
−κ) if κ < 0. By changing

the infimum into a supremum, and by reversing the inequalities, one can also obtain a
characterization of upper sectional curvature bounds. The comparison with (14.14) conveys
the idea that sectional curvature bounds measure the rate of separation of geodesics in
terms of distances, while Ricci curvature bounds do it in terms of Jacobian determinants.

Distortion coefficients

Apart from Definition 14.19, the material in this section is not necessary to the understand-
ing of the rest of this course. Still, it is interesting because it will give a new interpretation
of Ricci curvature bounds, and motivate the introduction of distortion coefficients, which
will play a crucial role in the sequel.

Definition 14.16 (barycenters). If A and B are two measurable sets in a Riemannian
manifold, and t ∈ [0, 1], a t-barycenters of A and B is a point that can be written γt, where
γ is a (minimizing, constant-speed) geodesic with γ0 = x and γ1 ∈ Br(y). The set of all
t-barycenters between A and B is denoted by [A,B]t.

Definition 14.17 (Distortion coefficients). Let M be a Riemannian manifold, equipped
with a reference measure e−V vol , V ∈ C(M), and let x and y be any two points in M .
Then the distortion coefficient βt(x, y) between x and y at time t ∈ (0, 1) is defined as
follows:

- If x and y are joined by a unique geodesic γ, then

βt(x, y) = lim
r→0

ν
[
[x,Br(y)]t

]

ν[Btr(y)]
= lim

r→0

ν
[
[x,Br(y)]t

]

tn ν[Br(y)]
; (14.57)

- If x and y are joined by several minimizing geodesics, then

βt(x, y) = inf
γ

lim sup
s→1−

βt(x, γs), (14.58)

where the infimum is over all minimizing geodesics joining x to y.
Finally, the values of βt(x, y) for t = 0 and t = 1 are defined by

β1(x, y) ≡ 1; β0(x, y) := lim inf
t→0+

βt(x, y).

The heuristic meaning of distortion coefficients is as follows. Assume you are standing
at point x and observing some device located at y. You are trying to estimate the volume
of this device, but your appreciation is altered because light rays travel along curved lines
(geodesics). If x and y are joined by a unique geodesic, then the coefficient β0(x, y) tells
by how much you are overestimating; so it is less than 1 in negative curvature, and greater
than 1 in positive curvature. If x and y are joined by several geodesics, this is just the
same, except that you choose to look in the direction where the device looks smallest.

More generally, βt(x, y) compares the volume occupied by the light rays emanating from
the light source, when they arrive close to γ(t), to the volume that they would occupy in
a flat space.

Now let us express distortion coefficients in differential terms, and more precisely Jacobi
fields. A key concept in doing so will be the notion of focal points. The concept of focal-
ization was already discussed in Chapter 8: A point y is said to be focal to another point



14 Ricci curvature 245

the observer
location of

the light source looks like
how the observer thinks

the light source

by curvature effects
geodesics are distorted

Fig. 14.4. Because of positive curvature effects, the observer overestimates the surface of the light source;
in a negatively curved world this would be the contrary.

x
y

Fig. 14.5. The distortion coefficient is approximately equal to the ratio of the volume filled with lines,
to the volume whose contour is in dashed line. Here the space is negatively curved and the distortion
coefficient is less than 1.

x if there exists v ∈ TxM such that y = expv x and the differential dv expx : TxM → TyM
is not invertible. It is equivalent to say that there is a geodesic γ which visits both x and
y, and a Jacobi field J along γ such that J(x) = 0, J(y) = 0. This concept is obviously
symmetric in x and y, and then x, y are said to be conjugate points (along γ).

If x and y are joined by a unique geodesic γ and are not conjugate, then by the local
inversion theorem, for r small enough, there is a unique velocity ξ(z) at z ∈ Br(y) such
that expz ξ(z) = x. Then the distortion coefficients can be interpreted as the Jacobian
determinant of exp ξ at time t, renormalized by (1 − t)n, that would be the value in
Euclidean space. The difference with the computations in the beginning of this chapter is
that now the Jacobi field is not defined by its initial value and initial derivative, but rather
by its initial value and its final value: expz ξ(z) = x independently of z, so the Jacobi field
vanishes after a time 1. It will be convenient to reverse time so that t = 0 corresponds to
x and t = 1 to y; so the conditions are J(0) = 0, J(1) = In. After that it is easy to derive
the following

Proposition 14.18 (Computation of distortion coefficients). Let M be a Rieman-
nian manifold, let x and y be two points in M . Then

βt(x, y) = inf
γ

β
[γ]
t (x, y),

where the infimum is over all minimizing geodesics γ joining γ(0) = x to γ(1) = y, and
β

[γ]
t (x, y) is defined as follows:
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- If x, y are not conjugate along γ, let E be an orthonormal basis of TyM and define

β
[γ]
t (x, y) =






detJ0,1(t)
tn

if 0 < t ≤ 1;

lim
s→0

detJ0,1(s)
sn

if t = 0,

(14.59)

where J0,1 is the unique matrix of Jacobi fields along γ satisfying

J0,1(0) = 0; J0,1(1) = E;

- If x, y are conjugate along γ, define

β
[γ]
t (x, y) =

{
1 if t = 1;
+∞ if 0 ≤ t < 1

.

Distortion coefficients can be explicitly computed for the model CD(K,N) spaces.
These particular coefficients will play a key role in the sequel:

Definition 14.19 (Reference distortion coefficients). Given K ∈ R, N ∈ [1,∞] and
t ∈ [0, 1], and two points x, y in some metric space (X , d), define β(K,N)

t (x, y) as follows:
- If 0 < t ≤ 1 and 1 < N < ∞ then

β(K,N)
t (x, y) =






+∞ if K > 0 and α > π,
(

sin(tα)
t sinα

)N−1
if K > 0 and α ∈ [0,π],

1 if K = 0,
(

sinh(tα)
t sinhα

)N−1
if K < 0,

(14.60)

where

α =
√

|K|
N − 1

d(x, y). (14.61)

- In the two limit cases N → 1 and N → ∞, modify the above expressions as follows:

β(K,1)
t (x, y) =

{
+∞ if K > 0,

1 if K ≤ 0,
(14.62)

β(K,∞)
t (x, y) = e

K
6 (1−t2) d(x,y)2 . (14.63)

- For t = 0 define β(K,N)
0 (x, y) = 1.

If X is the model space for CD(K,N), as in Examples 14.10, then β(K,N) is just the
distortion coefficient on X .

If K is positive then for fixed t, β(K,N)
t is an increasing function of α (going to +∞ at

α = π); for fixed α, it is a decreasing function of t on [0, 1]. All this is reversed for negative
K. On the whole, β(K,N)

t is nondecreasing in K and nonincreasing in N .

The next two theorems relate distortion coefficients with the previous discussion about
Ricci curvature lower bounds; they show that (a) distortion coefficients can be interpreted
as the “best possible” coefficients in concavity estimates for the Jacobian determinant; (b)
the curvature-dimension bound CD(K,N) is a particular case of a family of more general
estimates characterized by a lower bound on the distortion coefficients.
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π

K > 0 K = 0 K < 0

Fig. 14.6. The shape of the curves β(K,N)
t (x, y), as a function of α = (

p
|K|/(N − 1)) d(x, y).

Theorem 14.20 (Distortion coefficients and concavity of the Jacobian determi-
nant). Let M be a Riemannian manifold, and let x, y be any two points in M . Then if
(βt(x, y))0≤t≤1 and (βt(y, x))0≤t≤1 are two families of nonnegative coefficients, the follow-
ing two statements are equivalent:

(a) ∀t ∈ [0, 1], 0 ≤ βt(x, y) ≤ βt(x, y); βt(y, x) ≤ βt(y, x);
(b) For any N ≥ n, for any minimizing geodesic γ joining x to y, for any t0 ∈ [0, 1],

and for any initial vector field ξ around x0 = γ(t0), ∇ξ(x0) symmetric, let J (s) stand for
the Jacobian determinant of exp((s − t0)ξ) at x0; if J (s) does not vanish for 0 < s < 1,
then for all t ∈ [0, 1],





J (t)
1
N ≥ (1 − t)β1−t(y, x)

1
N J (0)

1
N + tβt(x, y)

1
N J (1)

1
N (N < ∞)

logJ (0, x) ≥ (1 − t) logJ (0) + t logJ (1)
+
[
(1 − t) log β1−t(y, x) + t log βt(x, y)

]
(N = ∞);

(14.64)

(c) Property (b) holds true for N = n.

Theorem 14.21 (Ricci curvature bounds in terms of distortion coefficients).
Let M be a Riemannian manifold with dimension n, equipped with its volume measure.
Then the following two statements are equivalent:

(a) Ric ≥ K;
(b) β ≥ β(K,n).

Sketch of proof of Theorem 14.20. To prove the implication (a)⇒(b), it suffices to estab-
lish (14.64) for β = β. The case N = ∞ follows from the case N < ∞ by passing to the
limit, since limN→0[N(a1/N − 1)] = log a. So all we have to show is that if n ≤ N < ∞,
then

J (t)
1
N ≥ (1 − t)β1−t(y, x)

1
N J (0)

1
N + tβt(x, y)

1
N J (1)

1
N .

The case when x, y are conjugate can be treated by a limiting argument. (In fact the
conclusion is that both J (0) and J (1) have to vanish if x and y are conjugate.) So we
may assume that x and y are not conjugate, and then introduce a moving orthonormal
basis E(t), along γ, and define the Jacobi matrices J1,0(t) and J0,1(t) by the requirement

J1,0(0) = In, J1,0(1) = 0; J0,1(0) = 0, J0,1(1) = In.

(Here J1,0 and J0,1 are identified with their expressions J1,0 and J0,1 in the moving basis
E.)
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As noted after (14.7), the Jacobi equation is invariant under the change t → 1 − t,
E → −E, so J1,0 becomes J0,1 when one exchanges the roles of x and y, and replaces t by
1 − t. In particular, we have the formula

det J0,1(t)
(1 − t)n

= β1−t(y, x). (14.65)

As in the beginning of this chapter, the issue is to compute the determinant at time t
of a Jacobi field J(t). Since the Jacobi fields are solutions of a linear differential equation
of the form J̈ + RJ = 0, they form a vector space of dimension 2n, and they are invariant
under right-multiplication by a constant matrix. It follows that

J(t) = J1,0(t)J(0) + J0,1(t)J(1). (14.66)

The determinant in dimension n satisfies the following inequality: If X and Y are two
n × n nonnegative symmetric matrices, then

det(X + Y )
1
n ≥ (det X)

1
n + (det Y )

1
n . (14.67)

By combining this with the Hölder inequality, in the form

(a
1
n + b

1
n )

n
N ≥ (1 − t)

N−n
n a

1
N + t

N−n
N b

1
N ,

we obtain the following generalization of (14.67):

det(X + Y )
1
N ≥ (1 − t)

N−n
N (det X)

1
N + t

N−n
N (det Y )

1
N . (14.68)

Then from (14.68) and (14.66) it results that

(det J(t))
1
N ≥ (1 − t)

N−n
N (det J1,0(t))

1
N (detJ(0))

1
N + t

N−n
N (detJ0,1(t))

1
N (det J(1))

1
N

= (1 − t)
[detJ1,0(t)

(1 − t)n
] 1

N J (0)
1
N + t

[detJ0,1(t)
tn

] 1
N J (1)

1
N

= (1 − t)β1−t(y, x)
1
N J (0)

1
N + tβt(x, y)

1
N J (1)

1
N ,

where (14.59) and (14.65) were used in the final step.
Next, it is obvious that (b) implies (c). To conclude the proof, it suffices to show that (c)

⇒ (a). By symmetry and definition of βt, it is sufficient to show that βt(x, y) ≤ β
[γ]
t (x, y) for

any geodesic γ. If x and y are conjugate along γ then there is nothing to prove. Otherwise,
we can introduce ξ(z) in the ball Br(y) such that for any z ∈ Br(y), expz ξ(z) = x, and
expz(tξ(z)) is the only geodesic joining z to x. Let then µ0 be the uniform probability
distribution on Br(y), and µ1 be the Dirac mass at x; then exp ξ is the unique map T such
that T#µ0 = µ1, so it is the optimal transport map, and therefore it can be written as
exp(∇ψ) for some d2/2-convex ψ; in particular, ξ = ∇ψ. (Here I have chosen t0 = 1, say.)
So we can apply (b) with N = n, D(1) = 0, D(0) = 1, D(t, x) = detJ0,1(t), and obtain

detJ0,1(t) ≥ tβt(x, y)
1
n .

It follows that βt(x, y) ≤ (detJ0,1(t))/tn = β
[γ]
t (x, y), as desired. 78

Sketch of proof of Theorem 14.21. To prove (a) ⇒ (b), we apply inequality (14.55) with
n = N , to conclude that Property (c) in Theorem 14.20 is satisfied with β = β(K,n);
it follows that β ≥ β(K,n). Conversely, if β ≥ β(K,n), then Theorem 14.20 implies that
inequality (14.55) is satisfied, which implies CD(K,n), or equivalently Ric ≥ K. 78
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Theorems 14.20 and 14.21 suggest a generalization of the CD(K,N) criterion: Given
an effective dimension N , define the generalized distortion coefficients βN,ν as the best
coefficients in (14.64) (the first inequality if N < ∞, the second one if N = ∞). Then the
CD(K,N) inequality RicN,ν ≥ K is equivalent to the inequality βN,ν ≥ β(K,N). In this
way we can see the condition CD(K,N) as a particular case of a more general condition
CD(β, N), that would be defined by the inequality βN,ν ≥ β, where β would be, say, a
given function of the distance between x and y. In the sequel of these notes, many results
which hold true for CD(K,N) bounds would also hold true for this generalized curvature
condition CD(β, N). The reasons why I shall not develop that more general theory are that
(i) it is not clear at present that it really adds to the CD(K,N) theory; (ii) the condition
CD(β, N) is in general nonlocal.

Remark 14.22. It is not a priori clear what kind of functions β can occur as distortion
coefficients. It is striking to note that, in view of Theorems 14.12 and 14.11, for any given
manifold M of dimension n the following two conditions are equivalent, say for K > 0:

(i) ∀x, y ∈ M, ∀t ∈ [0, 1], βt(x, y) ≥




sin
(
t
√

K
n d(x, y)

)

t sin
(√

K
n d(x, y)

)





n

;

(ii) ∀x, y ∈ M, ∀t ∈ [0, 1], βt(x, y) ≥




sin
(
t
√

K
n−1 d(x, y)

)

t sin
(√

K
n−1 d(x, y)

)





n−1

.

This self-improvement property implies restrictions on the possible behavior of β.

First Appendix: Second differentiability of convex functions

In this Appendix I shall provide a proof of Theorem 14.1. As explained right after the
statement of that theorem, it suffices to consider the particular case of a convex function
Rn → R. So here is the statement to be proven:

Theorem 14.23 (Alexandrov’s second differentiability theorem). Let ϕ : Rn → R
be a convex function. Then, for Lebesgue–almost every x ∈ Rn, ϕ is differentiable at x and
there exists a symmetric operator A : Rn → Rn, characterized by any one of the following
equivalent properties:

(i) ∇ϕ(x + v) = ∇ϕ(x) + Av + o(|v|) as v → 0 (where v is such that ϕ is differentiable
at x + v);

(i’) ∂ϕ(x+ v) = ∇ϕ(x)+Av + o(|v|) as v → 0 (here o(|v|) means a set whose elements
are all bounded in norm like o(|v|);

(ii) ϕ(x + v) = ϕ(x) + ∇ϕ(x) · v +
〈Av, v〉

2
+ o(|v|2) as v → 0;

(ii’) ∀v ∈ Rn, ϕ(x + tv) = ϕ(x) + t∇ϕ(x) · v + t2
〈Av, v〉

2
+ o(t2) as t → 0.

The operator A is denoted by ∇2ϕ(x) and called the Hessian of ϕ at x. When no
confusion is possible, the quadratic form defined by A is also called the Hessian of ϕ at x.
Moreover, the function x → ∇2ψ(x) (resp. x → ∆ψ(x) = tr (∇2ψ(x)) is the density of the
absolutely continuous part of the distribution ∇2

D′ψ (resp. of the distribution ∆ψ).

Before starting the proof, let me recall an elementary lemma about convex functions.
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Lemma 14.24. (i) Let ϕ : Rn → R be a convex function, let x0, x1, . . . , xn+1 ∈ Rn such
that B(x0, 2r) is included in the convex hull of x1, . . . , xn+1. Then,

2ϕ(x0) − max
1≤i≤n+1

ϕ(xi) ≤ inf
B(x0,2r)

ϕ ≤ sup
B(x0,2r)

ϕ ≤ max
1≤i≤n+1

ϕ(xi);

|ϕ‖Lip(B(x0,r)) ≤
2
(

max
1≤i≤n+1

ϕ(xi) − ϕ(x0)
)

r
.

(ii) If (ϕk)k∈N is a sequence of convex functions which converges pointwise to some
function Φ, then the convergence is locally uniform.

Proof of Lemma 14.24. If x ∈ B(x0, 2r) then of course ϕ(x) ≤ max(ϕ(x1), . . . ,ϕ(xn+1)).
Next, if z ∈ B(x0, 2r), then z̃ := 2x0−z ∈ B(x0, 2r) and ϕ(z) ≥ 2ϕ(x0)−ϕ(z̃) ≥ 2ϕ(x0)−
maxϕ(xi). Next, let x ∈ B(x0, r) and let y ∈ ∂ϕ(x); let z = x + ry/|y| ∈ B(x0, r). Then
from the subdifferential inequality, r|y| = 〈y, z − x〉 ≤ ϕ(z)−ϕ(x) ≤ 2(maxϕ(xi)−ϕ(x0).
This proves (i).

Let now (ϕk)k∈N be a sequence of convex functions, let x0 ∈ Rn and let r > 0. Let
x1, . . . , xn+1 be such that B(x0, 2r) is included in the convex hull of x1, . . . , xn+1. If ϕk(xj)
converges for all j, then by (i) there is a uniform bound on ‖ϕk‖Lip on B(x0, r). So if ϕk

converges pointwise on B(x0, r), the convergence has to be uniform. This proves (ii). 78

Now we start the proof of Theorem 14.23. To begin with, we should check that the
formulations (i), (i’), (ii) and (ii’) are equivalent.

Proof of the equivalence in Theorem 14.23. It is obvious that (i’) ⇒ (i) and (ii) ⇒ (ii’), so
we just have to show that (i) ⇒ (ii) and (ii’) ⇒ (i’).

To prove (i) ⇒ (ii), the idea is to use the mean value theorem; since a priori ϕ is not
smooth, we shall regularize it. Let ζ be a radially symmetric nonnegative smooth function
Rn → R, with compact support in B1(0); and for any ε > 0 let ζε(x) = ε−nζ(x/ε); let then
ϕε := ϕ ∗ ζε. The resulting function ϕε is smooth and converges pointwise to ϕ as ε → 0;
moreover, since ϕ is locally Lipschitz we have (by dominated convergence) ∇ϕε = (∇ϕ)∗ζε.

Then we can write

ϕ(x + v) − ϕ(x) = lim
ε→0

[ϕε(x + v) − ϕε(x)]

= lim
ε→0

∫ 1

0
∇ϕε(x + tv) · v dt. (14.69)

Let us assume that ε ≤ |v|; then, by (i), for all z ∈ B2ε(x),

∇ϕ(z) = ∇ϕ(x) + A(z − x) + o(|v|).

If y ∈ Bε(x), then we can integrate this identity against ζε(y − z) dz (since ζε(y − z) = 0
for |y − z| > ε); taking into account

∫
(z − x) ζε(z − x) dz = 0, we obtain

∇ϕε(y) = ∇ϕε(x) + A(y − x) + o(|v|).

In particular, ∇ϕε(x + tv) = ∇ϕε(x) + tAv + o(|v|). By plugging this in the right-hand
side of (14.69), we obtain Property (ii).

Now let us prove that (ii’) ⇒ (i’). Without loss of generality we may assume that x = 0
and ∇ϕ(x) = 0. So the assumption is ϕ(tw) = t2 〈Aw,w〉/2 + o(t2), for any w. If (i’) is
false, then there are sequences xk → 0, |xk| 3= 0, and yk ∈ ∂ϕ(xk) such that
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yk − Axk

|xk|
3−−−→
k→∞

0. (14.70)

Extract an arbitrary sequence from (xk, yk) (still denoted (xk, yk) for simplicity) and
define

ϕk(w) :=
1

|xk|2
ϕ(|xk|w).

Assumption (ii) implies that ϕk converges pointwise to Φ defined by

Φ(w) =
〈Aw,w〉

2
.

The ϕk are convex, so the convergence is actually locally uniform by Lemma 14.24
Since yk ∈ ∂ϕ(xk),

∀z ∈ Rn, ϕ(z) ≥ ϕ(xk) + 〈yk, z − xk〉,

or equivalently, with the notation wk = xk/|xk|,

∀w ∈ Rn, ϕk(w) ≥ ϕk(wk) +
〈 yk

|xk|
, w − wk

〉
. (14.71)

The choice w = wk + yk/|yk| shows that |yk|/|xk| ≤ ϕk(w) − ϕk(wk), so |yk|/|xk| is
bounded. Up to extraction of a subsequence, we may assume that wk = xk/|xk| → σ and
yk/|xk| → y. Then we can pass to the limit in (14.71) and recover

∀w ∈ Rn, Φ(w) ≥ Φ(σ) +
〈
y,w − σ〉.

It follows that y ∈ ∂Φ(σ) = {Aσ}. So yk/|xk| → Aσ, or equivalently (yk − Axk)/|xk| → 0.
What we have shows is that each subsequence of our original sequence (yk − Axk)/|xk|
has a subsequence which converges to 0; it follows that the whole sequence converges to 0.
This is in contradiction with (14.70), so (i’) has to be true. 78

Now, before proving Theorem 14.23 in full generality, we shall consider two particular
cases which are much simpler.

Proof of Theorem 14.23 in dimension 1. Let ϕ : R → R be a convex function. Then its
derivative ϕ′ is nondecreasing, and therefore differentiable almost everywhere. 78

Proof of Theorem 14.23 when ∇ϕ is locally Lipschitz. Let ϕ : Rn → R be a convex func-
tion, continuously differentiable with ∇ϕ locally Lipschitz. Then, by Rademacher’s theo-
rem, each function ∂iϕ is differentiable almost everywhere, where ∂i stands for the partial
derivative with respect to xi. So the functions ∂j(∂iϕ) are defined almost everywhere.
To conclude the proof, it suffices to show that ∂j(∂iϕ) = ∂i(∂jϕ) almost everywhere. To
prove this, let ζ be any C2 compactly supported function; then, by successive use of the
dominated convergence theorem and the smoothness of ϕ ∗ ζ,

(∂i∂jϕ) ∗ ζ = ∂i(∂jϕ ∗ ζ) = ∂i∂j(ϕ ∗ ζ) = ∂j∂i(ϕ ∗ ζ) = ∂j(∂iϕ ∗ ζ) = (∂j∂jϕ) ∗ ζ.

It follows that (∂i∂jϕ−∂j∂iϕ)∗ζ = 0, and since ζ is arbitrary this implies that ∂i∂jϕ−∂j∂iϕ
vanishes almost everywhere. This concludes the argument. 78
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Proof of Theorem 14.23 in the general case. As in the proof of Theorem 10.8(ii), the strat-
egy will be to reduce to the one-dimensional case. For any v ∈ Rn, t > 0, and x such that
ϕ is differentiable at x, define

Qv(t, x) =
ϕ(x + tv) − ϕ(x) − t∇ϕ(x) · v

t2
≥ 0.

The goal is to show that for Lebesgue–almost all x ∈ Rn,

qv(x) := lim
t→0

Qv(t, x)

exists for all v, and is a quadratic function of v.
Let Dom q(x) be the set of v ∈ Rn such that qv(x) exists. It is clear from the definition

that
(a) qv(x) is nonnegative and homogeneous of degree 2 in v on Dom q(x);
(b) qv(x) is a convex function of v on Dom q(x): this is just because it is the limit of

the family Qv(t, x), which is convex in v;
(c) If v is interior to Dom q(x) and qw(x) → 5 as w → v, w ∈ Dom q(x), then also

v ∈ Dom q(x) and qv(x) = 5. Indeed, let ε > 0 and let δ be so small that |w − v| ≤ δ =⇒
|qw(x) − 5| ≤ ε; then, we can find v1, . . . , vn+1 in Dom q(x) ∩ B(v, δ) so that v lies in the
convex hull of v1, . . . , vn+1, and then v0 ∈ Dom q(x) ∩ B(v, δ) so that v ∈ B(v0, δ) and
B(v0, r) is included in the convex hull of v1, . . . , vn+1. Then, by Lemma 14.24,

2Qv0(t, x) − max Qvi(t, x) ≤ Qv(t, x) ≤ max Qvi(t, x).

Then,

5− 3ε ≤ 2qv0(x) − max qvi(x) ≤ lim inf
t→0

Qv(t, x)

≤ lim sup
t→0

Qv(t, x) ≤ max qvi(x) ≤ 5 + ε.

It follows that lim Qv(t, x) = 5, as desired.
Next, we use the same reasoning as in the proof of Rademacher’s theorem (Theo-

rem 10.8(ii)): Let v be given, v 3= 0, let us show that qv(x) exists for almost all x. By
Fubini’s theorem, it is sufficient to show that qv(x) exists λ1–almost everywhere on each
line parallel to v. So let x0 ∈ v⊥ be given, and let Lx0 = x0 + Rv be the line passing
through x0, parallel to v; the existence of qv(x0 + t0v) is equivalent to the second differ-
entiability of the convex function ψ : t → ϕ(x0 + tv) at t = t0, and from our study of the
one–dimensional case we know that this happens for λ1-almost all t0 ∈ R.

So we know that for each v, the set Av of x ∈ Rn such that qv(x) does not exist is of
zero measure. Let (vk) be a dense subset of Rn, and let A = ∪Avk : A is of zero measure,
and for each x ∈ Rn \ A, Dom q(x) contains all the vectors vk.

Let again x ∈ Rn \ A. By Property (b), qv(x) is a convex function of v, so it is locally
Lipschitz and can be extended uniquely into a continuous convex function r(v) on Rn. By
Property (c), r(v) = qv(x), which means that Dom q(x) = Rn.

At this point we know that for almost all x the limit qv(x) exists for all v, and it is a
convex function of v, homogeneous of degree 2. What we do not know is whether qv(x) is
a quadratic function of v.

Let us try to solve this problem by a regularization argument. Let ζ be a smooth
nonnegative compactly supported function on Rn, with

∫
ζ = 1. Then ∇ϕ ∗ ζ = ∇(ϕ ∗ ζ).

Moreover, thanks to the nonnegativity of Qv(x, t) and Fatou’s lemma,
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(qv ∗ ζ)(x) =
∫

lim
t↓0

Qv(y, t) ζ(x − y) dy

≤ lim inf
t↓0

∫
Qv(y, t) ζ(x − y) dy

= lim inf
t↓0

1
t2

[
(ϕ ∗ ζ)(x + tv) − (ϕ ∗ ζ)(x) − t∇(ϕ ∗ ζ)(x) · v

]

=
1
2
〈
∇2(ϕ ∗ ζ)(x) · v, v

〉
.

It is obvious that the right-hand side is a quadratic form in v, but this is only an upper
bound on qv ∗ζ(x). In fact, in general qv ∗ζ 3= (1/2)〈∇2(ϕ∗ζ)v, v〉. The difference is caused
by the singular part of the measure µv := (1/2)〈∇2ϕ · v, v〉, defined in distribution sense
by ∫

ζ(x)µv(dx) =
1
2

∫
〈∇2ζ(x) · v, v〉ϕ(x) dx.

This obstacle is the main new difficulty in the proof of Alexandrov’s theorem, as compared
to the proof of Rademacher’s theorem.

To avoid the singular part of the measure µv, we shall appeal to Lebesgue’s density
theory, in the following precise form: Let µ be a locally finite measure on Rn, and let
ρλn + µs be its Lebesgue decomposition into an absolutely continuous part and a singular
part. Then, for Lebesgue–almost all x ∈ Rn,

1
δn

∥∥µ − ρ(x)λn

∥∥
TV(Bδ(x))

−−−→
δ→0

0,

where ‖ · ‖TV(Bδ(x)) stands for the total variation on the ball Bδ(x). Such an x will be
called a Lebesgue point of µ.

So let ρv be the density of µv. It is easy to check that µv is locally finite, and we also
showed that qv is locally integrable. So, for λn–almost all x0 we have

1
δn

∫

Bδ(x0)
|qv(x) − qv(x0)| dx −−−→

δ→0
0;

1
δn

∥∥µv − ρv(x0)λn

∥∥
TV(Bδ(x0))

−−−→
δ→0

0,

The goal is to show that qv(x0) = ρv(x0). Then the proof will be complete, since ρv is
a quadratic form in v (indeed, ρv(x0) is obtained by averaging µv(dx), which itself is
quadratic in v). Without loss of generality, we may assume that x0 = 0.

To prove that qv(0) = ρv(0), it suffices to establish

lim
δ→0

1
δn

∫

Bδ(0)
|qv(x) − ρv(0)| dx = 0, (14.72)

To estimate qv(x), we shall express it as a limit involving points in Bδ(x), and then
use a Taylor formula; since ϕ is not a priori smooth, we shall go through a regularization
procedure. Let ζ be as before, and let ζε(x) = ε−nζ(x/ε); let further ϕε := ϕ ∗ ζ. We shall
regularize ϕ on a scale ε ≤ δ.

We can restrict the integral in (14.72) to those x such that ∇ϕ(x) exists and such that
x is a Lebesgue point of ∇ϕ; indeed, such points form a set of full measure. For such an x,
ϕ(x) = limε→0 ϕε(x), and ∇ϕ(x) = limε→0 ∇ϕε(x). So,

1
δn

∫

Bδ(0)
|qv(x) − ρv(0)| dx =

1
δn

∫

Bδ(0)

∣∣∣lim
t→0

[ϕ(x + tδv) − ϕ(x) −∇ϕ(x) · tδv
t2δ2

]
− ρ0(v)

∣∣∣ dx
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=
1
δn

∫

Bδ(0)
lim
t→0

lim
ε→0

∣∣∣
ϕε(x + tδv) − ϕε(x) −∇ϕε(x) · tδv

t2δ2
− ρ0(v)

∣∣∣ dx

=
1
δn

∫

Bδ(0)
lim
t→0

lim
ε→0

∣∣∣
∫ 1

0

[
〈∇2ϕε(x + stδv) · v, v〉 − 2ρv(0)

]
(1 − s) ds

∣∣∣ dx

≤ lim inf
t→0

lim inf
ε→0

1
δn

∫

Bδ(0)

∣∣∣
∫ 1

0

[
〈∇2ϕε(x + stδv) · v, v〉 − 2ρv(0)

]
(1 − s) ds

∣∣∣ dx

≤ lim inf
t→0

lim inf
ε→0

1
δn

∫ 1

0

∫

Bδ(stδv)

∣∣〈∇2ϕε(y) · v, v〉 − ρv(0)
∣∣ dy ds,

where Fatou’s lemma and Fubini’s theorem were used successively. Since B(stδv, δ) ⊂
B(0, (1 + |v|)δ), independently of s and t, we can bound the above expression by

lim inf
ε→0

1
δn

∫

B(0,(1+|v|)δ)

∣∣〈∇2ϕε(y) · v, v〉 − ρv(0)
∣∣ dy

= lim inf
ε→0

1
δn

∫

B(0,(1+|v|)δ)

∣∣∣
∫

ζε(y − z)[µv − ρv(0)λn](dz)
∣∣∣ dy

≤ lim inf
ε→0

1
δn

∫

B(0,(1+|v|)δ)

∫
ζε(y − z)|µv − ρv(0)λn|(dz) dy.

When y varies in B(0, (1+|v|)δ), z varies in B(0, (1+|v|)δ+ε) ⊂ B(0, Cδ) with C = 2+|v|.
So, after using Fubini’s theorem and integrating out ζε(y − z) dy, we conclude that

1
δn

∫

Bδ(0)
|qv(x) − ρv(0)| dx ≤ ‖µv − ρv(0)λn‖TV(B(0,Cδ)).

The conclusion follows by taking the limit δ → 0.
Once ∇2ϕ has been identified as the density of the distributional Hessian of ϕ, it follows

immediately that ∆ϕ := tr (∇2ϕ) is the density of the distributional Laplacian of ϕ. (The
trace of a matrix-valued nonnegative measure is singular if and only if the measure itself
is singular.) 78

Remark 14.25. The concept of distributional Hessian on a Riemannian manifold is a bit
subtle, which is why I did not state anything about it in Theorem 14.1. On the other hand,
there is no difficulty to define the distributional Laplacian.

Second Appendix: Very elementary comparison arguments

There are rather developed theories of comparison estimates for second-order linear differ-
ential equations; but the statement to be considered here can be proven by very elementary
means.

Theorem 14.26. Let Λ ∈ R, and f ∈ C([0, 1]) ∩ C2(0, 1), f ≥ 0. Then the following two
statements are equivalent:

(i) f̈ + Λf ≤ 0 in (0, 1);
(ii) If Λ < π2 then

∀t0, t1 ∈ [0, 1] f
(
(1 − λ)t0 + λt1

)
≥ τ (1−λ)(|t0 − t1|) f(t0) + τ (λ)(|t0 − t1|) f(t1),

where
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τ (λ)(t) =






sin(λθ
√
Λ)

sin(θ
√
Λ)

if 0 < Λ < π2

λ if Λ = 0

sinh(λθ
√
−Λ)

sinh(θ
√
−Λ)

if K < 0

.

If Λ = π2 then f(t) = c sin(πt) for some c ≥ 0; finally if Λ > π2 then f = 0.

Proof of Theorem 14.26. The easy part is (ii) ⇒ (i). If Λ ≥ π2 this is trivial. If Λ < π2,
take λ = 1/2, then a Taylor expansion shows that

τ (1/2)(θ) =
1
2
(
1 +

θΛ2

8
)

+ o(θ3)

and
f(t0) + f(t1)

2
= f

(t0 + t1
2

)
+

(t0 − t1)2

4
f̈
(t0 + t1

2

)
+ o(|t0 − t1|2).

So, if we fix t ∈ (0, 1) and let t0, t1 → t in such a way that t = (t0 + t1)/2, we get

τ (1/2)(|t0 − t1|) f(t0) + τ (1/2)(|t0 − t1|) f(t1) − f(t) =
(t0 − t1)2

8

(
f̈(t) + Λf(t) + o(1)

)
.

By assumption the left-hand side is nonnegative, so in the limit we recover f̈ + Λf ≤ 0.
Now consider the reverse implication (ii) ⇒ (i). By abuse of notation, let us write

f(λ) = f((1 − λ)t0 + λt1), and define by a prime the derivation with respect to λ; so
f ′′ + Λθ2f ≤ 0, θ = |t0 − t1|. Let g(λ) be defined by the right-hand side of (ii); that is,
λ → g(λ) is the solution of g′′ + Λθ2g = 0 with g(0) = f(0), g(1) = f(1). The goal is to
show that f ≥ g on [0, 1].

(a) Case Λ < 0. Let a > 0 be any constant; then fa := f + a still solves the same
differential inequality as f , and fa > 0 (even if we did not assume f ≥ 0, we could take a
large enough that this is true). Let ga be defined as the solution of g′′a + Λθ2ga = 0 with
ga(0) = fa(0), ga(1) = fa(1). As a → 0, fa converges to f and ga converges to g, so it is
sufficient to show fa ≥ ga. Therefore, without loss of generality we may assume that f, g
are positive, so g/f is continuous.

If g/f attains its maximum at 0 or 1, then we are done. Otherwise, there is λ0 ∈ (0, 1)
such that (g/f)′′(λ0) ≤ 0, (g/f)′(λ0) = 0, and then the identity

(
g

f

)′′
=

(g′′ + Λg)
f

− g

f2
(f ′′ + Λf) − 2

f ′

f

(
g

f

)′
− 2Λ

g

f
,

evaluated at λ0, yields 0 > −2Λg/f , which is impossible.
(b) Case Λ = 0. This is the basic property of concave functions.
(c) Case 0 < Λ < π2. Let θ = |t0−t1| ≤ 1. Since θ

√
Λ < π, we can find a function w such

that w′′ +Λθ2w ≤ 0 and w > 0 on (0, 1). (Just take a well-chosen sine or cosine function.)
Then fa := f + aw still satisfies the same differential inequality as f , and it is positive.
Let ga be defined by the equation g′′a + Λθ2ga = 0 with ga(0) = fa(0), ga(1) = fa(1). As
a → 0, fa → f and ga → g, so it is sufficient to show that fa ≥ ga. So we may assume that
f and g are positive, and f/g is continuous.



256 14 Ricci curvature

Then the reasoning is parallel to the case Λ < 0: If f/g attains its minimum at 0 or 1,
then we are done. Otherwise, there is λ0 ∈ (0, 1) such that (f/g)′′(λ0) ≥ 0, (f/g)′(λ0) = 0,
and then the identity

(
f

g

)′′
=

(f ′′ + Λf)
g

− f

g2
(g′′ + Λg) − 2

g′

g

(
f

g

)′
− 2Λ

f

g
,

evaluated at λ0, yields 0 < −2Λf/g, which is impossible.
(d) Case Λ = π2. Take t0 = 0, t1 = 1. Let then g(λ) = sin(πλ), and let h := f/g.

The differential equations f ′′ + Λf ≤ 0 and g′′ + Λg = 0 combine to yield (h′g2)′ =
h′′g2 + 2gh′g′ ≤ 0. So h′g2 is nonincreasing. If h′(λ0) < 0 for some t0 ∈ (0, 1), then
h′g2(λ0) < 0 for all λ ≥ λ0, so h′(λ) ≤ −C/(1 − λ)2 as λ → 1, where C is a positive
constant. It follows that h(λ) becomes negative for λ close to 1, which is impossible. If on
the other hand h′(λ0) > 0, then a similar reasoning shows that h(λ) becomes negative for
λ close to 0. The conclusion is that h′ is identically 0, so f/g is a constant.

(e) If Λ > π2, then for all t0, t1 ∈ [0, 1] with |t0 − t1| = π/
√
Λ, the function f(λ) =

f(λt0 + (1− λt1)) is proportional to sin(πλ), by Case (d). By letting t0, t1 vary, it is easy
to deduce that f is identically 0. 78
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sian; that is, they prove formulation (i) in Theorem 14.1 and then deduce (ii), while in the
Appendix it was the other way round.

Lebesgue’s density theorem can be found for instance in [156, p. 42]. The theorem
according to which a nonincreasing function R → R is differentiable almost everywhere is
a well-know result, that can be found as a corollary of [147, Theorems 7.2.4 and 7.2.7].
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Let M be a smooth complete Riemannian manifold, and let P2(M) be the associated
Wasserstein space of order 2. Recall from Chapter 7 that P2(M) is a length space and that
there is a nice representation formula for the Wasserstein distance W2:

W2(µ0, µ1)2 = inf
∫ 1

0
‖µ̇t‖2

µt
dt, (15.1)

where ‖µ̇‖µ is the norm of the infinitesimal variation µ̇ of the measure µ, defined by

‖µ̇‖µ = inf
{∫

|v|2 dµ; µ̇ + ∇ · (vµ) = 0
}

.

One of the reasons of the popularity of Riemannian geometry (as opposed to more
general metric structures) is that they allow for rather explicit computations. At the end
of the nineties, Otto realized that some precious help for intuition could be gained by
performing computations of Riemannian nature in the Wasserstein space. His motivations
will be described later on; to make a long story short, he needed a good formalism to
study certain diffusive partial differential equations of which he knew that they could be
considered as gradient flows in the Wasserstein space.

In this chapter, as in Otto’s original papers, this problem will be considered from
a purely formal point of view, and there will be no attempt of rigorous justification.
So the problem is to set up rules for formally differentiating functions (i.e. functionals)
on P2(M). To fix the ideas, and because this is an important example arising in many
different contexts, I shall discuss only a certain class of functionals, that involve (i) a
function V : M → R, used to distort the reference volume measure; and (ii) a function
U : R+ → R, twice differentiable (at least on (0,+∞)), which will relate the value of the
density of our probability measure and the value of the functional. So let






ν(dx) := e−V (x) vol (dx)

Uν(µ) :=
∫

M
U(ρ(x)) dν(x), µ = ρ ν.

(15.2)

So far the functional Uν is only defined on the set of probability measures that are abso-
lutely continuous with respect to ν, or equivalently with respect to the volume measure,
and I shall not go beyond that setting before Part III of these notes. If ρ0 stands for the
density of µ with respect to the plain volume, then obviously ρ0 = e−V ρ, so there is the
alternative expression



260 15 Otto calculus

Uν(µ) =
∫

M
U
(
eV ρ0

)
e−V dvol , µ = ρ0 vol .

One can think of U as a constitutive law for the internal energy of a fluid: this is
jargon to say that the energy “contained” in a given fluid of density ρ(x) is given by
the formula

∫
U(ρ). The function U should be a property of the fluid itself, and might

reflect some microscopic interaction between particles of the fluid; it is natural to assume
U(0) = 0.

In this thermodynamical analogy, one can also introduce the pressure law:

p(ρ) = ρU ′(ρ) − U(ρ). (15.3)

The physical interpretation is as follows: if the fluid is enclosed in a domain Ω, then the
pressure felt by the boundary ∂Ω at a point x is normal and proportional to p(ρ) at that
point. (Recall that the pressure is defined, up to a sign, as the partial derivative of the
internal energy with respect to the volume of the fluid.) So if you consider a homogeneous
fluid of total mass 1, in a volume V , then its density is ρ = 1/V , so the total energy
is V U(1/V ), and the pressure should be (−d/dV )[V U(1/V )] = p(1/V ); this justifies
formula (15.3).

To the pressure p is associated a total pressure
∫

p(ρ) dν, and one can again consider
the influence of small variations of volume on this functional; this leads to the definition
of the iterated pressure

p2(ρ) = ρp′(ρ) − p(ρ). (15.4)

Both the pressure and the iterated pressure will appear naturally when one differentiates
the energy functional: the pressure for first-order derivatives, and the iterated pressure for
second-order derivatives.

Example 15.1. Let m 3= 1, and

U(ρ) = U (m)(ρ) =
ρm − ρ

m − 1
;

then
p(ρ) = ρm, p2(ρ) = (m − 1) ρm.

There is an important limit case as m → 1:

U (1)(ρ) = ρ log ρ;

then
p(ρ) = ρ, p2(ρ) = 0.

By the way, the linear part −ρ/(m − 1) in U (m) does not contribute to the pressure, but
has the merit to display the link between U (m) and U (1).

Differential operators will also be useful. Let ∆ be the Laplace(–Beltrami) operator
on M , then the distortion of the volume element by the function V leads to a natural
second-order operator:

L = ∆−∇V ·∇. (15.5)

Recall from Chapter 14 the expression of the carré du champ itéré associated with L:

Γ2(ψ) = L
( |∇ψ|2

2

)
−∇ψ ·∇(Lψ) (15.6)

= ‖∇2ψ‖2
HS +

(
Ric + ∇2V

)
(∇ψ), (15.7)
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where the second equality is a consequence of Bochner’s formula.
The next formula is the first important result in this chapter: it gives an “explicit”

expression for the gradient of the functional Uν . For a given measure µ, the gradient of Uν

at µ is a “tangent vector” at µ in the Wasserstein space, so this should be an infinitesimal
variation of µ.

Formula 15.2 (gradient formula in Wasserstein space). Let µ be absolutely contin-
uous with respect to ν. Then, with the above notation,

gradµUν = −∇ ·
(
µ∇U ′(ρ)

)
(15.8)

= −∇ ·
(
e−V ∇p(ρ)

)
. (15.9)

Remark 15.3. The first expression in the right-hand side of (15.8) is the divergence of a
vector-valued measure; recall that ∇ ·m is defined in weak sense by its action on compactly
supported smooth functions:

∫
φ d(∇ · m) = −

∫
∇φ · (dm).

The second expression in the right-hand side of (15.8) is the divergence of a vector field;
the volume measure is implicit, so I could have written, more rigorously,

gradµUν = −∇ ·
(
e−V ∇p(ρ)

)
vol .

Both expressions in (15.8) are interesting, the first one because it writes the “tangent
vector” gradµUν in the “normalized” form −∇ · (µ∇ψ), with ψ = U ′(ρ), and the second
one gives because it gives the result as the divergence of a vector field.

Here below are some important examples of application of Formula 15.2.

Example 15.4. Assume ν = vol and define the H-functional of Boltzmann (opposite of
the entropy) by

H(µ) =
∫

M
ρ log ρ.

Then the second expression in equation (15.8) yields

gradµH = −∆µ,

which can be identified with the function −∆ρ. So the gradient of Boltzmann’s entropy is
the Laplace operator. This short statement is one of the first striking conclusions of Otto’s
formalism.

Example 15.5. Now consider a general ν = e−V vol , write µ = ρ ν = ρ0vol , and define

Hν(µ) =
∫

M
ρ log ρ dν =

∫

M
(log ρ0 + V ) dµ

(this is the H-functional relative to the reference measure ν).

gradµHν = − (∆ρ−∇V ·∇ρ) ν = − (∆ρ−∇V ·∇ρ) e−V vol .

So this can be identified with the function −e−V (Lρ), where

Lρ = ∆ρ−∇V ·∇ρ = eV ∇ · (e−V ∇ρ).

In short, the gradient of the relative entropy is the distorted Laplace operator.
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Example 15.6. To generalize Example 15.4 in another direction, consider

H(m)(µ) =
∫

ρm − ρ

m − 1
dvol .

Then
gradµH(m) = −∆(ρm).

More generally, if ρ is the density with respect to an arbitrary reference measure ν, and

H(m)
ν (µ) =

∫
ρm − ρ

m − 1
dν,

then
gradµ Uν = −eV ∇ ·

(
e−V ∇ρm

)
. (15.10)

The next formula is about second-order derivatives, or Hessians. Since the Hessian of
Uν at µ is a quadratic form on the tangent space TµP2, I shall write down its expression
when evaluated on a tangent vector of the form −∇ · (µ∇ψ).

Formula 15.7 (Hessian formula in Wasserstein space). Let µ be absolutely contin-
uous with respect to ν, and let µ̇ = −∇ · (µ∇ψ) be a tangent vector at µ. Then, with the
above notation,

Hessµ Uν(µ̇) =
∫

M
Γ2(ψ) p(ρ) dν +

∫

M
(Lψ)2 p2(ρ) dν (15.11)

=
∫

M

[
‖∇2ψ‖2

HS +
(
Ric + ∇2V

)
(∇ψ)

]
p(ρ)dν +

∫

M

(
−∆ψ + ∇V ·∇ψ

)2
p2(ρ) dν.

(15.12)

Remark 15.8. As expected, this is a quadratic expression in ∇ψ and its derivatives; and
this expression does depend on the measure µ.

Example 15.9. Applying the formula with U(ρ) = (ρm−ρ)/(m−1), recalling that µ = ρν,
one obtains

Hessµ H(m)
ν (µ̇) =

∫

M

(
‖∇2ψ‖2

HS +(Ric+∇2V )(∇ψ)+ (m− 1)
(
∆ψ−∇V ·∇ψ

)2)
ρm−1 dµ.

In the limit case m = 1, which is U(ρ) = ρ log ρ, this expression simplifies into

Hessµ Hν(µ̇) =
∫

M

(
‖∇2ψ‖2

HS + (Ric + ∇2V )(∇ψ)
)

dµ.

With the notation of Chapter 14, this can be rewritten

Hessµ Hν(µ̇) =
∫

M

(
‖∇2ψ‖2

HS + Ric∞,ν(∇ψ)
)

dµ.

Formulas 15.2 and 15.7 will only be justified at a heuristic level. A rigorous proof would
require much more definitions and apparatus, as well as regularity and decay assumptions
on the measures and the functionals. So here I shall disregard all issues about integrability
and regularity, which will be a huge simplification. Still, the proofs will not be completely
trivial.
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“Proof” of Formula 15.2. As usual, when the integration measure is not specified, it will
be the volume. To understand the proof, it is important to make the distinction between
a gradient and a differential.

Let ζ be such that the tangent vector gradµUν can be represented as −∇ · (µ∇ζ), and
let ∂tµ = −∇ · (µ∇ψ) be an arbitrary “tangent vector”. The infinitesimal variation of the
density ρ = dµ/dν is given by

∂tρ = −eV ∇ ·
(
ρe−V ∇ψ

)
.

By direct computation and integration by parts, the infinitesimal variation of Uν along
that variation is equal to

∫
U ′(ρ) ∂tρ dν = −

∫
U ′(ρ) ∇ · (ρ e−V ∇ψ)

=
∫

∇U ′(ρ) ·∇ψ ρ e−V

=
∫

∇U ′(ρ) ·∇ψ dµ.

By definition of the gradient operator, this should coincide with

〈
gradµUν , ∂tµ

〉
=
∫

∇ζ ·∇ψ dµ.

If this should hold true for all ψ, the only possible choice is that ∇U ′(ρ) = ∇ζ(ρ), at
least µ-almost everywhere. In any case ζ := U ′(ρ) provides an admissible representation
of gradµUν . This proves the formula for the gradient. 78

For the second order (Formula (15.7)), things are more intricate. The following identity
will be helpful: if ξ is a tangent vector at x on a Riemannian manifold M, and F is a
function on M, then

HessxF (ξ) =
d2

dt2

∣∣∣∣
t=0

F (γ(t)), (15.13)

where γ(t) is a geodesic starting from γ(0) = x with velocity γ̇(0) = ξ. To prove (15.13),
it suffices to note that the first derivative of F (γ(t)) is γ̇(t) · ∇F (γ(t)); so the second
derivative is (d/dt)(γ̇(t)) ·∇F (γ(t)) +

〈
∇2F (γ(t)) · γ̇(t), γ̇(t)

〉
, and the first term vanishes

because a geodesic has zero acceleration.

“Proof” of Formula 15.7. The problem consists in differentiating Uν(µt) twice along a
geodesic path of the form 





∂tµ + ∇ · (µ∇ψ) = 0

∂tψ +
|∇ψ|2

2
= 0.

The following integration by parts formula will be useful:
∫

∇f ·∇g dν = −
∫

(Lf)g dν, L = ∆−∇V ·∇. (15.14)

From the proof of the gradient formula, one has, with the notation µt = ρtν,

dUν(µt)
dt

=
∫

M
∇ψt ·∇U ′(ρt)ρt dν.
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It follows from the definition of p that p′(ρ) = ρU ′′(ρ), and so

∇U ′(ρ)ρ = ρU ′′(ρ)∇ρ = p′(ρ)∇ρ = ∇p(ρ).

So

dUν(µt)
dt

=
∫

M
∇ψt ·∇p(ρt) dν (15.15)

= −
∫

M
(Lψt) p(ρt) dν. (15.16)

It remains to differentiate again. To alleviate notation, I shall not write explicitly the
time variable. So

d2Uν(µ)
dt2

= −
∫ (

L∂tψ
)
p(ρ) dν −

∫
(Lψ)p′(ρ)∂tρ dν (15.17)

=
∫

L

(
|∇ψ|2

2

)
p(ρ) dν −

∫
(Lψ)p′(ρ)∂tµ. (15.18)

The last term in (15.18) can be rewritten as
∫

(Lψ) p′(ρ)∇ · (µ∇ψ)

= −
∫

∇
(
(Lψ)p′(ρ)

)
·∇ψ dµ

= −
∫

∇
(
(Lψ)p′(ρ)

)
·∇ψ ρ dν

= −
∫

∇(Lψ) ·∇ψ p′(ρ) ρ dν −
∫

(Lψ)p′′(ρ) ρ∇ρ ·∇ψ dν

= −
∫

∇(Lψ) ·∇ψ ρ p′(ρ) dν −
∫

(Lψ)∇p2(ρ) ·∇ψ dν. (15.19)

The second term in (15.19) needs a bit of reworking: it can be recast as

−
∫

∇
(
Lψ p2(ρ)

)
·∇ψ dν −

∫
(∇Lψ)p2(ρ) ·∇ψ dν

=
∫

(Lψ)2p2(ρ) dν −
∫

(∇Lψ) ·∇ψ p2(ρ) dν,

where formula (15.14) has been used once more.
By collecting all these calculations,

d2Uν(µ)
dt2

=
∫

L

(
|∇ψ|2

2

)
p(ρ) dν +

∫
(Lψ)2p2(ρ) dν

+
∫

(∇ψ ·∇Lψ)
(
p2(ρ) − ρ p′(ρ)

)
dν.

Since p2(ρ) − ρ p′(ρ) = −p(ρ), this transforms into
∫ (

L

(
|∇ψ|2

2

)
−∇ψ ·∇Lψ

)
p(ρ) dν +

∫
(Lψ)2p2(ρ). (15.20)
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In view of (15.6), this establishes formula (15.11).
To obtain formula (15.12), it is sufficient to prove the identity (15.7). In the case when

V = 0, this is just the Bochner formula (14.28). When V is nonzero, there is an additional
term:

−∇V ·∇ |∇ψ|2

2
+ ∇ψ ·∇(∇V ·∇ψ)

= −
〈
∇2ψ ·∇V,∇ψ

〉
+
〈
∇2V ·∇ψ,∇ψ

〉
+
〈
∇2ψ ·∇V,∇ψ

〉

=
〈
∇2V ·∇ψ,∇ψ

〉
.

This proves (15.7), and concludes the argument. 78

Exercise 15.10. “Prove” that the gradient of an arbitrary functional F , on P2(M) can
be written

gradµ F = −∇ · (µ∇φ), φ =
δF
δµ

,

where δF/δµ is a function defined by

d

dt
F(µt) =

∫ (
δF
δµ

)
∂tµt.

Check that in the particular case

F(µ) =
∫

M
F
(
x, ρ(x),∇ρ(x)

)
dν(x), (15.21)

where F = F (x, ρ, p) is a smooth function of ρ ∈ R+, (x, p) ∈ TM , one has
(
∂F
∂µ

)
(x) = (∂ρF )

(
x, ρ(x),∇ρ(x)

)
− (∇x −∇V (x)) · (∇pF )

(
x, ρ(x),∇ρ(x)

)

The following two open problems (loosely formulated) are natural and interesting, and
I don’t know how difficult they are:

Open Problem 15.11. Find a nice formula for the Hessian of the functional F appearing
in (15.21).

Open Problem 15.12. Find a nice formalism playing the role of the Otto calculus in the
space Pp(M), for p 3= 2. More generally, are there nice formal rules for taking derivatives
along displacement interpolation, for general Lagrangian cost functions?

To conclude this chapter, I shall come back to the subject of rigorous justification of
Otto’s formalism. At the time of writing, several theories have been developed, at least
in Euclidean setting (see the bibliographical notes); but they are rather heavy and not
completely convincing (I can afford this negative comment since I myself participated in
the story). From the technical point of view, they are based on the natural strategy which
consists in truncating and regularizing, then apply the arguments presented in this chapter,
then passing to the limit.

A quite different strategy, which I personally recommend, consists in translating all the
Eulerian statements in the language of Lagrangian formalism. This is less appealing for
intuition and calculations, but somehow easier to justify in the case of optimal transport.
For instance, instead of the Hessian operator, one will only speak of the second derivative
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along geodesics in the Wasserstein space. This point of view will be developed in the next
two chapters, and then a rigorous treatment will not be that painful.

Still, in many situations the Eulerian point of view is better for intuition and for
understanding, in particular in certain problems involving functional inequalities. The
above discussion might be summarized by the slogan “Think Eulerian, prove Lagrangian”.
This is a rather exceptional situation from the point of view of fluid dynamics, where the
standard would rather be “Think Lagrangian, prove Eulerian” (for instance, shocks are
very delicate to treat in a Lagrangian formalism). Once again, the point is that “there are
no shocks” in optimal transport: as discussed in Chapter 8, trajectories do not meet until
maybe at final time.

Bibliographical Notes

Otto’s seminal paper [290] studied the formal Riemannian structure of the Wasserstein
space, and gave applications to the study of the porous medium equation; I shall come
back to this topic later. With all the preparations of Part I, the computations performed
in this chapter may look rather natural, but they were a little conceptual tour de force at
the time of Otto’s contribution, and had a strong impact on the research community. This
work was partly inspired by the desire to understand in depth a previous contribution by
Jordan, Kinderlehrer and Otto [219].

Otto’s computations were concerned with the case U(ρ) = ρm in Rn, and were gener-
alized later. Otto and the author [292, Section 3] considered U(ρ) = ρ log ρ on a manifold,
and computed the Hessian by differentiating twice along geodesics in the Wasserstein space.
To my knowledge, this is the first published work where the Ricci curvature appears in
relation to optimal transport.

Later Carrillo, McCann and the author [103] considered functionals of the form E(µ) =∫
W (x − y)µ(dx)µ(dy) in Rn. In my book [365, Section 9.1], I gave formulas for the

gradients and Hessians of three basic types of functionals in Rn that I called internal
energy, potential energy and interaction energy, and which can be written respectively
(with obvious notation) as

∫
U(ρ(x)) dx;

∫
V dµ;

1
2

∫
W (x − y) dµ(x) dµ(y).

The functional associated with U(ρ) = ρ log ρ is Boltzmann’s H Functional, well-known
in statistical mechanics (see e.g. [364]). The functionals Uν studied in this chapter (on a
manifold and with a reference measure e−V vol ) appear in my joint work with Lott [247,
Appendix E].

The interpretation of p as a pressure associated to the constitutive law U is well-known
in thermodynamics, and was explained to me by McCann; the discussion in the present
chapter is slightly expanded in [365, Remarks 5.18].

Presentations of the differential calculus in P2(M) can be found in my book [365,
Chapter 8], and also (with relatively minor variations from one source to the other) in the
research papers [292, 98, 294].

Apart from these computations of gradients and Hessians, I am not aware of further
studies on Riemannian calculations in P2(M). The following issues are natural (I am not
so sure how useful they would be, but at least they are natural):

- Is there a Jacobi equation in P2(M), describing small variations of geodesic fields?
- Can one define Christoffel symbols, at least formally?
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- Can one define a Laplace operator (taking the trace of the Hessian???)
- Can one define a volume element?? a divergence operator??

The point of view that was first advocated by Otto himself, and which I shall adopt
in these notes, is that the “Otto calculus” should primarily be considered a heuristic tool,
and the conclusions drawn by its use should then be checked by “direct” means. This
might lack elegance, but it is much safer from the point of view of mathematical rigor.
Some papers where this strategy has been used with success are [290, 292, 337, 294, 247].
In most of these works, rigorous justifications are mostly done in Lagrangian formalism.
The work by Otto and Westdickenberg [294] is an interesting exception to this rule; there
everything is attacked from an Eulerian perspective (using such tools as regularization of
currents on manifolds).

A different strategy consists in developing an infinite-dimensional Riemannian point
of view to make sense of Otto’s calculus. Such a theory has been partially developed
in [98, 102, 15], at least in the case M = Rn.

An interesting example of functional of the form (15.10), that was considered in relation
with optimal transport, is

I(µ) =
∫ |∇ρ|2

ρ
dx,

which is the Fisher information functional; see [15, Example 11.1.10] and references there
provided.

The case p 3= 2 is less well understood; as noticed in [15, p. 10], Pp(M) can be seen as
a kind of Finsler structure, and there are also rules to compute derivatives in that space,
at least to first order. The most general known results to this date are in [15].
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Displacement convexity I

Convexity plays a prominent role in analysis in general. It is most generally used in a
vector space V: A function F : V → R ∪ {+∞} is said to be convex if

∀x, y ∈ V ∀t ∈ [0, 1] F
(
(1 − t)x + t y

)
≤ (1 − t)F (x) + t F (y). (16.1)

But convexity is also a metric notion: In short, convexity in a metric space means convexity
along geodesics.

In a length space, there always exist geodesic paths joining two given endpoints, so this
is a natural setting to define convexity.

Definition 16.1 (convexity in a length space). Let (X , d) be a complete length space.
Then a function F : X → R ∪ {+∞} is said to be geodesically convex, or just convex, if
for any constant-speed geodesic path (γt)0≤t≤1 in X ,

∀t ∈ [0, 1] F (γt) ≤ (1 − t)F (γ0) + t F (γ1). (16.2)

It is said to be weakly convex if for any x0, x1 in X there exists at least one constant-
speed geodesic path (γt)0≤t≤1 with γ0 = x0, γ1 = x1, such that inequality (16.2) holds
true.

It is a natural problem to identify functionals that are convex on the Wasserstein space.
In his 1994 PhD thesis, McCann established and used the convexity of certain functionals
on P2(Rn) to prove the uniqueness of their minimizers. Since then, his results have been
generalized; yet all examples which have been treated so far belong to the general class

F(µ) =
∫

Xk
I(x1, . . . , xk) dµ(x1) . . . dµ(xk) +

∫

X
U

(
dµ

dν

)
dν,

where I(x1, . . . , xk) is a certain “k-particle interaction potential”, U is a nice function
R+ → R, and ν is a reference measure.

In this and the next chapter I shall consider the convexity problem on a general Rieman-
nian manifold M , in the case I = 0, so the functionals under study will be the functionals
Uν defined by

Uν(µ) =
∫

M
U(ρ) dν, µ = ρ ν. (16.3)

In this chapter I shall first give some reminders about the notion of convexity and
some of its refinements; then I shall make these notions more explicit in the case of the
Wasserstein space P2(M). In the last section I shall use Otto’s calculus to guess sufficient
conditions under which Uν satisfies some interesting convexity properties.
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Let the reader not be offended if I strongly insist that convexity in the metric space
P2(M) has nothing to do with the convex structure of the space of probability measures.
The former concept will be called “convexity along optimal transport” or “displacement
convexity”.

Reminders on convexity: differential and integral conditions

The material in this section has nothing to do with optimal transport, and it is, for the
most part, rather standard.

It is well-known that a function F : Rn → R is convex, in the sense of (16.1), if and
only if it satisfies

∇2F ≥ 0 (16.4)

(nonnegative Hessian) on Rn. The latter inequality should generally be understood in
distribution sense, but let me just forget about this subtlety which is not essential here.

Condition (16.4) is a differential condition, in contrast with the “integral” condi-
tion (16.1). There is a more general principle relating a lower bound on the Hessian (dif-
ferential condition) to a convexity-type inequality (integral condition). It can be stated in
terms of the one-dimensional Green function (of the Laplace operator with Dirichlet
boundary conditions). That Green function is the nonnegative kernel G(s, t) such that for
all functions ϕ ∈ C([0, 1]; R) ∩ C2((0, 1); R),

ϕ(t) = (1 − t)ϕ(0) + tϕ(1) −
∫ 1

0
ϕ̈(s)G(s, t) ds. (16.5)

It is easy to give an explicit expression for G:

G(s, t) =

{
s (1 − t) if s ≤ t

t (1 − s) if s ≥ t
(16.6)

Then formula (16.5) actually extends to arbitrary continuous functions ϕ on [0, 1], provided
that ϕ′′ (taken in distribution sense) is bounded below by a real number.

st 10

Fig. 16.1. The Green function G(s, t) as a function of s

The next statement provides the equivalence between several differential and integral
convexity conditions in a rather general setting.
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Proposition 16.2 (lower Hessian bounds). Let (M,g) be a smooth Riemannian man-
ifold, and let Λ = Λ(x, v) be a continuous quadratic form on TM ; that is, for any x, Λ(x, ·)
is a quadratic form in v, and it depends continuously on x. Assume that Λ ≥ Kg for some
K ∈ R. Then, for any function F ∈ C2(M), the following statements are equivalent:

(i) ∇2F ≥ Λ

(ii) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,

F (γt) ≤ (1 − t)F (γ0) + t F (γ1) −
∫ 1

0
Λ(γs, γ̇s)G(s, t) ds;

(iii) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,

F (γ1) ≥ F (γ0) +
〈
∇F (γ0), γ̇0

〉
+
∫ 1

0
Λ(γt, γ̇t) (1 − t) dt.

(iv) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,

〈
∇F (γ1), γ̇1

〉
−
〈
∇F (γ0), γ̇0

〉
≥
∫ 1

0
Λ(γt, γ̇t) dt.

The equivalence is still preserved if conditions (ii), (iii) and (iv) are respectively replaced
by the a priori weaker conditions

(ii’) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,

F (γt) ≤ (1 − t)F (γ0) + t F (γ1) − λ[γ]
t(1 − t)

2
d(γ0, γ1)2,

(iii’) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,

F (γ1) ≥ F (γ0) +
〈
∇F (γ0), γ̇0

〉
+ λ[γ]

d(γ0, γ1)2

2
.

(iv’) For any constant-speed, minimizing geodesic path (γt)0≤t≤1 on M ,
〈
∇F (γ1), γ̇1

〉
−
〈
∇F (γ0), γ̇0

〉
≥ λ[γ] d(γ0, γ1)2,

where
λ[γ] := inf

0≤t≤1

Λ(γt, γ̇t)
|γ̇t|2

.

Remark 16.3. In the particular case when Λ is equal to λg for some constant λ ∈ R,
property (ii) reduces to property (ii’) with λ[γ] = λ. Indeed, since γ has constant speed,

F (γt) ≤ (1 − t)F (γ0) + tF (γ1) − λ

∫ 1

0
g(γs, γ̇s)G(s, t) ds

= (1 − t)F (γ0) + tF (γ1) − λ d(γ0, γ1)2
∫ 1

0
G(s, t) ds.

By plugging the function ϕ(t) = t2 in (16.5) one sees that
∫ 1
0 G(s, t) ds = t(1 − t)/2. So

(ii) indeed reduces to

F (γt) ≤ (1 − t)F (γ0) + tF (γ1) −
λ t(1 − t)

2
d(γ0, γ1)2. (16.7)
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Definition 16.4 (Λ-convexity). Let M be a smooth Riemannian manifold, and Λ =
Λ(x, v) a continuous quadratic form on M , Λ ≥ Kg for some K ∈ R. Then F : M →
R ∪ {+∞} is said to be Λ-convex if Property (ii) in Proposition 16.2 is satisfied. In the
case when Λ = λg, λ ∈ R, F will be said to be λ-convex; this means that inequality (16.7)
is satisfied. In particular, 0-convexity is just plain convexity.

Proof of Proposition 16.2. Assume that (i) holds true. Consider x0 and x1 in M , and
introduce a constant-speed minimizing geodesic γ joining γ0 = x0 to γ1 = x1. Then

d2

dt2
F (γt) =

〈
∇2F (γt) · γ̇t, γ̇t

〉
≥ Λ(γt, γ̇t).

Then Property (ii) follows from identity (16.5) with ϕ(t) := F (γt).
As for Property (iii), it can be established either by dividing the inequality in (ii) by

t > 0, and then letting t → 0, or directly from (i) by using the Taylor formula at order 2
with ϕ(t) = F (γt) again. Indeed, ϕ̇(0) = 〈∇F (γ0), γ̇0〉, while ϕ̈(t) ≥ Λ(γt, γ̇t).

To go from (iii) to (iv), replace the geodesic γt by the geodesic γ1−t, to get

F (γ0) ≥ F (γ1) −
〈
∇F (γ1), γ̇1

〉
+
∫ 1

0
Λ(γ1−t, γ̇1−t) (1 − t) dt.

After changing variables in the last integral, this is

F (γ0) ≥ F (γ1) −
〈
∇F (γ1), γ̇1

〉
+
∫ 1

0
Λ(γt, γ̇t) t dt,

and by adding up (iii), one gets Property (iv).
So far we have seen that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). To complete the proof of equivalence

it is sufficient to check that (iv’) implies (i).
So assume (iv’). From the identity

〈
∇F (γ1), γ̇1

〉
−
〈
∇F (γ0), γ̇0

〉
=
∫ 1

0
∇2F (γt)(γ̇t) dt,

and (iv’), one deduces that, for all geodesic paths γ,

λ[γ] d(γ0, γ1)2 ≤
∫ 1

0
∇2F (γt)(γ̇t) dt. (16.8)

Choose (x0, v0) in TM , with v0 3= 0, and γ(t) = expx0
(εtv0), where ε > 0; of course γ

depends implicitly on ε, and d(γ0, γ1) = ε|v0|. Moreover, as ε → 0, (γt, γ̇t) > (x0, εv0) in
TM , so

λ[γ] = inf
0≤t≤1

Λ(γt, γ̇t)
|γ̇t|2

= inf
0≤t≤1

Λ(γt, γ̇t/ε)
|γ̇t/ε|2

−−−→
ε→0

Λ(x0, v0)
|v0|2

.

So the left-hand side of (16.8) converges to Λ(x0, v0). On the other hand, since ∇2F is
continuous, the right-hand side obviously converges to ∇2F (x0)(v0). Then Property (i)
follows. 78

Displacement convexity

Now I shall discuss convexity in the setting of optimal transport, replacing the manifold
M of the previous section by the length space P2(M). For the moment I shall only consider
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measures that are absolutely continuous with respect to the volume on M , and denote by
P ac

2 (M) the space of such measures. It makes sense to study convexity in P ac
2 (M) because

this is a geodesically convex subset of P2(M): By Theorem 8.7, a displacement interpolation
between any two absolutely continuous measures is itself absolutely continuous. (Singular
measures will be considered later, together with singular metric spaces, in Part III of these
notes.)

So let µ0 and µ1 be two probability measures on M , absolutely continuous with respect
to the volume element, and let (µt)0≤t≤1 be the displacement interpolation between µ0

and µ1. Recall from Chapter 13 that this displacement interpolation is uniquely defined,
and characterized by the formulas µt = (Tt)#µ0, where

Tt(x) = expx(t∇̃ψ(x)), (16.9)

and ψ is d2/2-convex. (Forget about the ˜ symbol if you don’t like it.) Moreover, Tt is
injective for t < 1; so for all t < 1 it makes sense to define the velocity field v(t, x) on
Tt(M) by

v
(
t, Tt(x)

)
=

d

dt
Tt(x),

and one also has
v
(
t, Tt(x)

)
= ∇̃ψt(Tt(x)),

where ψt is a solution at time t of the quadratic Hamilton–Jacobi equation with initial
datum ψ0 = ψ.

The next definition adapts the general definitions of convexity, λ-convexity, Λ-convexity.
Here λ is a real number that might nonnegative or nonpositive, while Λ = Λ(µ, v) defines
for each probability measure µ a quadratic form on vector fields v : M → TM ; it is assumed
that Λ ≥ K

∫
|v|2 dµ, for some K ∈ R.

Definition 16.5 (Displacement convexity). With the above notation, a functional
F : P ac

2 (M) → R ∪ {+∞} is said to be
- displacement convex if, whenever (µt)0≤t≤1 is a geodesic in P ac

2 (M),

∀t ∈ [0, 1] F (µt) ≤ (1 − t)F (µ0) + t F (µ1);

- λ-displacement convex, if, whenever (µt)0≤t≤1 is a geodesic in P ac
2 (M),

∀t ∈ [0, 1] F (µt) ≤ (1 − t)F (µ0) + t F (µ1) −
λ t(1 − t)

2
W2(µ0, µ1)2.

- Λ-displacement convex, if, whenever (µt)0≤t≤1 is a geodesic in P ac
2 (M), and

(ψt)0≤t≤1 is an associated solution of the Hamilton–Jacobi equation,

∀t ∈ [0, 1] F (µt) ≤ (1 − t)F (µ0) + t F (µ1) −
∫ 1

0
Λ(µs, ∇̃ψs)G(s, t) ds,

where G(s, t) is the one-dimensional Green function of (16.6).

Of course these definitions are more and more general: Λ-displacement convexity re-
duces to λ-displacement convexity when Λ(µ, v) = λ ‖v‖2

L2(µ); and this in turns reduces to
plain displacement convexity when λ = 0.
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Displacement convexity from curvature-dimension bounds

The question is whether such concepts apply to functionals of the form Uν , as in (16.3).
Of course Proposition 16.2 does not apply, because neither P2(M) nor P ac

2 (M) are smooth
manifolds. However, if one believes in Otto’s formalism, then we can hope that displace-
ment convexity, λ-displacement convexity, Λ-displacement convexity of Uν would be re-
spectively equivalent to

Hessµ Uν ≥ 0, Hessµ Uν ≥ λ, Hessµ Uν(µ̇) ≥ Λ(µ, µ̇), (16.10)

where Hessµ Uν stands for the formal Hessian of Uν at µ (which was computed in Chap-
ter 15), λ is a shorthand for λ ‖ ·‖2

L2(µ), and µ̇ is identified with ∇ψ via the usual continuity
equation

µ̇ + ∇ · (∇ψ µ) = 0.

Now I shall try to identify simple sufficient conditions on the manifold M , the reference
measure ν and the energy function U , for (16.10) to hold. This quest is, for the moment,
just formal; it will be checked later, without any reference to Otto’s formalism, that our
guess is correct.

To identify conditions for displacement convexity I shall use again the formalism of
Chapter 14. Equip the Riemannian manifold M with a reference measure ν = e−V vol ,
where V is a smooth function on M , and assume that the resulting space satisfies the
curvature-dimension bound CD(K,N), as in Theorem 14.8, for some N ∈ [1,∞] and
K ∈ R. Everywhere in the sequel, ρ will stand for the density of µ with respect to ν.

Consider a continuous function U : R+ → R. I shall assume that U is convex and
U(0) = 0. The latter condition is rather natural from a physical point of view (no matter
⇒ no energy). The convexity assumption might seem more artificial, and to justify it I
will argue that (i) the convexity of U is necessary for Uν to be lower semi-continuous
with respect to the weak topology induced by the metric W2; (ii) if one imposes the
nonnegativity of the pressure p(r) = rU ′(r) − U(r), which is natural from the physical
point of view, then conditions for displacement convexity will be in the end quite more
stringent than just convexity of U ; (iii) the convexity of U automatically implies the
nonnegativity of the pressure, since p(r) = rU ′(r) − U(r) = rU ′(r) − U(r) + U(0) ≥ 0.
For simplicity I shall also impose that U is twice continuously differentiable everywhere
in (0,+∞). Finally, I shall assume that ψ in (16.9) is C2, and I shall avoid the discussion
about the domain of definition of Uν by just considering compactly supported probability
measures.

Then, from (15.11) and (14.50),

Hessµ Uν(µ̇) =
∫

M
Γ2(ψ) p(ρ) dν +

∫

M
(Lψ)2 p2(ρ) dν (16.11)

≥
∫

M
RicN,ν(∇ψ) p(ρ) dν +

∫

M
(Lψ)2

[
p2 +

p

N

]
(ρ) dν (16.12)

≥ K

∫

M
|∇ψ|2 p(ρ) dν +

∫

M
(Lψ)2

[
p2 +

p

N

]
(ρ) dν. (16.13)

To get a bound on this expression, it is natural to assume that

p2 +
p

N
≥ 0. (16.14)

A typical example is U = UN defined by
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UN (ρ) =






−N
(
ρ1− 1

N − ρ
)

(1 < N < ∞)

ρ log ρ (N = ∞).
(16.15)

These functions will come back again and again in the sequel, and the associated functionals
will be denoted by HN,ν . The set of all functions U for which (16.14) is satisfied will be
called the displacement convex class of dimension N and denoted by DCN .

If inequality (16.14) holds true, then

Hessµ Uν ≥ KΛU ,

where
ΛU (µ, µ̇) =

∫

M
|∇ψ|2 p(ρ) dν. (16.16)

So the conclusion is as follows:

Guess 16.6. Let M be a Riemannian manifold satisfying a curvature-dimension bound
CD(K,N), and let U satisfy (16.14); then Uν is KΛU -displacement convex.

Note that all the previous discussion makes sense for N = ∞.
Actually, there should be an equivalence between the two statements in Guess 16.6. To

see this, assume that Uν is KΛU -displacement convex; pick up an arbitrary point x0 ∈ M , a
tangent vector v0 ∈ Tx0M , consider the particular function U = UN , a probability measure
µ which is very much concentrated close to x0, and a function ψ such that ∇ψ(x0) = v0

and Γ2(ψ)+ (Lψ)2/N = RicN,ν(v0) (as in the proof of Theorem 14.8). Then, on one hand,

KΛU (µ, µ̇) = K

∫
|∇ψ|2 ρ1− 1

N dν > K|v0|2
∫

ρ1− 1
N dν; (16.17)

on the other hand, by the choice of U ,

Hessµ Uν(µ̇) =
∫ [

Γ2(ψ) +
(Lψ)2

N

]
ρ1− 1

N dν,

but then since µ is concentrated around x0, this is well approximated by
[
Γ2(ψ) +

(Lψ)2

N

]
(x0)

∫
ρ1− 1

N dν = RicN,ν(v0)
∫

ρ1− 1
N dν.

Comparing that expression with (16.17) shows that RicN,ν(v0) ≥ K|v0|2. Since x0 and v0

were arbitrary, the conclusion is that RicN,ν ≥ K. Note that this reasoning only used the
functional HN,ν = (UN )ν , and probability measures µ that are very concentrated around
to a given point.

This heuristic discussion is summarized in the following

Guess 16.7. If, for each x0 ∈ M , HN,ν is KΛU -displacement convex when applied to
probability measures that are supported in a small neighborhood of x0, then M satisfies the
CD(K,N) curvature-dimension bound.
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Example 16.8. Condition CD(0,∞) with ν = vol just means Ric ≥ 0, and the statement
U ∈ DC∞ just means that the iterated pressure p2 is nonnegative. The typical example is
when U(ρ) = ρ log ρ, and then the corresponding functional is

H(µ) =
∫

ρ log ρ dvol , µ = ρ vol .

Then the above considerations suggest that the following statements are equivalent:
(i) Ric ≥ 0;
(ii) If the nonlinearity U is such that the nonnegative iterated pressure p2 is nonnegative,

then the functional Uvol is displacement convex;
(iii) H is displacement convex;
(iii’) For all x0 ∈ M , the functional H is displacement convex when applied to proba-

bility measures that are supported in a small neighborhood of x0.

Example 16.9. The above considerations also suggest that the inequality Ric ≥ K g is
equivalent to the K-displacement convexity of H, whatever the value of K ∈ R.

These guesses will be proven and generalized in the next chapter.

A fluid mechanics feeling for Ricci curvature

Ricci curvature is familiar to physicists because it plays a crucial role in Einstein’s theory of
general relativity. But what we have been discovering in this chapter is that Ricci curvature
can also be given a physical interpretation in terms of classical fluid mechanics. To give
the reader a better feeling of this new point of view, let us imagine how two physicists, the
first one used to relativity and light propagation, the second one used to fluid mechanics,
would answer the following question: Describe in an informal way an experiment that can
determine whether we live in a nonnegatively Ricci-curved space.

The Light source test: Take a small light source, and try to determine its volume by
looking at it from a distant position. If you systematically overestimate the volume of the
light source, then you live in a nonnegatively curved space (recall Figure 14.4).

The Lazy Gas experiment: Take a perfect gas in which particles do not interact, and
ask him to move from a certain prescribed density field at time t = 0, to another prescribed
density field at time t = 1. Since the gas is lazy, he will find a way to do so by spending a
minimal amount of work (least action path). Measure the entropy of the gas at each time,
and check that it always lie above the line joining the final and initial entropies. If such is
the case, then we know that we live in a nonnegatively curved space.

Bibliographical Notes

Convexity has been extensively studied in the Euclidean space [312] and in Banach
spaces [151, 79]. I am not aware of textbooks where the study of convexity in more general
length spaces is developed, although this notion is now of rather frequent use (in the
context of optimal transport, see e.g. [15, p. 50]).

The concept and terminology of displacement convexity were introduced by McCann in
the mid-nineties [267]. He identified Condition (16.14) as the basic criterion for convexity
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t = 1

t = 0

t = 1/2

t = 0 t = 1

S = −
∫

ρ log ρ

Fig. 16.2. The lazy gas experiment: To go from state 0 to state 1, the lazy gas uses a path of least action.
In a nonnegatively curved world, the trajectories of its particles first diverge, then converge, so that at
intermediate times he can afford to have a lower density (higher entropy).

in P2(Rn), and also discussed other formulations of this condition, that will be studied in
the next chapter. Inequality (16.14) was later rediscovered by several authors, in various
contexts.

The application of Otto calculus to the study of displacement convexity goes back
to [290] and [292]. In the latter reference it was conjectured that nonnegative Ricci curva-
ture would imply displacement convexity of H.

Ricci curvature appears explicitly in Einstein’s equations, and will be encountered in
any mildly advanced book on general relativity. Fluid mechanics analogies for curvature ap-
pear explicitly in the work by Cordero-Erausquin, McCann and Schmuckenschläger [118].
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Displacement convexity II

In the previous chapter, a conjecture was formulated about the links between displacement
convexity and curvature-dimension bounds; the plausibility of this conjecture was justified
by some formal computations based on Otto’s calculus. Now in the present chapter I shall
provide a rigorous justification of this conjecture. In contrast with the previous chapter
that was based on an Eulerian point of view, in the present chapter I shall now use a
Lagrangian approach. Not only is the Lagrangian formalism easier to justify, but it will
also lead to new curvature-dimension criteria (“distorted displacement convexity”).

Displacement convexity classes

What I shall call displacement convex class of order N is a family of convex nonlinearities
satisfying a certain characteristic differential inequality of second order (recall (16.14)).

Definition 17.1 (displacement convex classes). Let N ∈ [1,∞] be given. Then the
class DCN is defined as the set of continuous convex functions U : R+ → R, twice contin-
uously differentiable on (0,+∞), such that U(0) = 0, and, with the notation

p(r) = rU ′(r) − U(r), p2(r) = rp′(r) − p(r),

U satisfies any one of the following equivalent differential conditions:

(i) p2 +
p

N
≥ 0;

(ii)
p(r)

r1−1/N
is a nondecreasing function of r;

(iii) u(δ) :=

{
δNU(δ−N ) (δ ∈ R+) if N < ∞
eδU(e−δ) (δ ∈ R) if N = ∞

}
is a convex function of δ.

Remark 17.2. Since U is convex and U(0) = 0, the function u appearing in (iii) is auto-
matically nonincreasing.

Remark 17.3. It is clear (from condition (i) for instance) that DCN ′ ⊂ DCN for N ′ ≥ N .
So the smallest class of all is DC∞, while DC1 is the largest (actually, conditions (i)-(iii)
are void for N = 1).

Remark 17.4. If U belongs to DCN , then for any a ≥ 0, b > 0, c ∈ R, the function
r "−→ aU(br) + cr also belongs to DCN .
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Remark 17.5. The requirement for U to be twice differentiable on (0,+∞) could be re-
moved from most (but probably not all) subsequent results involving displacement convex-
ity classes. Still, this regularity assumption will simplify the proofs, without significantly
restricting the generality of applications.

Examples 17.6. (i) For any α ≥ 1, the function U(r) = rα belongs to all classes DCN ;
(ii) If α < 1, then the function U(r) = −rα belongs to DCN if and only if N ≤ (1−α)−1

(that is, α ≥ 1− 1/N). The function −r1−1/N is in some sense the minimal representative
of DCN .

(iii) The function U∞(r) = r log r belongs to DC∞. It can be seen as the limit of the
functions UN (r) = −N(r1−1/N −r), which are the same (up to multiplication and addition
of a linear function) than the functions appearing in (ii) above.

Proof of the equivalence in Definition 17.1. Assume first N < ∞, and write r(δ) = δ−N .
By computation, u′(δ) = −Np(r)/r1−1/N . So u is convex if and only if p(r)/r1−1/N is
a nonincreasing function of δ, i.e. a nondecreasing function of r. Thus (ii) and (iii) are
equivalent.

Next, by computation again,

u′′(δ) = N2r
2
N −1

(
p2(r) +

p(r)
N

)
. (17.1)

So u is convex if and only if p2 + p/N is nonnegative. This shows the equivalence between
(i) and (iii).

In the case N = ∞, the arguments are similar, with the formulas

r(δ) = e−δ , u′(δ) = −p(r)
r

, u′′(δ) =
p2(r)

r
.

78

As noticed in Remark 17.4, linear functions r "−→ c r lie in all classes DCN . It is
interesting to enquire about the possible superlinear growth of functions in DCN at infinity.
The following proposition partly answers this question: It shows that nonlinear functions
in DC∞ grow at least like r log r at infinity, while for finite N , superlinear functions in
DCN may grow as slowly as desired.

Proposition 17.7 (asymptotic behavior of functions in DCN).
(i) If U ∈ DC∞, then either U is linear, or there exists constants a, b > 0 such that

U(r) ≥ a r log r − b r.

(ii) Let N ∈ [1,∞), and let Ψ ∈ C(R+; R+) be such that Ψ(r)/r −→ ∞ as r → ∞; then
there exists U ∈ DCN such that 0 ≤ U ≤ Ψ , and U(r)/r −→ ∞ as r → ∞.

(iii) Let N ∈ [1,∞] and let U ∈ DCN ; then U is the pointwise nondecreasing limit of a
sequence of functions (U()(∈N in DCN , such that (U()′(∞) < ∞ and (U()′(∞) → U ′(∞).

(iv) Let N ∈ [1,∞] and let U ∈ DCN ; then U is the pointwise nonincreasing limit of a
sequence of functions (U()(∈N in DCN , such that (U()′(0) > −∞, and (U()′(0) → U ′(0).

Proof of Proposition 17.7. In case (i), the function U can be reconstructed from u by the
formula

U(r) = r u(log(1/r)), (17.2)
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As u is convex and nonincreasing, either u is constant (in which case U is linear), or there
are constants a, b > 0 such that u(δ) ≥ −aδ − b, and then U(r) ≥ −ar log(1/r) − br =
ar log r − br.

Now consider property (ii). Without loss of generality, one may assume that Ψ is iden-
tically 0 on [0, 1] (otherwise, replace Ψ by χΨ , where 0 ≤ χ ≤ 1 and χ is identically 0 on
[0, 1], identically 1 on [2,+∞)). Define a function u : (0,∞) → R by

u(δ) = δNΨ(δ−N ). (17.3)

Then u ≡ 0 on [1,∞), and limδ→0+ u(δ) = ∞. The idea is to reconstruct U from u, but
the latter might not be convex.

So let ũ be the lower convex hull of u on (0,∞), i.e. the supremum of all linear functions
bounded above by u. Then ũ ≡ 0 on [1,∞) and ũ is nonincreasing. Necessarily,

lim
δ→0+

ũ(δ) = +∞. (17.4)

Indeed, suppose on the contrary that limδ→0+ ũ(δ) = M < +∞. Let a ∈ R be defined
by a := supδ≥0

M+1−u(δ)
δ (this function is nonpositive when δ is small enough, so the

supremum is finite). Then u(δ) ≥ M + 1 − aδ, so limδ→0+ ũ(δ) ≥ M + 1, which is a
contradiction. So (17.4) does hold true.

Now set
U(r) := r ũ(r−1/N ). (17.5)

Clearly U is continuous and nonnegative, with U ≡ 0 on [0, 1]. As ũ is convex and non-
increasing, it follows that U is convex. Hence U ∈ DCN . On the other hand, since ũ ≤ u
and Ψ(r) = r u(r−1/N ), it is clear that U ≤ Ψ ; and still (17.4) implies that U(r)/r goes to
+∞ as r → ∞.

Next consider statement (iii). To fix the ideas I shall consider the case N < ∞, but the
case N = ∞ works just the same. Let U ∈ DCN , and let u(δ) = δNU(δ−N ). We know that
u is a nonincreasing, twice differentiable convex function. If u is nonpositive close to 0,
this means that U is nonpositive at infinity, and there is nothing to prove; so let us assume
that u is positive close to 0. Let then

u((δ) =

{
u(δ) if δ ≥ 1/5,
u(1/5) + (δ − 1/5)u′(1/5) if δ < 1/5.

It is clear that u( is still a nonincreasing convex function of δ, bounded above by u, and
converges monotonically to u as 5 → ∞. It may fail to be twice differentiable at δ = 1/5,
but it is not hard to regularize it on the interval [1/(5 − 1), 1/(5 + 1)], in such a way that
the regularized function ũ( satisfies the same properties as u(.

Now let
U((r) = r ũ((r−1/N ).

By direct computation,

U ′′
( (r) =

r−1− 1
N

N2

(
r−

1
N ũ′′

( (r
− 1

N ) − (N − 1) ũ′
((r

− 1
N )
)
.

Since ũ( is convex nonincreasing, the above expression is nonpositive, and U( is convex.
Then it is easy to check that U( actually lies in DCN . On the other hand, as r → ∞,
U((r) is asymptotic to ũ((0) r, so it has linear growth. This shows that U is the pointwise
monotone limit of functions in DCN with asymptotic linear growth, as desired.

The proof of (iv) follows the same lines, except that now it is for large values of δ that
u should be replaced by a linear function. 78
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Domain of the functionals Uν

To any U ∈ DCN corresponds a functional Uν . However, some conditions might be needed
to make sense of Uν(µ). Why is that so? If U is, say, nonnegative, then an integral such
as
∫

U(ρ) dν always makes sense in [0,∞], so Uν is well-defined on the whole of P ac
2 (M).

But U might be partially negative, and then one should not exclude the possibility that
both the negative and the positive parts of U(ρ) have infinite integral. The problem comes
from infinity and does not arise on a compact manifold.

Theorem 17.8 below solves this issue: It shows that under some integral condition on
ν, the quantity Uν(µ) is well-defined if µ has finite moments of order p large enough. This
suggests to study Uν on the Wasserstein space of order p, rather than on the Wasserstein
space of order 2. Since this result only uses the metric structure, I shall state it in the
context of general Polish spaces rather than Riemannian manifolds.

Theorem 17.8. Let (X , d) be a Polish space and let ν be a Borel measure on X . Let
N ∈ [1,∞]. Assume that there exists x0 ∈ X and p ∈ [2,+∞) such that






∫

X

dν(x)
[1 + d(x0, x)]p(N−1)

< +∞ if N < ∞,

∃c > 0
∫
M e−c d(x0,x)p

dν(x) < +∞ if N = ∞.

(17.6)

Then, for all U ∈ DCN , the formula

Uν(µ) =
∫

X
U(ρ) dν, µ = ρν

unambiguously defines a functional Uν : P ac
p (X ) → R ∪ {+∞}, where P ac

p (X ) is the set of
absolutely continuous probability measures on X with a finite moment of order p.

Even if no such p exists, Uν is still well-defined on P ac
c (X ), the set of absolutely con-

tinuous compactly supported probability measures.

Example 17.9. If ν is the Lebesgue measure on RN , then Uν is well-defined on P ac
2 (RN )

for all U ∈ DCN , as long as N ≥ 3. For N = 2, Theorem 17.8 allows to define Uν on
P ac

p (RN ), for any p > 2. In the case N = 1, Uν is well-defined on P ac
c (RN ).

Convention 17.10. In the sequel I shall sometimes write “p ∈ [2,+∞) ∪ {c} satisfying
the assumptions of Theorem 17.8”. This means that p is either a real number greater or
equal than 2, satisfying (17.6) (the metric space (X , d) and the reference measure ν should
be obvious from the context); or the symbol “c”, so that Pp(X ) stands for the set Pc(X )
of compactly supported probability measures.

Remark 17.11. For any positive constant C, the set of probability measures µ in Pp(X )
with

∫
d(x0, x)p dµ(x) ≤ C is closed in P2(X ); but in general the whole set Pp(X ) is not.

Similarly, if K is a given compact subset of X , then the set of probability measures with
compact support in K is compact in P2(X ); but Pc(X ) is not closed in general.

Remark 17.12. If X is a length space (for instance a Riemannian manifold equipped with
its geodesic distance), then Pp(M) is a geodesically convex subset of Pq(M), for any q ∈
(1,+∞). Indeed, let (µt)0≤t≤1 be a geodesic in Pq(M); according to Corollary 7.20, there
is a random geodesic γ such that µt = law (γt); then the inequalities E d(x0, γ0)p < +∞
and E d(x0, γ1)p < +∞ together imply E d(x0, γt)p, in view of the (crude) inequality
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0 ≤ t ≤ 1 =⇒ d(x0, γt)p ≤ 22p−1
[
d(x0, γ0)p + d(x0, γ1)p

]
.

Combining this with Theorem 8.7, we deduce that P ac
p (M) is geodesically convex in P2(M),

so it is not absurd to study convexity properties of Uν along geodesics of P2(M).

Proof of Theorem 17.8. The problem is to show that under the assumptions of the theorem,
U(ρ) is bounded below by a ν-integrable function; then Uν(µ) =

∫
U(ρ) dν will be well-

defined in R ∪ {+∞}.
Suppose first that N < ∞. By convexity of u, there is a constant A > 0 so that

δN U(δ−N ) ≥ −Aδ − A, which means

U(ρ) ≥ −A
(
ρ + ρ1− 1

N
)
. (17.7)

Of course, ρ lies in L1(ν); so it is sufficient to show that also ρ1−1/N lies in L1(ν). But
this is a simple consequence of Hölder’s inequality, since
∫

X
ρ(x)1−

1
N dν(x) =

∫

X

(
(1 + d(x0, x)p)ρ(x)

)1− 1
N (1 + d(x0, x)p)−1+ 1

N dν(x)

≤
(∫

X
(1 + d(x0, x)p)ρ(x) dν(x)

)1− 1
N
(∫

X
(1 + d(x0, x)p)−(N−1) dν(x)

) 1
N

.

Now suppose that N = ∞. By Proposition 17.7(i), there are positive constants A,B
such that

U(ρ) ≥ A ρ log ρ− B ρ (17.8)

Thus it is sufficient to show that (ρ log ρ)− ∈ L1(X, ν). Write

∫

X
ρ(x) log(ρ(x)) dν(x) =

∫

X
ρ(x) ec d(x0,x)p

log
(
ρ(x) ec d(x0,x)p

)
e−c d(x0,x)p

dν(x)

− c

∫

X
d(x0, x)p ρ(x) dν(x)

=
(∫

X
e−c d(x0,x)p

dν(x)
)(∫

X
ρ(x) ecd(x0,x)p

log
(
ρ(x) ec d(x0,x)p

) e−c d(x0,x)p
dν(x)∫

X e−c d(x0,x)p dν(x)

)

− c

∫

X
d(x0, x)p ρ(x) dν(x).

Thanks to Jensen’s inequality, applied with the probability measure e−c d(x0,·)p dνR
X e−c d(x0,·)p dν

, the
latter expression can be bounded below by

(∫

X
e−c d(x0,x)p

dν(x)
)( ∫

X ρ dν∫
X e−c d(x0,x)p dν(x)

)
log

( ∫
X ρ dν∫

X e−c d(x0,x)p dν(x)

)

− c

∫

X
d(x0, x)p ρ(x) dν(x).

This concludes the argument. 78

In the sequel of this chapter, I shall study properties of the functionals Uν , when the
base space is a Riemannian manifold M , equipped with its geodesic distance.
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Displacement convexity from curvature bounds, revisited

Recall the notation UN introduced in (16.15) (or in Example 17.6 (iii)). For any N > 1,
the functional (UN )ν will be rather denoted by HN,ν:

HN,ν(µ) =
∫

M
UN (ρ) dν, µ = ρ ν.

I shall often write Hν instead of H∞,ν; and I may even write just H if the reference
measure is the volume measure. This notation is justified by analogy with the well-known
Boltzmann’s H functional H(ρ) =

∫
ρ log ρ dvol .

For each U ∈ DCN formula (16.16) defines a functional ΛU which will later play a role
in displacement convexity estimates. It will be convenient to compare this quantity with
ΛN := ΛUN :

ΛN (µ, v) =
∫

M
|v(x)|2 ρ1− 1

N (x) dν(x).

It is clear that ΛU ≥ KN,U ΛN , where

KN,U = inf
r>0

Kp(r)
r1−1/N

=






K lim
r→∞

p(r)
r1−1/N

if K > 0

0 if K = 0

K lim
r→0

p(r)
r1−1/N

if K < 0.

(17.9)

It will also be useful to introduce a local version of displacement convexity. In short, a
functional Uν is said to be locally displacement convex if it is displacement convex in the
neighborhood of each point.

Definition 17.13 (local displacement convexity). Let M be a Riemannian manifold,
and let F be defined on a geodesically convex subset of P ac

2 (M), with values in R∪ {+∞}.
Then F is said to be locally displacement convex if, for any x0 ∈ M there is r > 0 such
that the convexity inequality

∀t ∈ [0, 1] F (µt) ≤ (1 − t)F (µ0) + t F (µ1)

holds true as soon as all measures µt, 0 ≤ t ≤ 1, are supported in the ball Br(x0).
The concepts of local Λ-displacement, and local λ-displacement convexity are defined

similarly, by localizing Definition 16.5.

Warning 17.14. When one says that a functional F is locally displacement convex, this
does not mean that F is displacement convex in a small neighborhood of µ, for any µ.
The word “local” refers to the topology of the base space M , not the topology of the
Wasserstein space.

The next theorem is a rigorous implementation of Guesses 16.6 and 16.7; it relates
curvature-dimension bounds, as appearing in Theorem 14.8, to displacement convexity
properties. Recall Convention 17.10.
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Theorem 17.15 (curvature-dimension bounds read off from displacement con-
vexity). Let M be a Riemannian manifold, equipped with its geodesic distance d, and
a reference measure ν = e−V vol , where V ∈ C2(M). Let K ∈ R and N ∈ (1,+∞].
Let p ∈ [2,+∞) ∪ {c} satisfy the assumptions of Theorem 17.8. Then the following three
conditions are equivalent:

(i) M satisfies the curvature-dimension criterion CD(K,N);
(ii) Each U ∈ DCN is ΛN,U -displacement convex on P ac

p (X ), where ΛN,U = KN,UΛN ;
(iii) UN is locally ΛN -displacement convex.

Remark 17.16. The case N = 1 is degenerate since U1 is not defined; in that case the
equivalence (i) ⇔ (ii) remains true if one defines KN,U to be +∞ if K > 0, and 0 if K ≤ 0.
I shall address this case from a slightly different point of view in Theorem 17.32 below.
(As stated in that theorem, N = 1 is possible only if M is one-dimensional and ν = vol .)

As a particular case of Theorem 17.15, we now have a rigorous justification of the guess
formulated in Example 16.8: nonnegative Ricci curvature is equivalent to the (local) dis-
placement convexity of Boltzmann’s H functional. This is the intersection of two situations
where Theorem 17.15 is easier to formulate: (a) the case N = ∞; and (b) the case K = 0.
These cases are important enough to be stated explicitly as corollaries of Theorem 17.15:

Corollary 17.17 (CD(K,∞) and CD(0, N) bounds via optimal transport). Let
(M,g) be a Riemannian manifold, K ∈ R and N ∈ (1,∞]; then

(a) M satisfies Ric ≥ K g if and only if Boltzmann’s functional H is K-displacement
convex on P ac

c (M);
(b) M has nonnegative Ricci curvature and dimension bounded above by N if and only

if HN,vol is displacement convex on P ac
c (M).

Remark 17.18. All these results can be extended to singular measures, so the restriction
to absolutely continuous measures is nonessential. I shall come back to these issues in
Part III of these notes.

Core of the proof of Theorem 17.15. Before giving a complete proof, I shall give the main
argument for the implication (i) ⇒ (ii) in Theorem 17.15, in the simple case K = 0.

Let (µt)0≤t≤1 be a Wasserstein geodesic, with µt absolutely continuous, and let ρt be
the density of µt with respect to ν. It will follow by change of variables that

∫
U(ρt) dν =

∫
U

(
ρ0

Jt

)
Jt dν,

where Jt is the Jacobian of the optimal transport taking µ0 to µt. The next step consists
in rewriting this as a function of the mean distortion. Let u(δ) = δNU(δ−N ), then

∫
U

(
ρ0

Jt

)
Jt dν =

∫
u



J
1
N

t

ρ
1
N
0



 ρ0 dν.

The fact that U belongs to DCN means precisely that u is convex nonincreasing. The
nonnegativity of Ricci curvature means that the expression inside the brackets is a concave
function of t. Then the convexity of the whole expression follows from the simple fact that
the composition of a convex nonincreasing function with a concave function is itself convex.
78
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Complete proof of Theorem 17.15.
Let us start with the proof of (i) ⇒ (ii). I shall only treat the case N < ∞, since

the case N = ∞ is very similar. In a first step, I shall also assume that µ0 and µ1 are
compactly supported; this assumption will be relaxed in a second step.

So let µ0 and µ1 be two absolutely continuous, compactly supported probability mea-
sures and let (µt)0≤t≤1 be the unique displacement interpolation between µ0 and µ1. It can
be written (Tt)#µ0, where Tt(x) = expx(t∇ψ(x)), let then (ψt)0≤t≤1 solve the Hamilton–
Jacobi equation with initial datum ψ0 = ψ. The goal is to show that

Uν(µt) ≤ (1 − t)Uν(µ0) + t Uν(µ1) − KN,U

∫ 1

0

∫

M
ρs(x)1−

1
N |∇ψs(x)|2 dν(x)G(s, t) ds.

(17.10)
If either Uν(µ0) = ∞ or Uν(µ1) = ∞, then there is nothing to prove; so let us assume

that these quantities are finite.
Let t0 be a fixed time in (0, 1); on Tt0(M), define, for all t ∈ [0, 1],

Tt0→t
(
expx(t0∇ψ(x))

)
= expx(t∇ψ(x)).

Then Tt0→t is the unique optimal transport µt0 → µt. Let Jt0→t be the associated Ja-
cobian determinant (well-defined µt0-almost surely). Recall from Chapter 11 that µt is
concentrated on Tt0→t(M) and that its density ρt is determined by the equation

ρt0(x) = ρt(Tt0→t(x))Jt0→t(x). (17.11)

Since U(0) = 0, it is possible to apply Theorem 11.3 to F (x) = U(ρt(x)); or more
precisely, to the positive part and the negative part of U separately. So

∫

M
U(ρt(x)) dν(x) =

∫

M
U
(
ρt(Tt0→t(x))

)
Jt0→t(x) dν(x).

Then formula (17.11) implies
∫

M
U(ρt) dν =

∫

M
U

(
ρt0(x)

Jt0→t(x)

)
Jt0→t(x) dν(x). (17.12)

Since the contribution of {ρt0 = 0} does not matter, this can be rewritten

Uν(µt) =
∫

M
U

(
ρt0(x)

Jt0→t(x)

)
Jt0→t(x)
ρt0(x)

ρt0(x) dν(x)

=
∫

M
U
(
δt0(t, x)−N

)
δt0(t, x)N dµt0(x)

=
∫

M
w(t, x) dµt0(x),

where w(t, x) := U(δt0(t, x)−N ) δt0(t, x)N , and

δt0(t, x) = ρt
(
Tt0→t(x)

)− 1
N =

(
Jt0→t(x)
ρt0(x)

) 1
N

.

Up to a factor which does not depend on t, δt0(·, x) coincides with D(t) in the notation
of Chapter 14. So, by Theorem 14.8, for almost all x one has

δ̈t0(t, x) ≤ −K

N
δt0(t, x)

∣∣∇ψt(Tt0→t(x))
∣∣2.
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Set u(δ) = δN U(δ−N ), so that w = u◦δ, where δ is a shorthand for δt0(·, x) and x is fixed.
Then, since u is convex and u̇ = −Np(r)/r1−1/N ≤ 0, one has, with r = δ−N ,

∂2w

∂t2
=
(
∂2u

∂δ2

)
(δ̇(t))2 +

(
∂u

∂δ

)
δ̈(t) ≥

(
−N

p(r)

r1− 1
N

)(
−K

N
δ(t) |∇ψt(Tt0→t(x))|2

)
.

By combining this with the definition of KN,U , one obtains

ẅ(t, x) ≥ KN,U δt0(t, x) = KN,U ρt(Tt0→t(x))−
1
N |∇ψt(Tt0→t(x))|2. (17.13)

Since w is a continuous function of t, this implies (recall Proposition 16.2)

w(t, x)−(1−t)w(0, x)−tw(1, x) ≤ −KN,U

∫ 1

0
ρs(Tt0→s(x))−

1
N
∣∣∇ψs(Tt0→s(x))

∣∣2 G(s, t) ds.

Upon integration against µt0 , this inequality becomes

Uν(µt) − (1 − t)Uν(µ0) − t Uν(µ1) ≤ −KN,U

∫

M

(∫ 1

0
ρs(Tt0→s(x))−

1
N |∇ψs(Tt0→s(x))|2 G(s, t) ds

)
dµt0(x)

= −KN,U

∫ 1

0

∫

M
ρs(Tt0→s(x))−

1
N |∇ψs(Tt0→s(x))|2 dµt0(x)G(s, t) ds

= −KN,U

∫ 1

0

∫

M
ρs(y)−

1
N |∇ψs(y)|2 dµs(y)G(s, t) ds

= −KN,U

∫ 1

0

∫

M
ρs(y)1−

1
N |∇ψs(y)|2 dν(y)G(s, t) ds.

This concludes the proof of Property (ii) when µ0 and µ1 have compact support. Now
the general case will be obtained by a restriction argument. Let p ∈ [2,+∞) satisfy the
assumptions of Theorem 17.8, and let µ0, µ1 be two probability measures in P ac

p (M). Let
(Z()(∈N, (µt,()0≤t≤1, (∈N (ψt,()0≤t≤1, (∈N be as in Proposition 13.2. Let ρt,( stand for the
density of µt,(. By Remark 17.4, the function U( : r → U(Z(r) belongs to DCN ; and it is
easy to check that KN,U! = KN,U . Since the µt,( are compactly supported, we can apply
the previous inequality with µt replaced by µt,( and U replaced by U(:

∫
U(Z( ρt,() dν ≤ (1 − t)

∫
U(Z( ρ0,() dν + t

∫
U(Z( ρ1,() dν

− KN,U

∫ 1

0

∫

M
ρs,((y)1−

1
N |∇ψs,((y)|2 dν(y)G(s, t) ds. (17.14)

It remains to pass to the limit in (17.14) as 5 → ∞. Recall from Proposition 13.2 that
Z( ρt,( is a nondecreasing family of functions converging monotonically to ρt. Since U+ is
nondecreasing, it follow that

U+(Z( ρt,() ↑ U+(ρt).

On the other hand, the proof of Theorem 17.8 shows that U−(r) ≤ A(r + r1− 1
N ) for some

A = A(N,U); so

U−(Z( ρt,() ≤ A
(
Z( ρt,( + Z

1− 1
N

( ρ
1− 1

N
t,(

)
≤ A

(
ρt + ρ

1− 1
N

t

)
. (17.15)

By the proof of Theorem 17.8 and Remark 17.12, the function on the right-hand side
of (17.15) is ν-integrable. As a conclusion,
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∫
U+(Z( ρt,() dν −−−→

(→∞

∫
U+(ρt) dν by monotone convergence;

∫
U−(Z( ρt,() dν −−−→

(→∞

∫
U−(ρt) dν by dominated convergence.

So we can pass to the limit in the first three terms appearing in the inequality (17.14).
As for the last term, note that |∇ψs,((y)|2 = d(y, Ts→1,((y))2, at least µs,((dy)-almost
surely; but then this coincides with d(y, Ts→1(y))2, according to Proposition 13.2. So the
last integral in (17.14) can be rewritten as

1

Z
1− 1

N
(

∫ 1

0

∫

M
(Z( ρs,((y))1−

1
N d(y, Ts→1)2 dν(y)G(s, t) ds,

and by monotone convergence this goes to
∫ 1

0

∫

M
(ρs(y))1−

1
N d(y, Ts→1)2 dν(y)G(s, t) ds

as k → ∞. So we have passed to the limit in all terms of (17.14), and the proof of (i) ⇒
(ii) is complete.

Since the implication (ii) ⇒ (iii) is trivial, to conclude the proof of Theorem 17.15
it only suffices to prove that (iii) implies (i). So let x0 ∈ M ; the goal is to show that
(RicN,ν)x0 ≥ K gx0 , where g is the Riemannian metric. Let r > 0 be such that HN,ν is
ΛN -displacement convex in Br(x0). Let v0 3= 0 be a tangent vector at x0. As in the proof
of Theorem 14.8, we can construct ψ̃ ∈ C2(M), compactly supported in Br(x0), such that
∇ψ̃(x0) = v0, ∇2ψ̃(x0) = λ0 In (where In is the identity on Tx0M) and

[

Γ2(ψ̃) +
(Lψ̃)2

N

]

(x0) = RicN,ν(v0).

Let then ψ := θψ̃, where θ is a positive real number. If θ is small enough, then ψ is d2/2-
convex by Theorem 13.4, and |∇ψ| ≤ r/2. Let then ρ0 be a smooth probability density,
supported in Bη(x0), with η < r/2. Define

µ0 = ρ0 ν; µt = exp(t∇ψ)#µ0.

Then (µt)0≤t≤1 is a geodesic in P2(M), and it is entirely supported in Br(x0), so condition
(iii) implies

HN,ν(µt) − (1 − t)HN,ν(µ0) − t HN,ν(µ1) ≥ K

∫ 1

0

(∫
ρs(x)1−

1
N |∇ψs(x)|2 dν(x)

)
ds.

(17.16)
As in the proof of (i) ⇒ (ii), let δ(t, x) be the Jacobian determinant of the map exp(t∇ψ)

at x. (This amounts to choose t0 = 0 in the computations above; now this is not a problem
since exp(t∇ψ) is for sure Lipschitz.) Let further γ(t, x) = expx(t∇ψ(x)). Formula (14.39)
becomes

− N
δ̈(t, x)
δ(t, x)

= RicN,ν(γ̇(t, x)) +
∥∥∥∥U(t, x) −

(
tr U(t, x)

n

)
In

∥∥∥∥
2

HS

+
n

N(N − n)

[(
N − n

n

)
tr U(t, x) + γ̇(t, x) ·∇V (γ(t, x))

]2

, (17.17)
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where U(t, x) solves U(0, x) = ∇2ψ(x) and U is the solution of the differential equation
U̇ + U2 + R = 0, where R is defined by (14.7). By using all this information, we shall
derive expansions of (17.17) as θ → 0, ψ̃ being fixed. First of all, x = x0 + O(θ) (this is
formal writing to mean that d(x, x0) = O(θ); then, by smoothness of the exponential map,
γ̇(t, x) = θv0 + O(θ2); it follows that RicN,ν(γ̇(t, x)) = θ2RicN,nu;x0(v0) + O(θ3). Next,
U(0) = θ∇2ψ̃(x0) = λ0θIn; so the differential inequality satisfied by U leads to U̇(0) =
−(λ0θ)2In − R(0) = O(θ2), so U(t, x) = λ0θIn + O(θ2). Also U − (tr U)In/n = O(θ2),
tr U(t) = λ0θn+O(θ2) and γ̇(t, x) ·∇V (γ(t, x))+((N −n)/n) tr U(t, x) = O(θ2). Plugging
all these expansions in (17.17), we get

δ̈(t, x)
δ(t, x)

=
1
N

(
−θ2 RicN,ν(v0) + O(θ3)

)
. (17.18)

By repeating the proof of (i) ⇒ (ii) with U = UN and using (17.18), one obtains

HN,ν(µt) − (1 − t)HN,ν(µ0) − t HN,ν(µ1)

≥ −θ2
(
RicN,ν(v0) + O(θ)

) ∫ 1

0

∫

M
ρs(y)1−

1
N dν(y)G(s, t) ds. (17.19)

On the other hand, by assumption

HN,ν(µt)−(1−t)HN,ν(µ0)−t HN,ν(µ1) ≤ −K

∫ 1

0

∫

M
ρs(y)1−

1
N |γ̇(s, y)|2 dν(y)G(s, t) ds

= −K θ2(|v0|2 + O(θ))
∫ 1

0

∫

M
ρs(y)1−

1
N |γ̇(s, y)|2 dν(y)G(s, t) ds.

(The constant K is here because KN,UN = K.) By combining this with (17.19) and can-
celling out the factors θ2

∫ 1
0

∫
ρs(y)1−

1
N dν(y)G(s, t) ds, one concludes that

RicN,ν(v0) ≥ K|v0|2 + O(θ).

The conclusion follows upon taking the limit θ → 0. 78

Exercise 17.19 (Necessary condition for displacement convexity). This exercise
shows that elements of DCN are essentially the only candidates for displacement convexity.
Let N be a positive integer, M = RN , and let ν be the Lebesgue measure in RN . Let U
be a measurable function R+ → R such that Uν is lower semi-continuous and convex on
the space P ac

c (RN ) (absolutely continuous, compactly supported probability measures),
equipped with the distance W2. Show that (a) U is convex lower semi-continuous; (b)
δ → δN U(δ−N ) is convex. Hint: To prove (b), consider the geodesic curve (µδ)δ>0, where
µδ is the uniform probability measure on Bδ(0).

Exercise 17.20 (a bit tricky). Show that if (M, ν) satisfies CD(K,N) and U ∈ DCN ,
then Uν is Kλ-displacement convex, when restricted to the geodesically convex set defined
by

ρ ≤ R,

with λ = R1/N . In short, Uν is K‖ρ‖1/N
L∞ -displacement convex.
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Ricci curvature bounds from distorted displacement convexity

In Theorem 17.15, all the influence of the Ricci curvature bounds lies in the additional
term

∫ 1
0 (. . .)G(s, t) ds. As a consequence, as soon as K 3= 0 and N < ∞, the formulation

involves not only µt, µ0 and µ1, but the whole geodesic path (µs)0≤s≤1. This makes the
exploitation of the resulting inequality (in geometric applications, for instance) somewhat
delicate, if not impossible.

This difficulty was elegantly solved by Sturm, who suggested a different formulation,
expressed only in terms of µt, µ0 and µ1; but now, the functionals Uν(µ0) and Uν(µ1) are
replaced by other expressions of µ0 in which extra distortion coefficients will appear. From
the technical point of view, this new formulation relies on the principle that one can “take
the direction of motion out”, in all reformulations of Ricci curvature bounds that were
examined in Chapter 14. Before stating the definition of distorted displacement convexity,
I shall spend some time on the distorted Uν functionals.

Definition 17.21 (Distorted Uν functional). Let (X , d) be a Polish space equipped with
a reference measure ν. Let U be a convex function with U(0) = 0, and let β be a positive
continuous function on X ×X . The distorted Uν functional with distortion coefficient β is
defined as follows: For any probability measure π on X ×X , whose marginal µ on the first
factor is absolutely continuous,

Uβ
π,ν(µ) =

∫

X×X
U

(
ρ(x)

β(x, y)

)
β(x, y)π(dy|x) ν(dx), (17.20)

where π(dy|x) is the disintegration of π with respect to its first marginal. In particular, if
π is a deterministic transference plan associated with some transport T : X → Y, then

Uβ
π,ν(µ) =

∫

X
U

(
ρ(x)

β(x, T (x))

)
β(x, T (x)) ν(dx), (17.21)

Remark 17.22. Most of the time, we shall use Definition 17.20 with β = β(K,N)
t , that is,

the reference distortion coefficients introduced in Definition 14.19.

The same problems of domain of definition which we encountered for the original Uν

functionals arise for the distorted ones; the next theorem solves this issue.

Theorem 17.23 (Domain of definition of Uβ
ν ). Let (X , d) be a Polish space, equipped

with a Borel measure ν; let K ∈ R and N ∈ [1,+∞]. Let further U ∈ DCN , let β be a
continuous positive function on X × X , and π be a probability measure on X × X , such
that the marginal µ of π is absolutely continuous with density ρ.

Let p ∈ [2,+∞) be such that





∫

X

dν(x)
[1 + d(A, x)]p(N−1)

< +∞ (N < ∞),

∃c > 0
∫
X e−c d(8,x)p

dν(x) < +∞ (N = ∞).

(17.22)

If X is not compact, further assume that β satisfies the following bounds:





β is bounded (N < ∞)

∫

X×X
(log β(x, y))+ π(dx dy) < +∞ (N = ∞).

(17.23)



17 Displacement convexity II 291

Then the integral Uβ
π,ν(µ) appearing in Definition 17.21 makes sense in R ∪ {+∞} as

soon as µ ∈ P ac
p (X ).

Even if there is no such p, Uβ
π,ν(µ) still makes sense if µ ∈ P ac

c (X ).

Remark 17.24. When X is a Riemannian manifold M satisfying the CD(K,N) curvature-
dimension bounds, then the distortion coefficients β(K,N)

t satisfy the assumptions of The-
orem 17.23. Indeed,

- If K ≤ 0, then β(K,N)
t is bounded;

- If K > 0 and N < ∞, then M is compact (by the Bonnet–Myers theorem);
- If K > 0 and N = ∞, then log β(K,N)

t (x, y) is bounded above by a constant multiple
of d(x, y)2, which is π(dx dy)-integrable whenever π is an optimal coupling arising in some
displacement interpolation.

Proof of Theorem 30.4. The argument is similar to the proof of Theorem 17.8. In the case
N < ∞, it suffices to write

βU(ρ/β) ≥ −Aβ
( ρ
β

+
(
ρ

β

)1− 1
N )

= −Aρ− Aβ
1
N ρ1− 1

N ;

then the right-hand side is integrable since ρ1−1/N is integrable (as noted in the proof of
Theorem 17.8) and β is bounded.

In the case N = ∞, the proof of Theorem 17.8 shows that ρ(log ρ)− ∈ L1(ν), and
U(ρ) ≥ Aρ log ρ−Bρ for some positive constants A,B; so Uν(µ) is well-defined in R∪{+∞}.
Also

β(x, y)U
(

ρ(x)
β(x, y)

)
≥ Aβ(x, y)

(
ρ(x)

β(x, y)

)
log

(
ρ(x)

β(x, y)

)
− Bρ(x)

= Aρ(x) log ρ(x) − Aρ(x) log β(x, y) − Bρ(x).

We already know that the first and third terms in the right-hand side are integrable against
π(dy|x) ν(dx); as for the second one, it is also integrable since
∫

ρ(x) (log β(x, y))+ π(dy|x) ν(dx) ≤
∫

(log β(x, y))+π(dy|x)µ(dx)

=
∫

(log β(x, y))+ π(dx dy).

This concludes the proof of Theorem 17.23. 78

Now comes the key notion in this section:

Definition 17.25 (Distorted displacement convexity). Let M be a Riemannian
manifold, equipped with a reference measure ν. Let (βt(x, y))0≤t≤1 be a family of nonneg-
ative functions on M × M , and let U : R+ → R be a continuous convex function defined
on a geodesically convex subset of P ac

2 (M). The functional Uν is said to be displacement
convex with distortion (βt) if, for all geodesic path (µt)0≤t≤1 in the domain of Uν,

∀t ∈ [0, 1], Uν(µt) ≤ (1 − t)Uβ
π,ν(µ0) + t Uβ

π̌,ν(µ1), (17.24)

where π stands for the optimal transference plan between µ0 and µ1; and π̌ is obtained
from π by switching the variables, that is π̌ = S#π, S(x0, x1) = (x1, x0).

This notion can be localized as in Definition 17.13.
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Remark 17.26. The inequality appearing in (17.24) can be rewritten more explicitly as
∫

U(ρt) dν ≤ (1 − t)
∫

M×M
U

(
ρ0(x0)

β1−t(x0, x1)

)
β1−t(x0, x1)π(dx0|x1) ν(dx0)

+ t

∫

M×M
U

(
ρ1(x1)

βt(x0, x1)

)
βt(x0, x1)π(dx1|x0) ν(dx1).

Remark 17.27. The displacement convexity condition in Definition 17.24 becomes more
stringent as β increases.

The next result is an alternative to Theorem 17.15; in many problems it is easier and
more efficient to use. Recall Convention 17.10.

Theorem 17.28 (distorted displacement convexity from curvature-dimension
bounds). Let M be a Riemannian manifold, equipped with a reference measure ν =
e−V vol , where V ∈ C2(M). Let K ∈ R and N ∈ (1,+∞]; let β(K,N)

t (x, y) be defined as
in (14.60). Let further p ∈ [2,+∞) ∪ {c} satisfy the assumptions of Theorem 17.23. Then
the following three conditions are equivalent:

(i) M satisfies the curvature-dimension bound CD(K,N);

(ii) Each U ∈ DCN is displacement convex on P ac
p (M) with distortion (β(K,N)

t );

(iii) UN is locally displacement convex with distortion (β(K,N)
t ).

Before explaining the proof of this result, let me state two open problems which are
very natural (I have no idea how difficult they are).

Open Problem 17.29. Is there a natural “Eulerian” counterpart to Theorem 17.28?

Open Problem 17.30. Theorem 17.15 and 17.28 yield two different upper bounds for
Uν(µt): on one hand,

Uν(µt) ≤ (1−t)Uν(µ0)+t Uν(µ1)−KN,U

∫ 1

0

(∫
ρs(x)1−

1
N |∇ψs|2 dν

)
G(s, t) ds; (17.25)

on the other hand,

Uν(µt) ≤ (1 − t)
∫

M
U

(
ρ0(x0)

β(K,N)
1−t (x0, x1)

)

β(K,N)
1−t (x0, x1)π(dx1|x0) dν(x0)+

t

∫

M
U

(
ρ1(x1)

β(K,N)
t (x0, x1)

)

β(K,N)
t (x0, x1)π(dx0|x1) dν(x1). (17.26)

Can one compare those two bounds, and if yes, which one is sharpest? At least in the case
N = ∞, the second inequality implies the first one: see Theorem 30.8 at the end of these
notes.

Exercise 17.31. Show, at least formally, that inequalities (17.25) and (17.26) coincide
asymptotically when µ0 and µ1 approach each other.

Proof of Theorem 17.28. The proof shares many common points with the proof of Theo-
rem 14.8. I shall restrict to the case N < ∞, since the case N = ∞ is very similar.

Let us start with the implication (i) ⇒ (ii). In a first step, µ0 and µ1 are assumed to
be compactly supported. Start again from
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∫

M
U(ρt(x)) dν(x) =

∫

M
u(δt0(t, x)) dµt0(x).

By applying inequality (14.55) in Theorem 14.12 (up to a factor which only depends on x
and t0, D(t) coincides with δt0(t, x)), and using the decreasing property of u, we get, with
the same notation as in Theorem 14.12,

∫

M
U(ρt(x)) dν(x) ≤

∫

M
u
(
τ (1−t)
K,N δt0(0, x) + τ (t)

K,Nδt0(1, x)
)

dµt0(x).

Next, by the convexity of u, with coefficients t and 1 − t,

∫

M
u
(
τ (1−t)
K,N δt0(0, x) + τ (t)

K,N δt0(1, x)
)

dν(x) ≤ (1 − t)
∫

M
u



τ (1−t)
K,N

1 − t
δt0(0, x)



 dµt0(x)

+ t

∫

M
u



τ (t)
K,N

t
δt0(1, x)



 dµt0(x).

Since β(K,N)
t = (τ (t)

K,N/t)N , the right-hand side can be rewritten as

(1 − t)
∫

M

β(K,N)
1−t (x0, x1)

ρ0(x0)
U

(
ρ0(x0)

β(K,N)
1−t (x0, x1)

)

dπ(x0 x1)

+ t

∫

M

β(K,N)
t (x0, x1)

ρ1(x1)
U

(
ρ1(x1)

β(K,N)
t (x0, x1)

)

dπ(x0 x1),

which is the same as the right-hand side of (17.24).
In a second step, I shall relax the assumption of compact support by a restriction

argument. Let µ0 and µ1 be two probability measures in P ac
p (M), and let (Z()(∈N,

(µt,()0≤t≤1, (∈N, (π()(∈N be as in Proposition 13.2. Let t ∈ [0, 1] be fixed. By the first
step, applied with the probability measures µt,( and the nonlinearity U( : r → U(Z( r),

(U()ν(µt,() ≤ (1 − t) (U()
β(K,N)
1−t

π!,ν (µ0,() + t (U()π̌(, ν
β

(K,N)
t (µ1,(). (17.27)

It remains to pass to the limit in (17.27) as 5 → ∞. The left-hand side is handled in
exactly the same way as in the proof of Theorem 17.15, and the problem is to pass to the
limit in the right-hand side. To ease notation, I shall write β(K,N)

t = β. Let us prove for
instance that

(U()βπ!,ν(µ0,() −−−→
(→∞

Uβ
π,ν(µ0). (17.28)

Since µ0 is absolutely continuous, the optimal transport plan π comes from a deter-
ministic transport T , and similarly the optimal transport π( comes from a deterministic
transport T(; Proposition 13.2 guarantees that T( = T , µ0,(-almost surely. So the left-hand
side of (17.28) can be rewritten as

∫
U

(
Z( ρ0,((x0)
β(x0, T (x0))

)
β(x0, T (x0)) ν(dx0).

Since U+ is a nondecreasing function and Z( ρ0,( is a nondecreasing sequence, the contri-
bution of the positive part U+ is nondecreasing in 5. On the other hand, the contribution
of the negative part can be controlled as in the proof of Theorem 17.23:
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U−

(
Z( ρ0,((x0)
β(x0, T (x0))

)
≤ A

(
Z( ρ0,((x0) + β(x0, T (x0))

1
N Z

1− 1
N

( ρ0,((x0)1−
1
N

)

≤ A
(
ρ0(x0) + β(x0, T (x0))

1
N ρ0(x0)1−

1
N
)
.

Then Theorem 17.23 and Remark 17.24 show that the latter quantity is always integrable.
As a conclusion,

∫
U+

(
Z( ρ0,((x0)
β(x0, T (x0))

)
β(x0, T (x0)) ν(dx0) −−−→

(→∞

∫
U+

(
ρ0(x0)

β(x0, T (x0))

)
β(x0, T (x0)) ν(dx0)

by monotone convergence;

∫
U−

(
Z( ρ0,((x0)
β(x0, T (x0))

)
β(x0, T (x0)) ν(dx0) −−−→

(→∞

∫
U−

(
ρ0(x0)

β(x0, T (x0))

)
β(x0, T (x0)) ν(dx0)

by dominated convergence.

So the limit in (17.28) holds true, and we can pass to the limit in all the terms of (17.27).
This concludes the proof of (i) ⇒ (ii).

It is obvious that (ii) ⇒ (iii). So let us now consider the implication (iii) ⇒ (i). Let
x0 ∈ M , v0 ∈ Tx0M , the goal is to show that RicN,ν(v0) ≥ K. Construct ψ̃ and ψ as in
the proof of Theorem 14.8. Recall (17.19): as θ → 0,

HN,ν(µt) − (1 − t)HN,ν(µ0) − t HN,ν(µ1)

≥ −θ2
(
RicN,ν(v0) + O(θ)

) ∫ 1

0

∫

M
ρs(y)1−

1
N dν(y)G(s, t) ds. (17.29)

The change of variables x → Ts(x) is smooth and has Jacobian J0→s(x) = 1 + O(θ). So

∫
ρs(x)1−

1
N ν(dx) =

∫
ρs(T0→s(x))1−

1
N J0→s(x) ν(dx) =

∫
ρ0(x)1−

1
N

J0→s(x)1−
1
N

J0→s(x) ν(dx)

=
∫

ρ0(x)1−
1
N J0→s(x)

1
N =

(
1 + O(θ)

)(∫
ρ
1− 1

N
0 dν

)
;

so (17.29) can be recast as

HN,ν(µt) − (1 − t)HN,ν(µ0) − t HN,ν(µ1)

≥ −θ2 RicN,ν(v0)
(

t(1 − t)
2

)(∫

M
ρ
1− 1

N
0 dν

)
+ O(θ3). (17.30)

(Recall that
∫

G(s, t) ds = t(1 − t)/2.)
On the other hand, by assumption the left-hand side of 17.30 is bounded above by

(with obvious notation)

(1 − t)
(
H

β
(K,N)
1−t

N,π,ν (µ0) − HN,ν(µ0)
)

+ t
(
H

β(K,N)
t

N,π̌,ν (µ1) − HN,ν(µ1)
)
. (17.31)

Let us see how this expression behaves in the limit θ → 0; for instance I shall focus on the
first term in (17.31). From the definitions,
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H
β

(K,N)
1−t

N,π,ν (µ0) − HN,ν(µ0)

= N

∫
ρ0(x)1−

1
N

(
1 − β(K,N)

1−t (x, T (x))
1
N

)
dν(x), (17.32)

where T = exp(∇ψ) is the optimal transport from µ0 to µ1. A standard Taylor expansion
shows that

β(K,N)
1−t (x, y)

1
N = 1 +

K [1 − (1 − t)2]
6N

d(x, y)2 + O(d(x, y)4);

plugging this back in (17.32), we find

H
β(K,N)
1−t

N,π,ν (µ0) − HN,ν(µ0)

= − K [1 − (1 − t)2]
6

∫
ρ0(x)1−

1
N
(
θ2|v0|2 + O(θ3)

)

= −
(
θ2|v0|2 + O(θ3)

) K [1 − (1 − t)]2
6

(∫
ρ
1− 1

N
0

)
dν.

A similar computation can be performed for the second term in (17.31), taking into

account
∫
ρ
1− 1

N
1 dν =

∫
ρ1− 1

N dν + O(θ). Then the whole expression (17.31) is equal to

− θ2 K

(
(1 − t)[1 − (1 − t)2] + t[1 − t2]

6

)
|v0|2

(∫
ρ1− 1

N dν

)
+ O(θ3)

= −θ2 K t(1 − t)
2

|v0|2
(∫

ρ1− 1
N dν

)
+ O(θ3).

Since this is an upper bound for the right-hand side of (17.30), we obtain after simplifica-
tion

RicN,ν(v0) + O(θ) ≥ |v0|2 + O(θ),

and the conclusion follows upon taking the limit θ → 0. 78

The case N = 1 was not addressed in Theorem 17.28, since U1,ν has not been defined.
However the rest of the theorem holds true:

Theorem 17.32 (Curvature-dimension bounds from displacement convexity,
N = 1). Let M be an n-dimensional Riemannian manifold, equipped with a reference mea-
sure ν = e−V vol , where V ∈ C2(M). Let K ∈ R; let β(K,1)

t (x, y) be defined as in (14.60).
Let further p ∈ [2,+∞) satisfy Theorem 17.23 with N = 1. Then the following two condi-
tions are equivalent:

(i) M satisfies the curvature-dimension bound CD(K, 1);

(ii) Each U ∈ DC1 is displacement convex on P ac
p (M) with distortion (β(K,1)

t );
and then necessarily ν = vol and K ≤ 0.

Proof of Theorem 17.32. When K > 0, (i) is obviously false since ν has to be equal to vol
(otherwise Ric1,ν will take values −∞); but (ii) is obviously false too since β(K,1)

t = +∞
for 0 < t < 1. So we may assume that K ≤ 0. Then the proof of (i) ⇒ (ii) is along the
same lines as in Theorem 17.28. As for the implication (ii) ⇒ (i), note that DCN ′ ⊂ DC1

for all N ′ < 1, so M satisfies Condition (ii) in Theorem 17.28 with N replaced by N ′, and
therefore RicN ′,ν ≥ K g. If N ′ < 2, this forces M to be one-dimensional. Moreover, if V
is not constant there is x0 such that RicN ′,ν = V ′′ − (V ′)2/(N ′ − 1) is < 0 for N ′ small
enough. So V is constant and actually Ric1,ν = Ric = 0, a fortiori Ric1,ν ≥ K. 78
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I shall conclude this chapter with an “intrinsic” theorem of displacement convexity, in
which the distortion coefficient β only depends on M and not on a priori given parameters
K and N . Recall Definition 14.17 and Convention 17.10.

Theorem 17.33 (Intrinsic displacement convexity). Let M be a Riemannian mani-
fold with dimension n, and let βt(x, y) be a continuous positive function on [0, 1]×M ×M .
Let p ∈ [2,+∞) ∪ {c} be such that the assumptions of Theorem 17.23 are satisfied with
X = M , N = n, ν = vol and β = βt for any t. Then the following two statements are
equivalent:

(a) β ≤ β;
(b) For all U ∈ DCn, the functional Uν is displacement convex on P ac

p (M) with distor-
tion coefficients β.

The proof of this theorem follows the same lines as the proof of Theorem 17.28, with
the help of Theorem 14.20; details are left to the reader.
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recently [247] it is not imposed that U should be twice differentiable on (0,∞).

Many authors have contributed to Theorem 17.15 and the story is roughly as follows.
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are also reminiscent of arguments used in the proof of the Lévy–Gromov isoperimetric
inequality. A large part of the proofs were actually devoted to establish the Jacobian
estimates on the exponential function, which I recast here as part of Chapter 14.
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purpose of these notes, all those modifications were included in the section about “change
of measure” in Chapter 14.

It was first proven by Sturm and Von Renesse [341] that the displacement convexity
of H does not only result from, but actually characterizes the nonnegativity of the Ricci
curvature. This statement was generalized by Lott and the author [247], and independently
Sturm [335].

Theorem 17.28 is due to Sturm [339] in the most important case U = UN . Then the
general formulation with arbitrary U ∈ DCN was worked out shortly after by Lott and
myself [249]. The proof rests on the inequality (14.55) in Theorem 14.12, which is (as far
as I know) due to Cordero-Erausquin, McCann and Schmuckenschläger [118]. All this was
for N < ∞; then the case N = ∞ works the same, once one has the correct definitions for
DC∞ and β(K,∞)

t .
The use of Theorem 17.8 to control noncompactly supported probability densities is

essentially taken from Lott and myself [247]; the only change with respect to that reference
is that I do not try to define Uν on the whole of P ac

2 , and therefore do not require p to be
equal to 2.

In this chapter I used restriction arguments to remove the compactness assumption.
An alternative strategy consists in using a density argument and stability theorems (as
in [247]); these tools will be examined in Part III. In the particular case when the manifold
has nonnegative sectional curvature, it is also possible to directly apply the argument of
change of variables to the family (µt), even if it is not compactly supported, thanks to the
uniform inequality (8.41).

Another innovation in the proofs of this chapter is the idea of choosing µt0 as the
reference measure with respect to which changes of variables are performed. The advantage
of that procedure (which evolved from discussions with Ambrosio) is that the transport
map from µt0 to µt is Lipschitz for all times t, as we know from Chapter 8; while the
transport map from µ0 to µ1 is only of bounded variation. So the proof given in this
section only uses the Jacobian formula for Lipschitz changes of variables, and not the
more subtle formula for BV changes of variables.

Paths (µt)0≤t≤1 defined in terms of transport from a given measure µ̃ (not necessarily
of the form µt0) are studied in [15] in the context of generalized geodesics in P2(Rn). The
procedure amounts to consider µt = (Tt)#µ̃ with Tt(x) = (1− t)T0(x) + t T1(x), where T0

is optimal between µ̃ and µ0, and T1 is optimal between µ̃ and µ1. Displacement convexity
theorems work for these generalized geodesics just as well as for the true geodesics, and
they are useful in error estimates for gradient flows. It is not clear whether there is a
Riemannian analogue.

The proofs in the present chapter are of Lagrangian nature, but, as I said before, it
is also possible to go for an Eulerian proof, at the price of further regularization proce-
dures (that are messy but more or less standard), see in particular Otto and Westdicken-
berg [294]. As pointed out by Otto, the Eulerian point of view, although more technical,
has the merit to separate very clearly the input from local smooth differential geometry
(Bochner’s formula is a purely local statement about the Laplace operator on M , seen as
a differential operator on very smooth functions) and the input from global nonsmooth
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analysis (Wasserstein geodesics involve d2/2-convexity, which is a nonlocal condition; and
d2/2-convex functions are in general nonsmooth).

Apart from functionals of the form Uν , all interesting examples of displacement convex
functionals presently known (at least to me) are constructed with functionals of the form
Φ : µ "−→

∫
Φ(x) dµ(x), or Ψ : µ "−→

∫
Ψ(x, y) dµ(x) dµ(y), where Φ is a given “poten-

tial” and Ψ is a given “interaction potential” [103, 102, 39]. It is easy to show that the
displacement convexity of Φ (seen as a function on P2(M)) is equivalent to the geodesic
convexity of Φ, seen as a function on M . Similarly, it is not difficult to show that the dis-
placement convexity of Ψ is equivalent to the geodesic convexity of Ψ , seen as a function
on M ×M . These results can be found for instance in my book [365, Theorem 5.15] in the
Euclidean setting. There it is assumed there that Ψ(x, y) = Ψ(x − y), with Ψ convex, but
it is immediate to generalize the proof to the case where Ψ is convex on Rn × Rn.

There is no interesting displacement convexity statement known for the Coulomb in-
teraction potential; however, Blower [54] proved that

E(µ) =
1
2

∫

R2
log

1
|x − y|

µ(dx)µ(dy)

defines a displacement convex functional on P ac
2 (R). Blower also studied what happens

when one adds a potential energy to E, and used these tools to establish concentration
inequalities for the eigenvalues of some large random matrices.

Exercise 17.34. Prove the statement alluded to above: If M is a compact Riemannian
manifold and Ψ a function on M ×M , then Ψ defines a displacement functional on P2(M)
if and only if it is geodesically convex on M × M . Hint: A product of geodesics in M is
also a geodesic in M × M .
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Volume control

Controlling the volume of balls is a universal problem in geometry. This means of course
controlling the volume from above when the radius increases to infinity; but also controlling
the volume from below when the radius decreases to 0. The doubling property is useful in
both situations.

Definition 18.1 (doubling property). Let (X , d) be a metric space, and let µ be a
Borel measure on X , not identically 0. The measure µ is said to be doubling if there exists
a constant D such that

∀x ∈ X , ∀r > 0, ν[B2r(x)] ≤ D ν[Br(x)]. (18.1)

The measure µ is said to be locally doubling if for any fixed ball BR(z) ⊂ X , there is a
constant D = D(z,R) such that

∀x ∈ BR(z), ∀r > 0, ν[B2r(x)] ≤ D ν[Br(x)]. (18.2)

Remark 18.2. It is equivalent to say that a measure ν is locally doubling, or that its
restriction to any ball B(z,R) (considered as a metric space) is doubling.

When the distance d and the reference measure ν are clear from the context, I shall
often say that the space X is doubling (resp. locally doubling), instead of writing that the
measure ν is doubling on the metric space (X , d).

It is a standard fact in Riemannian geometry that doubling constants may be estimated,
at least locally, in terms of curvature-dimension bounds. These estimates express the fact
that the manifold does not contain sharp spines. Of course, this is obvious for a Riemannian
manifold, since it is locally diffeomorphic to an open subset of Rn; but curvature-dimension
bounds quantify this in terms of the intrinsic geometry, without reference to charts.

Another property which is obvious for a smooth Riemannian manifold, but which dou-
bling makes quantitative, is the fact that the reference measure has full support:

Proposition 18.3. Let (X , d) be a metric space equipped with a locally doubling measure
ν. Then Spt ν = X .

Proof. Let x ∈ X , and let r > 0. Since ν is nonzero, there is R > 0 such that ν[BR(x)] > 0.
Then there is a constant C, possibly depending on x and R, such that ν is C-doubling
inside BR(x). Let n ∈ N be large enough that R ≤ 2nr; then

0 < ν[BR(x)] ≤ Cnν[Br(x)].

So ν[Br(x)] > 0. Since r is arbitrarily small, x has to lie in the support of ν. 78
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Fig. 18.1. The natural volume measure on this “singular surface” (a balloon with a spine) is not doubling.

One of the goals of this chapter is to get doubling constants from curvature-dimension
bounds, by means of arguments based on optimal transport. This is not the standard
strategy, but it will work just as well as any other, since the results in the end will be op-
timal. As a preliminary step, I shall establish a “distorted” version of the famous Brunn–
Minkowski inequality.

Distorted Brunn–Minkowski inequality

The classical Brunn–Minkowski inequality states that whenever A0 and A1 are two
nonempty compact subsets of Rn, then

∣∣A0 + A1

∣∣ 1
n ≥ |A0|

1
n + |A1|

1
n , (18.3)

where | · | stands for Lebesgue measure, and A0 + A1 is the set of all vectors of the form
a0 + a1 with a0 ∈ A0 and a1 ∈ A1. This inequality contains the Euclidean isoperimetric
inequality as a limit case (take A1 = εB(0, 1) and let ε → 0).

It is not obvious to guess the “correct” generalization of (18.3) to general Riemannian
manifolds, and it is only a few years ago that a plausible answer to that problem emerged,
in terms of the distortion coefficients (14.60).

In the sequel, I shall use the following notation: if A0 and A1 are two nonempty compact
subsets of a Riemannian manifold M , then [A0, A1]t stands for the set of all t-barycenters
of A0 and A1, that is the set of all y ∈ M that can be written as γt, where γ is a minimizing,
constant-speed geodesic with γ0 ∈ A0 and γ1 ∈ A1. Equivalently, [A0, A1]t is the set of all
y such that there exists (x0, x1) ∈ A0 × A1 with d(x0, y)/d(y, x1) = t/(1 − t).

Theorem 18.4 (Distorted Brunn–Minkowski inequality). Let M be a Rieman-
nian manifold equipped with a reference measure ν = e−V vol , V ∈ C2(M), satisfying a
curvature-dimension condition CD(K,N). Let A0, A1 be two nonempty compact subsets,
and let t ∈ (0, 1). Then

- If N < ∞,

ν
[
[A0, A1]t

] 1
N ≥ (1 − t)

[
inf

(x0,x1)∈A0×A1

β(K,N)
1−t (x0, x1)

1
N

]
ν[A0]

1
N

+ t

[
inf

(x0,x1)∈A0×A1

β(K,N)
t (x0, x1)

1
N

]
ν[A1]

1
N , (18.4)

where β(K,N)
t (x0, x1) are the distortion coefficients defined in (20.12).
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- If N = ∞, then

log
1

ν
[
[A0, A1]t

] ≤ (1 − t) log
1

ν[A0]
+ t log

1
ν[A1]

− K t(1 − t)
2

sup
x0∈A0, x1∈A1

d(x0, x1)2.

By particularizing Theorem 18.4 to the case when K = 0 and N < ∞ (so β(K,N)
t = 1),

one can show that nonnegatively curved Riemannian manifolds satisfy a Brunn–Minkowski
inequality which is formally very similar to the Brunn–Minkowski inequality in Rn:

Corollary 18.5 (Brunn–Minkowski inequality for nonnegatively curved mani-
folds). With the same notation as in Theorem 18.4, if M satisfies the curvature-dimension
condition CD(0, N), N ∈ (1,+∞), then

ν
[
[A0, A1]t

] 1
N ≥ (1 − t) ν[A0]

1
N + t ν[A1]

1
N . (18.5)

Remark 18.6. When M = Rn, N = n, inequality (18.5) reduces to

∣∣(1 − t)A0 + tA1

∣∣ 1
n ≥ (1 − t)|A0|

1
n + t|A1|

1
n ,

where | · | stands for the n-dimensional Lebesgue measure. By homogeneity, this is
equivalent to (18.4).

Idea of the proof of Theorem 18.4. Introduce an optimal coupling between a random point
γ0 chosen uniformly in A0 and a random point γ1 chosen uniformly in A1 (as in the proof
of isoperimetry in Chapter 2). Then γt is a random point (not necessarily uniform) in At.
If At would be very small, then the law µt of γt would be very concentrated, so its density
would be very high, but then this would contradict the displacement convexity estimates
implied by the curvature assumptions. For instance, consider for simplicity U(r) = rm,
m ≥ 1, K = 0: since Uν(µ0) and Uν(µ1) are finite, this implies a bound on Uν(µt), and
this bound cannot hold if the support of µt is too small (in the extreme case where At

would be a single point, µt would be a Dirac mass and Uν(µt) should be +∞). It turns
out that the optimal estimates are obtained with U = UN , as defined in (16.15). 78

Detailed proof of Theorem 18.4. First consider the case N < ∞. For brevity I shall write
just βt instead of β(K,N)

t . By regularity of the measure ν and an easy approximation
argument, it is sufficient to treat the case when ν[A0] > 0 and ν[A1] > 0. Then one may
define µ0 = ρ0 ν, µ1 = ρ1 ν, where

ρ0 =
1A0

ν[A0]
, ρ1 =

1A1

ν[A1]
.

In words, µt0 (t0 ∈ {0, 1}) is the law of a random point distributed uniformly in Ai. Let
(µt)0≤t≤1 be the unique displacement interpolation between µ0 and µ1, for the cost function
d(x, y)2. Since M satisfies the curvature-dimension bound CD(K,N), Theorem 17.28 and
Lemma 29.4, applied with U(r) = UN (r) = −N

(
r1− 1

N − r
)
, imply

∫

M
UN (ρt(x)) ν(dx) ≤ (1 − t)

∫

M
UN

(
ρ0(x0)

β1−t(x0, x1)

)
β1−t(x0, x1)

ρ0(x0)
π(dx0 dx1)

+ t

∫

M
UN

(
ρ1(x1)

βt(x0, x1)

)
βt(x0, x1)
ρ1(x1)

π(dx0 dx1), (18.6)
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where π is the optimal coupling of (µ0, µ1), and βt(x0, x1) is defined by (20.12). After
replacement of UN by its explicit expression and simplification, this leads to
∫

M
ρt(x)1−

1
N ν(dx) ≥ (1 − t)

∫

M
ρ0(x)−

1
N β1−t(x0, x1)

1
N π(dx0 dx1)

+ t

∫

M
ρ1(x)−

1
N βt(x0, x1)

1
N π(dx0 dx1). (18.7)

Since π is supported in A0 × A1 and has marginals ρ0 ν and ρ1ν, one can bound the
right-hand side below by

(1 − t)β
1
N
1−t

∫

M
ρ0(x0)1−

1
N dν(x0) + tβ

1
N
t

∫

M
ρ1(x1)1−

1
N dν(x1),

where βt stands for the minimum of βt(x0, x1) over all pairs (x0, x1) ∈ A0 × A1. Then, by
explicit computation,

∫

M
ρ0(x0)1−

1
N dν(x0) = ν[A0]

1
N ,

∫

M
ρ1(x1)1−

1
N dν(x1) = ν[A1]

1
N .

So to conclude the proof of (18.4) it sufficient to show
∫

M
ρ
1− 1

N
t dν ≤ ν

[
[A0, A1]t

] 1
N .

Obviously, µt is supported in At = [A0, A1]t; therefore ρt is a probability density on that
set. By Jensen’s inequality,

∫

At

ρ
1− 1

N
t dν = ν[At]

∫

At

ρ
1− 1

N
t

dν

ν[At]

≤ ν[At]
(∫

At

ρt
dν

ν[At]

)1− 1
N

= ν[At]
1
N

(∫

At

ρt dν

)1− 1
N

= ν[At]
1
N .

This concludes the proof of (18.4).
The proof in the case N = ∞ follows the same lines, except that now it is based on the

K-displacement convexity of Hν and the convexity of r "−→ r log r. 78

Bishop–Gromov inequality

The Bishop–Gromov inequality states that the volume of balls in a space satisfying
CD(K,N) does not grow faster than the volume of balls in the model space of constant
sectional curvature having Ricci curvature equal to K and dimension equal to N . In the
case K = 0, it takes the following simple form:

ν[Br(x)]
rN

is a nonincreasing function of r.

In the cases K > 0 (resp. K < 0), the quantity on the left-hand side should be replaced
by
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ν[Br(x)]
∫ r

0

(

sin
√

K

N − 1
t dt

)N−1

dt

(
resp.

ν[Br(x)]
∫ r

0

(

sinh
√

|K|
N − 1

t dt

)N−1

dt

)
.

Here is a precise statement:

Theorem 18.7 (Bishop–Gromov inequality). Let M be a Riemannian manifold
equipped with a reference measure ν = e−V vol , satisfying the curvature-dimension condi-
tion CD(K,N) for some K ∈ R, 1 < N < ∞. Let further

s(K,N)(t) =






(
sin

√
K

N − 1
t

)N−1

if K > 0

tN−1 if K = 0

(

sinh
√

|K|
N − 1

t

)N−1

if K < 0

Then, for any x ∈ M ,
ν[Br(x)]∫ r

0
s(K,N)(t) dt

is a nonincreasing function of r.

Proof of Theorem 18.7. Let us start with the case K = 0 which is simpler. Let A0 = {x}
and A1 = Br(x); in particular, ν[A0] = 0. For any s ∈ (0, r), one has [A0, A1] s

r
⊂ Bs(x),

so by the Brunn–Minkowski inequality (18.5),

ν[Bs(x)]
1
N ≥ ν

[
[A0, A1] s

r

]
≥
(s

r

)
ν[Br(x)]

1
N ,

from which the claim follows immediately.
For the general case, it is sufficient to check that

d
dr ν[Br(x)]
s(K,N)(r)

is nonincreasing. (18.8)

Indeed, it is easy to convince oneself that if f and g are positive functions on R+ with
f/g nonincreasing, then also (

∫ r
0 f)/(

∫ r
0 g) is a nonincreasing function of r. (From our

assumptions, the function ν[Br(x)] is a differentiable function of r; but even if that were
not the case it would not be so difficult to get around this problem.)

Apply Theorem 18.4 with A0 = {x} again, but now A1 = Br+ε(x) \ Br(x); then for
t ∈ (0, 1) one has [A0, A1]t ⊂ Bt(r+ε)(x). Moreover, for K ≥ 0, one has

β(K,N)
t (x0, x1) ≥




sin

(
t
√

K
N−1(r + ε)

)

t sin
(√

K
N−1 (r + ε)

)





N−1

;

for K < 0 the same formula remains true with sin replaced by sinh, K by |K| and r + ε by
r − ε. In the sequel, I shall only consider K > 0, the treatment of K < 0 being obviously
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similar. After applying the above bounds and raising each side of inequality (18.4) to the
power N , one obtains

ν
[
Bt(r+ε)(x) \ Btr(x)

]

(
t sin

√
K

N−1 (tr + tε)
)N−1

≥ tN
ν
[
Br+ε(x) \ Br(x)

]

(
sin

√
K

N−1(r + ε)
)N−1

.

If φ(r) stands for ν[Br(x)], then the above inequality can be rewritten as

φ(tr + tε) − φ(tr)
t s(K,N)(t(r + ε))

≥ φ(r + ε) − φ(r)
s(K,N)(r)

.

In the limit ε → 0, this yields

φ′(tr)
s(K,N)(tr)

≥ φ′(r)
s(K,N)(r)

,

so φ′/s(K,N) is indeed nonincreasing. 78

Doubling property

From Theorem 18.7 and elementary estimates on the function s(K,N) it is easy to deduce
the following corollary:

Corollary 18.8 (doubling property). Let M be a Riemannian manifold equipped with
a reference measure ν = e−V vol, satisfying the curvature-dimension condition CD(K,N)
for some K ∈ R, 1 < N < ∞. Then ν is doubling with a constant C that is

- uniform and no more than 2N if K ≥ 0;
- locally uniform and no more than 2N D(K,N,R) if K < 0, where

D(K,N,R) =

[

cosh

(

2
√

|K|
N − 1

R

)]N−1

, (18.9)

when restricted to a large ball B(z,R).

The Bishop–Gromov inequality is however more precise than just doubling property:
for instance, if 0 < s < r then, with the same notation as before,

ν[Br(x)] ≥ ν[Bs(x)] ≥
(

V (s)
V (r)

)
ν[Br(x)],

where V (r) is the volume of Br(x) in the model space. It follows that ν[Br(x)] is a contin-
uous function of r. Of course, this property is otherwise obvious, but the Bishop–Gromov
inequality provides an explicit modulus of continuity.

There do not seem to be any “natural” analogues of these results in the case N = ∞.

Bibliographical Notes
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The Brunn–Minkowski inequality in Rn goes back to the end of the nineteenth century;
it was first established by Brunn (for convex sets in dimension 2 or 3), and later generalized
by Minkowski (for convex sets in arbitrary dimension) and Lusternik (for arbitrary com-
pact sets). Nowadays, it is still one of the cornerstones of the geometry of convex bodies.
Standard references on the Brunn–Minkowski theory are the book by Schneider [329] and
the more recent survey paper by Gardner [181]; see also Maurey’s lecture [263].

It is classical to prove the Brunn–Minkowski (in Rn) via changes of variables, usually
called reparametrizations in this context. McCann [265] noticed that optimal transport
could be used to yield a convenient reparametrization; this is a bit more complicated than
the reparametrizations classically used in Rn, but it has the advantage to be defined in
more intrinsic terms. McCann’s argument is reproduced in [365, Section 6.1]; it is basically
the same as the proof of Theorem 18.4, only much simpler because it is in Euclidean space.

At the end of the nineties, it was still not clear what would be the correct extension of
that theory to curved spaces. The first hint came when Cordero-Erausquin [114] used the
formalism of optimal transport to guess a Prékopa–Leindler inequality on the sphere. In
Euclidean space, the Prékopa–Leindler inequality is a well-known functional version of the
Brunn–Minkowski inequality (it is discussed for instance in the above-mentioned surveys,
and we shall meet it in the next chapter). Then Cordero-Erausquin, McCann and Schmuck-
enschläger [118] developed the tools necessary to make this approach rigorous, and also
established Prékopa–Leindler inequalities in curved geometry (when the reference mea-
sure is the volume). Then Sturm [339] adapted the proof of [118] to get Brunn–Minkowski
inequalities, for general reference measures.

The proof of the Bishop–Gromov inequality in the case K = 0 is taken from [247].
Apart from that, my presentation in this chapter is strongly inspired by Sturm [339]. In
particular, it is from that work that I took the statement of Theorem 18.4 and the proof
of the Bishop–Gromov inequality for K 3= 0.

More classical proofs of the Bishop–Gromov inequality can be found in reference text-
books such as [175].
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Density control and local regularity

The following situation occurs in many problems of local regularity: Knowing a certain
estimate on a certain ball Br(x0), deduce a better estimate on a smaller ball, say Br/2(x0).
In the fifties, this point of view was put to a high degree of sophistication by De Giorgi in his
famous proof of Hölder estimates for solutions of elliptic second-order partial differential
equations; and it also plays a role in the alternative solutions found at the same time
by Nash, and later by Moser. When fine analysis on metric spaces started to develop, it
became an important issue to understand what were the key ingredients lying at the core
of the methods of De Giorgi, Nash and Moser. It is now accepted by many that the two
key inequalities are

- a doubling inequality for the reference volume measure;
- a local Poincaré inequality, controlling the deviation of a function on a smaller

ball by the integral of its gradient on a larger ball. Here below is a precise definition:

Definition 19.1 (local Poincaré inequality). Let (X , d) be a metric space and let ν be
a Borel measure on X . It is said that ν satisfies a local Poincaré inequality with constant
C if, for any Lipschitz function u, any point x0 ∈ X and any radius r > 0,

−
∫

Br(x0)

∣∣∣u(x) − 〈u〉Br(x0)

∣∣∣ dν(x) ≤ Cr −
∫

B2r(x0)

|∇u(x)| dν(x), (19.1)

where −
∫

B = (ν[B])−1
∫
B is the averaged integral over B, and 〈u〉B = −

∫
B u dν is the average

of the function u on B.
Let B be a Borel subset of X . It is said that ν satisfies a local Poincaré inequality

with constant C on B if inequality (19.1) holds true under the additional restriction that
B2r(x0) ⊂ B.

Here the word “local” means that the inequality is interested in averages around some
point x0. This is in contrast with the “global” Poincaré inequalities that will be considered
later in Chapter 21, in which averages are over the whole space.

There are an incredible number of variants of Poincaré inequalities, but I shall stick to
the ones appearing in Definition 19.1. Sometimes I shall say that ν satisfies a uniform local
Poincaré inequality to stress the fact that the constant C is independent of x0 and r. For
most applications this uniformity is not important, all that matters is that inequality (19.1)
holds true in the neighborhood of any point x0; so it is sufficient to prove that ν satisfies
a local Poincaré inequality with constant C = C(R) on each ball B(z,R), where z is fixed
once for all.
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Just as the doubling inequality, the local Poincaré inequality might be ruined by sharp
spines, and Ricci curvature bounds will prevent those spines to occur, providing quantita-
tive Poincaré constants (that will be uniform in nonnegative curvature). Again, the goal of
this chapter is to prove these facts by using optimal transport. The strategy goes through
pointwise bounds on the density of the displacement interpolant.

There are at least two ways to prove pointwise bounds on the displacement interpolant.
The first one consists in combining the Jacobian equation involving the density of the
interpolant (Chapter 11) with the Jacobian estimates derived from the Ricci curvature
bounds (Chapter 14). The second way goes via displacement convexity (Chapter 17); it
is quite more indirect, but its interest will become apparent in the last chapter of these
notes.

Of course, pointwise bounds do not result directly from displacement convexity, which
only yields integral bounds on the interpolant; however, it is possible to deduce pointwise
bounds from integral bounds by using the stability of optimal transport under restriction
(recall Theorem 4.5). The idea is simple: a pointwise bound on ρt(x), will be achieved by
considering integral bounds on a very small ball Bδ(x), as δ → 0.

Apart from the local Poincaré inequality, the pointwise control on the density will
imply at once the Brunn–Minkowski inequality, and also its functional counterpart, the
Prékopa–Leindler inequality. This is not surprising, since a pointwise control is morally
stronger than an integral control.

Pointwise estimates on the interpolant density

Theorem 19.2 (pointwise bounds on the displacement interpolant from curvature-
dimension). Let M be a Riemannian manifold equipped with a reference measure ν =
e−V vol , V ∈ C2(M), satisfying a curvature-dimension CD(K,N) for some N ∈ (1,∞],
K ∈ R. Let further µ0 = ρ0 ν and µ1 = ρ1 ν be two probability measures in P ac

p (M), where
p ∈ [2,+∞) ∪ {c} satisfies the assumptions of Theorem 17.8. Let (µt)0≤t≤1 be the unique
displacement interpolation between µ0 and µ1, and let ρt stand for the density of µt with
respect to ν. Then
- If N < ∞, one has the pointwise bound

ρt(x) ≤ sup
x∈[x0,x1]t

(
(1 − t)

( ρ0(x0)

β(K,N)
1−t (x0, x1)

)− 1
N + t

( ρ1(x1)

β(K,N)
t (x0, x1)

)− 1
N

)−N

, (19.2)

where by convention
(
(1 − t) a−

1
N + t b−

1
N
)−N = 0 if either a or b is 0;

- If N = ∞, one has the pointwise bound

ρt(x) ≤ sup
x∈[x0,x1]t

ρ0(x0)1−t ρ1(x1)t exp
(
− K t(1 − t)

2
d(x0, x1)2

)
. (19.3)

As I said before, there are (at least) two possible schemes of proof for Theorem 19.2.
The first one is by direct application of the Jacobian estimates from Chapter 14; the
second one is based on the displacement convexity estimates from Chapter 17. The first
one is formally simpler, while the second one has the advantage to be based on very robust
functional inequalities. I shall only sketch the first proof, forgetting about regularity issues;
and give a detailed treatment of the second one.
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Sketch of proof of Theorem 19.2 by Jacobian estimates. Let us pretend that Theorem 10.35
applies. Let ∇ψ be a gradient of (d2/2)-convex function so that µ1 = [exp(∇ψ)]#µ0; then
µt = [exp(t∇ψ)]#µ0. Let J (t, x) stand the Jacobian determinant of exp(t∇ψ); then, with
the shorthand xt = expx0

(t∇ψ(x0)), the Jacobian equation of change of variables can be
written

ρ0(x0) = ρt(xt)J (t, x0).

Similarly,
ρ0(x0) = ρ1(x1)J (1, x0).

Then the result follows directly from Theorems 14.11 and 14.12: Apply equation (14.55)
if N < ∞, (14.54) if N = ∞ (recall that D = J

1
N , 5 = − logJ ). 78

Proof of Theorem 19.2 by displacement interpolation. For simplicity I shall only consider
the case N < ∞, and derive the conclusion from Theorem 17.28. Then the case N = ∞
can be treated either by adapting the proof of the case N < ∞ (replacing Theorem 17.28
by Theorem 17.15, and using the function U∞ defined in (16.15)), or by taking the limit
N → ∞ in (19.2).

Let t ∈ [0, 1] be given, (µs)0≤s≤1 as in the statement of the theorem, and let Π be the
law of a random geodesic γ such that law (γs) = µs. Let now y be an arbitrary point in M ,
and δ > 0; the goal is to estimate from above the probability P

[
γt ∈ Bδ(y)

]
= µt[Bδ(y)],

so as to recover a bound on ρt(y) as δ → 0.
If P

[
γt ∈ Bδ(y)

]
= 0, then there is nothing to prove. Otherwise we may condition γ

by the event “γt ∈ Bδ(y)”. Explicitly, this means: Introduce γ′ such that law (γ′) = Π ′ =
(1ZΠ)/Π[Z], where

Z =
{
γ ∈ Γ (M); γt ∈ Bδ(y)

}
.

Further define π′ = law (γ′0, γ′1), and µ′
s = law (γ′s) = (es)#Π ′. Obviously,

Π ′ ≤ Π

Π[Z]
=

Π

µt[Bδ(y)]
,

so for all s ∈ [0, 1],
µ′

s ≤
µs

µt[Bδ(y)]
.

In particular, µ′
s is absolutely continuous and its density ρ′s satisfies (ν-almost surely)

ρ′s ≤ ρs

µt[Bδ(y)]
(19.4)

When s = t, inequality (19.4) can be refined into

ρ′t =
ρt 1Bδ(y)

µt[Bδ(y)]
, (19.5)

since

(et)#
( 1γt∈Bδ(y)

µt[Bδ(y)]

)
(x) =

1x∈Bδ(y)((et)#Π)(x)
µt[Bδ(y)]

.

(This is more difficult to write down than to understand!)
From the restriction property (Theorem 4.5), (γ′0, γ′1) is an optimal coupling of (µ′

0, µ
′
1),

and therefore (µ′
s)0≤s≤1 is a displacement interpolation. By Theorem 17.28 with U(r) =

−r1− 1
N ,
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∫

M
(ρ′t)

1− 1
N dν ≥ (1 − t)

∫

M×M
(ρ′0(x0))−

1
N β1−t(x0, x1)

1
N π′(dx0 dx1)

+ t

∫

M×M
(ρ′1(x1))−

1
N βt(x0, x1)

1
N π′(dx0 dx1). (19.6)

By definition, µ′
t is supported in Bδ(y), so

∫

M
(ρ′t)

1− 1
N dν =

∫

Bδ(y)
(ρ′t)

1− 1
N dν = ν[Bδ(y)]

∫

Bδ(y)
(ρ′t)

1− 1
N

dν

ν[Bδ(y)]
. (19.7)

By Jensen’s inequality, applied with the concave function r → r1− 1
N ,

∫

Bδ(y)
(ρ′t)

1− 1
N

dν

ν[Bδ(y)]
≤
(∫

ρ′t
dν

ν[Bδ(y)]

)1− 1
N

=
1

ν[Bδ(y)]1−
1
N

.

Plugging this in (19.7), we find
∫

M
(ρ′t)

1− 1
N dν ≤ ν[Bδ(y)]

1
N . (19.8)

On the other hand, from (19.4) the right-hand side of (19.6) can be bounded below by

µt[Bδ(y)]
1
N

∫

M×M

[
(1 − t) (ρ0(x0))−

1
N β1−t(x0, x1)

1
N + t (ρ1(x1))−

1
N βt(x0, x1)

1
N

]
π′(dx0 dx1)

= µt[Bδ(y)]
1
N E

[
(1 − t) (ρ0(γ′0))

− 1
N β1−t(γ′0, γ

′
1)

1
N + t (ρ1(γ′1))

− 1
N βt(γ′0, γ

′
1)

1
N

]

≥ µt[Bδ(y)]
1
N E inf

γt∈[x0,x1]t

[
(1 − t) (ρ0(γ′0))

− 1
N β1−t(γ′0, γ

′
1)

1
N + t (ρ1(γ′1))

− 1
N βt(γ′0, γ

′
1)

1
N

]
,

(19.9)
where the last inequality follows just from the (obvious) remark that γ′t ∈ [γ′0, γ′1]t. In all
these inequalities, we can restrict π′ to the set {ρ0(x0) > 0, ρ1(x1) > 0} which is of full
measure.

Let

F (x) := inf
x∈[x0,x1]t

[
(1 − t) (ρ0(x0))−

1
N β1−t(x0, x1)

1
N + t (ρ1(x1))−

1
N βt(x0, x1)

1
N

]
;

and by convention F (x) = 0 if either ρ0(x0) or ρ1(x1) vanishes. Then in view of (19.5) the
lower bound in (19.9) can be rewritten as

E F (γ′t) =
∫

M
F (x) dµ′

t(x) =

∫

Bδ(y)
F (x) dµt(x)

µt[Bδ(y)]
.

Now combine this with the upper bound (19.8), to conclude that

(
µt[Bδ(y)]
ν[Bδ(y)]

)− 1
N

≥

∫

Bδ(y)
F (x) dµt(x)

µt[Bδ(y)]
. (19.10)

Lebesgue’s density theorem tells the following: if ϕ is a locally integrable function,
then, ν(dy)-almost any y is a Lebesgue point of ϕ, which means
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1
ν[Bδ(y)]

∫

Bδ(y)
ϕ(x) dν(x) −−→

δ↓0
ϕ(y).

In particular, if y is a Lebesgue point, then

µt[Bδ(y)]
ν[Bδ(y)]

=

∫

Bδ(y)
ρt(x) dν(x)

ν[Bδ(y)]
−−→
δ↓0

ρt(y).

The inequality in (19.10) proves that Fρt is locally ν-integrable; therefore also
∫

Bδ(y)
F (x) dµt(x)

ν[Bδ(y)]
−−→
δ↓0

F (y) ρt(y).

If one plugs these two limits in (19.10), one obtains

ρt(y)−
1
N ≥ F (y) ρt(y)

ρt(y)
= F (y),

provided that ρt(y) > 0; and then ρt(y) ≤ F (y)−N , as desired. In the case ρt(y) = 0 the
conclusion still holds true. 78

It is useful to consider the particular case when the initial density µ0 is a Dirac mass
and the final mass is the uniform distribution on some set B.

Theorem 19.3 (Jacobian bounds revisited). Let M be a Riemannian manifold
equipped with a reference measure ν = e−V vol , satisfying the curvature-dimension con-
dition CD(K,N) for some K ∈ R, N ∈ (1,∞). Let z0 ∈ M and let B be a bounded set of
positive measure. Let further (µz0

t )0≤t≤1 be the displacement interpolation joining µ0 = δz0

to µ1 = (1Bν)/ν[B]. Then the density ρz0
t of µz0

t satisfies

ρz0
t (x) ≤ C(K,N,R)

tN ν[B]
,

where

C(K,N,R) = exp
(
−
√

(N − 1)K− R
)
, K− = max(−K, 0), (19.11)

and R is an upper bound on the distance between z0 and elements of B.
In particular, if K ≥ 0, then

ρz0
t (x) ≤ 1

tN ν[B]
.

Remark 19.4. Theorem 19.3 is a classical tool in Riemannian geometry; it is often stated
as a bound on the Jacobian of the map (s, ξ) "−→ expx(sξ). It will be a good exercise for
the reader to convert Theorem 19.3 into such a Jacobian bound.

Proof of Theorem 19.3. Let z0 and B be as in the statement of the lemma. Let µ1 =
(1B ν)/ν[B]. Consider a displacement interpolation (µt)0≤t≤1 between µ0 = δz0 and µ1.
Recall from Chapter 13 that µt is absolutely continuous for all t ∈ (0, 1]. So Theorem 19.2
can be applied to the displacement interpolation (µ′

t)0≤t≤1 defined by µ′
t = µt′ , t′ =

t0 + (1 − t0)t; this yields
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ρt′(x) ≤ sup
x∈[x0,x1]t

[
(1 − t)β1−t(x0, x1)

1
N ρt0(x0)−

1
N + tβt(x0, x1)

1
N ρ1(x1)−

1
N

]−N
. (19.12)

Obviously, the sum above can be restricted to those pairs (x0, x1) such that x1 lies in the
support of µ1, i.e. x1 ∈ B; and x0 lies in the support of µt0 , which implies x0 ∈ [z0, B]t0 .
Moreover, since z → z−N is nonincreasing, one has the obvious bound

ρt′(x) ≤ sup
x∈[x0,x1]t; x0∈[z0,B]t0 ; x1∈B

[
tβt(x0, x1)

1
N ρ1(x1)−

1
N

]−N

= sup
x∈[x0,x1]t; x0∈[z0,B]t0 ; x1∈B

ρ1(x1)
tN βt(x0, x1)

.

Since ρ1 = 1B/ν[B], actually

ρt′(x) ≤ S(t0, z0, B)
tNν[B]

,

where
S(t0, z0, B) := sup

{
βt(x0, x1)−

1
N ; x0 ∈ [z0, B]t0 , x1 ∈ B

}
. (19.13)

Now let t0 → 0 and t go to t′, in such a way that t′ stays fixed. Since B is bounded,
the geodesics linking z0 to an element of B have a uniformly bounded speed, so the set
[z0, B]t0 is included in a ball B(z, V t0) for some constant V ; this shows that those x0

appearing in (19.13) converge uniformly to z0. By continuity of βt, S(t0, z0, B) converges
to S(0, z0, B). Then an elementary estimate of βt shows that S(0, z0, B) ≤ C(K,N,R). 78

To conclude, I shall state a theorem which holds true with the intrinsic distortion
coefficients of the manifold, whithout any reference to a choice of K and N , and whithout
any assumption on the behavior of the manifold at infinity (if the total cost is infinite,
we can appeal to the notion of generalized optimal coupling and generalized displacement
interpolation, as in Chapter 13. Recall Definition 14.17.

Theorem 19.5 (intrinsic pointwise bounds on the displacement interpolant).
Let M be an n-dimensional Riemannian manifold equipped with a reference measure ν =
e−V vol , V ∈ C2(M), and let β be the associated distortion coefficients. Let µ0, µ1 be two
absolutely continuous probability measures on M , let (µt)0≤t≤1 be the unique generalized
displacement interpolation between µ0 and µ1, and let ρt be the density of µt with respect
to ν. Then one has the pointwise bound

ρt(x) ≤ sup
x∈[x0,x1]t

(
(1 − t)

( ρ0(x0)
β1−t(x0, x1)

)− 1
n + t

( ρ1(x1)
βt(x0, x1)

)− 1
n

)−n

, (19.14)

where by convention
(
(1 − t) a−

1
n + t b−

1
n
)−n = 0 if either a or b is 0.

Proof of Theorem 19.5. First use the standard approximation procedure of Proposition 13.2
to define probability measures µt,( with density ρt,(, and numbers Z5 such that Z( ↑ 1,
Z(ρt,( ↑ 1, and µt,( are compactly supported.

Then we can re-do the proof of Theorem 19.2 with µ0,( and µ1,(, replacing Theo-
rem 17.28 by Theorem 17.33. The result is

ρt,((x) ≤ sup
x∈[x0,x1]t

(

(1 − t)
( ρ0,((x0)
β1−t(x0, x1)

)− 1
n + t

( ρ1,((x1)
βt(x0, x1)

)− 1
n

)−n

.
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Since Z( ρt,( ≤ ρt, it follows that

Z( ρt,((x) ≤ sup
x∈[x0,x1]t

(

(1 − t)
( Z0 ρ0,((x0)
β1−t(x0, x1)

)− 1
n + t

(Z1 ρ1,((x1)
βt(x0, x1)

)− 1
n

)−n

≤ sup
x∈[x0,x1]t

(
(1 − t)

( ρ0(x0)
β1−t(x0, x1)

)− 1
n + t

( ρ1(x1)
βt(x0, x1)

)− 1
n

)−n

.

The conclusion follows by letting 5 → ∞. 78

Democratic condition

Poincaré inequalities are conditioned, loosely speaking, to the “richness” of the space of
geodesics: one should be able to transfer mass between sets by going along geodesics, in
such a way that different points use geodesics that do not get too much closer. This idea
(which is reminiscent of the intuition behind the distorted Brunn–Minkowski inequality)
will be more apparent in the following condition. It says that one can use geodesics to
redistribute all the mass of a ball in such a way that each point in the ball sends all its
mass uniformly over the ball, but no point is visited too often in the process. In the next
definition, what I call “uniform distribution on B” is the reference measure ν, conditioned
on the ball, that is (1Bν)/ν[B]. The definition is formulated in the setting of a geodesic
space (recall the definitions about length spaces in Chapter 7), but in this chapter we shall
only apply it in smooth Riemannian manifolds.

Definition 19.6 (Democratic condition). A measure ν on a geodesic space (X , d) is
said to satisfy the democratic condition Dm(C) for some constant C > 0 if the following
property holds true: For any closed ball B in X there is a random geodesic γ such that
γ0 and γ1 are independent and distributed uniformly in B, and the time-integral of the
density of γt (with respect ν) never exceeds C/nu[B].

The condition is said to hold uniformly if the constant C is independent of the ball
B = B(x, r]), and locally uniformly if it is independent of B as long as B(x, 2r]) remains
inside a large fixed ball B(z,R).

A more explicit formulation of the democratic condition is as follows: If µt stands for
the law of γt, then ∫ 1

0
µt dt ≤ C

ν

ν[B]
. (19.15)

Theorem 19.7 (CD(K,N) implies Dm). Let M be a Riemannian manifold equipped
with a reference measure ν = e−V vol , satisfying the curvature-dimension condition
CD(K,N) for some K ∈ R, N ∈ (1,∞). Then ν satisfies a locally uniform democratic con-
dition, with an admissible constant 2NC(K,N,R) in a large ball B(z,R), where C(K,N,R)
is defined in (19.11).

In particular, if K ≥ 0, then ν satisfies the uniform democratic condition Dm(2N ).

Proof of Theorem 19.7. The proof is largely based on Theorem 19.3.
Let B be a ball of radius r. For any point x0, let µx0

t be as in the statement of Theo-
rem 19.3; then its density ρx0

t (with respect to ν) is bounded above by C(K,N,R)/(tN ν[B]).
On the other hand, µx0

t can be interpreted as the position at time t of a random geodesic
γx0 starting at x0 and ending at x1, which is distributed according to µ. By integrating
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this against µ(dx0), we obtain the position at time t of a random geodesic γ such that γ0

and γ1 are independent and both distributed according to µ. Explicitly,

µt = law (γt) =
∫

M
µx0

t dµ(x0).

Obviously, the uniform bound on ρt persists upon integration, so

µt ≤
[
C(K,N,R)

tN ν[B]

]
ν. (19.16)

Recall that µt = law (γt), where γ0, γ1 are independent and distributed with respect to
µ. Since geodesics in a Riemannian manifold are almost surely unique, we can throw away
a set of zero volume in B × B such that for each (x, y) ∈ (B × B) \ Z, there is a unique
geodesic (γx0,x1

t )0≤t≤1 going from x0 to x1. Then µt is characterized as the law of γx0,x1
t ,

where law (x0, x1) = µ ⊗ µ. This shows that if we repeat the construction by exchanging
the variables x0 and x1, and replacing t by 1 − t, then we get the same path (µt), up to
reparametrization of time. So

µt ≤
[

C(K,N,R)
(1 − t)N ν[B]

]
ν. (19.17)

Combining (19.16) and (19.17) and passing to densities, one obtains that, ν(dx)-almost
surely,

ρt(x) ≤ C(K,N,R)min
(

1
tN

,
1

(1 − t)N

)
1

ν[B]
≤ 2N C(K,N,R)

ν[B]
, (19.18)

and Theorem 19.7 follows. 78

Remark 19.8. The above bounds (19.18) can be improved as follows. Let µ = ρ ν be a
measure that is absolutely continuous with respect to ν, and otherwise arbitrary. Then
there exists a random geodesic γ with law (γ0, γ1) = µ ⊗ µ, such that law (γt) admits a
density ρt with respect to ν, and

‖ρt‖Lp ≤ min
(

1
tN/p′

,
1

(1 − t)N/p′

)
‖ρ‖Lp (19.19)

for all p ∈ (1,∞), where p′ = p/(p − 1) is the conjugate exponent to p and ‖ρ‖Lp =
(
∫
ρp dν)1/p.

Local Poincaré inequality

Theorem 19.9 (doubling + democratic implies local Poincaré). Let (X , d) be
a length space equipped with a reference measure ν satisfying a doubling condition with
constant D, and a democratic condition with constant C. Then ν satisfies a local Poincaré
inequality with constant P = 2C D.

If the doubling and democratic conditions hold true inside a ball B(z,R) with a constant
C = C(z,R) and D = D(z,R) respectivley, then ν satisfies a local Poincaré inequality on
the ball B(z,R) with constant P (z,R) = 2C(z,R)D(z,R).

Before giving the proof of Theorem 19.9 I shall state a corollary which follows imme-
diately from this theorem together with Corollary 18.8 and Theorem 19.7:
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Corollary 19.10 (Local Poincaré inequality from CD(K,N)). Let M be a Rieman-
nian manifold equipped with a reference measure ν = e−V vol , satisfying the curvature-
dimension condition CD(K,N) for some K ∈ R, N ∈ (1,∞). Then ν satisfies a local
Poincaré inequality with a constant P (K,N,R) = 22N+1 C(K,N,R)D(K,N,R), inside
any ball B(z,R), where C(K,N,R) and D(K,N,R) are defined by (19.11) and (18.9).

In particular, if K ≥ 0 then ν satisfies a local Poincaré inequality on the whole of M
with constant 22N+1.

Proof of Theorem 19.9. Let x0 be a given point in M . Given r > 0, write B = Br(x0), and
2B = B2r(x0). As before, let µ = (1B ν)/ν[B]. Let u be an arbitrary Lipschitz function.
For any y0 ∈ M , we have

u(y0) − 〈u〉B =
∫

M
(u(y0) − u(y1)) dµ(y1). (19.20)

Then

−
∫

B

|u−〈u〉B | dν =
∫

M

∣∣u(y0)−〈u〉B
∣∣ dµ(y0) ≤

∫

B×B

∣∣u(y0)−u(y1)
∣∣ dµ(y0) dµ(y1). (19.21)

Next, we estimate |u(y0)−u(y1)| in terms of a continuous-speed geodesic path γ joining y0

to y1, where y0, y1 ∈ B. The length of such a geodesic path is clearly less than 2r. Then,
with the shorthand g = |∇u|,

∣∣u(y0) − u(y1)
∣∣ ≤ 2r

∫ 1

0
g(γ(t)) dt. (19.22)

By assumption there is a random geodesic γ such that law (γ0, γ1) = µ ⊗ µ and µt =
law (γt) satisfies (19.15). Integrating (19.22) against the law of γ yields

∫

M×M
|u(y0) − u(y1)| dµ(y0) dµ(y1) ≤ E

(
2r
∫ 1

0
g(γ(t)) dt

)
(19.23)

= 2r
∫ 1

0
E g(γ(t)) dt

= 2r
∫ 1

0

∫

M
g dµt dt.

This, combined with (19.21), implies

−
∫

B

|u − 〈u〉B | dν ≤ 2r
∫ 1

0

∫

M
g dµt dt. (19.24)

However, a geodesic joining two points in B(x, r) cannot leave B(x, 2r), so (19.24) and the
democratic condition together imply that

−
∫

B

|u − 〈u〉B| dν ≤ 2C r

ν[B]

∫

2B
g dν. (19.25)

By the doubling property, 1
ν[B] ≤ D

ν[2B] . The conclusion is that

−
∫

B

|u − 〈u〉B | dν ≤ 2C D r −
∫

2B

g dν. (19.26)

This concludes the proof of Theorem 19.9. 78
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Remark 19.11. With almost the same proof, it is easy to derive the following refinement
of the local Poincaré inequality:

∫

B(x,r)

|u(x) − u(y)|
d(x, y)

dν(x) dν(y) ≤ P (K,N,R)
∫

B(x,2r)
|∇u|(x) dν(x).

Back to Brunn–Minkowski and Prékopa–Leindler inequalities

To conclude this chapter I shall explain how the Brunn–Minkowski inequality (18.4) follows
at once from the pointwise estimates on the interpolant density.

Proof of Theorem 18.4, again. Let µ0 be the measure ν conditioned on A0, i.e. µ0 = ρ0 ν
with ρ0 = 1A0/ν[A0]. Similarly, let µ1 = ρ1 ν with ρ1 = 1A1/ν[A1]. Let ρt be the density
of the displacement interpolant at time t. Then, since ρ0 vanishes out of A0, and ρ1 out
of A1, Theorem 19.2 yields

ρt(x)−
1
N ≥ (1 − t)

[
inf

x∈[A0,A1]t
β1−t(x0, x1)

1
N

]
ν[A0]

1
N +

[
inf

x∈[A0,A1]t
βt(x0, x1)

1
N

]
ν[A1]

1
N

≥ (1 − t)
[

inf
(x0,x1)∈A0×A1

β1−t(x0, x1)
1
N

]
ν[A0]

1
N +

[
inf

(x0,x1)∈A0×A1

βt(x0, x1)
1
N

]
ν[A1]

1
N .

Now integrate this against ρt(x) dν(x): since the right-hand side does not depend on x
any longer, it follows that
∫

ρt(x)1−
1
N dν(x) ≥ (1 − t)

[
inf

x∈[A0,A1]t
β1−t(x0, x1)

1
N

]
ν[A0]

1
N

+
[

inf
x∈[A0,A1]t

βt(x0, x1)
1
N

]
ν[A1]

1
N .

On the other hand, ρt is concentrated on [A0, A1]t, so the same Jensen inequality that was
used in the earlier proof of Theorem 18.4 implies

∫
ρt(x)1−

1
N dν(x) ≤ ν

[
[A0, A1]t

] 1
N ,

and inequality (18.4) follows. 78

Now it is interesting to see that Theorem 19.2 also implies the distorted Prékopa–
Leindler inequality. Theorem 19.2. This is a functional variant of the Brunn–Minkowski
inequality, which is sometimes much more convenient to handle. (Here I say that the
inequality is “distorted” only because the Prékopa–Leindler inequality is usually stated
in Rn, while the Riemannian generalization involves distortion coefficients.) I shall first
consider the dimension-free case, which is simpler and does not need distortion coefficients.

Theorem 19.12 (Prékopa–Leindler inequalities). With the same notation as in The-
orem 19.2, assume that (M, ν) satisfies the curvature-dimension condition CD(K,∞). Let
t ∈ (0, 1), and let f , g and h be three nonnegative functions with finite moments of order
p, such that the inequality

h(x) ≥ sup
x∈[x0,x1]t

f(x0)1−t g(x1)t exp
(
−K t(1 − t)

2
d(x0, x1)2

)
(19.27)

is satisfied for all x ∈ M . Then
∫

hdν ≥
(∫

f dν

)1−t(∫
g dν

)t

.
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Proof of Theorem 19.12. By homogeneity, one may assume
∫

f =
∫

g = 1. Write then
ρ0 = f , ρ1 = g; by Theorem 19.2, the displacement interpolant ρt between ρ0 ν and ρ1 ν
satisfies (19.3). From (19.27), h ≥ ρt. It follows that

∫
h ≥

∫
ρt = 1, as desired. 78

The following corollary will be useful later:

Corollary 19.13 (Positive curvature implies square-exponential moments). Let
(M, ν) be a Riemannian manifold satisfying a curvature-dimension bound CD(K,∞) with
K > 0. Then for any x0 ∈ X there exists λ > 0 such that

∫
eλ d(x0,x)2 dν(x) < ∞.

Remark 19.14. In Chapter 30 we shall see another proof of this result, showing that any
λ < K is admissible (see Theorem 30.13).

Proof of Corollary 19.13. Let A be compact such that ν[A] > 0. Apply the Prékopa–
Leindler inequality with t = 1/2, f = 1A, g = exp(K d(x,A)2/4) and h = 1. This shows
that ∫

M
e

K d(x,A)2

4 dν(x) < ∞, (19.28)

and the desired conclusion follows easily. 78

I shall conclude with the dimension-dependent form of the Prékopa–Leindler inequality,
which will require some more notation. For any a, b ≥ 0, t ∈ [0, 1], q ∈ R \ {0}, define

Mq
t (a, b) :=

[
(1 − t) aq + t bq

] 1
q
,

with the convention that Mq
t (a, b) = 0 if either a or b is 0; and M−∞

t (a, b) = min(a, b).

Theorem 19.15 (dimension-dependent distorted Prékopa–Leindler inequality).
With the same notation and assumptions as in Theorem 19.2, assume that ν satisfies a

curvature-dimension bound CD(K,N), for some K ∈ R, N ∈ (1,∞). Let f , g and h be
three nonnegative functions on M satisfying

h(x) ≥ sup
x∈[x0,x1]t

Mq
t

(
f(x0)

β(K,N)
1−t (x0, x1)

,
g(x1)

β(K,N)
t (x0, x1)

)
, q ≥ − 1

N
; (19.29)

then ∫
hdν ≥ M

q
1+Nq
t

(∫
f dν,

∫
g dν

)
. (19.30)

Proof of Theorem 19.15. The proof is quite similar to the proof of Theorem 19.12, except
that now N is finite. Let f , g and h satisfy the assumptions of the theorem, define ρ0 =
f/‖f‖L1, ρ1 = g/‖g‖L1 , and let ρt be the density of the displacement interpolant at time
t between ρ0 ν and ρ1 ν. Let M be the right-hand side of (19.30); the problem is to show
that

∫
(h/M) ≥ 1, and this is obviously true if h/M ≥ ρt. In view of Theorem 19.2, it is

sufficient to establish

h(x)
M ≥ sup

x0,x1

M
1
N
t

(
β1−t(x0, x1)

ρ0(x0)
,
βt(x0, x1)
ρ1(x1)

)−1

. (19.31)

In view on the assumption of h and the form of M , it is sufficient to check that
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1

M
1
N
t

(
β1−t(x0,x1)

ρ0(x0) , βt(x0,x1)
ρ1(x1)

) ≤
Mq

t

(
f(x0)

β1−t(x0,x1)
, g(x1)

βt(x0,x1)

)

M
q

1+Nq
t (‖f‖L1 , ‖g‖L1)

.

But this is a consequence of the following computation:

1
M−s

t (a−1, b−1)
= Ms

t (a, b) ≤ Mq
t

(
a

c
,

b

d

)
Mt

r(c, d) =
Mq

t

(
a
c , b

d

)

M−r
t (c, d)

, (19.32)

1
q

+
1
r

=
1
s
, q + r ≥ 0,

where the two equalities in (19.32) are obvious by homogeneity, and the central inequality
is a consequence of the two-point Hölder inequality (see the bibliographical notes for
references). 78
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h
(
(1−t)x0+tx1

)
≥ Mq

t (f(x0), g(x1)) =⇒
∫

h(z) dz ≥ M
q

1+q(N−1)

t (mi(f),mi(g))·M1
t

(
1

mi(f)

∫
f,

1
mi(g)

∫

(19.33)
It was recently shown by Bobkov and Ledoux [?] that this inequality can be used to
establish optimal Sobolev inequalities in RN (with the usual Prékopa–Leindler inequality
one can apparently reach only the logarithmic Sobolev inequality, that is, the dimension-
free case). See [?] for the history and derivation of (19.33).
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Infinitesimal displacement convexity

The goal of the present chapter is to translate convexity inequalities of the form “the
graph of a convex function lies below the chord” into inequalities of the form “the graph
of a convex function lies above the tangent” — just as in statements (ii) and (iii) of
Proposition 16.2. This corresponds to the limit t → 0 in the convexity inequality.

One of the main results in this chapter is the HWI inequality, Theorem 20.7 below.

Time-derivative of the energy

As a preliminary step, a useful lower bound will now be given for a derivative of Uν(µt),
where (µt)0≤t≤1 is a Wasserstein geodesic and Uν an energy functional with a reference
measure ν. This computation hardly needs any regularity on the space, so I will present
it on an arbitrary length space.

In the next theorem, I consider a locally compact, complete length space X equipped
with a distance d and a locally finite measure ν. Then U : [0,+∞) → R is a continuous
convex function, twice differentiable on (0,+∞); to U is associated the functional

Uν(µ) =
∫

X
U(ρ) dν µ = ρ ν,

well-defined on P ac
2 (X ).

The statement below will involve norms of gradients. In a nonsmooth length space,
there is no natural notion for the gradient ∇f of a function f , but there are natural
notions for the norm of the gradient, |∇f |. The most common one is

|∇f |(x) := lim sup
y→x

[f(y) − f(x)]
d(x, y)

. (20.1)

Rigorously speaking, this formula makes sense only if x is not isolated, which will always
be the case in the sequel. A slightly finer notion is the following:

|∇−f |(x) := lim sup
y→x

[f(y) − f(x)]−
d(x, y)

, (20.2)

where a− = max(−a, 0) stands for the negative part of a (which is a nonnegative number!!).
It is obvious that |∇−f | ≤ |∇f |, and both notions coincide with the usual one if f is
differentiable. Note that |∇−f |(x) is automatically 0 if x is a local minimum of f .
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Theorem 20.1 (differentiating an energy along optimal transport). Let (X , d, ν)
and U be as above, and let (µt)0≤t≤1 be a geodesic in P2(X ), such that each µt is absolutely
continuous with respect to ν, with density ρt, and U(ρt)− is ν-integrable for all t. Further
assume that ρ0 is Lipschitz continuous, U(ρ0) and ρ0 U ′(ρ0) are ν-integrable, and U ′ is
Lipschitz continuous on ρ0(X ). Then

lim inf
t↓0

[
Uν(µt) − Uν(µ0)

t

]
≥ −

∫

X
U ′′(ρ0(x0))|∇−ρ0|(x0) d(x0, x1)π(dx0 dx1), (20.3)

where π is an optimal coupling of (µ0, µ1) associated with the geodesic path (µt)0≤t≤1.

Remark 20.2. The technical assumption on the negative part of U(ρt) being integrable
is a standard way to make sure that Uν(µt) is well-defined, with values in R ∪ {+∞}. As
for the assumption about U ′ being Lipschitz on ρ0(X ), it means in practice that either U
is twice (right-)differentiable at the origin, or ρ0 is bounded away from 0.

Remark 20.3. Here is a more probabilistic reformulation of (20.3) (which will also make
more explicit the link between π and µt): Let γ be a random geodesic such that µt =
law (γt), then

lim inf
t↓0

[
Uν(µt) − Uν(µ0)

t

]
≥ −E

[
U ′′(ρ0(γ0))|∇−ρ0|(γ0) d(γ0, γ1)

]
.

Proof of Theorem 20.1. By convexity,

U(ρt) − U(ρ0) ≥ U ′(ρ0) (ρt − ρ0), (20.4)

where U ′(0) is the right-derivative of U at 0.
On one hand, U(ρ0) and U(ρt)− are ν-integrable by assumption, so that the integral

of the left-hand side of (20.4) makes sense in R ∪ {+∞} (and the integral of each term is
well-defined). On the other hand, ρ0 U ′(ρ0) is integrable by assumption, while ρt U ′(ρ0) is
bounded above by (max U ′)ρt, which is integrable; so the integral of the right-hand side
makes sense in R ∪ {−∞}. All in all, inequality (20.4) can be integrated into

Uν(µt) − Uν(µ0) ≥
∫

U ′(ρ0)ρt dν −
∫

U ′(ρ0)ρ0 dν

=
∫

U ′(ρ0) dµt −
∫

U ′(ρ0) dµ0.

Now let γ be a random geodesic, such that µt = law (γt). Then the above inequality
can be rewritten

Uν(µt) − Uν(µ0) ≥ E U ′(ρ0(γt)) − E U ′(ρ0(γ0)) = E
[
U ′(ρ0(γt)) − U ′(ρ0(γ0))

]
.

Since U ′ is nondecreasing,

U ′(ρ0(γt)) − U ′(ρ0(γ0)) ≥
[
U ′(ρ0(γt)) − U ′(ρ0(γ0))

]
1ρ0(γ0)>ρ0(γt).

Multiplying and dividing by ρ0(γt) − ρ0(γ0), and then by d(γ0, γt), one arrives at

[
Uν(µt)−Uν(µ0)

]
≥ E

(
U ′(ρ0(γt)) − U ′(ρ0(γ0))

ρ0(γt) − ρ0(γ0)

)(
ρ0(γt) − ρ0(γ0)

d(γ0, γt)
1ρ0(γ0)>ρ0(γt)

)
d(γ0, γt).

After division by t and use of the identity d(γ0, γt) = t d(γ0, γ1), one obtains in the end
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1
t

[
Uν(µt) − Uν(µ0)

]
≥

E
(

U ′(ρ0(γt)) − U ′(ρ0(γ0))
ρ0(γt) − ρ0(γ0)

)(
ρ0(γt) − ρ0(γ0)

d(γ0, γt)
1ρ0(γ0)>ρ0(γt)

)
d(γ0, γ1). (20.5)

It remains to pass to the limit in the right-hand side of (20.5) as t → 0. Since ρ0 is
continuous, for each geodesic γ one has ρ0(γt) → ρ0(γ0) > 0 as t → 0, and in particular,

U ′(ρ0(γt)) − U ′(ρ0(γ0))
ρ0(γt) − ρ0(γ0)

−−→
t→0

U ′′(ρ0(γ0)),

Similarly,

lim inf
t→0

(
ρ0(γt) − ρ0(γ0)

d(γ0, γt)
1ρ0(γ0)>ρ0(γt)

)
≥ −|∇−ρ0|(γ0).

So, if vt(γ) stands for the integrand in the right-hand side of (20.5), one has

lim inf vt(γ) ≥ −U ′′(ρ0(γ0)) |∇−ρ0|(γ0) d(γ0, γ1).

On the other hand, ρ0 is Lipschitz by assumption, and also U ′ is Lipschitz on the range
of ρ0. So |vt(γ)| ≤ Cd(γ0, γ1), where C is the product of the Lipschitz constants of ρ0

and U ′. This uniform domination makes it possible to apply Fatou’s lemma, in the form
lim inft→0 E vt(γ) ≥ E lim inf vt(γ). This translates into

lim inf
t→0

1
t

[
Uν(µt) − Uν(µ0)

]
≥ −E U ′′(ρ0(γ0)) |∇−ρ0|(γ0) d(γ0, γ1),

as desired. 78

Remark 20.4. This theorem does not assume smoothness of X , and does not either as-
sume structural restrictions on the function U . On the other hand, when X is a Riemannian
manifold of dimension n with adequate assumptions at infinity (asymptoticall flat, in the
sense of Definition ??), and U lies in DCn, then there is a more precise result:

lim
t→0

[Uν(µt) − Uν(µ0)]
t

= −
∫

p(ρ0)∆ψ, (20.6)

where ψ is such that T = exp(∇ψ) is the unique optimal transport from µ0 to µ1, and
∆ψ is the Laplacian of ψ, defined almost everywhere; as usual, the reference measure is
the standard volume measure. It is not clear a priori how this compares with the result
of Theorem 20.1, but then, under slightly more stringent regularity assumptions, one can
justify the integration by parts formula

−
∫

p(ρ0)∆ψ ≥
∫

ρ0 U ′′(ρ0)∇ρ0 ·∇ψ (20.7)

(note indeed that p′(r) = rU ′′(r)). Since π is of the form (ρ0 ν)⊗δx1=T (x0) with T = exp∇ψ,
the right-hand side can be rewritten

∫
U ′′(ρ0)∇ρ0 ·∇ψ dπ.

Since |∇ψ(x0)| = d(x0, x1), this integral is obviously an upper bound for the expression
in (20.3). See the bibliographical notes for further comments. In the present chapter, the
more precise result (20.6) will not be useful, but later in Chapter 23 we shall have to go
through it.

Exercise 20.5. Use Otto’s calculus to guess that (d/dt)Uν(µt) should coincide with the
right-hand side of (20.7).
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Dimension-free inequalities

Recall from Chapters 16 and 17 that the dimension-independent bound CD(K,∞) results
in convexity properties for certain functionals. A particular case of Theorem 17.15 is as
follows: CD(K,∞) implies the λU -displacement convexity of Uν , for all U ∈ DC∞, where

λU = inf
r∈R+

Kp(r)
r

, p(r) = rU ′(r) − U(r). (20.8)

In particular, the Boltzmann functional Hν is K-displacement convex.
Let (µt)0≤t≤1 be a geodesic in P ac

2 (M), for t > 0, rewrite the convexity inequality

Uν(µt) ≤ (1 − t)Uν(µ0) + t Uν(µ1) −
λU t(1 − t)

2
W2(µ0, µ1)2

as
Uν(µt) − Uν(µ0)

t
≤ Uν(µ1) − Uν(µ0) −

λU (1 − t)
2

W2(µ0, µ1)2.

Under suitable assumptions, one can apply Theorem 20.1 to pass to the limit as t → 0,
and obtain

−
∫

M
U ′′(ρ0) |∇−ρ0| d(x0, x1)π(dx0 dx1) ≤ Uν(µ1) − Uν(µ0) −

λU W2(µ0, µ1)2

2
.

To summarize the above computations, we have the following statement:

Theorem 20.6 (pre-HWI inequalities). Let M be a Riemannian manifold equipped
with a reference measure ν = e−V vol , such that Ric∞,ν ≥ K. Let U ∈ DC∞, and let λU

be defined by (20.8). Then, for any Wasserstein geodesic (µt = ρt ν)0≤t≤1 satisfying the
assumptions of Theorem 20.1, one has the inequality

Uν(µ0) +
λU W2(µ0, µ1)2

2
≤ Uν(µ1) +

∫
U ′′(ρ0(x0)) |∇−ρ0|(x0) d(x0, x1)π(dx0 dx1).

Many useful functional inequalities can be recovered from Theorem 20.6. Here below is
the most characteristic example, called “HWI inequality”; it is expressed in terms of

- the H-functional of Boltzmann, Hν(µ) =
∫

ρ log ρ dν (as usual ρ = dµ/dν);

- the Wasserstein distance of order 2, W2,

- the Fisher information I, defined by Iν(µ) =
∫ |∇ρ|2

ρ
dν.

Theorem 20.7 (HWI inequality). Let M be a Riemannian manifold equipped with a
reference probability measure ν = e−V vol , satisfying the curvature condition Ric∞,ν ≥ K
(K ∈ R). Let further µ0 and µ1 be two probability measures in P2(M). Then

Hν(µ0) ≤ Hν(µ1) + W2(µ0, µ1)
√

Iν(µ0) −
K W2(µ0, µ1)2

2
. (20.9)

In particular, if ν ∈ P2(M), then, for all µ ∈ P2(M),

Hν(µ) ≤ W2(µ, ν)
√

Iν(µ) − K W2(µ, ν)2

2
. (20.10)
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Remark 20.8. The functional Hν can be extended into a lower semi-continuous convex
functional on the whole of P2(M) (just set Hν(µ) = +∞ if µ is not absolutely continuous
with respect to ν). It is also possible to extend Iν into a lower semi-continuous functional
on the whole of P2(M); so the statement of Theorem 20.7 makes sense as it is. However, I
shall prove it only in the case when µ0 and µ1 are absolutely continuous, and the density
ρ0 of µ0 is Lipschitz and bounded away from 0 and ∞ (i.e. there exists ε > 0 such that
ε ≤ ρ0 ≤ ε−1). Then the general case follows by a more or less standard approximation
argument (see the bibliographic notes for references).

Remark 20.9. The HWI inequality plays the role of a nonlinear interpolation inequality:
it shows that the Kullback information H is controlled by a bit of the Fisher information I
(which is stronger, in the sense that it involves smoothness) and the Wasserstein distance
W2 (which is weaker). A related “linear” inequality is ‖h‖L2 ≤

√
‖h‖H−1 ‖h‖H1 , where H1

is the Sobolev space defined by the L2-norm of the gradient, and H−1 is the dual of H1.

Proof of Theorem 20.7. First of all, it is clear that (20.10) follows from (20.9) upon choosing
µ = µ0, µ1 = ν.

As explained in Remark 20.8, I shall assume that µ0 = ρ0ν, µ1 = ρ1ν, with ρ0 Lipschitz
and bounded away from 0 and ∞. Then (ρ0 log ρ0)− and (ρ1 log ρ1)− are integrable, ac-
cording to Theorem 17.8. If (ρ1 log ρ1)+ is not integrable, then there is nothing to prove, so
we might assume Hν(µ1) < +∞. Then (ρ0 log ρ0)+ is bounded by [sup(log ρ0)+]ρ0, which
is integrable. So ρ0 log ρ0 is integrable. Moreover, since ρ0 is bounded away from 0 and
∞, the function r "−→ log r + 1 is bounded and Lipschitz on ρ0(M). So ρ0 satisfies all
the assumptions required in Theorem 20.1. Let then (µt)0≤t≤1 be the unique Wasserstein
geodesic joining µ0 to µ1; we know from Theorem 8.5(ii) that each µt is absolutely contin-
uous. So all the assumptions of Theorem 20.1 are satisfied, and as a consequence one can
apply Proposition 20.6 to get

Hν(µ0) +
K W2(µ0, µ1)2

2
≤ Hν(µ1) +

∫

M

|∇−ρ0|(x0)
ρ0(x0)

d(x0, x1)π(dx0 dx1).

Then, by Cauchy–Schwarz inequality,
∫

M

|∇−ρ0|(x0)
ρ0(x0)

d(x0, x1)π(dx0 dx1) ≤
√∫

M
d(x0, x1)2 π(dx0 dx1)

√∫

M

|∇−ρ0|2(x0)
ρ0(x0)2

π(dx0 dx1).

But by the marginal property,
∫

M

|∇−ρ0|2(x0)
ρ0(x0)2

π(dx0 dx1) =
∫

M

|∇−ρ0|2(x0)
ρ0(x0)2

µ(dx0) =
∫

M

|∇−ρ0|2(x0)
ρ0(x0)

ν(dx0).

This concludes the proof of (20.9). 78

I shall conclude this chapter with a generalization of the HWI inequality for functions
in DCN .

Theorem 20.10 (Generalized HWI inequality). Let M be a Riemannian manifold,
equipped with a reference probability measure ν = e−V vol , satisfying the curvature con-
dition CD(K,N) (K ≥ 0), and let U ∈ DCN . Let further µ0 and µ1 be two probability
measures in P2(M). Then
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Uν(µ0) ≤ Uν(µ1) + W2(µ0, µ1)
√

Iν(µ0) −
K‖ρ0, ρ1‖

1
N
L∞ W2(µ0, µ1)2

2
, (20.11)

where
‖ρ0, ρ1‖L∞ = max

(
‖ρ0‖L∞(ν), ‖ρ1‖L∞(ν)

)
.

Proof of Theorem 20.10. This is the same proof as before, taking into account the result
of Exercise 17.20. 78

Dimension-dependent inequalities

For the kind of inequalities that are considered in this and the following chapters, it
is notoriously difficult to take dimension into account properly. As a matter of fact, so
far nobody has found a clean analogue of Theorem 20.7 if the assumption CD(K,∞) is
replaced by CD(K,N). Here I shall discuss a partial result in this direction.

Let me start by recalling some notation about the “distorted displacement convexity”
considered at the end of Chapter 17. Given K ∈ R and N > 1, define the distortion
coefficient βt(x0, x1) = β(K,N)

t (x0, x1) as in (14.60):

β(K,N)
t (x0, x1) =






∞ if K > 0 and α > π,
(

sin(tα)
t sinα

)N−1
if K > 0 and α ∈ [0,π],

1 if K = 0,
(

sinh(tα)
t sinhα

)N−1
if K < 0,

(20.12)

where

α =
√

|K| d(x0, x1)2

N − 1
. (20.13)

The values of βt and its derivative β′
t (where the prime stands for partial derivative

with respect to t) at the end-values t = 0, t = 1 will play a crucial role. It is a general fact
that β1 = 1, β′

0 = 0. Let us set

β = β0, β′ = β′
1.

By explicit calculation,

β =






(
α

sinα

)N−1
> 1

1
(

α
sinhα

)N−1
< 1

β′ =






−(N − 1)
(
1 − α

tanα

)
< 0 if K > 0 and α ∈ [0,π],

0 if K = 0,
(N − 1)

(
α

tanhα − 1
)

> 0 if K < 0.
(20.14)

A standard Taylor expansion shows that, as α → 0 while K is fixed (which means that
either d(x0, x1) → 0 or N → ∞), then

β > 1 − K

6
d(x0, x1)2, β′ > −K

3
d(x0, x1)2,

whatever the sign of K.
The goal of this section is the following theorem:
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Theorem 20.11 (distorted HWI inequality). Let M be a Riemannian manifold
equipped with a reference measure ν = e−V vol , satisfying the curvature-dimension bound
CD(K,N), 1 < N < ∞. Let U ∈ DCN , and p(r) = rU ′(r) − U(r). Let µ0 = ρ0ν and
µ1 = ρ1ν be two probability measures in P ac

2 (M), absolutely continuous with respect to ν.
Further assume that U(ρ1) is integrable, ρ1 has compact support, ρ0 is Lipschitz contin-
uous with compact support, U(ρ0) and ρ0 U ′(ρ0) are ν-integrable, and U ′ is bounded and
Lipschitz on ρ0(M). Then
∫

M
U(ρ0) dν ≤

∫

M×M

[
U

(
ρ1(x1)

β(x0, x1)

)
β(x0, x1) + p(ρ0(x0))β′(x0, x1)

+ U ′′(ρ0(x0)) |∇−ρ0|(x0) d(x0, x1)
]
π(dx0 dx1), (20.15)

where π(dx0 dx1) is the (unique) optimal coupling of (µ0, µ1), and the coefficients β and
β′ are defined in (20.14).

Remark 20.12. Recall from Remark 20.2 that the assumption of U ′ being bounded Lip-
schitz on ρ0(M) means that either ρ0 is twice differentiable at the origin, or ρ0 is bounded
away from 0. If none of these assumptions is satisfied, it might be a good idea to regularize
U into a smooth approximation Uε that still lies in DCN , and then let ε go to 0. Such
a strategy does not work well at the level of Theorem 20.6, because λUε might be very
different from λU ; but in the present case, the value of λU does not play any role. The
main case of interest is

U(r) = UN (r) = −Nr(r−
1
N − 1), Uε(r) = UN,ε(r) = −Nr

[
(r + ε)−

1
N − 1

]
.

With such a strategy, one can prove for instance the validity of inequality (20.15) when
U = UN , and ρ0, ρ1 are Lipschitz and compactly supported. For that it is sufficient to
write (20.15) with U = UN,ε and then pass to the limit in the various terms as ε → 0,
using the monotone and dominated convergence theorems.

Proof of Theorem 20.11. Let (µt = ρt ν)0≤t≤1 be the unique Wasserstein geodesic joining
µ0 to µ1. Recall from Theorem 17.28 the convexity inequality

∫
U(ρt) dν ≤ (1 − t)

∫
U

(
ρ0

β1−t

)
β1−t dπ + t

∫
U

(
ρ1

βt

)
βt dπ,

and transform this into
∫

U

(
ρ0

β1−t

)
β1−t dπ ≤

∫
U

(
ρ1

βt

)
βt dπ

+
∫ 


U
(

ρ0
β1−t

)
β1−t − U(ρ0)

t



 dπ − 1
t

∫ [
U(ρt) − U(ρ0)

]
dπ (20.16)

(with obvious notation). The point is to pass to the limit in each of the terms of (20.16).
This is quite easy to do formally, but one has to be a bit careful about integrability issues.
(Skip all the rest of the proof at first reading.)

First term: First consider the left-hand side of (20.16).
If K = 0, there is nothing to prove.
If K > 0, then βt is a decreasing function of t; since U(r)/r is an increasing function

of r, it follows that
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U(ρ0) ≥ U

(
ρ0

β1−t

)
β1−t ≥ U

(
ρ0

β

)
β, (20.17)

and U(ρ0/β1−t)β1−t converges monotonically to U(ρ0) as t → 0.
Here there are two cases: either inf ρ0 = 0, but then U ′ has to be bounded close to 0, so

U(ρ0/β)β should be bounded below by −Cρ0 for some constant C; or inf ρ0 > 0, but then
inf(ρ0/β) > 0 also, and again U(ρ0/β)β has to be bounded below by −Cρ0. In all cases,
U(ρ0/β)β is bounded below by an integrable function. This makes it possible to apply the
monotone convergence theorem in (20.17) and conclude that

∫
U

(
ρ0

β1−t

)
β1−t dπ −−→

t→0

∫
U(ρ0) dπ.

Finally, if K < 0, then all inequalities are reversed:

U(ρ0) ≤ U

(
ρ0

β1−t

)
β1−t ≤ U

(
ρ0

β

)
β,

and now it is sufficient to check that U(ρ0/β)β is bounded above by an integrable function.
By assumption, ρ0 and ρ1 have compact support, so the function β remains bounded
from above and below; and ρ0 is bounded, so U(ρ0/β)β is bounded above and compactly
supported, in particular it is integrable. Just as before, one can conclude that

∫
U

(
ρ0

β1−t

)
β1−t dπ −−→

t→0

∫
U(ρ0) dπ.

Second term: Now consider the term in U(ρ1/βt)βt. Then the discussion is quite similar
to the previous one. For instance, in the case of positive curvature,

U(ρ1) ≥ U

(
ρ1

βt

)
βt ≥ U

(
ρ1

β

)
β,

and U(ρ1/βt)βt converges monotonically to U(ρ1/β)β as t ↓ 0. To apply the monotone
convergence theorem, it is sufficient to know that U(ρ1) is integrable, which was part of
the assumptions. In all the cases, one has

∫
U

(
ρ1

βt

)
βt dπ −−→

t→0

∫
U

(
ρ1

β

)
β dπ.

Third term: By convexity of U , the function b "−→ U(r/b)b is convex, with derivative
−p(r/b); so

U(ρ0) − U

(
ρ0

β1−t

)
β1−t ≥ −p

(
ρ0

β1−t

)
(1 − β1−t);

or, which is the same,

U
(

ρ0
β1−t

)
β1−t − U(ρ0)

t
≤ p

(
ρ0

β1−t

) (
1 − β1−t

t

)
. (20.18)

Since U belongs to DCN , p is always nondecreasing. If K > 0, then the ratio (1−β1−t)/t
decreases as t ↓ 0, while it increases if K < 0. In all cases, the right-hand side of (20.18)
converges monotonically to p(ρ0)β′. In the case of negative curvature, this is sufficient
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to apply the monotone convergence theorem (because the left-hand side of (20.18) is
integrable, say for t = 1). In the case of positive curvature, one should check that the
right-hand side of (20.18) is bounded above by an integrable function; but this is obvious
since this is a nonpositive expression. All in all,

lim sup
t↓0

∫
[
U
(

ρ0
β1−t

)
β1−t − U(ρ0)

]

t
dπ ≤

∫
p

(
ρ0

β1−t

) (
1 − β1−t

t

)
dπ.

Fourth term: By Theorem 20.1,

lim sup
t↓0

(
−1

t

∫
[U(ρt) − U(ρ0)] dπ

)
≤
∫

U ′′(ρ0(x0)) |∇−ρ0|(x0) d(x0, x1)π(dx0 dx1).

This concludes the proof of Theorem 20.11. 78
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Isoperimetric-type inequalities

It is a fact of experience that several inequalities with isoperimetric content can be retrieved
by considering the above-tangent formulation of displacement convexity, when the final
(target) measure is some reference measure. Here is a possible heuristic explanation for
this phenomenon. Assume, for the sake of the discussion, that the initial measure is the
normalized indicator function of some set A. Think of the functional Uν as the internal
energy of some fluid that is initially confined in A. In a displacement interpolation, some
of the mass of the fluid will have to flow out of A, leading to a variation of the energy
(typically, more space available means less density and less energy). The decrease of energy
at initial time is related to the amount of mass that is able to flow out of A at initial time,
and that in turn is related to the surface of A (a small surface leads to a small variation,
because not much of the fluid can escape). So by controlling the decrease of energy, one
should eventually get a control on the surface of A.

The functional nature of this approach makes it possible to replace the set A by some
arbitrary probability measure µ = ρ ν. Then, what plays the role of the “surface” of A
is some integral expression involving ∇ρ. Any inequality expressing the domination of an
integral expression of ρ by an integral expression of ρ and ∇ρ will be loosely referred to
as a Sobolev-type, or isoperimetric-type inequality. Of course there are many many
variants of such inequalities.

Logarithmic Sobolev inequalities

A probability measure ν on a Riemannian manifold is said to satisfy a logarithmic Sobolev
inequality if the functional Hν is dominated by (a constant multiple of) the functional Iν .
Here is a more precise definition:

Definition 21.1 (Logarithmic Sobolev inequality). Let M be a Riemannian man-
ifold, and ν a probability measure on M . It is said that ν satisfies a logarithmic Sobolev
inequality with constant λ if, for any probability measure µ = ρ ν with ρ Lipschitz, one has

Hν(µ) ≤ 1
2λ

Iν(µ). (21.1)

Explicitly, inequality (21.1) means
∫

ρ log ρ dν ≤ 1
2λ

∫ |∇ρ|2

ρ
dν. (21.2)

Equivalently, for any function u one should have
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∫
u2 log(u2) dν −

(∫
u2 dν

)
log

(∫
u2 dν

)
≤ 2

λ

∫
|∇u|2 dν. (21.3)

To go from (21.2) to (21.3), just set ρ = u2/(
∫

u2 dν) and notice that ∇|u| ≤ |∇u|.
The Lipschitz regularity of ρ allows one to define |∇ρ| pointwise, for instance by means

of (20.1). Everywhere in this chapter, |∇ρ| may also be replaced by the quantity |∇−ρ|
appearing in (20.2); in fact both expressions coincide almost everywhere if u is Lipschitz.

This restriction of Lipschitz continuity is too strong, and can be relaxed with a bit
of work. For instance, if ν = e−V vol , with V ∈ C2(M), then one can use a little bit
of distribution theory to show that the quantity

∫
|∇ρ|2/ρ dν is well-defined in [0,+∞],

and then (21.1) makes sense. But in the sequel, I shall just stick to Lipschitz functions.
The same remark applies to other functional inequalities which will be encountered later:
dimension-dependent Sobolev inequalities, Poincaré inequalities....

Logarithmic Sobolev inequalities are dimension-free Sobolev inequalities. Indeed, the
dimension of the space does not appear explicitly in (21.3). This is one reason why these
inequalities are extremely popular in various branches of statistical mechanics, mathemat-
ical statistics, quantum field theory, and more generally the study of phenomena in high
or infinite dimension. They are also used in geometry and partial differential equations,
including Perelman’s recent work on the Ricci flow and the Poincaré conjecture.

At this stage of the course, the next theorem, a famous result in Riemannian geometry,
will seem almost trivial.

Theorem 21.2 (Bakry–Émery theorem). Let M be a Riemannian manifold equipped
with a reference probability measure ν = e−V vol , satisfying the curvature assumption
CD(K,∞) for some K > 0. Then ν satisfies a logarithmic Sobolev inequality with constant
K, i.e.

Hν ≤ Iν
2K

. (21.4)

Example 21.3. For the Gaussian measure γ(dx) = (2π)−n/2e−|x|2/2 in Rn, one has

Hγ ≤ Iγ
2

, (21.5)

independently of the dimension. This is the Stam–Gross logarithmic Sobolev inequality. By
scaling, for any K > 0 the measure γK(dx) = (2π/K)−n/2e−K|x|2 dx satisfies a logarithmic
Sobolev inequality with constant K.

Remark 21.4. More generally, if V ∈ C2(Rn), ∇2V ≥ K In, then Theorem 21.2 shows
that ν(dx) = e−V (x) dx satisfies a logarithmic Sobolev inequality with constant K. Exam-
ple 21.3 shows that the constant K in (21.4) is optimal in general.

Remark 21.5. The curvature assumption CD(K,∞) is quite restrictive, however there
are known perturbation theorems which immediately extend the range of application of
Theorem 21.2. For instance, if ν satisfies a logarithmic Sobolev inequality, v is a bounded
function and ν̃ = e−vν/Z is another probability measure obtained from ν by multiplication
by e−v, then also ν̃ satisfies a logarithmic Sobolev inequality (Holley–Stroock perturbation
theorem). The same is true if v is unbounded, but satisfies

∫
eα|∇v|2 dν < ∞ for α large

enough.

Proof of Theorem 21.2. From Corollary 19.13, ν admits square-exponential moments, in
particular it lies in P2(M). Then from (20.10) and the inequality ab ≤ Ka2/2 + b2/(2K),
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Hν(µ) ≤ W2(µ, ν)
√

Iν(µ) − KW2(µ, ν)2

2
≤ Iν(µ)

2K
.

78

Open Problem 21.6. It is known that if M satisfies CD(K,N) with N < ∞, then the
optimal constant in the Sobolev inequality is not K but KN/(N − 1). Can this be proven
by a transport argument?

In the next section, some finite-dimension Sobolev inequalities will be addressed, but
it is not clear at all that they are strong enough to lead to the solution of Problem 21.6.
Before examining these issues, I shall state an easy variation of Theorem 21.2:

Theorem 21.7 (Sobolev-L∞ interpolation inequalities). Let M be a Riemannian
manifold, equipped with a reference probability measure ν = e−V vol , V ∈ C2(M), satisfying
the curvature-dimension condition CD(K,N) for some K > 0, N ∈ (1,∞]. Let further
U ∈ DCN . Then, for any Lipschitz-continuous probability density ρ, and µ = ρ ν, one has
the inequality

Uν(µ) − Uν(ν) ≤ max(ρ)
1
N

2K
IU,ν(µ), (21.6)

where ρ is the density of µ with respect to ν, and

IU,ν(µ) =
∫

M
ρ |∇U ′(ρ)|2 dν. (21.7)

Proof. The proof is the same as for Theorem 21.2, using the generalized HWI inequality
of Theorem 20.10. Note that, by Jensen’s inequality, Uν(µ) =

∫
U(ρ) dν ≥ U(

∫
ρ dν) =

U(1) = Uν(ν). 78

Sobolev inequalities

Sobolev inequalities are one among several classes of functional inequalities with isoperi-
metric content; they are extremely popular in the theory of partial differential equations
theory. They look like logarithmic Sobolev inequalities, but with powers instead of loga-
rithms, and they take dimension into account explicitly.

The most basic Sobolev inequality is in Euclidean space: If u is a function on Rn such
that ∇u ∈ Lp(Rn) (1 ≤ p < n) and u vanishes at infinity (in whatever sense, see e.g.
Remark 21.12 below), then u automatically lies in Lp'(Rn) where p8 = (np)/(n − p) > p.
More quantitatively, there is a constant S = S(n, p) such that

‖u‖Lp' (Rn) ≤ S ‖∇u‖Lp(Rn).

There are other versions for p = n (in which case essentially exp(cun′) is integrable,
n′ = n/(n − 1)), and p > n (in which case u is Hölder-continuous). There are also many
many variants for a function u defined on a set Ω that might be a reasonable open subset
of either Rn or a Riemannian manifold M . For instance,

‖u‖Lp' (Ω) ≤ A‖∇u‖Lp(Ω) + C‖u‖
Lp* (∂Ω)

, p< =
(n − 1) p

n − p
, 1 ≤ p < n,

‖u‖Lp' (Ω) ≤ A‖∇u‖Lp(Ω) + B‖u‖Lq(Ω) 1 ≤ p < n, 1 ≤ q,
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etc. One can also quote the Gagliardo–Nirenberg interpolation inequalities, which typ-
ically take the form

‖u‖Lp' ≤ G ‖∇u‖1−θ
Lp ‖u‖θLq , 1 ≤ p < n, 1 ≤ q < p8, 0 ≤ θ ≤ 1,

with some restrictions on the exponents. I will not say more about Sobolev-type inequali-
ties, but there are entire books devoted to them.

In a Riemannian setting, there is a famous family of Sobolev inequalities obtained from
the curvature-dimension bound CD(K,N) with K > 0 and 2 < N < ∞:

c

q − 2

[(∫
|u|q dν

)2
q

−
∫

|u|2 dν

]

≤
∫

|∇u|2 dν, 1 ≤ q ≤ 2N
N − 2

, c =
NK

N − 1
.

(21.8)
When q → 2, (21.8) reduces to Bakry–Émery’s logarithmic Sobolev inequality. The
most interesting member of the family is obtained when q is the critical exponent
28 = (2N)/(N − 2), and then (21.8) becomes

‖u‖2

L
2N

N−2 (M)
≤ ‖u‖2

L2(M) +
(

4
N − 2

)(
N − 1
KN

)
‖∇u‖2

L2(M). (21.9)

There is no loss of generality in assuming u ≥ 0, since the inequality for general u
follows easily from the inequality for nonnegative u. Let us then change unknowns by
choosing ρ = u2N/(N−2). By homogeneity, it is also no loss of generality to assume that
µ := ρ ν is a probability measure. Then inequality (21.9) becomes

HN/2,ν(µ) = − N

2

∫
(ρ1− 2

N − ρ) dν ≤ 1
2K

∫ |∇ρ|2

ρ

(
(N − 1)(N − 2)

N2
ρ−

2
N

)
dν. (21.10)

The way in which I have written inequality (21.10) might look strange, but it has the merit
to show very clearly how the limit N → ∞ leads to the logarithmic Sobolev inequality
H∞,ν(µ) ≤

∫
(|∇ρ|2/ρ) dν.

I don’t know whether (21.10), or more generally (21.8), can be obtained by transport.
Instead, I shall derive related inequalities, whose relation to (21.10) is still unclear. I also
mention that (21.9) implies (21.6) in the case when U = UN , as a consequence of the
inequality

HN,ν ≤
(

N − 2
N − 1

)
HN/2,ν .

Theorem 21.8 (Sobolev inequalities from CD(K,N)). Let M be a Riemannian man-
ifold, equipped with a reference measure ν = e−V vol , satisfying the curvature-dimension
inequality CD(K,N) for some K > 0, 1 < N < ∞. Then, for any probability density ρ,
Lipschitz continuous and strictly positive, and µ = ρ ν, one has

HN,ν(µ) = −N

∫

M
(ρ1− 1

N − ρ) dν ≤
∫

M
Θ(N,K)(ρ, |∇ρ|) dν, (21.11)

where

Θ(N,K)(r, g) = r sup
0≤α≤π

(
N − 1

N

g

r1+ 1
N

√
N − 1

K
α + N

(
1 −

( α

sinα

)1− 1
N

)

+ (N − 1)
( α

tanα
− 1

)
r−

1
N

)
. (21.12)
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As a consequence,

HN,ν(µ) ≤ 1
2K

∫

M

|∇ρ|2

ρ

((
N − 1

N

)2 ρ−
2
N

1
3 + 2

3ρ
− 1

N

)
dν. (21.13)

Remark 21.9. By taking the limit as N → ∞ in (21.13), one recovers again the logarith-
mic Sobolev inequality of Bakry and Émery, with the sharp constant. For fixed N , the
exponents appearing in (21.13) are sharp: For large ρ, the integrand in the right-hand side
behaves like |∇ρ|2ρ−(1+2/N) = cN |∇ρ

1
2' |2, so the critical Sobolev exponent 2∗ governs this

inequality, which is good. On the other hand, the constants appearing in (21.13) are defi-
nitely not sharp; for instance it is obvious that they do not imply exponential integrability
as N → 2.

Open Problems 21.10. Is inequality (21.11) stronger, weaker, or not comparable to in-
equality (21.10)? Does inequality (21.13) follow from (21.10)? Can one find a transport
argument leading to (21.10)?

Proof of Theorem 21.8. Start from Theorem 20.11 and choose U(r) = −N(r1− 1
N −r). After

some straightforward calculations, it follows that

HN,ν(µ) ≤
∫

M
θ(N,K)

(
ρ, |∇ρ|,α

)
,

where α =
√

K/(N − 1) d(x0, x1) ∈ [0,π], and θ(N,K) is an explicit function such that

Θ(N,K)(r, g) = sup
α∈[0,π]

θ(N,K)(r, g,α).

This is sufficient to prove (21.11).
To go from (21.11) to (21.13), one can use the elementary inequalities






N

(
1 −

( α

sinα

)1− 1
N

)
≤ −

(
N − 1

6

)
α2

(N − 1)
( α

tanα
− 1

)
≤ −

(
N − 1

3

)
α2.

(21.14)

(See the bibliographical notes for proofs.) Plug these inequalities into (21.12), then compute
the supremum explicitly: This gives the desired estimate of Θ(N,K) from above. 78

Now I shall consider the case of the Euclidean space Rn, equipped with the Lebesgue
measure, and show that sharp Sobolev inequalities can be obtained by a transport ap-
proach. The proof will take advantage of the scaling properties in Rn.

Theorem 21.11 (Sobolev inequalities in Rn). Whenever u is a Lipschitz, compactly
supported function on Rn, then

‖u‖Lp' (Rn) ≤ Sn(p) ‖∇u‖Lp(Rn) 1 ≤ p < n, p8 =
np

n − p
, (21.15)

where the constant Sn(p) is given by

Sn(p) = inf






p (n − 1)
n (n − p)

(∫
|g|
) 1

p'
(∫

|y|p′ |g(y)| dy

) 1
p′

∫
|g|1−

1
n





, p′ =

p

p − 1
,

and the infimum is taken over all functions g ∈ L1(Rn), not identically 0.
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be

Remark 21.12. The assumption of Lipschitz continuity for u can be removed, but I shall
not do so here. Actually, inequality (21.15) holds true as soon as u is locally integrable
and vanishes at infinity, in the sense that the Lebesgue measure of any set of the form
{|u| ≥ r} (r > 0) is finite.

Remark 21.13. The constant Sn(p) is optimal.

Proof of Theorem 21.11. Choose M = Rn, ν = Lebesgue measure, and apply Theo-
rem 20.11 with K = 0, N = n (recall Remark 20.12), and µ0 = ρ0 ν, µ1 = ρ1 ν, both
of them compactly supported. Here β ≡ 1, β′ ≡ 0, so formula (20.15) simplifies into

Hn,ν(µ0) − Hn,ν(µ1) ≤
(

1 − 1
n

)∫

Rn×Rn
ρ0(x0)−(1+ 1

n ) |∇ρ0|(x0) d(x0, x1)π(dx0 dx1).

By Hölder’s inequality and the marginal property of π,

Hn,ν(µ0)−Hn,ν(µ1) ≤
(

1 − 1
n

)(∫

Rn
ρ
−p(1+ 1

n )
0 |∇ρ0|p dµ0

) 1
p
(∫

Rn×Rn
d(x0, x1)p

′
π(dx0 dx1)

) 1
p′

,

where p′ = p/(p − 1). This can be rewritten

n

∫
ρ
1− 1

n
1 dν ≤ n

∫
ρ
1− 1

n
0 dν +

(
1 − 1

n

)(
ρ
−p(1+ 1

n )
0 |∇ρ0|p dµ0

) 1
p

Wp′(µ0, µ1). (21.16)

Now I shall use a homogeneity argument. Fix ρ1 and ρ0 as above, and define ρ(λ)
0 (x) =

λnρ0(λx). On one hand,
∫ (

ρ(λ)
0

)1− 1
n dν = λ−1

∫
ρ
1− 1

n
0 dν −−−→

λ→∞
0;

on the other hand,
∫

Rn
(ρ(λ)

0 )−p(1+ 1
n ) |∇ρ(λ)

0 |p dµ(λ)
0 does not depend on λ.

Moreover, as λ → ∞, the probability measure µ(λ)
0 = ρ(λ)

0 ν converges weakly to the Dirac
mass δ0 at the origin; so

Wp′(µ
(λ)
0 , µ1) −→ Wp′(δ0, µ1) =

(∫
|y|p′ dµ1(y)

) 1
p′

.

So after writing (21.16) for µ0 = µ(λ)
0 and then passing to the limit as λ → ∞, one obtains

n

∫
ρ
1− 1

n
1 dν ≤

(∫

Rn
ρ
−p(1+ 1

n
)

0 |∇ρ0|p dµ0

) 1
p
(∫

|y|p′ dµ1(y)
) 1

p′

. (21.17)

Let us change unknowns and define ρ0 = u1/p' , ρ1 = g; then (21.17) becomes

1 ≤ p (n − 1)
n (n − p)





(∫
|y|p′ g(y) dy

) 1
p′

∫
gp'(1− 1

n )




‖∇u‖Lp ,

where u and g are only required to satisfy
∫

up' = 1,
∫

g = 1. Then (21.15) follows by
homogeneity again. 78
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To conclude this section, I shall consider the case when RicN,ν ≥ K < 0 and derive
Sobolev inequalities for compactly supported functions. Since I shall not be concerned
here with optimal constants, I shall only discuss the limit case p = 1, p8 = n/(n − 1),
which implies the general inequality for p < n (via Hölder’s inequality), up to a loss in the
constants.

Theorem 21.14 (L1 Sobolev inequalities from CD(K,N)). Let M be a Riemannian
manifold equipped with a reference measure ν, satisfying the curvature-dimension bound
CD(K,N) for some K < 0, N ∈ (1,∞). Then, for any ball B = B(z,R), R ≥ 1, there are
constants A and B, only depending on a lower bound on K, and upper bounds on N and
R, such that for any Lipschitz function u supported in B,

‖u‖
L

N
N−1

≤ A ‖∇u‖L1 + B ‖u‖L1 . (21.18)

Proof of Theorem 21.14. Inequality (21.18) remains unchanged if we multiply ν by a pos-
itive constant. So we might assume, without loss of generality, that ν[B(z,R)] = 1.

Apply again (20.15), in the form

N −
∫

ρ
1− 1

N
0 dν ≤ N −

∫
ρ
1− 1

N
1 β

1
N dπ +

∫
ρ
1− 1

N
0 β′ dπ +

1
N

∫
ρ
− 1

N
0 |∇ρ0| d(x0, x1) dπ,

(21.19)
and choose ρ1 = 1B(x0,R)/ν[B(x0, R)] (the normalized indicator function of the ball). The
arguments of β and β′ in (21.19) belong to B(z,R), so the coefficients β and β′ remain
bounded by some explicit function of N , K and R; and the distance d(x0, x1) remains
bounded by 2R. So there are constants δ(K,N,R) > 0 and C(K,N,R) such that

−
∫

ρ
1− 1

N
0 ≤ − δ(K,N,R) ν[B]

1
N + C(K,N,R)

[∫
ρ
1− 1

N
0 +

∫
ρ
− 1

N
0 |∇ρ0|

]
. (21.20)

Recall that ν[B] = 1. Then after the change of unknowns ρ0 = uN/(N−1), inequality (21.20)
implies

1 ≤ S
(
K,N,R

) [
‖∇u‖L1(M) + ‖u‖L1(M)

]
,

for some explicit constant S = (C + 1)/δ. This holds true under the constraint 1 =
∫
ρ =∫

uN/(N−1), and then inequality (21.18) follows by homogeneity. 78

Isoperimetric inequalities

Isoperimetric inequalities can sometimes be obtained as limits of Sobolev inequalities ap-
plied to indicator functions. The most classical example is the equivalence between the
optimal Sobolev inequality ‖u‖Ln/(n−1)(Rn) ≤ S1(1) ‖∇u‖L1(Rn) and the Euclidean isoperi-
metric inequality

|∂A|
|A|

n−1
n

≥ |∂Bn|
|Bn|

n−1
n

considered in Chapter 2.
As seen before, there is a proof of the optimal Sobolev inequality in Rn based on

transport, and of course this leads to a proof of the Euclidean isoperimetry. There is also
a more direct path to a transport-based proof of isoperimetry, as explained in Chapter 2.

Apart from the Euclidean one, the most famous isoperimetric inequality in differential
geometry is certainly the Lévy–Gromov inequality, which states that if A is a reason-
able set in a manifold (M,g) with dimension n and Ricci curvature bounded below by K,
then
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|∂A|
|A|

n−1
n

≥ |∂B|
|B|

n−1
n

,

where B is a spherical cap in the model sphere S (that is, the sphere with dimension N
and Ricci curvature K) such that |B|/|S| = |A|/|M |. In other words, isoperimetry in M
is at least as strong as isoperimetry in the model sphere.

I don’t know if the Lévy–Gromov inequality can be retrieved from optimal transport,
and I think this is one of the most exciting open problems in the field. Indeed, there is
to my knowledge no “reasonable” proof of the Lévy–Gromov inequality, in the sense that
the only known arguments rely on subtle results from geometric measure theory, about
the rectifiability of certain extremal sets. A softer argument would be conceptually very
satisfactory. I record this in the form of a loosely formulated open problem:

Open Problem 21.15. Find a transport-based, soft proof of the Lévy–Gromov isoperi-
metric inequality.

The same question can be asked for the Gaussian isoperimetry, which is the infinite-
dimensional version of the Lévy–Gromov inequality. In that case however there are known
functional versions, and softer approaches.

Poincaré inequalities

Poincaré inequalities are related to Sobolev inequalities, and often appear as limit cases of
them. (I am sorry if the reader begins to be bored by this litany: Logarithmic Sobolev in-
equalities are limits of Sobolev inequalities, isoperimetric inequalities are limits of Sobolev
inequalities, Poincaré inequalities are limits of Sobolev inequalities...) Here in this section
I shall only consider global Poincaré inequalities, which are rather different from the local
inequalities considered in Chapter 19.

Definition 21.16 (Poincaré inequalities). Let M be a Riemannian manifold, and ν a
probability measure on M . It is said that ν satisfies a Poincaré inequality with constant λ
if, for any u ∈ L2(µ) with u Lipschitz, one has

∥∥u − 〈u〉
∥∥2

L2(ν)
≤ 1

λ
‖∇u‖2

L2(ν), 〈u〉 =
∫

u dν. (21.21)

Inequality (21.21) can be reformulated into
∫

u dν = 0 =⇒ ‖u‖2
L2 ≤

‖∇u‖2
L2

λ
.

This writing makes the formal connection with the logarithmic Sobolev inequality very
natural. (The Poincaré inequality is obtained as the limit of the logarithmic Sobolev in-
equality when one sets µ = (1 + εu) ν and lets ε → 0.)

Like Sobolev inequalities, Poincaré inequalities express the domination of a function by
its gradient; but unlike Sobolev inequalities, they do not include any gain of integrability.
Poincaré inequalities have spectral content, since the best constant λ can be interpreted
as the spectral gap for the Laplace operator on M .1 There is no Poincaré inequality on Rn

1 This is one reason to take λ as the constant defining the Poincaré inequality. Unfortunately this is not
consistent with the convention that I used for local Poincaré inequalities; another choice would have
been to call λ−1 the Poincaré constant.
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equipped with the Lebesgue measure (the usual “flat” Laplace operator does not have a
spectral gap), but there is a Poincaré inequality on, say, any compact Riemannian manifold.

Establishing Poincaré inequalities for various measures is an extremely classical problem
on which a lot has been written. Here is one of the oldest results in the field:

Theorem 21.17 (Lichnérowicz’s spectral gap inequality). Let M be a Riemannian
manifold equipped with a reference measure ν, satisfying the curvature-dimension condition
CD(K,N) for some K > 0, N ∈ (1,+∞]. Then, ν satisfies a Poincaré inequality with
constant KN/(N − 1).

In other words, if CD(K,N) holds true, then for any Lipschitz function f on M with∫
f dν = 0, one has

[∫
f dν = 0

]
=⇒

∫
f2 dν ≤ N − 1

KN

∫
|∇f |2 dν. (21.22)

Remark 21.18. If ν = e−V vol and L = ∆ − ∇V · ∇, V ∈ C2(M), then (21.22) means
that L admits a spectral gap of size at least KN/(N − 1):

λ1(−L) ≥ KN

N − 1
.

Proof. In the case N < ∞, apply (21.13) with µ = (1 + εf) ν, where ε is a small positive
number, f is Lipschitz and

∫
f dν = 0. Since M has finite diameter, f is bounded, so µ

is a probability measure for ε small enough. Then, by standard Taylor expansion of the
logarithm function,

HN,ν(µ) = ε

∫
f dν + ε2

(
N − 1

N

∫
f2

2
dν

)
+ o(ε2),

and the first term on the right-hand side vanishes by assumption. Similarly,
∫

|∇ρ|2
ρ

(
ρ−

2
N

1
3 + 2

3ρ
− 1

N

)
= ε2

∫
|∇f |2 dν + o(ε2).

So (21.13) implies

N − 1
N

∫
f2

2
dν ≤ 1

2K

(
N − 1

N

)2 ∫
|∇f |2 dν,

and then inequality (21.22) follows.
In the case N = ∞, start from inequality (21.4) and apply a similar reasoning (it is in

fact a well-known property that a logarithmic Sobolev inequality with constant K implies
a Poincaré inequality with constant K). 78

Bibliographical Notes

Standard sources about classical isoperimetric inequalities are the book by Burago and
Zalgaller [82], and the survey by Osserman [?]. A very general discussion of isoperimetric
inequalities can be found in Bobkov and Houdré [58]. As part of his huge work on con-
centration of measure, Talagrand has put forward the use of isoperimetric inequalities in
product spaces [346].
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There are entire books devoted to logarithmic Sobolev inequalities; this subject goes
back at least to Nelson [283] and Gross [198], in relation with hypercontractivity and quan-
tum field theory; but it also takes its roots in earlier works by Stam [333] and Bonami [64].
A gentle introduction, and references, can be found in [21]. The 1992 survey by Gross [199],
the Saint-Flour course by Bakry [30] and the book by Royer [?] are classical references.
Applications to concentration theory and deviation inequalities can also be found in those
sources, or in Ledoux’s synthesis works [235, 237].

The first and most famous logarithmic Sobolev inequality is the one that holds true
for the Gaussian reference measure in Rn, (equation (21.5)). An “equivalent” formulation
(in dimension 1) was derived by Stam [333], so I personally use the name of “Stam–Gross
logarithmic Sobolev inequality for (21.5); of course, this is debatable. There are more than
fifteen known proofs of this inequality; see Gross [199] for a partial list.

The Bakry–Émery theorem (Theorem 21.2 was proven in [31] by a semigroup method
which will be reinterpreted in Chapter 25 as a gradient flow argument. The proof was
rewritten in a language of partial differential equations in [23], with emphasis on the link
to convergence to equilibrium for the heat-like equation ∂tρ = Lρ.

The proof of Theorem 21.2 given in these notes is essentially the one that appeared in
my joint work with Otto [292]. When the manifold M is Rn (and V is K-convex), there is
a slightly simpler variant of that argument, due to Cordero-Erausquin [115]; there are also
two quite different proofs, one by Caffarelli [91] (based on Caffarelli’s log concave pertur-
bation theorem) and one by Bobkov and Ledoux [59] (based on the Brunn–Minkowski in-
equality in Rn). It is likely that the distorted Prékopa–Leindler inequality (Theorem 19.12)
can be used to derive an alternative proof of the Bakry–Émery theorem in the style of
Bobkov–Ledoux.

The Holley–Stroock perturbation theorem for logarithmic Sobolev inequalities, ex-
plained in Remark [?], was proven in [212]. The other criterion mentioned in Remark [?]
namely

∫
eα|∇v|2 dν < ∞ for α large enough, is due to Aida [?].

The refinement of the constant in the logarithmic Sobolev inequalities by a dimensional
factor of N/(N − 1) is somewhat tricky; see for instance Ledoux [232]. As a limit case, on
S1 there is a logarithmic Sobolev inequality with constant 1, although the Ricci curvature
vanishes identically on S1.

Sobolev inequalities also fill up books, but usually the emphasis is more on regularity
issues; in fact, for a long time logarithmic Sobolev inequalities and plain Sobolev inequal-
ities were used and studied by quite different communities. A standard reference is the
book by Maz’ja [264], but there are many alternative sources. A good synthetic source for
the family (21.8) is the course by Ledoux [236]. In that reference the author shows how to
deduce some geometric information from this family of inequalities.

Demange has recently obtained a derivation of (21.10) which is, from my point of view,
very satisfactory, and will be explained later in Chapter 25. By Demange’s method one can
establish the following generalization of (21.10): under adequate regularity assumptions, if
(M, ν) satisfies the curvature-dimension bound CD(K,N), and U ∈ DCN , and A is defined
by A(0) = 0 and A(1) = 0, A′′(r) = r−1/NU ′′(r), then for any probability density ρ,

∫

M
A(ρ) dν ≤ 1

2K

∫

M
ρ1− 1

N
∣∣∇U ′(ρ)

∣∣2 dν.

Many other variants, some of them rather odd-looking, appear in Demange’s work [136,
137, 135]. For instance, he is able to establish apparently sharp inequalities for nonlinear-
ities U satisfying the following condition:
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d

dr

[
r

(
rU ′′(r)
U ′(r)

+
1
N

)]
≥ 9N

4(N + 2)

(
rU ′′(r)
U ′(r)

+
1
N

)2

.

Demange also pointed out to me that (21.9) implies (21.6), without any loss in the
constants. It is interesting to note that (21.6) can be proven very simply by a transport
argument, while no such thing is known for (21.9).

The proof of Theorem 21.8 is taken from a collaboration with Lott [249]. Inequali-
ties (21.14) are proven in Section 5 of this reference.

The use of transport methods to study isoperimetric inequalities in Rn goes back at
least to Knothe [228]; Gromov [275, Appendix] revived the interest in Knothe’s approach
by using it to prove the isoperimetric inequality in Rn. Recently, the method was put to
a higher degree of sophistication by Cordero-Erausquin, Nazaret and myself [119]. In this
work, we recover general optimal Sobolev inequalities in Rn, together with some families of
optimal Gagliardo–Nirenberg inequalities. (The proof of the Sobolev inequalities is repro-
duced in [365, Theorem 6.21].) The results themselves are not new, since optimal Sobolev
inequalities in Rn were established independently by Aubin, Talenti and Rodemich, al-
ready in the seventies (see [119] for references), while the optimal Gagliardo–Nirenberg
inequalities were discovered by Dolbeault and Del Pino [131]. However, I think that all
in all the transport approach is simpler, especially for the Gagliardo–Nirenberg family.
In [119] the optimal Sobolev inequalities came with a “dual” family of inequalities, that
can be interpreted as a particular case of so-called Faber–Krahn inequalities; there is still
(at least for me) some mystery in this duality.

An interesting feature of the proof by Cordero-Erausquin, Nazaret and myself (shared
by Gromov’s proof of isoperimetry) is the fact that it is insensitive to the choice of norm
in Rn. This remark will become interesting inthe las part of these notes.

In the present chapter, I have modified a bit the argument of [119] to avoid the use of
the Alexandrov theorem about second derivatives of convex functions (Theorem 14.23 in
the first Appendix of Chapter 14). The advantage is to get a simpler proof, however the
computations are less precise, and some useful “magic” cancellations (such as x + (∇ϕ −
x) = ∇ϕ) are not available any longer; I used a homogeneity argument to get around this
problem. A drawback of this approach is that the discussion about cases of equality is not
possible any longer (anyway a clean discussion of equality cases requires much more efforts;
see [119, Section 4]). The proof presented here should work through if Rn is replaced by a
cone with nonnegative Ricci curvature, although I did not check details.

In the new argument, the effect of the homogeneity is to transform a given functional
inequality, seemingly not optimal, into the optimal one. I wonder whether a similar argu-
ment could lead from (21.6) to (21.9) on the sphere.

After [119], Maggi and myself [251] pushed the method even further further, to recover
“very optimal” Sobolev inequalities with trace terms, in Rn. This settled some problems
that had been left open in a classical work by Brézis and Lieb [80]. Much more information
can be found in [251], and recently we wrote a sequel [252] in which limit cases (such as
inequalities of Moser–Trudinger type) are considered.

As far as all these applications of transport to Sobolev or isoperimetric inequalities in
Rn are concerned, the Knothe coupling works about just as fine as the optimal coupling.
I am not completely sure that it can be used in subtle refinements such as the discussion
of equality cases performed in [119], but I would not be surprised if the answer were
affirmative. In any case, if the reader is looking for a transport argument related to some
geometric inequality in Rn, I personally advise him or her to try the Knother coupling
first.
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The Lévy–Gromov inequality was first conjectured by Lévy in the case when the mani-
fold M is the boundary of a uniformly convex set (so the sectional curvatures are bounded
below by a positive constant). Lévy thought he had a proof, but his argument was faulty
and repaired by Gromov [196]. There have also been some striking works by Bobkov,
Ledoux and Bakry on the infinite-dimensional version of the Lévy–Gromov inequality
(often called Gaussian isoperimetry); for this inequality there is an elegant functional for-
mulation [55, 33]. On that subject I also warmly recommend (as usual) the synthesis works
by Ledoux [233, 234].

The Lichnérowicz spectral gap theorem is usually encountered as a simple application
of the Bochner formula. The above proof of Theorem 21.17 is a variant of the one which
appears in my joint work with Lott [249]. Although less simple than the classical proof, it
has the advantage, for the purpose of these notes, to be based on optimal transport. This is
actually, to my knowledge, the first time that the dimensional refinement in the constants
by a factor N/(N − 1) in an “infinite-dimensional functional inequality” is obtained from
a transport argument.
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Concentration inequalities

The theory of concentration of measure is a set of ideas, tools and recipes built on the
idea that if a set A is given in a metric probability space (X , d, P ), then the enlargement
Ar := {x; d(x,A) ≤ r} might acquire a very high probability as r increases. There is an
equivalent statement that Lipschitz functions X → R are “almost constant” in the sense
that they have a very small probability to deviate from some typical quantity, for instance
their mean value. This theory was founded by Lévy and later developed by many authors,
in particular Milman, Gromov and Talagrand.

To understand the relation between the two sides of concentration (sets and functions),
it is most natural to think in terms of median, rather than mean value. By definition, a
real number mf is a median of the random variable f : X → R if

P [f ≥ mf ] ≥ 1
2
; P [f ≤ mf ] ≥ 1

2
.

Then the two statements
(a) ∀A ⊂ X , ∀r ≥ 0, P [A] ≥ 1/2 =⇒ P [Ar] ≥ 1 − ψ(r)
(b) ∀f ∈ Lip(X ), ∀r ≥ 0, P [f > mf + r] ≤ ψ(r/‖f‖Lip)

are equivalent. Indeed, to pass from (a) to (b), first reduce to the case ‖f‖Lip = 1 and let
A = {f ≤ mf}; to pass from (b) to (a), let f = d(·, A) and note that 0 is a median of f .

The typical and most emblematic example of concentration of measure occurs in the
Gaussian probability space (Rn, γ):

γ[A] ≥ 1
2

=⇒ γ[Ar] ≥ 1 − e−
r2

2 .

Here is the translation in terms of Lipschitz functions: If X is a Gaussian random variable
with law γ, then for all Lipschitz functions f : Rn → R,

P
[
f(X) ≥ E f(X) + r

]
≤ exp

(
− r2

2 ‖f‖2
Lip

)
.

Another famous example is the unit sphere SN : if σN stands for the normalized volume
on SN , then the formulas above can be replaced by

σN [A] ≥ 1
2

=⇒ σN [Ar] ≥ 1 − e−
(N−1)

2 r2
,

P
[
f(X) ≥ E f(X) + r

]
≤ exp

(
− (N − 1)r2

2 ‖f‖2
Lip

)
.

On this example we see that the phenomenon of concentration of measure becomes more
and more important as the dimension increases to infinity.
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Optimal transport and concentration

As first understood by Marton, there is a simple and robust functional approach to concen-
tration inequalities based on optimal transport. One can encode some information about
the concentration of measure with respect to some reference measure ν, by functional
inequalities of the form

∀µ ∈ P (X ), C(µ, ν) ≤ Eν(µ), (22.1)

where C(µ, ν) is the optimal transport cost between µ and ν, and Eν is some local nonlinear
functional (“energy”) of µ.

This principle may be heuristically understood as follows. To any given measurable set
A, associate the conditional measure µA = (1A/ν[A]) ν. If the measure of A is not too
small, then the associated energy Eν(µA) will not be too high, and by (22.1) the optimal
transport cost C(µA, ν) will not be too high either. In that sense, the whole space X can
be considered as a “small enlargement” of just A.

Here is a fluid mechanics analogy: imagine µ as the density of a fluid. The term on the
right-hand side of (22.1) measures how difficult it is to prepare µ, for instance to confine it
within a set A (this has to do with the measure of A); while the term on the left-hand side
says how difficult it is for the fluid to invade the whole space, after it has been prepared
initially with density µ.

The most important class of functional inequalities of the type (22.1) occurs when the
cost function is of the type c(x, y) = d(x, y)p, and the “energy” functional is the square
root of Boltzmann’s H functional,

Hν(µ) =
∫

ρ log ρ dν, µ = ρ ν,

with the understanding that Hν(µ) = +∞ if µ is not absolutely continuous with respect
to ν. Here below is a precise definition of these functional inequalities:

Definition 22.1 (Tp inequality). Let (X , d) be a Polish space and let p ∈ [1,∞). Let ν
be a reference probability measure in Pp(X ), and let λ > 0. It is said that ν satisfies a Tp

inequality with constant λ if

∀µ ∈ Pp(λ), Wp(µ, ν) ≤
√

2Hν(µ)
λ

.

These inequalities are often called transportation-cost inequalities, or Talagrand in-
equalities, although the latter denomination is sometimes restricted to the case p = 2.

Remark 22.2. Since Wp ≤ Wq for p ≤ q, the Tp inequalities are stronger and stronger
when p increases. The inequalities T1 and T2 have deserved most attention. It is an exper-
imental fact that T1 is more handy and flexible, while T2 has more geometric content, and
behaves better in large dimension (see for instance Corollary 22.6 below).

There are two important facts to know about Tp inequalities when p varies in the range
[1, 2]: they admit a dual formulation, and they tensorize. These properties are described
in the two Propositions below.

Proposition 22.3 (Dual formulation of Tp). Let (X , d) be a Polish space, p ∈ [1, 2]
and ν ∈ Pp(X ). Then the following two statements are equivalent:

(a) ν satisfies Tp(λ);
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(b) For any ϕ ∈ Cb(X ),





∀t ≥ 0
∫

eλt infy∈X
[
ϕ(y)+ d(x,y)p

p

]
ν(dx) ≤ eλ

(
1
p−

1
2

)
t

2
2−p

etλ
R
ϕ dν (p < 2);

∫
eλ infy∈X

[
ϕ(y)+ d(x,y)2

2

]
ν(dx) ≤ eλ

R
ϕ dν (p = 2).

(22.2)

Particular Case 22.4 (Dual formulation of T1). Let (X , d) be a Polish space and
ν ∈ P1(X ), then the following two statements are equivalent:

(a) ν satisfies T1(λ);
(b) For any ϕ ∈ Cb(X ),

∀t ≥ 0
∫

et infy∈X
[
ϕ(y)+d(x,y)

]
ν(dx) ≤ e

t2

2λ et
R
ϕ dν . (22.3)

Proposition 22.5 (Tensorization of Tp). Let (X , d) be a Polish space, p ∈ [1, 2] and
let ν ∈ Pp(X ) be a reference probability measure satisfying an inequality Tp(λ). Then for
any N ∈ N, the measure ν⊗N satisfies an inequality Tp(N

1− 2
pλ) on (XN , dp, ν⊗N ), where

the product distance dp is defined by

dp
(
(x1, . . . , xN ); (y1, . . . , yN )

)
=
( N∑

i=1

d(xi, yi)p
) 1

p
.

Corollary 22.6 (T2 inequalities tensorize exactly). If ν satisfies T2(λ), then also
µ⊗N satisfies T2(λ) on (XN , d2, ν⊗N ), for any N ∈ N.

Proof of Proposition 22.2. Proposition 22.2 will be obtained as a consequence of Theo-
rem 5.21. Recall the Legendre representation of the H-functional: For any λ > 0,






∀µ ∈ P2(M),
Hν(µ)

λ
= sup

ϕ∈Cb(M)

[∫
ϕ dµ − 1

λ
log

(∫

M
eλϕ dν

)]
,

∀ϕ ∈ Cb(M),
1
λ

log
(∫

M
eλϕ dν

)
= sup

µ∈P2(M)

[∫
ϕ dµ − Hν(µ)

λ

]
.

(22.4)

Let us first treat the case p = 2. Apply Theorem 5.21 with c(x, y) = d(x, y)2/2, F (µ) =
(1/λ)Hν(µ), Λ(ϕ) = (1/λ) log

(∫
eλϕ dν

)
. The conclusion is that ν satisfies T2(λ) if and

only if

∀φ ∈ Cb(X ), log
∫

exp
(
λ

∫
φ dν − λφc

)
dν ≤ 0,

i.e. ∫
e−λφc

dν ≤ e−λ
R
φ dν ,

where φc(x) := supy

(
φ(y) − d(x, y)2/2). Upon changing φ for ϕ = −φ, this is the desired

result. Note that the Particular Case ?? is obtained from (22.2) by choosing p = 1 and
performing the change of variables t → λt.

The case p < 2 is similar, except that now we appeal to the equivalence between (i’)
and (ii’) in Theorem 5.21, and choose

c(x, y) =
d(x, y)p

p
; Φ(r) =

p
2
p

2
r

2
p 1r≥0; Φ∗(t) =

(
1
p
− 1

2

)
t

2
2−p .

78
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Proof of Proposition 22.5. To begin with, we need a bit of notation. Let µ = µ(dx1 dx2 . . . dxN )
be a probability measure on XN , and let (x1, . . . , xN ) ∈ XN be distributed randomly ac-
cording to µ. I shall write µ1(dx1) for the law of x1, µ2(dx2|x1) for the conditional law of
x2 given x1, µ3(dx3|x1, x2) for the conditional law of x3 given x1 and x2, etc. I shall also
use the shorthand xi = (x1, x2, . . . , xi), (with the convention that x0 = ∅), and write µi

for the law of xi.
The proof of Proposition 22.5 is reminiscent of the strategy used to construct the

Knothe–Rosenblatt coupling. First choose an optimal coupling (for the cost function c =
dp) between µ1(dx1) to ν(dy1), call it π1(dx1 dy1). Then for each x1, choose an optimal
between µ2(dx2|x1) and ν(dy2), call it π2(dx2 dy2|x1). Then for each (x1, x2), choose an
optimal coupling between µ3(dx3|x1, x2) and ν(dy3), call it π3(dx3 dy3|x1, x2); etc. In the
end, glue these plans together to get a coupling

π(dx1 dy1 dx2 dy2 . . . dxN dyN ) = π1(dx1 dy1)π2(dx2 dy2|x1)π3(dx3 dy3|x1, x2) . . .

. . . πN (dxN dyN |x1, . . . , xN−1).

In more compact notation,

π(dx dy) = π1(dx1 dy1)π2(dx2 dy2|x1) . . . πN (dxN dyN |xN−1).

Here something should be said about the measurability, since there is a priori no canon-
ical way to choose πi( · |xi−1) as a measurable function of xi−1. But it is a general fact that
if x → µx is a measure-valued measurable map, and ν is another measure, then for each
x one can choose an optimal transference plan π = πx between µx and ν, in a measurable
way. To see this, let Πν be the set of all optimal transference plans whose second marginal
is ν; and let f be the map which to π ∈ Πν associates its first marginal. Obviously f is
continuous; by Theorem 4.1 it is surjective; and by Corollary 5.19 all preimages f−1(µ)
are compact. So the conclusion follows from the measurable selection theorem.

By the definition of dp,

E π dp(x, y)p =
N∑

i=1

E π d(xi, yi)p

=
N∑

i=1

∫ [
E π( · |xi−1) d(xi, yi)p

]
πi−1(dxi−1 dyi−1)

=
N∑

i=1

∫ [
E π( · |xi−1) d(xi, yi)p

]
µi−1(dxi−1), (22.5)

where of course

πi(dxi dyi) = π1(dx1 dy1)π2(dx2 dy2|x1) . . . πi(dxi dyi|xi−1).

For each i and each xi−1 = (x1, . . . , xi−1), the measure π( · |xi−1) is an optimal trans-
ference plan between its marginals. So the right-hand side of (22.5) can be rewritten as

N∑

i=1

∫
Wp

(
µi( · |xi−1), ν

)p
µi−1(dxi−1).

Since this cost is achieved for the transference plan π, we otain the key estimate
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Wp(µ, ν⊗N )⊗p ≤
N∑

i=1

∫
Wp

(
µi( · |xi−1), ν

)p
µi−1(dxi−1). (22.6)

By assumption, ν satisfies Tp(λ), so the right-hand side in (22.6) can be bounded above
by

∑

i

∫ (
2
λ

Hν
(
µi( · |xi−1)

))
p
2

µi−1(dxi−1). (22.7)

Since p ≤ 2, we can apply Hölder’s inequality, in the form
∑

i≤N ap/2
i ≤ N1−p/2(

∑
ai)p/2,

and bound (22.6) by

N1− p
2

(
2
λ

) p
2
∫ (

N∑

i=1

Hν
(
µi( · |xi−1)

)
)

µi−1(dxi−1). (22.8)

But the formula of additivity of entropy, proven as a lemma below, states that

∑

1≤i≤N

∫
Hν
(
µi(dxi|xi−1)

)
µi−1(dxi−1) = Hν⊗N (µ). (22.9)

Putting back all the previous bounds together, we end up with

Wp(µ, ν)p ≤ N1− p
2

(
2
λ

) p
2

Hν(µ)
p
2 ,

which is the same as the desired inequality. 78

Remark 22.7. The same proof shows that the inequality

∀µ ∈ P (X ), C(µ, ν) ≤ Hν(µ)

implies
∀µ ∈ P (XN ), CN (µ, ν) ≤ Hν⊗N (µ),

where CN is the optimal transport cost associated with the cost function

cN (x, y) =
∑

c(xi, yi)

on XN .

The following important lemma was used in the course of the proof of Proposition 22.5.

Lemma 22.8 (additivity of the entropy). Let X be a Polish space, ν ∈ P (X ), N ∈
N, and µ ∈ P (XN ). Then, with the same notation as in the beginning of the proof of
Proposition 22.5,

Hν⊗N (µ) =
∑

1≤i≤N

∫
Hν
(
µi(dxi|xi−1)

)
µi−1(dxi−1). (22.10)

Proof of Lemma 22.8. By induction, it suffices to treat the case N = 2. Let ρ = ρ(x1, x2)
be the density of µ with respect to ν ⊗ ν. By an easy approximation argument based on
the monotone convergence theorem, it is sufficient to establish (22.10) in the case when ρ
is bounded.



348 22 Concentration inequalities

The conditional measure µ2(dx2|x1) has density ρ(x1, x2)/(
∫
ρ(x1, x2) ν(dx2)), and the

measure µ1(dx1) has density
∫
ρ(x1, x2) ν(dx2). From this and the additive properties of

the logarithm, we deduce
∫

Hν
(
µ2( · |x1)

)
µ1(dx1)

=
∫ (∫

ρ(x1, x2)∫
ρ(x1, x′

2) ν(dx′
2)

log
ρ(x1, x2)∫

ρ(x1, x′
2) ν(dx′

2)
ν(dx2)

)(∫
ρ(x1, x

′
2) ν(dx′

2)
)
ν(dx1)

=
∫∫

ρ(x1, x2) log ρ(x1, x2) ν(dx2) ν(dx1) −
∫ (∫

ρ(x1, x2) ν(dx2)
)

log
(∫

ρ(x1, x2) ν(dx2)
)
ν(dx1)

= Hν(µ) − Hν(µ1).

This concludes the proof. 78

Gaussian concentration

Gaussian concentration is a loose terminology meaning that some reference measure enjoys
properties of concentration of measure which are similar to those of the Gaussian measure.
In this section we shall see that a certain form of Gaussian concentration is equivalent to
a T1 inequality.

Theorem 22.9 (Gaussian concentration). Let (X , d) be a Polish space, equipped with
a reference probability measure ν. Then the following properties are equivalent:

(i) ν lies in P1(X ) and satisfies a T1 inequality;
(ii) There is λ > 0 such that for any ϕ ∈ Cb(X ),

∀t ≥ 0
∫

et infy∈X
[
ϕ(y)+d(x,y)

]
ν(dx) ≤ e

t2

2λ et
R
ϕ dν .

(iii) There is a constant C > 0 such that for any Borel subset A of X ,

ν[A] ≥ 1
2

=⇒ ν[Ar] ≥ 1 − e−C r2
;

(iv) There is a constant C > 0 such that

∀f ∈ L1(ν) ∩ Lip(X ), ∀ε > 0,

ν
[{

x ∈ X ; f(x) ≥
∫

f dν + ε
}]

≤ exp

(
−C

ε2

‖f‖2
Lip

)
;

(v) There is a constant C > 0 such that

∀f ∈ L1(ν)∩Lip(X ), ∀ε > 0, ∀N ∈ N, ν⊗N
[{

x ∈ XN ;
1
N

N∑

i=1

f(xi) ≥
∫

f dν+ε
}]

≤ exp

(
−C

N ε2

‖f‖2
Lip

)
;

(vi) There is a constant C > 0 such that

∀f ∈ Lip(X ), ∀ε > 0, ν
[{

x ∈ X ; f(x) ≥ mf + ε
}]

≤ exp

(

−C
ε2

‖f‖2
Lip

)

,
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where mf stands for any median of f ;
(vii) For any x0 ∈ X there is a constant a > 0 such that

∫
ea d(x0,x)2 ν(dx) < +∞;

(viii) There exists a > 0 such that
∫

ea d(x,y)2 ν(dx) ν(dy) < +∞;

(ix) There exist x0 ∈ X and a > 0 such that
∫

ea d(x0,x)2 ν(dx) < +∞.

Proof of Theorem 22.9. We shall prove (i) ⇒ (ii) ⇒ (iv) ⇒ (vii), (i) ⇒ (v) ⇒ (iv), (i) ⇒
(iii) ⇒ (vi) ⇒ (vii), (vii) ⇒ (viii) ⇒ (ix) ⇒ (i), and this will establish the theorem.

(i) ⇒ (ii) was already seen in Particular Case 22.4.
To prove (ii) ⇒ (iv), first note that it suffices to treat the case ‖f‖Lip = 1 (replace ε

by ε/‖f‖Lip and f by f/‖f‖Lip). Then if f is 1-Lipschitz,

inf
y∈X

[
f(y) + d(x, y)

]
= f(x),

so (ii) implies ∫
et f(x) ν(dx) ≤ e

t2

2λ et
R

f dν .

With the shorthand 〈f〉 =
∫

f dν, this is the same as
∫

et (f−〈f〉) dν ≤ e
t2

2λ .

Then by the exponential Chebyshev inequality,

ν
[{

f − 〈f〉 ≥ ε
}]

≤ e−tεe
t2

2λ ;

and (v) follows by taking the infimum over t > 0. Note that C = λ/2 does the job.
Now let us prove (iv) ⇒ (vii). Let ν satisfy (iv). First we shall check that d(·, x0) ∈

L1(ν). Let m ∈ N, and let fm = d(·, x0) ∧ m; then fm ∈ L1(ν) ∩ Lip(X ), so

ν
[
fm ≥ s +

∫
fm dν

]
≤ e−C s2

.

It follows that for any A ≤ m,
∫

f2
m dν =

∫ +∞

0
2s ν[fm ≥ s] ds

≤
∫ A

0
2s ν[fm ≥ s] ds +

∫ R
fm dν

A
2s ν[fm ≥ s] ds +

∫ +∞

R
fm dν

2s ν
[
fm ≥ s

]
ds

≤ 2A + ν[fm ≥ A]
∫ R

fm dν

A
2s ds +

∫ +∞

0
2
(
s +

∫
fm dν

)
ν
[
fm ≥ s +

∫
fm dν

]
ds

≤ 2A + ν[fm ≥ A]
(∫

fm dν

)2

+
∫ +∞

0
2s e−C s2

ds + 2
(∫

fm dν

)∫ +∞

0
e−C s2

ds

≤ 2A + ν[f ≥ A]
(∫

fm dν

)2

+
∫ +∞

0
2s e−C s2

ds +
1
4

(∫
fm dν

)2

+ 8
(∫ +∞

0
e−C s2

ds

)2

≤ 2A +
(∫

f2
m dν

) (
ν[f ≥ A] +

1
4

)
+ C,



350 22 Concentration inequalities

where C =
∫ +∞
0 2s e−C s2

ds+8
(∫ +∞

0 e−C s2
ds
)2

is a finite constant. If A is large enough,

then ν[f ≥ A] ≤ 1/4, and then the above inequality implies
∫

f2
m dν ≤ 2(2A + C). By

taking m → ∞ we deduce that
∫

f2 dν < +∞, in particular f ∈ L1(ν). So we can apply
directly (iv) to f = d(·, x0), and it follows that for any a < C,
∫

ea d(x,x0)2 ν(dx) =
∫ +∞

0
2aseas2

ν[f ≥ s] ds

=
∫ R

f dν

0
2aseas2

ν[f ≥ s] ds +
∫ +∞

0
2a
(
s +

∫
f dν

)
ea(s+

R
f dν)2

ν
[
f ≥ s +

∫
f dν

]
ds

≤ 2a
(∫

f dν

)
ea(

R
f dν)2

+
∫ +∞

0
2a
(
s +

∫
f dν

)
ea(s+

R
f dν)2

e−Cs2
ds < +∞.

This proves (vii).
The next implication is (i) ⇒ (v). If ν satisfies T1(λ), then by Proposition 22.5 ν⊗N

satisfies T1(λ/N) on XN equipped with the distance d1(x, y) =
∑

d(xi, yi). Let F : XN →
R be defined by

F (x) =
1
N

N∑

i=1

f(xi).

If f is Lipschitz then ‖F‖Lip = ‖f‖Lip/N . Moreover,
∫

F dν⊗N =
∫

f dν. So if we apply
(iv) with X replaced by XN and f replaced by F , we obtain

ν⊗N
[{

x ∈ XN ;
1
N

N∑

i=1

f(xi) ≥
∫

f dν + ε
}]

= ν⊗N
[{

x ∈ XN ; F (x) ≥
∫

F dν + ε
}]

≤ exp
(
− (C/N)

ε2

(‖f‖Lip/N)2

)

= exp

(

−C
Nε2

‖f‖2
Lip

)

,

where C = λ/2 (Cf. the remark at the end of the proof of (i) ⇒ (iv)).
The implication (v) ⇒ (iv) is trivial.
Let us now consider the implication (i) ⇒ (iii). Assume that

∀µ ∈ P1(X ), W1(µ, ν) ≤ C
√

Hν(µ). (22.11)

Choose A with ν[A] ≥ 1/2, and µ = (1A ν)/ν[A], µ̃ = (1X\Ar ν)/ν[X \ Ar]. It is an
immediate computation that

Hν(µ) = log
1

ν[A]
≤ log 2, Hν(µ̃) = log

(
1

1 − ν[Ar]

)
.

By (22.11) and the triangular inequality for the distance W1,

W1(µ, µ̃) ≤ W1(µ, ν) + W1(µ̃, ν) ≤ C
√

log 2 + C

√

log
(

1
1 − ν[Ar]

)
. (22.12)

On the other hand, it is obvious that W1(µ, µ̃) ≥ r (all the mass has to go from A to
X \ Ar, so each unit of mass should travel a distance at least r). So (22.12) implies
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r ≤ C
√

log 2 + C

√

log
(

1
1 − ν[Ar]

)
,

from which it is easy to deduce

ν[Ar] ≥ 1 − exp
[
−
( r

C
−
√

log 2
)2
]

.

This establishes a bound of the type ν[Ar] ≥ 1−ae−C r2. Property (iii) follows. (To get rid
of the constant a, note that ν[Ar] ≥ min(1/2, 1 − ae−cr2) ≥ 1 − e−c′r2 for c′ well-chosen).

To prove (iii) ⇒ (vi), let A = {y; f(y) ≤ mf}. By definition of a median, A has
probability at least 1/2. So if f(x) ≥ mf + ε, it follows that f(x)−f(y) ≥ ε for any y ∈ A,
so d(x, y) ≥ ε/‖f‖Lip. In other words, d(x,A) ≥ ε/‖f‖Lip and {f ≥ mf + ε} is included in
X \ Ar, r = ε/‖f‖Lip. Then (iii) leads to (vi).

To show (vi) ⇒ (vii), let A be a compact set such that ν[A] ≥ 1/2; let also x0 ∈ A, and
let R be the diameter of A. Let further f(x) = d(x,A); then f is a 1-Lipschitz function
admitting 0 for median. So (vi) implies

ν
[
d(x, x0) ≥ R + r

]
≤ ν[d(x,A) ≥ r] ≤ e−C r2

.

It follows that for any a < C,
∫

ea d(x,x0)2 ν(dx) =
∫ +∞

0
ν
[
d(x, x0)2 ≥ s

]
2aseas2

ds

≤
∫ R

0
2aseas2

ds +
∫ +∞

R
ν
[
d(x, x0)2 ≥ s

]
2aseas2

ds

≤ ReaR2
+
∫ ∞

R
e−C(s−R)22aseas2

ds < +∞.

To prove (vii) ⇒ (viii), pick up any x0 ∈ X and write
∫

ea d(x,y)2 ν(dx) ν(dy) ≤
∫

e2a d(x,x0)2+2a d(x0,y)2 ν(dx) ν(dy) =
(∫

e2a d(x,x0)2 ν(dx)
)2

.

The implication (viii) ⇒ (ix) is obvious.
It only remains to establish (ix) ⇒ (i). If ν satisfies (ix), then obviously ν ∈ P1(X ). To

prove that ν satisfies T1, we shall establish the weighted Csiszár–Kullback–Pinsker
inequality

∥∥d(x0, ·) (µ − ν)
∥∥

TV
≤

√
2
(

1 + log
∫

X
ed(x0,x)2 dν(x)

)1/2√
Hν(µ). (22.13)

Inequality (22.13) implies the T1 inequality, since Theorem 6.12 gives

W1(µ, ν) ≤
∥∥d(x0, ·) (µ − ν)

∥∥
TV

.

So we turn to the proof of (22.13). We may assume that µ is absolutely continuous with
respect to ν, otherwise (22.13) is trivial. Let then f be the density of µ, and let u = f − 1,
so that

µ = (1 + u) ν;
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note that u ≥ −1 and
∫

u dν = 0. We also define

h(v) := (1 + v) log(1 + v) − v ≥ 0, v ∈ [−1,+∞);

so that
Hν(µ) =

∫

X
h(u) dν. (22.14)

Finally, let
ϕ(x) = d(x0, x).

Since h(0) = h′(0) = 0, Taylor’s formula (with integral remainder) yields

h(u) = u2
∫ 1

0

1 − t

1 + tu
dt,

so

Hν(µ) =
∫

X

∫ 1

0

u2(x) (1 − t)
1 + tu(x)

dν(x) dt.

On the other hand, by Cauchy–Schwarz inequality on (0, 1) × X

(∫ 1

0
(1 − t) dt

)2 (∫

X
ϕ|u| dν

)2

=

(∫

(0,1)×X
(1 − t)ϕ|u| dν dt

)2

≤
(∫∫

(1 − t) (1 + tu)ϕ2 dν dt

) (∫∫
1 − t

1 + tu
|u|2 dν dt

)
;

thus (∫
ϕ |u| dν

)2

≤ CHν(µ),

where

C :=

∫∫
(1 − t) (1 + tu)ϕ2 dν dt

(∫ 1

0
(1 − t) dt

)2 · (22.15)

We decompose the numerator as follows:
∫∫

(1 − t) (1 + tu)ϕ2 dν dt =
∫

(1 − t)t dt

∫
(1 + u)ϕ2 dν +

∫
(1 − t)2 dt

∫
ϕ2 dν

=
1
6

∫
ϕ2 dµ +

1
3

∫
ϕ2 dν. (22.16)

From the Legendre representation of the H functional,
∫

ϕ2 dµ ≤ Hν(µ) + log
∫

eϕ
2
dν, (22.17)

and Jensen’s inequality, in the form
∫

ϕ2 dν ≤ log
∫

eϕ
2
dν, (22.18)

we deduce that the right-hand side of (22.16) is bounded above by
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1
6
Hν(µ) +

1
2

log
∫

eϕ
2
dν.

Plugging this into (22.15), we conclude that
(∫

ϕ |u| dν
)2

≤
(

2
3
H + 2L

)
H, (22.19)

where H stands for Hν(µ) and L for log
∫

eϕ
2
dν.

The preceding bound is relevant only for “small” values of H. To handle large values,
we write

(∫
ϕ|u| dν

)2

≤
∫

ϕ2|u| dν
∫

|u| dν

≤
(∫

ϕ2 dµ +
∫

ϕ2 dν

) (∫
dµ +

∫
dν

)

≤ (H + 2L) 2

where we have successively used Cauchy–Schwarz inequality, the inequality |u| ≤ 1+u+1
on [−1,+∞) (which results in |u| ν ≤ µ + ν), and finally (22.17) and (22.18).

Combining this with (22.19), we obtain
(∫

ϕ|u| dν
)2

≤ min
(

(2H)
(H

3
+ L

)
, 2(H + 2L)

)
.

From the elementary inequality

min (at2 + bt, t + d) ≤ Mt, M =
1
2

{
1 + b +

√
(b − 1)2 + 4ad

}

we get ∫
ϕ|u| dν ≤ m

√
H(µ|ν)

where

m ≤

√

1 + L +
√

(L − 1)2 +
8
3
L ≤

√
2
√

L + 1.

This concludes the proof. 78

Talagrand inequalities from Ricci curvature bounds

In the previous section we have focused on T1 inequalities; now we consider T2 inequalities
(Talagrand inequalities). The most simple criterion for T2 to hold is in terms of Ricci
curvature bounds:

Theorem 22.10 (CD(K,∞) implies T2(K)). Let M be a Riemannian manifold, equipped
with a reference probability measure ν = e−V vol , satisfying the curvature-dimension bound
CD(K,∞). Then ν lies in P2(M) and satisfies the Talagrand inequality T2(K). In partic-
ular, ν satisfies Gaussian concentration bounds.
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Proof of Theorem 22.10. It follows from Corollary 19.13 that ν lies in P2(M); then the
inequality T2(K) follows from Theorem 20.7 with µ0 = ν and µ1 = µ. Since T2(K) implies
T1(K), Theorem 22.9 shows that ν satisfies Gaussian concentration bounds. 78

Example 22.11. The standard Gaussian γ on RN satisfies CD(1,∞), and therefore T2(1)
too. This is independent of N .

Remark 22.12. If ν satisfies T2(λ), then also ν⊗N satisfies T2(λ), independently of N ; so
one might hope to improve the concentration inequality appearing in Theorem 22.9(v).
But now the space XN should be equipped with the d2 distance, for which the function
F : x → (1/N)

∑
ϕ(xi) is only

√
N -Lipschitz! In the end, the concentration inequality

derived from T2 is similar to the one derived from T1. This is not in contradiction with
the fact that T2 is quite stronger than T1; it just shows that we do not see the difference
when we consider observables of the particular form (1/N)

∑
ϕ(xi).

Relation with log Sobolev and Poincaré inequalities

So far we learnt that logarithmic Sobolev inequalities follow from curvature bounds, and
that Talagrand inequalities also follow from the same bounds. We also learnt from Chap-
ter 21 that logarithmic Sobolev inequalities imply Poincaré inequalities. Actually, Tala-
grand inequalities are intermediate between these two inequalities: a logarithmic Sobolev
inequality implies a Talagrand inequality, which in turn implies a Poincaré inequality. In
some sense however, Talagrand is closer to logarithmic Sobolev than to Poincaré: For in-
stance, in nonnegative curvature, the validity of the Talagrand inequality is equivalent to
the validity of the logarithmic Sobolev inequality up to a degradation of the constant by
a factor 1/4.

To establish these properties, we shall use, for the first time in this course, a semigroup
argument. As understood by Ledoux, it is convenient to consider inequality (22.2) from
a dynamical point of view, with the help of the (forward) Hamilton–Jacobi semigroup
defined as in Chapter 7 by






H0 ϕ = ϕ,

(Ht ϕ)(x) = inf
y∈M

[
ϕ(x) +

d(x, y)2

2t

]
(t > 0, x ∈ M).

(22.20)

The next proposition, stated here without proof, summarizes some of the nice properties
of the semigroup (Ht)t≥0. Recall the notation |∇−f | from (20.2).

Proposition 22.13 (Properties of the quadratic Hamilton–Jacobi semigroup).
Let f be a bounded continuous function on a Riemannian manifold M . Then

(i) For all s, t ≥ 0, HtHsf = Ht+sf .
(ii) For all x ∈ M , inf f ≤ (Htf)(x) ≤ f(x); moreover, the infimum in (22.49) can be

restricted to y ∈ B(x,
√

Ct), where C := 2(sup f − inf f).
(iii) For all t > 0, Htf is locally Lipschitz on M .
(iv) For all x ∈ M , (Htf)(x) is a nonincreasing function of t, that converges monoton-

ically to f(x) as t → 0. In particular, limt→0 Htf = f , locally uniformly in x.
(v) For all t ≥ 0, s > 0, x ∈ M ,

|Ht+sf(x) − Htf(x)|
s

≤
‖Htf‖2

Lip(B(x,
√

Cs))

2
.
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(vi) For all x ∈ M and t ≥ 0,

lim inf
s→0+

(Ht+sf)(x) − (Htf)(x)
s

≥ − |∇−Htf |2(x)
2

. (22.21)

(vii) For all x ∈ M and t > 0,

lim
s→0+

(Ht+sf)(x) − (Htf)(x)
s

= − |∇−Htf |2(x)
2

. (22.22)

Remark 22.14. The last part of the theorem shows that Ht has a built-in regularization
effect which goes further than Lipschitz regularity; property (vii) is not a priori true for
t = 0, even if f is Lipschitz. In some sense, for any t > 0, Htf is “semi-concave”. Statement
(vii) is the most tricky part of Proposition 22.13, and actually the only one in which some
smoothness of M is used.

Now we are ready for the main result of this section.

Theorem 22.15 (Logarithmic Sobolev implies T2 implies Poincaré). Let M be a
Riemannian manifold equipped with a reference measure ν ∈ P2(M). Then

(i) If ν satisfies a logarithmic Sobolev inequality with constant K > 0, then it also
satisfies a Talagrand inequality with constant K.

(ii) If ν satisfies a Talagrand inequality with constant K > 0, then it also satisfies a
Poincaré inequality with constant K.

Remark 22.16. Theorem 22.15 has the important advantage over Theorem 22.10 that
logarithmic Sobolev inequalities are somewhat easy to perturb (recall Remark 21.5), while
there is no good perturbation criterion for T2. Essentially, the best known partial result in
that direction is as follows: if ν satisfies T2 and ν̃ = e−vν with v bounded, then there is a
constant C such that

∀µ ∈ P2(M), W2(µ, ν) ≤ C
(√

Hν(µ) + Hν(µ)
1
4

)
. (22.23)

Remark 22.17. Part (ii) of Theorem 22.15 shows that the T2 inequality on a Riemannian
manifold contains spectral information, and imposes many restrictions on the shape of
measures satisfying T2. For instance, it is impossible for the support of such a measure to
have two disjoint components. (Take u = a one one component, u = b on another, u = 0
elsehwere, where a and b are two constants chosen in such a way that

∫
u dν = 0. Then∫

|∇u|2 dν = 0 while
∫

u2 dν > 0.) This remark shows that T2 does not result from just
decay estimates, in contrast with T1.

Proof of Theorem 22.15, part (i). Let ν satisfy a logarithmic Sobolev inequality with con-
stant K > 0. By the dual reformulation of T2(K) (Proposition 22.2 for p = 2), it is
sufficient to show that, for any g ∈ Cb(X ),

∫

M
eK(Hg) dν ≤ e

R
M g dν , (22.24)

where

(Hg)(x) = inf
y∈M

[
g(y) +

d(x, y)2

2

]
.

Define
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φ(t) =
1

Kt
log

(∫

M
eKtHtg dν

)
. (22.25)

Since g is bounded, Proposition 22.13(ii) implies that Htg is bounded, uniformly in t. Thus

eKtHtg = 1 + Kt

∫

M
Htg dν + O(t2) (22.26)

and
φ(t) =

∫

M
Htg dν + O(t). (22.27)

By Proposition 22.13(iv), Htg converges pointwise to g as t → 0+; so by the dominated
convergence theorem,

lim
t→0+

φ(t) =
∫

M
g dν. (22.28)

So it all amounts to show that φ(1) ≤ limt→0+ φ(t), and this will obviously be true if φ(t)
is nonincreasing in t. To prove this, we shall compute the time-derivative φ′(t). We shall go
slowly, so the hasty reader may go directly to the result, which is formula (22.39) below.

Let t ∈ (0, 1] be given. For s > 0, we have

φ(t + s) − φ(t)
s

=
1
s

(
1

K(t + s)
− 1

Kt

)
log

∫

M
eK(t+s)Ht+sg dν (22.29)

+
1

Kts

(
log

∫

M
eK(t+s)Ht+sg dν − log

∫

M
eKtHtg dν

)
.

As s → 0+, eK(t+s)Ht+sg converges pointwise to eKt Htg, and is uniformly bounded. So the
first term in the right-hand side of (22.29) converges, as s → 0+, to

− 1
Kt2

log
(∫

M
eKt Htg dν

)
. (22.30)

On the other hand, the second term in the right-hand side of (22.29) converges to

1

Kt

∫
eKt Htg dν

lim
s→0+

[
1
s

(∫

M
eK(t+s)Ht+sg dν −

∫

M
eKt Htg dν

)]
, (22.31)

provided that the latter limit exists.
To evaluate the limit in (22.31), we rewrite the expression inside the square brackets

as ∫

M

(
eK(t+s)Ht+sg − eKt Ht+sg

s

)

dν +
∫

M

(
eKt Ht+sg − eKt Htg

s

)
dν. (22.32)

The integrand of the first term in (22.32) can be rewritten as (eKt Ht+sg)(eKs Ht+sg − 1)/s,
which is uniformly bounded and converges pointwise to (eK Htg)Kt Htg as s → 0+. So the
first integral in (22.32) converges to

∫
M (K Htg)eKt Htg dν.

Now we consider the second term of (22.32). By Proposition 22.13(vii), for each x ∈ M ,

Ht+sg(x) = Htg(x) − s

(
|∇−Htg(x)|2

2
+ o(1)

)
, (22.33)

and therefore
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lim
s→0+

eKtHt+sg(x) − eKtHtg(x)

s
= − KteKt Htg |∇−Htg(x)|2

2
. (22.34)

On the other hand, parts (iv) and (v) of Proposition 22.13 imply that

Ht+sg = Htg + O(s). (22.35)

Since Htg(x) is uniformly bounded in t and x,

eKtHt+sg − eKt Htg

s
= O(1) as s → 0+. (22.36)

By (22.34), (22.36) and the dominated convergence theorem,

lim
s→0+

∫

M

(
eKtHt+sg − eKtHtg

s

)
dν = − Kt

∫

M

|∇−Htg|2
2

eKtHtg dν. (22.37)

In summary, for any t > 0, φ is right-differentiable at t and

d+φ(t)
dt

:= lim
s→0+

[
φ(t + s) − φ(t)

s

]
(22.38)

=
1

Kt2
∫

M
eKtHtg dν

[
−
(∫

M
eKtHtg dν

)
log

(∫

M
eKtHtg dν

)

+
∫

M
(KtHtg) eKtHtg dν − 1

2K

∫

M

(
Kt|∇−Htg|

)2
eKtHtg dν

]
. (22.39)

Because ν satisfies a logarithmic Sobolev inequality with constant K, the quantity inside
square brackets is nonpositive. So φ is nonincreasing and the proof is complete. 78

Before going to the proof of Theorem 22.15(ii), it might be a good idea to think over
the next exercise, so as to understand more “concretely” why Talagrand inequalities are
related to Poincaré inequalities.

Exercise 22.18. Use Otto’s calculus to show that, at least formally,

‖h‖H−1(ν) = lim
ε→0

W2
(
(1 + εh)ν, ν

)

ε
,

where h is smooth and bounded (and compactly supported, if you wish),
∫

hdν = 0, and
the dual Sobolev norm H−1(ν) is defined by

‖h‖H−1(ν) = sup
h '=0

‖h‖L2(ν)

‖∇h‖L2(ν)
=

∥∥∇(L−1h)
∥∥

L2(ν)
,

where as before L = ∆−∇V ·∇. Deduce that, at least formally, the Talagrand inequality
reduces, in the limit when µ = (1 + εh) ν and ε → 0, to the dual Poincaré inequality

[∫
hdν = 0

]
=⇒ ‖h‖H−1(ν) ≤

‖h‖L2(ν)√
K

.
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Proof of Theorem 22.15, part (ii). Let h : M → R be a bounded Lipschitz function satis-
fying

∫
M hdν = 0. Introduce

ψ(t) =
∫

M
eKtHth dν. (22.40)

From the dual formulation of Talagrand’s inequality (Proposition 22.2 for p = 2), ψ(t) is
bounded above by exp(Kt

∫
M hdν) = 1; hence ψ has a maximum at t = 0. Combining this

with
∫

hdν = 0, we find

0 ≤ lim sup
t→0+

(
1 − ψ(t)

Kt2

)
= lim sup

t→0+

∫

M

(
1 + Kt h − eKt Hth

Kt2

)
dν. (22.41)

By the boundedness of Hth and Proposition 22.13(iv),

eKtHth = 1 + KtHth +
K2t2

2
(Hth)2 + O(t3) (22.42)

= 1 + KtHth +
K2t2

2
h2 + o(t2).

So the right-hand side of (22.41) equals

lim sup
t→0+

∫

M

(
h − Hth

t

)
dν − K

2

∫

M
h2 dν. (22.43)

By Proposition 22.13(v), (h − Hth)/t is bounded; so we can apply Fatou’s lemma, in the
form

lim sup
t→0+

∫

M

(
h − Hth

t

)
dν ≤

∫

M
lim sup

t→0+

(
h − Hth

t

)
dν. (22.44)

Then Proposition 22.13(vi) implies that
∫

M
lim sup

t→0+

(
h − Hth

t

)
dν ≤

∫

M

|∇−h|2

2
dν. (22.45)

All in all, the right-hand side of (22.41) can be bounded above by
1
2

∫

M
|∇−h|2 dν − K

2

∫

M
h2 dν. (22.46)

So (22.46) is always nonnegative, which concludes the proof of the Poincaré inequality. 78

To close this section, I will show that the Talagrand inequality does imply a logarithmic
Sobolev inequality under certain curvature assumptions.

Theorem 22.19 (T2 sometimes implies log Sobolev). Let M be a Riemannian man-
ifold and let ν = e−V vol ∈ P2(M) a reference measure on M , V ∈ C2(M). Assume that
ν satisfies a Talagrand inequality T2(λ), and a curvature-dimension inequality CD(K,∞)
for some K > −λ. Then ν also satisfies a logarithmic Sobolev inequality with constant

λ̃ = max

[
λ

4

(
1 +

K

λ

)2

, K

]
.

Proof of Theorem 22.19. From the assumptions and Theorem 20.7, the nonnegative quan-
tities H = Hν(µ), W = W2(µ, ν) and I = Iν(µ) satisfy the inequalities

H ≤ W
√

I − λW 2

2
, W ≤

√
2H
K

.

It follows by an elementary calculation that H ≤ I/(2λ̃), so ν satisfies a logarithmic
Sobolev inequality with constant λ̃. 78
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Poincaré inequalities and quadratic-linear transport cost

So far we have encountered transport inequalities involving the quadratic cost function
c(x, y) = d(x, y)2, and the linear cost function c(x, y) = d(x, y). Remarkably, Poincaré
inequalities can be recast in terms of transport cost inequalities involving a cost function
which behaves quadratically for small distances, and linearly for large distances. As dis-
covered by Bobkov and Ledoux, they can also be rewritten as modified logarithmic
Sobolev inequalities, which are just usual logarithmic Sobolev inequalities, except that
there is a Lipschitz constraint on the logarithm of the density of the measure. These two
reformulations of Poincaré inequalities will be discussed below.

Definition 22.20 (quadratic-linear cost). Let (X , d) be a metric space. The quadratic-
linear cost cq( on X is defined by

cq((x, y) =

{
d(x, y)2 if d(x, y) ≤ 1;
d(x, y) if d(x, y) > 1.

In a compact writing, cq((x, y) = max(d(x, y)2, d(x, y)). The optimal total cost associated
with cq( will be denoted by Cq(.

Theorem 22.21 (Reformulations of Poincaré inequalities). Let M be a Rieman-
nian manifold equipped with a reference probability measure ν. Then the following three
statements are equivalent:

(i) ν satisfies a Poincaré inequality;
(ii) There are constants c > 0, K > 0 such that for any Lipschitz probability density ρ,

|∇ log ρ| ≤ c =⇒ Uν(µ) ≤ Iν(µ)
K

, µ = ρ ν. (22.47)

(iii) ν ∈ P1(M) and there is a constant C > 0 such that

∀µ ∈ P1(M), Cq((µ, ν) ≤ C Hν(µ). (22.48)

Remark 22.22. The equivalence between (i) and (ii) can be made more precise. As the
proof shows, if ν satisfies a Poincaré inequality with constant λ, then for any c < 2

√
λ

there is an explicit constant K = K(c) > 0 such that (22.47) holds true; and the constant
K(c) converges to λ as c → 0. Conversely, if for each c > 0 we call K(c) the best constant
in (22.47), then ν satisfies a Poincaré inequality with constant λ = limc→0 K(c).

Remark 22.23. The equivalence between (i) and (ii) remains true when the Riemannian
manifold M is replaced by a general metric space. On the other hand, the equivalence with
(iii) uses at least a little bit of the Riemannian structure.

Theorem 22.21 will be obtained as a consequence of several propositions which have
their own interest. The first one is about the behavior of the Hamilton–Jacobi semigroup,
when the quadratic Lagrangian L(c) = c2/2 has been replaced by a more general function
of the speed.

Proposition 22.24 (Properties of the general Hamilton–Jacobi semigroup). Let
L : R+ → R+ be a strictly increasing convex continuous function with L(0) = 0, and let L∗

be its Legendre transform. If L′(∞) < +∞, further assume that L∗(L′(∞)) < +∞. Let M
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be a Riemannian manifold equipped with its geodesic distance. For any bounded Lipschitz
continuous function f : M → R define the evolution (Htϕ)t≥0 by






H0 ϕ = ϕ,

(Ht ϕ)(x) = inf
y∈M

[
ϕ(x) + t L

(
d(x, y)

t

)]
(t > 0, x ∈ M).

(22.49)

Then
(i) For all s, t ≥ 0, HtHsf = Ht+sf .
(ii) For all x ∈ M , inf f ≤ (Htf)(x) ≤ f(x); moreover, the infimum in (22.49) can be

restricted to y ∈ B(x,R(f, t)), where

R(f, t) = t L−1

(
sup f − inf f

t

)
.

(iii) For all t > 0, Htf is locally Lipschitz on M , and ‖Htf‖Lip ≤ L′(∞); in particular,
R(Htf, s) < +∞ for all s > 0.

(iv) For all x ∈ M , (Htf)(x) is a nonincreasing function of t. Moreover, for any t > 0,
(Ht+sf) converges monotonically, and locally uniformly, to Htf as s → 0.

(v) For all t ≥ 0, s > 0, x ∈ M ,

|Ht+sf(x) − Htf(x)|
s

≤ L∗
(
‖Htf‖Lip(B(x,R(s)))

)
.

(vi) For all x ∈ M and t ≥ 0,

lim inf
s→0+

(Ht+sf)(x) − (Htf)(x)
s

≥ −L∗(|∇−Htf |). (22.50)

(vii) For all x ∈ M and t > 0,

lim
s→0+

(Ht+sf)(x) − (Htf)(x)
s

= −L∗(|∇−Htf |). (22.51)

The proof of this proposition is omitted; it is quite similar to the proof of Proposi-
tion 22.13.

The second result is a generalisation of Theorem 22.15.

Theorem 22.25 (From generalized logarithmic Sobolev to transport to gener-
alized Poincaré). Let M be a Riemannian manifold equipped with its geodesic distance
d and a reference measure ν ∈ P2(M). Let L satisfy the same assumptions as in Propo-
sition 22.24, let cL(x, y) = L(d(x, y)) and let CL be the optimal transport cost associated
with the cost function c. Assume further that L(r) ≤ C(1 + r)p for some p ∈ [1, 2] and
some C > 0. Then

(i) Further assume that L∗(ts) ≤ t2L∗(s) for all t ∈ [0, 1], s ≥ 0. If there is λ ∈ (0, 1]
such that ν satisfies the generalized logarithmic Sobolev inequality with constant λ:

∀µ ∈ P (M), Hν(µ) ≤ 1
λ

∫
L∗(|∇− log ρ|

)
dµ, µ = ρ ν, log ρ ∈ Lip(M);

then ν also satisfies the following transport inequality:
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∀µ ∈ Pp(M), CL(µ, ν) ≤ Hν(µ)
λ

. (22.52)

(ii) If ν satisfies (22.52), then it also satisfies the generalized Poincaré inequality with
constant λ:

∀f ∈ Lip(M), ‖f‖Lip ≤ L′(∞),
∫

f dν = 0 =⇒
∫

f2 dν ≤ 2
λ

∫
L∗(|∇−f |) dν.

Proof of Theorem 22.25. The proof is exactly similar to the proof of Theorem 22.15. After
picking up g ∈ Cb(M), one introduces the function

φ(t) =
1
λt

log
∫

eλt Htg dν.

Now it is not always true that φ is continuous at t = 0, but at least the monotonicity of
Htg implies that

lim
t→0+

φ(t) ≤ φ(0).

Then one can compute the right derivative

d+φ(t)
dt

:= lim
s→0+

[
φ(t + s) − φ(t)

s

]
(22.53)

=
1

λt2
∫

M
eλtHtg dν

[
−
(∫

M
eλtHtg dν

)
log

(∫

M
eλtHtg dν

)

+
∫

M
(λtHtg)eλtHtg dν − 1

2λ

∫

M

(
λ2t2L∗(|∇−Htg|)

)
eλtHtg dν

]

=
1

λt2
∫

M
eλtHtg dν

[
−
(∫

M
eλtHtg dν

)
log

(∫

M
eλtHtg dν

)

+
∫

M
(λtHtg)eλtHtg dν − 1

2λ

∫

M
L∗(λt|∇−Htg|

)
eλtHtg dν

]
, (22.54)

where the inequality L∗(λts) ≤ λ2t2L∗(s) was used. By assumption, the quantity inside
square brackets is nonpositive, so φ is nonincreasing on (0, 1], and therefore on [0, 1]. The
inequality φ(1) ≤ φ(0) can be recast as

1
λ

log
∫

M
eλ infy∈M

[
g(y)+L(d(x,y))

]
ν(dx) ≤

∫

M
g dν,

which by Theorem 5.21 is the dual formulation of (22.52).
Part (ii) of the theorem is similar to part (ii) of Theorem 22.15. 78

Now we have enough tools at our disposal to carry on the proof of Theorem 22.21.

Proof of Theorem 22.21. We start by the proof of (i) ⇒ (ii). Let f = log ρ −
∫

(log ρ) dν;
so
∫

f dν = 0 and the assumption in (ii) reads |∇f | ≤ c. Moreover, with a =
∫

(log ρ) dν
and X =

∫
ef dν,

Iν(µ) = ea
∫

|∇f |2 ef dν;
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Hν(µ) =
∫

(f + a)ef+a dν −
(∫

ef+a dν

)
log

(∫
ef+a dν

)

= ea

(∫
fef dν −

∫
ef dν + 1

)
− ea(X log X − X + 1)

≤ ea

(∫
fef dν −

∫
ef dν + 1

)
.

So it is sufficient to prove

|∇f | ≤ c =⇒
∫ (

fef − ef + 1
)
dν ≤ 1

K

∫
|∇f |2ef dν. (22.55)

In the sequel, c is any constant satisfying 0 < c < 2
√
λ, and we shall keep track of the

dependence of K on c. Inequality (22.55) will be proven in two steps:
∫

f2 dν ≤ ec
√

5/λ
∫

f2e−|f | dν. (22.56)

∫
f2ef dν ≤ 1

λ

(
2
√
λ + c

2
√
λ− c

)2 ∫
|∇f |2ef dν; (22.57)

Note that the bound on |∇f | is crucial in both inequalities.
Once (22.56) and (22.57) are established, the result follows immediately. Indeed, the

right-hand side of (22.56) is obviously bounded by the left-hand side of (22.57), so both
expressions are bounded above by a constant multiple of

∫
|∇f |2ef dν. On the other hand,

an elementary study shows that

∀f ∈ R, fef − ef + 1 ≤ max (f2, f2ef ),

so (22.55) holds true.
To obtain (22.56), we proceed as follows. The elementary inequality 2|f |3 ≤ δf2+δ−1f4

(δ > 0) integrates up to

2
∫

|f |3 dν ≤ δ

∫
f2 dν + δ−1

∫
f4 dν

= δ

∫
f2 dν + δ−1

(∫
f2 dν

)2

+

[∫
(f2)2 dν −

(∫
f2 dν

)2
]

. (22.58)

By Poincaré inequality,
∫

f2 dν ≤ (1/λ)
∫
|∇f |2 dν ≤ c2/λ, so (

∫
f2 dν)2 ≤ (c2/λ)

∫
f2 dν.

Also by Poincaré inequality,
∫

(f2)2 dν −
(∫

f2 dν

)2

≤ (1/λ)
∫

|∇(f2)|2 dν = (4/λ)
∫

f2|∇f |2 dν ≤ (4c2/λ)
∫

f2 dν.

Plugging this information back in (22.58), we obtain

2
∫

|f |3 dν ≤
(
δ +

5c2

δλ

)∫
f2 dν.

The choice δ =
√

5c2/λ yields
∫

|f |3 dν ≤ c

√
5
λ

∫
f2 dν. (22.59)
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Then by Jensen’s inequality, applied with the convex function x → e−|x| and the prob-
ability measure σ = f2 ν/(

∫
f2 dν), we get

∫
f2e−|f | dν =

(∫
e−|f | dσ

)(∫
f2 dν

)
≥ e−

R
|f | dσ

(∫
f2 dν

)
,

or in other words ∫
f2 dν ≤ exp

(∫
|f |3 dν∫
f2 dν

) ∫
f2e−|f | dν.

Combining this inequality with (22.59) finishes the proof of (22.56).
To establish (22.57), we first use the condition

∫
f dν = 0 and the Poincaré inequality

to write
(∫

fef/2 dν

)2

=
1
4

(∫
[f(x) − f(y)] [ef(x)/2 − ef(y)/2] dν(x) dν(y)

)2

≤ 1
4

(∫
|f(x) − f(y)|2 dν(x) dν(y)

)(∫
[ef(x)/2 − ef(y)/2]2 dν(x) dν(y)

)

=

(∫
f2 dν −

(∫
f dν

)2
) (∫

ef dν −
(∫

ef/2 dν

)2
)

≤ 1
λ2

(∫
|∇f |2 dν

)(∫
|∇(ef/2)|2 dν

)

=
c2

4λ2

∫
|∇f |2ef dν. (22.60)

Next, also by the Poincaré inequality and the chain-rule,
∫

f2ef dν −
(∫

fef/2 dν

)2

≤ 1
λ

∫ ∣∣∇(fef/2)
∣∣2 dν (22.61)

=
1
λ

∫
|∇f |2

(
1 +

f

2

)2

ef dν

=
1
λ

(∫
|∇f |2ef dν +

∫
|∇f |2fef dν +

1
4

∫
|∇f |2f2 ef dν

)

≤ 1
λ

(∫
|∇f |2ef dν + c

√∫
|∇f |2ef dν

√∫
f2ef dν +

c2

4

∫
f2ef dν

)
.

(22.62)

By adding up (22.60) and (22.62), we obtain

∫
f2ef dν ≤

(
1
λ

+
c2

4λ2

)∫
|∇f |2ef dν +

c

λ

√∫
|∇f |2ef dν

√∫
f2ef dν +

c2

4λ

∫
f2ef dν.

This inequality involving the two quantities
∫

f2ef dν and
∫
|∇f |2ef dν can be transformed

into (22.57). (Here the fact that c2/(4λ) < 1 is crucial.) This complete the proof of (i) ⇒
(ii).

Now we shall see that (ii) ⇒ (iii). Let ν satisfy a modified logarithmic Sobolev inequality
as in (22.47). Let then L(s) = cs2/2 for 0 ≤ s ≤ 1, L(s) = c(s−1/2) for s > 1. The function
L so defined is convex, strictly increasing, with L′(∞) = c. Its Legendre transform L∗ is
quadratic on [0, c] and identically +∞ on (c,+∞). So (??) can be rewritten
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Hν(µ) ≤ 2c
K

∫
L∗(|∇ log ρ|) dµ

Since L∗(tr) ≤ t2 L∗(r) for all t ∈ [0, 1], r ≥ 0, we can apply Theorem 22.25(i) to deduce
the modified transport inequality

CL(µ, ν) ≤ 2c
K

Hν(µ), (22.63)

which is easily seen to be equivalent to (iii).
It remains to check (iii) ⇒ (i). If ν satisfies (iii), or equivalently (22.63), then it also

satisfies the generalized Poincaré inequality of Theorem 22.25(ii). Pick up any Lipschitz
function f and apply this inequality to εf , where ε is small enough that ε‖f‖Lip < c; the
result is ∫

f dν = 0 =⇒ ε2
∫

f2 dν ≤ 2
λ

∫
L∗(ε|∇−f |) dν.

Since L∗ is quadratic on [0, c], factors ε2 cancel out on both sides, and we are back with
the usual Poincaré inequality. 78

Example 22.26. Prove directly the implication (ii) ⇒ (i).

Let us now see the implications of Theorem 22.21 in terms of concentration of measure.

Theorem 22.27 (Concentration of measure from Poincaré inequality). Let M be
a Riemannian manifold equipped with its geodesic distance, and with a reference probability
measure ν. Assume that ν satisfies a Poincaré inequality with constant λ. Then there is a
constant C = C(λ) > 0 such that for any Borel set A,

∀r ≥ 0, ν[Ar] ≥ 1 − e−C min(r,r2)

ν[A]
. (22.64)

Moreover, for any f ∈ Lip(M) (resp. Lip(M) ∩ L1(ν)),

ν
[{

x; f(x) ≥ m + r
}]

≤ e
−C min

 
r

‖f‖Lip
, r2

‖f‖2
Lip

!

, (22.65)

where m is a median of f (resp. the mean value of f).

Proof of Theorem 22.27. The proof of (22.64) is similar to the implication (i) ⇒ (iii) in
Theorem 22.9. Define B = M \Ar, and let νA = (1A)ν/ν[A], νB = (1B)ν/ν[B]. Obviously,
Cq((νA, νB) ≥ min(r, r2). The elementary inequality min(a + b, (a + b)2) ≤ 4[min(a, a2) +
min(b, b2)] implies Cq((νA, νB) ≤ 4[Cq((νA, ν) + Cq((νB , ν)]. So

min(r, r2) ≤ 4[Cq((νA, ν) + Cq((νB , ν)].

Since ν satisfies (22.48), there is a constant C such that

min(r, r2) ≤ C
(
Hν(νA) + Hν(νB)

)

= C
(
log

1
ν[A]

+ log
1

1 − ν[Ar]

)
.

Then (22.64) follows immediately. Then (??) is obtained by arguments similar to those
used before in the proof of Theorem 22.9. 78
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Example 22.28. The exponential measure ν(dx) = (1/2)e−|x| dx does not admit Gaussian
tails, so it fails to satisfy properties of Gaussian concentration expressed in Theorem ??.
However, it does satisfy a Poincaré inequality. So (22.64), (22.65) hold true for this measure.

Consider now the problem of concentration of measure in a product space, say (MN , ν⊗N ),
where ν satisfies a Poincaré inequality. We may equip MN with the metric

d2(x, y) =
√∑

i

d(xi, yi)2;

then µ⊗N will satisfy a Poincaré inequality with the same constant as ν, and we may
apply Theorem 22.27 to study concentration in (MN , d2, ν⊗N ). There is however a more
interesting approach, due to Talagrand, in which one uses both the distance d2 and the
distance

d1(x, y) =
∑

i

d(xi, yi).

The procedure is as follows: Given a Borel set A ⊂ MN , first enlarge it by r in distance d2

(that is, consider all points which lie at a distance less than r from A); then enlarge the
result by r2 in distance d1. This is explained in the next theorem, where Ar;d stands for
the enlargement of A by r in distance d, and ‖f‖Lip(X , d) stands for the Lipschitz norm
of f on X with respect to the distance d.

Theorem 22.29 (Concentration in product spaces from Poincaré inequalities).
Let M be a Riemannian manifold equipped with its geodesic distance d, and with a reference
probability measure ν. Assume that ν satisfies a Poincaré inequality with constant λ. Then
there is a constant C = C(λ) such that for all N ∈ N, and for any Borel set A ⊂ MN ,

ν⊗N [A] ≥ 1
2

=⇒ ν⊗N
[
(Ar;d2)r

2;d1

]
≥ 1 − e−C r2

. (22.66)

Moreover, for any f ∈ Lip(MN , d1) ∩ Lip(MN , d2) (resp. Lip(MN , d1) ∩ Lip(MN , d2) ∩
L1(ν⊗N)),

ν⊗N
[{

x; f(x) ≥ m + r
}]

≤ e
−C min

 
r

‖f‖
Lip(MN ,d1)

, r2

‖f‖2
Lip(MN ,d2)

!

, (22.67)

where m is a median of f (resp. the mean value of f) with respect to the measure ν⊗N .

Proof of Theorem 22.29. Once again, the implication (22.66) ⇒ (22.67) follows arguments
similar to those used in the proof of Theorem 22.9 (actually these two statements are
equivalent, up to a loss of constants); so we concentrate on the proof of (22.66).

By Theorem 22.21, ν satisfies a transport-cost inequality of the form

∀µ ∈ P1(M), Cq((µ, ν) ≤ C Hν(µ).

On MN define the cost
c(x, y) =

∑
cq((xi, yi),

and let C be the associated optimal cost functional.
By Remark 22.7, ν⊗N satisfies an inequality of the form

∀µ ∈ P1(MN ), C(µ, ν⊗N ) ≤ C Hν⊗N (µ). (22.68)
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Let A be a Borel set of MN with ν⊗N [A] ≥ 1/2, and let r > 0 be given. Let B =
MN \ (Ar;d2)r2;d1 . Let νB be obtained by conditioning ν on B (that is, νB = (1B)ν/ν[B]).
Consider the problem of transporting νB to ν optimally, with the cost c. At least a portion
ν⊗N [A] ≥ 1/2 of the mass has to go to from B to A, so

C(νB , ν⊗N ) ≥ 1
2

inf
x∈A, y∈B

c(x, y) =:
1
2

c(A,B).

On the other hand, by (22.68),

C(µ, ν⊗N ) ≤ C Hν⊗N (µ) = C log
1

ν[B]
.

By combining these two inequalities, we get

ν
[
(Ar;d2)r

2;d1

]
= 1 − ν[B] ≥ 1 − e−1/(2C) c(A,B).

To prove (22.66), it only remains to check that

c(A,B) ≥ r2.

So let x = (x1, . . . , xN ) ∈ A, and let y ∈ MN such that c(x, y) < r2; the goal is to
show that y ∈ (Ar;d2)r2;d1 . For each i ∈ {1, . . . , N}, define zi = xi if d(xi, yi) > 1, zi = yi

otherwise. Then

d2(x, z)2 =
∑

d(xi,yi)≤1

d(xi, yi)2 ≤
∑

i

cq((xi, yi) = c(x, y) < r2;

so z ∈ Ar;d2. Similarly,

d1(z, y) =
∑

d(xi,yi)>1

d(xi, yi) ≤
∑

i

cq((xi, yi) = c(x, y) < r2;

so y lies at a distance at most r2 from z, in distance d1. This concludes the proof. 78

Example 22.30. Let ν(dx) be the exponential measure e−|x|dx/2 on R, then ν⊗N (dx) =
(1/2N )e−

P
|xi| ∏ dxi on RN . Theorem 22.29 shows that for every Borel set A ⊂ RN with

ν⊗N [A] ≥ 1/2 and any δ > 0,

ν⊗N
[
A + Bd2

r + Bd1
r2

]
≥ 1 − e−cr2

(22.69)

where Bd
r stands for the ball of center 0 and radius r in RN for the distance d.

Remark 22.31. Strange as this may seem, inequality (22.69) contains (up to numerical
constants) the Gaussian concentration of the Gaussian measure! Let indeed T : R → R
be the increasing rearrangement of the exponential measure ν onto the one-dimensional
Gaussian measure γ (so T#ν = γ, (T−1)#γ = ν). An explicit computation shows that

|T (x) − T (y)| ≤ C min(|x − y|,
√

|x − y|) (22.70)

for some numeric constant C. Let then TN (x1, . . . , xN ) = (T (x1), . . . , T (xN )); obviously
(TN )#(ν⊗N ) = γ⊗N , (TN )−1

# (γ⊗N ) = ν⊗N . Let A be any Borel set, and let y ∈ T−1
N (A) +

Bd2
r + Bd1

r2 . This means that there are w and x such that TN (w) ∈ A, |x − w|2 ≤ r,
|y − x|1 ≤ r2. Then by (22.70),
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|TN (w) − TN (y)|22 =
∑

|T (wi) − T (yi)|2

≤ C2
∑

i

min
(
|wi − yi|, |wi − yi|2

)

≤ C2
( ∑

|wi−xi|≥|xi−yi|

2|wi − xi| +
∑

|wi−xi|<|xi−yi|

4|xi − yi|2
)

≤ 4C2
(∑

|xi − wi| +
∑

|xi − yi|2
)

≤ 8C2r2.

This means that TN (y) ∈ A + Bd2√
8Cr

. In summary, if C ′ =
√

8C, then

TN
(
T−1

N (A) + Bd2
r + Bd1

r2

)
⊂ A + Bd2

C′r.

As a consequence, if A ⊂ RN is such that γ⊗N [A] ≥ 1/2, then ν⊗N [T−1
N (A)] = γ⊗N [A] ≥

1/2, and

γ⊗N [AC′r] ≥ γ⊗N
[
TN
(
T−1

N (A) + Bd2
r + Bd1

r2

)]

= ν⊗N
[
T−1

N (A) + Bd2
r + Bd1

r2

]

≥ 1 − e−cr2

for some numeric constant c > 0. This is precisely the Gaussian concentration property
appearing in Theorem 22.9(iii).

Remark 22.32. In certain situations, (22.69) provides sharper concentration properties
for the Gaussian measure, than the usual Gaussian concentration bounds. This might look
paradoxical, but can be explained by the fact that Gaussian concentration considers ar-
bitrary sets A, while in many problems one is led to study the concentration of measure
around certain very particular sets, for instance with a “cubic” structure; then inequal-
ity (22.69) might be very efficient.

Example 22.33. Let A = {x ∈ RN ; max |xi| ≤ m} be the centered cube of side 2m,
where m = m(N) → ∞ is chosen in such a way that γ⊗N [A] ≥ 1/2. (It is a classical
fact that m = O(

√
log N), but we don’t need that information.) If r ≥ 1 is small with

respect to m, then the enlargement of the cube is dominated by the behavior of T close
to T−1(m). Since T (x) behaves approximately like

√
x for large values of x, T−1(m) is of

the order m2; and close to m2 the Lipschitz norm of T is O(1/m). Then the computation
before can be sharpened into

TN
(
T−1

N (A) + Bd2
r + Bd1

r2

)
⊂ A + Bd2

C′r2/m.

So the concentration of measure can be felt by enlarging A by a distance of the order of
r2/m D r.

Dimension-dependent inequalities

There is no well-identified analogue of Talagrand inequalities that would take advantage of
the finiteness of the dimension to provide sharper concentration inequalities. In this section
I shall suggest some natural possibilities, focusing on positive curvature for simplicity.
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Theorem 22.34 (Dimension-dependent transport-energy inequalities). Let M
be a Riemannian manifold equipped with a reference measure ν = e−V vol , V ∈ C2(M),
satisfying the curvature-dimension bound CD(K,N) for some K > 0, N ∈ (1,∞). Then,
for all µ = ρ ν ∈ P2(M),

∫

M

[
N
( α

sinα

)1− 1
N
ρ(x0)−

1
N − (N − 1)

α

tanα

]
π(dx0 dx1) ≤ 1, (22.71)

where α(x0, x1) =
√

K/(N − 1) d(x0, x1), and π is the unique optimal coupling between µ
and ν. Equivalently,

∫

M

[
N
( α

sinα

)1− 1
N − (N − 1)

α

tanα
− 1

]
π(dx0 dx1)

≤
∫ ( α

sinα

)1− 1
N
[
(N − 1)ρ− Nρ1− 1

N + 1
]
dν. (22.72)

Remark 22.35. The function (N−1)r−Nr1− 1
N +1 is nonnegative, and so is the integrand

in the right-hand side of (22.72). If the coefficient α/ sinα above would be replaced by 1,
then the right-hand side of (22.72) would be just

∫
[(N − 1)ρ−Nρ1− 1

N + 1] dν = HN,ν(ρ).

Corollary 22.36 (Other forms of dimension-dependent transport-energy in-
equalities). With the same assumptions and notation as in Theorem 22.34, the following
inequalities hold true:

∀p ∈ (1,∞)
∫ [

(Np − 1) − (N − 1)
α

tanα
− N(p − 1)

(
sinα
α

) 1
p−1(1− 1

N )]
dπ ≤ HNp,ν(µ); (22.73)

∫ [
(2N − 1) − (N − 1)

α

tanα
− N exp

(
1 −

( α

sinα

)1− 1
N

)]
dπ ≤ 2HN,ν(µ)−

∫
ρ1− 1

N log ρ dν;

(22.74)

(N − 1)
∫ (

1 − α

tanα
+ log

α

sinα

)
dπ ≤ H∞,ν(µ) (22.75)

Proof of Theorem 22.34. Inequality (22.71) follows directly from Theorem 20.11 with
U(r) = −N(r1−1/N − r) (recall Remark 20.12). To derive (22.72) from (22.71), it is suffi-
cient to check that ∫

NQdπ =
∫

Q
[
(N − 1)ρ − 1

]
dν,

where Q = (α/ sinα)1−
1
N . But this is immediate because Q is a symmetric function of x0

and x1, and π has marginals µ = ρ ν and ν, so
∫

Q(x0, x1) dν(x0) =
∫

Q(x0, x1) dν(x1) =
∫

Q(x0, x1) dπ(x0, x1)

=
∫

Q(x0, x1) ρ(x0) dν(x0).

78
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Proof of Corollary 22.36. Write again Q = (α/ sinα)1−
1
N . Then (22.73) follow from (22.71)

upon use of the Young inequality ab ≤ ap/p + bp′/p′, where p′ = p/(p− 1) is the conjugate
exponent to p; indeed,

Npρ1− 1
Np = (Npρ)

[
ρ−

1
N Q

] 1
p

Q− 1
p(1− 1

N ) ≤ (Npρ)



ρ
− 1

N Q

p
+

Q− p′
p

p′



 .

Then (22.74) and (22.75) are obtained by taking the limits p → 1 and p → ∞, respectively;
or equivalently by applying the inequalities ab ≤ a log a−2a+eb+1 and ab ≤ a log a−a+eb.
More precisely, to get (22.74) from (22.71), one can write

Nρ log Q = (Nρ1− 1
N )ρ

1
N log Q ≤ (Nρ1− 1

N )
(
ρ

1
N log ρ

1
N − ρ

1
N + Q

)
;

and to get (22.75) from (22.71), one can write

Nρ1− 1
N log ρ

1
N = (Nρ1− 1

N e−Q)(eQ log ρ
1
N ) ≤ (Nρ1− 1

N e−Q)
(
eQQ − 2eQ + eρ

1
N

)
.

78

All the inequalities appearing in Corollary 22.36 can be seen as refinements of the
Talagrand inequality appearing in Theorem 22.10; concentration inequalities derived from
them take into account, for instance, the fact that the distance between any two points
can never exceed π(N − 1)/

√
K.

Exercise 22.37. Recover inequality (22.75) more directly by using the fact that U(r) =
r log r lies in DCN .

Exercise 22.38. Use the inequalities proven in this section, and the result of Exer-
cise 22.18, to recover, at least formally, the inequality

[∫
hdν = 0

]
=⇒ ‖h‖2

H−1(ν) ≤
KN

N − 1
‖h‖2

L2(ν)

under an assumption of curvature-dimension bound CD(K,N). Now turn this into a rigor-
ous proof, assuming as much smoothness on h and on the density of ν as you wish. (Hint:
When ε → 0, the optimal transport between (1 + εh) ν and ν converges in measure to the
identity map; this enables to pass to the limit in the distortion coefficients.)

Remark 22.39. If one applies the same procedure to (22.73), one recovers a constant
K(Np)/(Np − 1), which reduces to the correct constant only in the limit p → 1. As for
inequality (22.74), it leads to just K (which would be the limit p → ∞).

Remark 22.40. Since the Talagrand inequality implies a Poincaré inequality without any
loss in the constants, and the optimal constant in the Poincaré inequality is KN/(N−1), it
is natural to ask whether this is also the optimal constant in the Talagrand inequality. The
answer is affirmative, in view of Theorem 22.15, since the logarithmic Sobolev inequality
also holds true with the same constant. But I don’t know of any transport proof of this
fact!

Open Problem 22.41. Find a direct transport argument to prove that the curvature-
dimension CD(K,N) with K > 0 and N < ∞ implies T2(K̃) with K̃ = KN/(N − 1),
rather than just T2(K).
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Note that inequality (22.75) does not solve this problem, since by Remark 22.39 it only
implies the Poincaré inequality with constant K.

I shall conclude with a very loosely formulated open problem, which might be nonsense:

Open Problem 22.42. In the Euclidean case, is there a particular variant of the Ta-
lagrand inequality which takes advantage of the homogeneity under dilations, just as the
usual Sobolev inequality in Rn? Is it useful?
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modified transport inequalities for the exponential measure on the half-line (a particular
case of Theorem 22.21).

Otto and myself [292] found an alternative approach to Theorem 22.10, via the HWI
inequality (which at that time of [292] had been established only in Rn). The proof which
I have used in this chapter is the same as the proof in [292], modulo the extension of the
HWI inequality to general Riemannian manifolds.

There are several other schemes of proof for Theorem 22.10. One consists in combining
Theorems 21.2 and 22.15. When M = Rn, there is an argument based on Caffarelli’s log
concave perturbation theorem [91] (exercise). Yet another proof has been given by Bobkov
and Ledoux [59], based on the Brunn–Minkowski theorem, or its functional counterpart
the Prékopa–Leindler inequality (in this work there are interesting extensions to cases
where the convexity assumptions are not the standard ones). Bobkov and Ledoux only
worked in Rn, but it is quite possible that their strategy can be extended to genuinely
Riemannian situations, by means of the “Riemannian” Prékopa–Leindler inequality stated
in Theorem 19.12.

Theorem 22.15 (log Sobolev implies T2 implies Poincaré) was first proven by Otto and
myself [292]; the Otto calculus had first been used to get an intuition of the result. Our
proof relied on a heat semigroup argument, which will be explained later in Chapter 25.
The “dual” strategy which I have used in this chapter, based on the Hamilton–Jacobi
semigroup is due to Bobkov, Gentil and Ledoux [56]. In [292] it was assumed that the
Ricci curvature of the manifold M is bounded below, and this assumption was removed
in [56]. This is because the proof in [292] used a heat semigroup, which has infinite speed
of propagation and is influenced by the asymptotic behavior of the manifold, while the
argument in [56] was based on the Hopf–Lax semigroup, for which there is only finite speed
of propagation (if the initial datum is bounded).

Various generalizations of the proof in [292] were considered by Cattiaux and Guillin [106].
The proof of [56] was adapted by Lott and myself [?] to compact length spaces (X , d)

equipped with a reference measure ν that is locally doubling and satisfies a local Poincaré
inequality; see Theorem 30.24 in the last chapter of these notes. In fact the proof of
Theorem 22.15, as I have written it, is essentially a copy-paste from [247].

It was shown in [292] that (Talagrand) ⇒ (log Sobolev) in Rn, if the reference measure
ν is log concave (with respect to the Lebesgue measure). It was natural to conjecture
that the same argument would work under an assumption of nonnegative curvature (say
CD(0,∞)); Theorem 22.19 shows that such is indeed the case.

Theorem 22.9 shows that T1 is quite well understood, but such is not the case for T2. It
was only recently that Cattiaux and Guillin [106] produced a counterexample on the real
line, showing that the T2 inequality does not necessarily imply a log Sobolev inequality.
Their counterexample takes the form dν = e−V dx, where V oscillates rather wildly at
infinity, in particular V ′′ is not bounded below. Counterexamples with V ′′ bounded below
have still not yet been found.

Even more recently, Gozlan [?] exhibited a characterization of T2 on R, for certain
classes of measures. This is still an active area of research.

The perturbation formula (22.23) for T2 was first established by Blower [53] and later
recovered with simpler methods by Bolley and myself [63].

There are alternative functional approaches to the concentration of measure: directly
via logarithmic Sobolev inequalities [237, Chapter 5] [21, Chapter 7]; and via Brunn–
Minkowski, Prékopa–Leindler, or isoperimetric inequalities [237, Chapter 2]. For instance,



372 22 Concentration inequalities

(19.28) immediately implies

ν[Ar] ≥ 1 − e−
Kr2

4

µ[A]
.

This kind of inequalities goes back to Gromov and Milman [197], who also were the first to
study concentration from Poincaré inequalities. The tight links between all these functional
inequalities show that these various strategies are in some sense related. First introduced
by Herbst, the Laplace transform became an important tool in some of these developments,
especially in the hands of Ledoux (see for instance [237]).

Theorem 22.10 admits an almost obvious generalization: if F is uniformly K-displacement
convex and minimum at ν, then

K W2(µ, ν)2

2
≤ F(µ) − F(ν). (22.76)

Such inequalities have been studied in [292, 103, 15] and proven useful in the study of
certain partial differential equations: see e.g. [103]. In Section 5 of this work, (22.76) is
combined with the HWI inequality and the convergence of the functional F , to deduce
convergence in total variation. By the way, this is one of the rare instances that I know
where the T2 inequality has a real advantage on the T1 inequality (apart from tensorization
issues).

Optimal transport inequalities in infinite dimension have started to receive a lot of
attention recently, for instance on the Wiener space. A major technical difficulty is that
the natural distance in this problem, the so-called Cameron–Martin distance, takes value
+∞ “most of the time”. Gentil [?] established the T2 inequality for the Wiener measure
by using the logarithmic Sobolev inequality on the Wiener space, and adapting the ar-
guments of Bobkov, Gentil and Ledoux [56] based on Hamilton–Jacobi semigroup. Feyel
and Üstünel [?] on one hand, Djellout, Guillin and Wu [141, Section 6] on the other hand,
suggested a more direct approach based on Girsanov’s formula. Interestingly enough, the
T2 inequality on the Wiener space implies the T2 inequality on the Gaussian space, just
by “projection” under the map (xt)0≤t≤1 → x1; this gives another proof of Talagrand’s
original inequality for the Gaussian measure. Wang [?] studied another kind of Talagrand
inequality on the path space over an arbitrary Riemannian manifold.

In his recent PhD Thesis, Shao [?] studied T2 inequalities on the path space and loop
space constructed over a compact Lie group G. (The path space is equipped with the
Wiener measure over G.) Together with Fang [?], he adapted the strategy based on the
Girsanov formula, to get a T2 inequality on the path space, and also on the path space over
the loop space; then by reduction he gets a T2 inequality on the loop space (equipped with
a measure associated with the Brownian motion on loop space). This approach however
only seems to give results when the loop space is equipped with the topology of uniform
convergence, not with the more natural Cameron–Martin distance. I refer to [?] for more
explanations.

Shao and Fang also extended Theorem 22.15 (Logarithmic Sobolev implies Talagrand
inequality) to an infinite-dimensional setting, via the study of the Hamilton–Jacobi semi-
group in infinite dimension. Thanks to known results about logarithmic Sobolev inequali-
ties on loop spaces (studied by Driver, Lohrentz and others), they recover a T2 inequality on
the loop space, now for the Cameron–Martin distance. The technical core of these results
is the analysis of the Hamilton–Jacobi for semi-distances in infinite dimension, performed
in [?].

Very recently, Shao and Fang [?] used Talagrand inequalities to obtain results of unique
existence of optimal transport in the Wiener space over a Lie group, when the target
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measure ν is the Wiener measure and the source measure µ satisfies Hν(µ) < +∞. In
the standard (Gaussian) Wiener space, Feyel and Üstünel have solved the same problem
in more generality, but so far their results have not been extended outside the Gaussian
setting.

The equivalence between Poincaré inequalities and modified transport inequalities, ex-
pressed in Theorem 22.21, has a long history. Talagrand [?] had identified concentration
properties satisfied by the exponential measure, or a product of exponential measures. He
showed the following precised version of (22.69):

ν⊗N
[
A + 6

√
rBd2

1 + 9rBd1
1

]
≥ 1 − e−r

ν⊗N [A]
.

A proof can be found in [237, Theorem 4.16]. It is also Talagrand who noticed that concen-
tration inequalities for the product exponential measure were in some sense stronger than
concentration inequalities for the Gaussian measure (Remark 22.31 and Example 22.33,
which I copied from [237]). Then Maurey [?] found a simple approach to concentration in-
equalities for the product exponential measure. Later Talagrand [348] made the connection
with transport inequalities with quadratic-linear cost. Bobkov and Ledoux [?] introduced
modified logarithmic Sobolev inequalities, and showed their equivalence with Poincaré in-
equalities. The proof of (i) ⇒ (ii) is copied almost verbatim from [?]. Bobkov and Ledoux
also showed how to recover concentration inequalities directly from these modified log-
arithmic Sobolev inequalities, showing in some sense that the concentration properties
of the exponential measure were shared by all measures satisfying a Poincaré inequal-
ity. Finally, Bobkov, Gentil and Ledoux [56] understood how to deduce quadratic-linear
transportation inequalities from modified logarithmic Sobolev inequalities, thanks to the
Hamilton–Jacobi semigroup. The proof of Theorem 22.25 is just an expanded version of
the arguments suggested in [56].

In the particular case when ν(dx) = e−|x| dx on R+, there are simpler proofs of Theo-
rem ??, also with improved constants.

The treatment of dimension-dependent Talagrand-type inequalities in the last section
is inspired from a joint work with Lott [249]. That topic had been addressed before, with
different tools, by Gentil [182]; it would be interesting to compare precisely his results with
the ones in this chapter.
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Gradient flows I: Definition and convergence

Take a Riemannian manifold M and a function Φ : M → R, which for the sake of this
exposition will be assumed to be continuously differentiable. The gradient of Φ, denoted
by ∇Φ, is the vector field defined by the equation

dxΦ · v = 〈∇xΦ, v〉x,

where v is an arbitrary vector in the tangent space TxM , dxΦ stands for the differential of
Φ at x, and 〈·, ·〉x is the scalar product on TxM . In other words, if (γt)−ε<t<ε is a smooth
path in M , with γ0 = x, then

[
d

dt

∣∣∣∣
t=0

xt = v

]
=⇒ d

dt

∣∣∣∣
t=0

Φ(γt) = 〈∇xΦ, v〉x.

If |v| is given, then in order to make the latter derivative as large as possible, the best
choice is to take v colinear to ∇xΦ. In that sense ∇xΦ indicates the direction in which Φ
increases most rapidly.

Now the gradient flow associated to Φ is the flow defined by the differential equation

dX

dt
= − gradXΦ.

One may think of it heuristically as a flow which tries to make Φ decrease as fast as possible.
Stated in this way, this intuition is of course grossly false: for instance, Ẋ = −λ gradXΦ,
λ > 1, will make Φ decrease even faster; but later in this chapter I shall make the statement
more precise and more convincing.

An important consequence of the definition of gradient flow is the following neat formula
for the time-derivative of the energy:

d

dt
Φ(X(t)) = −

∣∣gradX(t)Φ
∣∣2.

Gradient flows (as Hamiltonian flows) are everywhere in physics and mathematics. In
mechanics, they often describe the behavior of Hamiltonian systems, in an asymptotic
regime in which dissipative effects play such an important role, that the effects of forcing
and dissipation compensate each other. The basic example one should think of is

Ẍ = −λ gradXΦ− λ Ẋ

(acceleration = forcing - friction), in the limit λ → ∞ (strong friction).
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Gradient flows in Wasserstein space

Around the end of the nineties, Jordan, Kinderlehrer and Otto made the important dis-
covery that many important partial differential equations can be reformulated as gradient
flows in the Wasserstein space. The most emblematic example is that of the heat equation,

∂tρ = ∆ρ,

say in Euclidean space for simplicity. It was well-known that this equation can be seen
as a gradient flow, for instance for the quadratic functional Φ(ρ) =

∫
|∇ρ|2 dx in L2(Rn).

But the Jordan–Kinderlehrer–Otto formulation describes the heat equation as a gradient
flow in the space of probability measures, with a natural “information-theoretical” content.
In this new approach, the functional Φ is the Kullback information, or negative of the
entropy, Φ(ρ) =

∫
ρ log ρ dx.

To better understand this point of view, Otto developed what I dubbed “Otto calculus”
in Chapter 15. We have already saw several applications of this calculus, at least for
heuristic purposes.

In this chapter, I shall describe in which rigorous sense one can say that certain equa-
tions are gradient flows in the Wasserstein space. Before that, it will be necessary to
get a good understanding of gradient flows in abstract metric spaces, a subject which is
important in itself.

Reformulations of gradient flows

There are several ways to reformulate gradient flows in a weak sense, so as to obtain
definitions that are general (for nonsmooth energies, or nonsmooth spaces), and stable
(under some limit process). They usually require a convexity-type assumption on the
energy Φ. Here I shall present some of these reformulations and explain why they are
equivalent to the classical formulation when used in a smooth setting.

Proposition 23.1 (reformulations of gradient flows). Let M be a Riemannian man-
ifold, let Λ = Λ(x, v) be a quadratic form on TM , bounded below, and let Φ be a C1 function
M → R, Λ-convex in the sense of Proposition 16.2. Let further X : (t1, t2) → M , and let
t ∈ (t1, t2) be a time where X is differentiable. Then, the following statements are equiva-
lent:

(i) Ẋ(t) = − gradX(t)Φ;

(ii) −Ẋ(t) ∈ ∂Φ(X(t));

(iii)
|Ẋ(t)|2 + |∇−Φ(X(t))|2

2
= − d

dt
Φ(X(t));

(iv) for any y ∈ M , and for any geodesic (γs)0≤s≤1 with γ0 = y, γ1 = X(t),

d+

dt

(
d(y,X(t))2

2

)
≤ Φ(y) − Φ(X(t)) −

∫ 1

0
Λ(γs, γ̇s) s ds.

Remark 23.2. The most well-known case is when λ = 0 (Φ is convex), and then (iv)
becomes just

d+

dt

(
d(y,X(t))2

2

)
≤ Φ(y) − Φ(X(t)).
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Remark 23.3. Statements (i) to (iii) do not explicitly depend on Λ, so here the assump-
tion of Λ-convexity is not essential. But as soon as one wants to generalize Proposition 23.1
by dropping some smoothness assumptions, it might be important to know that Φ is Λ-
convex for some Λ. Note that in formulation (iv), one can always replace Λ by Λ′ ≤ Λ, and
the equivalence still holds true, independently of the choice of Λ′! Accordingly, in practice
one can restrict to the choice Λ(x, v) = λ|v|2, that is, when Φ is λ-convex.

Remark 23.4. If one wants to use Proposition 23.1 to characterize a curve (X(t)) as a
gradient flow, the natural regularity assumption is that X be an absolutely continuous
function of t. This will imply the existence of the derivative Ẋ(t) for almost all t, and in
addition this will guarantee that the values of X are uniquely determined by X(0) and
the values of Ẋ.

Before going on with the proof of Proposition 23.1, I shall briefly explain its interest.
Property (ii) has the advantage to be formulated in terms of subdifferentials, which are
well-defined for semi-convex functions (smooth or not), and quite stable. Property (iii)
involves speeds (norms of velocities) rather than velocities; this is interesting also in a
nonsmooth setting, where the speed might be well-defined even if the velocity is not.
Finally, Property (iv) appears to be quite handy to study gradient flows in an abstract
metric space; this is the one that I shall use in the sequel (with the particular choice
Λ(x, ·) = λ| · |2, which is no loss of generality as explained in Remark 23.3).

Proof of Proposition 23.1. First recall some definitions:

|∇−Φ(x)| = lim sup
y→x

[Φ(y) − Φ(x)]−
d(x, y)

;

∂Φ(x) =
{
v ∈ TxM ; ∀w ∈ TxM, Φ

(
expx(εw)

)
≥ Φ(x) + ε〈v,w〉 + o(ε)

}
.

Since Φ is differentiable by assumption,

|∇−Φ(x)| = |∇Φ(x)|, ∂Φ(x) = {∇Φ(x)}.

Then the equivalence between (i) and (ii) is obvious.
Next, by chain-rule, Cauchy–Schwarz and Young’s inequalities,

− d

dt
Φ(X(t)) =

〈
−∇Φ(X(t)), Ẋ(t)

〉
≤
∣∣∇Φ(X(t))

∣∣ ∣∣Ẋ(t)
∣∣ ≤ |∇Φ(X(t))|2 + |Ẋ(t)|2

2
,

with equality if and only if −∇Φ(X(t)) and Ẋ(t) have the same norm and opposite direc-
tions. So (i) is equivalent to (iii).

Now, let us check the equivalence of (i) and (iv). Let y be given, and let γ(s) be a
geodesic path joining γ(0) = y to γ(1) = X(t). Then by the formula of first variation (as
in the Appendix of Chapter 7),

d+

dt

(
d(y,X(t))2

2

)
≤
〈
γ̇(1), Ẋ(t)

〉
X(t)

(23.1)

(the distance increases if Ẋ is in the direction of γ̇(1)). On the other hand, since Φ is
Λ-convex,

Φ(γ(0)) ≥ Φ(γ(1)) −
〈
γ̇(1), ∇Φ(γ(1))

〉
+
∫ 1

0
Λ
(
γ(s), γ̇(s)

)
s ds.



378 23 Gradient flows I: Definition and convergence

(This by the way does not depend on Φ being C1.) So

〈
γ̇(1), −∇Φ(X(t))

〉
≤ Φ(y) − Φ(X(t)) −

∫ 1

0
Λ
(
γ(s), γ̇(s)

)
s ds.

This combined with (23.1) proves the implication (i) ⇒ (iv).
For the reverse implication, let again t be given, w ∈ TX(t)M , y = expX(t)(εw). If ε

is small enough there is a unique geodesic γ joining γ(0) = X(t) to γ(1) = y, namely
γ(s) = expX(t)(sεw). Then |γ̇| = ε|w|, and

d

dt

(
d(y,X(t))2

2

)
=
〈
γ̇(1), Ẋ(t)

〉
= −

〈
εw, Ẋ(t)

〉
.

So if Property (iv) is satisfied, then

〈
εw,−Ẋ(t)

〉
=

d+

dt

(
d(y,X(t))2

2

)

≤ Φ(y) − Φ(X(t)) −
∫ 1

0
Λ
(
γ(s), γ̇(s)

)
s ds

≤ Φ(expX(t) εw) − Φ(X(t)) + λ

∫ 1

0
|γ̇(s)|2 s ds

≤ Φ(expX(t) εw) − Φ(X(t)) + λ
ε2

2
.

As a consequence,

Φ(expX(t) εw) ≥ Φ(X(t)) + ε
〈
w,−Ẋ(t)

〉
+ o(ε),

which precisely means that −Ẋ(t) ∈ ∂Φ(X(t)), so (ii) is satisfied. This shows that (iv)
implies (ii).

In the end, all Properties (i)-(iv) are equivalent, which proves Proposition 23.1. 78

Gradient flows in metric spaces

Proposition 23.1 suggests the following definition as a possible way to introduce gradient
flows in possibly nonsmooth length spaces.

Definition 23.5 (Gradient flows in length space). Let (X , d) be a length space,
λ ∈ R, and let Φ be a lower semi-continuous, λ-convex functional X → R ∪ {+∞}. Let
(X(t))t≥0 be a path in X , absolutely continuous in the sense of (7.5). Then X is said to
be a trajectory of the gradient flow associated with the energy Φ if, for all y ∈ X and all
t > 0,

d+

dt

(
d(y,X(t))2

2

)
≤ Φ(y) − Φ(X(t)) − λ

d(y,X(t))2

2
.

Proposition 23.1 guarantees that this concept coincides with the usual one when X
is a Riemannian manifold equipped with its geodesic distance. The following statement
shows that gradient flows are relatively well-behaved; it also provides a simple sufficient
condition for a trajectory to be a gradient flow.
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Proposition 23.6 (Properties of gradient flows). Let (X , d), λ and Φ be as in Defi-
nition 23.5, and let (X(t))t≥0 be a path in X , absolutely continuous. Then

(i) If one has, for almost all t > 0,

d

dt

(
d(y,X(t))2

2

)
≤ d+

ds

∣∣∣∣
s=0

Φ(γ(s)),

where γ(s) is a (constant-speed, minimizing) geodesic joining γ(0) = X(t) to γ(1) = y,
then X is a trajectory of the gradient flow associated with Φ;

(ii) If X and X̃ are two trajectories of the gradient flow associated with Φ, then

∀t ≥ 0, d
(
X(t), X̃(t)

)
≤ eλtd

(
X(0), X̃(0)

)
.

In particular, there can be at most one trajectory of the gradient flow starting from a given
initial condition.

Remark 23.7. Property (ii) guarantees that Definition 23.5 does not depend on the choice
of λ.

Proof of Proposition 23.6. First, it is a general fact that if Φ is λ-convex in a length space,
and γ is a geodesic joining γ(0) = X(t) to γ(1) = y, then

d+

ds

∣∣∣∣
s=0

Φ(γ(s)) ≤ Φ(y) − Φ(X(t)) − λ
d(y,X(t))2

2
.

This implies (i) at once.
To prove (ii), fix T > 0, and define

F (s, t) :=
d
(
X(s), X̃(t)

)2

2
, 0 ≤ s, t ≤ T.

If C is a bound for d(X(s), X̃(t)), then

∣∣F (s, t) − F (s′, t)
∣∣ ≤

(
d(X(s), X̃(t)) + d(X(s′), X̃(t))

2

) ∣∣∣d
(
X(s), X̃(t)

)
− d

(
X(s′), X̃(t)

)∣∣∣

≤ C d
(
X(s),X ′(s)

)
.

Since X is an absolutely continuous path, it follows that F is uniformly (in t) absolutely
continuous with respect to s. By Lemma 23.19 in the Appendix,

d

dt

∣∣∣∣
t=t0

F (t, t) =
d

dt

∣∣∣∣
t=t0

d
(
X(t0), X̃(t)

)2

2
+

d

dt

∣∣∣∣
t=t0

d
(
X̃(t0),X(t)

)2

2

≤
[
Φ(X(t0)) − Φ(X̃(t0)) − λ

d(X(t0), X̃(t0))2

2

]

+
[
Φ(X̃(t0)) − Φ(X(t0)) − λ

d(X̃(t0),X(t0))2

2

]

= −λ d(X(t0), X̃(t0))2

= −2λF (t0, t0).

It follows that F (t, t) ≤ e−2λtF (0, 0), whence the conclusion. 78
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In the sequel, I shall apply Definition 23.5 in the Wasserstein space X = P2(M), where
M is a smooth Riemannian manifold (sometimes with additional assumptions of bounds
on the Hessians of the square distance). To avoid complications I shall use Definition 23.5
in P ac

2 (M), that is, restricting to absolutely continuous probability measures. This might
look a bit dangerous, because P ac

2 (M) is not complete, but after all it is a length space
on its own right, as a geodesically convex subset of P2(M) (Recall Theorem 8.5(ii)), and
I shall not need completeness. Of course, this does not mean that it is not interesting to
study gradient flows in the whole of P2(M).

To go on with this program, I should first
- compute the (upper) derivative of the distance function;
- compute the subdifferential of a given energy functional.

This will be the object of the next two sections.

Derivative of the Wasserstein distance

Theorem 23.8 (Derivative of the Wasserstein distance). Let M be a smooth Rie-
mannian manifold. Let (µt) and (µ̃t) be two curves (t1, t2) → P ac

2 (M), weak solution of
the continuity equations

∂µt

∂t
+ ∇ · (ξt µt) = 0,

∂µ̃t

∂t
+ ∇ · (ξ̃t µ̃t) = 0, (23.2)

where ξt = ξt(x), ξ̃t = ξ̃t(x) are uniformly Lipschitz functions of t and x. Then t → µt and
t → µ̃t are absolutely continuous curves. Moreover, if t ∈ (t1, t2) is given, then

d

dt

(
W2(σ, µt)2

2

)
= −

∫

M
〈∇̃ψ, ξ〉 dµt −

∫

M
〈∇̃ψ̃, ξ̃〉 dµ̃t,

where ψ, ψ̃ are (d2/2)-functions such that

exp(∇̃ψ)#µt = µ̃t, exp(∇̃ψ̃)#µ̃t = µt.

Remark 23.9. Recall that Theorem 10.35 gives a list of a few conditions under which the
approximate gradient ∇̃ can be replaced by the usual gradient ∇ in the formulas above.

Remark 23.10. For the purpose of this chapter, the superdifferentiability of the Wasser-
stein distance would be enough. However, for the sake of completeness, I shall also establish
the subdifferentiability, which is a bit more tricky.

Proof of Theorem 23.8. Let us first consider the case when the path µ̃t is constant and
equal to some fixed measure σ ∈ P ac

2 (M).
Step 1: Superdifferentiability. Let T be the optimal (Monge) transport σ → µt.

Then
W2(σ, µt)2

2
=

1
2

∫
d(x, T (x))2 dσ(x). (23.3)

For any τ > 0, we can construct a family of trajectories on [t, t + τ ] by following the
velocity field ξ:

d

ds

(
Tt→t+s(x)

)
= ξt+s

(
Tt→t+s(x)

)
.
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The maps Tt→t+s are well-defined and locally Lipschitz, as a consequence of the Cauchy–
Lipschitz theory. Moreover, by the usual Eulerian/Lagrangian duality and the continuity
equation (23.2),

(Tt→t+s)#µt = µt+s.

So Tt→t+s ◦ T is a transport σ → µt+s, and by definition of the Wasserstein distance,

W2(σ, µt+s)2

2
≤ 1

2

∫
d
(
x, Tt→t+s ◦ T (x)

)2
dσ(x).

This, combined with (23.3), implies

1
s

(
W2(σ, µt+s)2

2
− W2(σ, µt)2

2

)
≤
∫ (

d
(
x, Tt→t+s ◦ T (x)

)2 − d(x, T (x))2

2s

)

dσ(x).

(23.4)
Since there is a minimizing geodesic connecting T (x) to x with initial velocity ∇̃ψ(T (x)),

the formula of first variation yields

∀x ∈ M, lim sup
s↓0

[
d
(
x, Tt→t+s ◦ T (x)

)2 − d(x, T (x))2

2s

]
≤ −

〈
ξt(T (x)), ∇̃ψ(T (x))

〉
.

So if we can pass to the lim sup as s → 0 in (23.4), it will follow that

d+

dt

(
W2(σ, µt)2

2

)
≤ −

∫

M

〈
ξt(T (x)), ∇̃ψ(T (x))

〉
dσ(x)

= −
∫
〈ξt(y), ∇̃ψ(y)〉 d(T#σ)(y)

= −
∫ 〈

ξt(y), ∇̃ψ(y)
〉
dµt(y),

and this will establish the right-superdifferentiability of W2(µt,σ).
So we should check that we can indeed pass to the lim sup in (23.4). For this we can

use Fatou’s lemma, in the following form: If v = v(s, x) is a real-valued function, bounded
above by w(x), where w ∈ L1(dσ), then

lim sup
s→0

∫
v(s, x) dσ(x) ≤

∫ [
lim sup

s→0
v(s, x)

]
dσ(x).

In the present case, because ξ is Lipschitz, it is not difficult to derive the following
estimates:

d
(
y, Tt→t+s(x)

)
≤ C(τ)

(
1 + d(y, x)

)
; d

(
x, Tt→t+s(x)

)
≤ C(τ) s

(
1 + d(y, x)

)
,

where y is some arbitrary point in M , and C(τ) is a constant which might depend on the
upper bound of the time-interval. In the sequel, I shall not recall the dependence on τ ,
and I shall use the same symbol C to denote various such constants. Then
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v(s, x) :=
d
(
x, Tt→t+s ◦ T (x)

)2 − d(x, T (x))2

2s

≤

∣∣∣∣∣
d(x, Tt→t+s ◦ T (x)

)
− d(x, T (x))

s

∣∣∣∣∣

(
d(x, Tt→t+s ◦ T (x)

)
+ d(x, T (x))

2

)

≤
d
(
T (x), Tt→t+s(T (x))

)

s

(

d(x, T (x)) +
d
(
T (x), Tt→t+s(T (x))

)

2

)

≤ C
(
1 + d(y, T (x))

) (
1 + d(x, T (x)) + d(y, T (x))

)

≤ C
(
1 + d(y, T (x))2 + d(x, T (x))2

)
=: w(x).

Then w is σ-integrable, since
∫

d(y, T (x))2 dσ(x) =
∫

d(y, x)2 dµt(x) < +∞;
∫

d(x, T (x))2 dµt(x) = W 2
2 (σ, µt)2 < +∞.

This concludes the proof of the right-superdifferentiability of W2(µt,σ). The same rea-
soning can be repeated to prove the left-superdifferentiability (that is, when s ↑ 0), and
the results is the same; so W2(µt,σ) is in fact superdifferentiable. (Equivalently, one may
reverse time by replacing the vector field ξ by −ξ.)

Step 2: Subdifferentiability. The reader might skip the rest of the proof at
first reading. To establish the subdifferentiability, it is sufficient to establish the right-
subdifferentiability, that is, only consider

lim inf
s↓0

W2(µt+s,σ)2 − W2(µt,σ)2

s
;

then the true subdifferentiability will follow by an argument similar to the one used before.
For each s 3= 0, let T (s) be the optimal transport between σ and µs. As s ↓ 0 we can

extract a subsequence sk → 0, such that

lim sup
s↓0

W2(µt,σ)2 − W2(µt+s,σ)2

s
= lim

k→∞

W2(µt+sk ,σ)2

sk
.

Then, by reasoning as in Step 1,

lim sup
s↓0

W2(µt,σ)2 − W2(µt+s,σ)2

s
≤ lim sup

k→∞

∫ d
(
x, Tsk+t→t ◦ T (t+sk)(x)

)2
− d

(
x, T (t+sk)(x)

)2

sk
σ(dx).

(23.5)
In other words,

lim sup
s↓0

W2(µt,σ)2 − W2(µt+s,σ)2

s
≤
∫

vk(x)σ(dx), (23.6)

where

vk(x) =
d
(
x, Tt+sk→t ◦ T (t+sk)(x)

)2
− d

(
x, T (t+sk)(x)

)2

sk
.
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Since T (t) is the unique optimal transport between σ and µt, and since s → µt+s is
continuous with respect to the weak topology, we know from Corollary 5.20 that T (t+sk)

converges to T (t) in probability, with respect to the measure σ. Extracting a further sub-
sequence if necessary, we may assume that T (t+sk) converges to T (t) almost surely.

Next, the square distance d2 is locally superdifferentiable, so

d
(
x, Tt+sk→t(x)

)2

2
≤ d(x, y)2

2
+ sk 〈ξt(y), γ̇(1)〉y + o

(
d(y, Tt+sk→t(y)

)

≤ d(x, y)2

2
+ sk 〈ξt(y), γ̇(1)〉y + o(sk),

where γ is the geodesic joining x to y, and the o(sk) is uniform in a neighborhood of y. So
if yk → y, then

lim sup
k→∞

d
(
x, Tt+sk→t(yk)

)2 − d(x, yk)2

sk
≤ 〈ξt(y), γ̇(1)〉.

Applying this to yk = T (t+sk)(x) → T (t)(x), we deduce that

lim sup
k→∞

vk(x) ≤ v(x) :=
〈
ξt(T (t)(x)), γ̇(1)

〉
T (t)(x)

.

Here again γ is the geodesic joining x to T (t)(x), so γ̇(1) = −∇̃ψ(T (t)(x)), where exp(∇̃ψ)
is the optimal transport going from µt to σ. So to complete the proof, it is sufficient to
pass to the lim sup in (23.6).

To pass to the limit, we need some control on the functions vk. Let z be a fixed point
in M . Since ξ is uniformly Lipschitz, it is easy to establish the bound d(y, T (t+sk)(y)) ≤
C sk (1 + d(z, y)), where C is a constant; and as a consequence

d
(
x, Tsk+t→t ◦ T (t+sk)(x)

)2
− d

(
x, T (t+sk)(x)

)2

≤
[
2d(x, T (t+sk)(x)) + d

(
T (t+sk)(x), Tt+sk→t((T (t+sk)(x)))

)]
d
(
T (t+sk)(x), d

(
Tt+sk→t ◦ T (t+sk)(x)

))

≤ C
(
d(x, T (t+sk)(x)) + sk

)
sk (1 + d(z, x)).

It follows that
vk(x) ≤ C

[
1 + d(x, T (t+sk)(x))

]
(1 + d(z, x)) (23.7)

Let χ be a cut-off continuous function, 0 ≤ χ ≤ 1, χ(d) = 1 for d ≤ 1, χ(d) = 0 for
d ≥ 2, and let χR(d) = χ(d/R). (This is a continuous approximation of 1d≤R.) When
χR(d(z, x) + d(z, T (t+sk)(x))) 3= 0, vk(x) stays bounded. So we can invoke Fatou’s lemma
as in Step 1:

lim sup
k→∞

∫
χR
(
d(x, T (t+sk)(x))

)
vk(x)σ(dx) ≤

∫
χR
(
d(x, T (t)(x))

)
v(x)σ(dx).

To conclude the argument it suffices to show that

lim
R→∞

∣∣∣∣

∫
χR
(
d(x, T (t)(x))

)
v(x)σ(dx)

∣∣∣∣ = 0; (23.8)

lim
R→∞

lim sup
k→∞

∣∣∣∣
∫

χR
(
d(x, T (t+sk)(x))

)
vk(x)σ(dx)

∣∣∣∣ = 0; (23.9)
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Taking into account the bound |v(x)| ≤ d(x, T (t)(x)) ≤, we have
∣∣∣∣
∫

(1 − χR)
(
d(x, T (t)(x))

)
v(x)σ(dx)

∣∣∣∣

≤
∫

d(x,T (t)(x))≥R
d(x, T (t)(x))σ(dx)

≤ 1
R

∫
d(x, T (t)(x))2 σ(dx)

=
1
R

W2(σ, µt)2;

this establishes (23.8).
Similarly,
∣∣∣∣
∫

(1 − χR)
(
d(x, T (t+sk)(x))

)
vk(x)σ(dx)

∣∣∣∣

≤ 1
R

W2(σ, µt+sk)2,

which proves (23.9). This concludes the proof of the subdifferentiability.

Step 3: Doubling variables. At this stage we know that s → W2(µs, µ̃t) is differen-
tiable, and of course s → W2(µt, µ̃s) is differentiable too. To conclude to the differentiability
of t → W2(µt, µ̃t), we can use again Lemma 23.19 in the Appendix, provided that we check
that, say, s → W2(µs, µ̃t) is (locally) absolutely continuous in s, uniformly in t. To prove
this, we can use the triangular inequality, in the form

W2(µs, µ̃t)2 − W2(µs′ , µ̃t)2 =
[
W2(µs, µ̃t) + W2(µs′ , µ̃t)

] [
W2(µs, µ̃t) − W2(µs′ , µ̃t)

]

≤
[
W2(µs, µ̃t) + W2(µs′ , µ̃t)

]
W2(µs, µs′)

≤
[
W2(µs,σ) + W2(µs′ ,σ) + 2W2(µ̃t,σ)

]
W2(µs, µs′),

where σ is any arbitrary element of P2(M). The quantity inside square brackets is bounded
(in fact it is a Lipschitz function of s, s′ and t), and the path (µs) is Lipschitz in W2

distance; so in fact
W2(µs, µ̃t)2 − W2(µs′ , µ̃t)2 ≤ C |s − s′|

for some constant C. The conclusion follows. 78

Subdifferential of energy functionals

The problem addressed in the present section is to estimate the derivative of an energy
functional such as Uν , along a path in the Wasserstein space P2(M), or rather in P ac

2 (M).
This problem is easy to solve formally, but a rigorous justification is definitely not trivial,
and for the moment the only known strategy uses some mildly advanced real analysis, in
particular Alexandrov’s second differentiability theorem (Theorem 14.1), and (at least in
the noncompact case) the notion of approximate gradient ∇̃.

Theorem 23.11 (Computation of subdifferentials in Wasserstein space). Let M
be a Riemannian manifold, equipped with a reference measure ν = e−V vol satisfying the
curvature-dimension bound CD(K,N) for some K ∈ R, N ∈ (1,∞]. Let U ∈ DCN , let
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µ and σ be two elements of P ac
2 (M), let ρ be the density of µ with respect to ν, let ψ be

a d2/2-convex function such that T = exp(∇̃ψ) is the unique Monge transport µ → σ,
and for s ∈ [0, 1] let µs = (exp(s∇̃ψ))#µ. If K < 0 and N < ∞, further assume that the
density ρs of µs is uniformly bounded below by a positive constant for small s:

∃s0 > 0; inf
x∈M

inf
0≤s≤s0

ρs(x) > 0;

and that p(r) = O(r1− 1
N ) as r → ∞. Then

lim
s↓0

Uν(µs) − Uν(µ)
s

= −
∫

p(ρ)Lψ dν,

where the function Lψ is obtained from the measure Lψ (understood in the sense of distri-
butions) by keeping only the absolutely continuous part with respect to the volume measure.

Remark 23.12. The lower bound assumption on ρs in the case K < 0, N < ∞ is certainly
too strong, but it is not clear to me how to relax it.

Proof of Theorem 23.11. Step 1: I shall prove the theorem in the case when the optimal
map is of the form exp(∇ψ) (this is a true gradient, not an approximate gradient).

First note that ρ0 is the same as ρ. The proof starts as in the proof of Theorem 17.15,
with a change of variables:

Uν(µs) =
∫

U(ρs(x)) dν(x) =
∫

U
(
ρs(expx s∇ψ(x))

)
J0→s(x) dν(x)

=
∫

U

(
ρ0(x)

J0→s(x)

)
J0→s(x) dν(x),

where J0→s is the Jacobian determinant associated with the map exp(s∇ψ), and the
reference measure ν. Note that here I am using the Jacobian formula for a change of
variables which a priori is not Lipschitz. Upon use of µ = ρ0 ν, it follows that

Uν(µs) − Uν(µ)
s

=
∫

1
s

[
U

(
ρ0(x)

J0→s(x)

)
J0→s(x)
ρ0(x)

− U(ρ0(x))
ρ0(x)

]
dµ(x). (23.10)

By Theorem 14.1, for almost all x we have the Taylor expansion

J0→s(x) = 1 + s (Lψ)(x) + o(s) as s → 0. (23.11)

On the other hand, for given r, the derivative of δ → (δ/r)U(r/δ) at δ = 1 is − p(r)/r.
This and (23.11) imply that for almost all x where ρ0(x) > 0,

lim
s↓0

[
U

(
ρ0(x)

J0→s(x)

)
J0→s(x)
ρ0(x)

− U(ρ0(x))
ρ0(x)

]
= − (Lψ(x))

(
p(ρ0(x))
ρ0(x)

)
.

Then the conclusion follows after integrating against dµ(x) = ρ0(x) dν(x).
So it only suffices to check that one can indeed pass to the limit as s → 0 in (23.10).

To do so, let

w(s, x) =
[
U

(
ρ0(x)

J0→s(x)

)
J0→s(x)
ρ0(x)

− U(ρ0(x))
ρ0(x)

]
;

the problem is to justify

lim
s↓0

∫
w(s, x) dµ(x) =

∫ [
lim
s↓0

w(s, x)
]
dµ(x). (23.12)
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Recall that

w(s, x) =
u(s, x) − u(0, x)

s
, u(s, x) = U

(
ρ0(x)

J0→s(x)

)
J0→s(x)
ρ0(x)

.

First consider the case K = 0, which is simpler. From the estimates in the proof of
Theorem 17.15 (recall (17.13)) we know that u(s, x) is a convex function of s, for given x;
then w(s, x) is nonincreasing as s ↓ 0, and (23.12) follows from the monotone convergence
theorem.

Now consider the general case when K < 0. As in the estimates in the proof of Theo-
rem 17.15 (see (17.13) again),

d2 u(s, x)
ds2

u(s, x) ≥ Kλρs
(
T0→s(x)

)− 1
N
∣∣∇ψs(T0→s(x))

∣∣2,

where ∇ψs gives the optimal velocity field to transport µs to σ. From our assumptions,
ρ
− 1

N
s is bounded above; on the other hand, |∇ψs(T0→s(x))| = (1 − s) d(x, T (x)), so there

is a constant C such that
− d2

ds2
u(s, x) ≤ C d(x, T (x))2.

Let then
ũ(s, x) = u(s, x) + C d(x, T (x))2 s2;

this is a convex function of s, and the reasoning which we used for K = 0 applies for u
replaced by ũ, so

lim
s↓0

∫
w̃(s, x) dµ(x) =

∫ [
lim
s↓0

w̃(s, x)
]
dµ(x), (23.13)

where
w̃(s, x) =

ũ(s, x) − ũ(0, x)
s

= w(s, x) − s C d(x, T (x))2.

Since
∫

d(x, T (x))2 dµ(x) < +∞,

lim
s→0

s C

∫
d(x, T (x))2 dµ(x) = 0,

so we can replace w̃ by w in both sides of (23.13). This concludes the argument.
Step 2: Now let us consider the general case where the optimal map takes the form

exp(∇̃ψ), not exp(∇ψ). (The reader can skip this bit at first reading and go directly to
the next theorem.) asdf – REPRENDRE ICI 78

Theorem 23.11 has the merit to be exact: it provides the precise value of the derivative
at s = 0. Unfortunately, the result is not in a form that can be readily exploited in
conjunction with Theorem 23.8. The following technical Proposition will remedy this.

Theorem 23.13 (integration by parts). Let M be a smooth Riemannian manifold,
equipped with a reference measure ν = e−V vol , V ∈ C2(M). Let ψ : M → R ∪ {+∞} be
a semi-convex function with a quadratic modulus, and let ζ be a C1 nonnegative function
on M supported in the interior of the domain of ψ. Then

∫

M
(Lψ) ζ dν ≤ −

∫

M
〈∇ψ,∇ζ〉 dν. (23.14)
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In particular, if U ∈ C2(0,+∞) ∩ C(R+) is a given nonlinearity satisfying U(0) = 0,
p(r) = rU ′(r) − U(r) is the associated pressure, ρ is a C1 probability density on M , and
either p is continuously differentiable at 0, or ρ is uniformly positive, then

∫
(Lψ) p(ρ) dν ≤ −

∫ 〈
∇ψ,∇p(ρ)

〉
dν.

Proof. À RÉÉCRIRE. Y A-T-IL EGALITE PARFOIS ???? 78

Diffusion equations as gradient flows

Let M be a Riemannian manifold asdf hypothèses sur la courbure sectionnelle ??
satisfying the CD(K,N) curvature-dimension bound, and let U be some nonlinearity in
DCN . By Theorem 17.15, Uν is λ-displacement convex for some λ ∈ R. Let then (µt)t≥0

be an absolutely continuous curve valued in P ac
2 (M), satisfying a continuity equation of

the form
∂µ

∂t
+ ∇ · (ξtµt) = 0,

where ξ is a Lipschitz vector field. Fix some time t, and let σ ∈ P ac
2 (M). Let exp(∇ψ)

be the optimal transport µt → σ. Let also µ(s) = exp(s∇ψ)#µt. Then, under adequate
regularity assumptions,

(a) according to Theorem 23.8,

d+

dt

(
W2(σ, µt)2

2

)
≤ −

∫
〈∇ψ, ξt〉 dµt;

(b) according to Theorems 23.11 and 23.13,

d+

ds
Uν(µ(s)) ≤

∫ 〈
∇ψ,∇p(ρt)

〉
dµt.

So Proposition 23.6(i) applies as soon as

ξ = −∇p(ρ),

and guarantees that (µt) is an integral curve of the gradient flow associated with Uν . The
next theorem summarizes this reasoning:

Theorem 23.14 (Diffusion equations as gradient flows in Wasserstein space).
Let M be a smooth Riemannian manifold asdf hypothèses sur la courbure sec-

tionnelle ? equipped with a reference measure ν = e−V vol , V ∈ C2(M), satisfying the
CD(K,N) curvature-dimension bound for some K ∈ R, N ∈ (1,∞]. Let L = ∆−∇V ·∇.
Let U be a nonlinearity in DCN , such that U ∈ C3(0,+∞); and let p(r) = rU ′(r) − U(r).
Let ρt(x) be a (C1 in t, C2 in x) positive solution of the partial differential equation

∂ρt

∂t
= Lp(ρt), (23.15)

and let µt = ρt ν. If K < 0 and N < ∞, further assume that ρt is uniformly bounded
below. Then (µt)t≥0 defines a trajectory (µt = ρt ν) of the gradient flow associated with the
energy functional Uν in P ac

2 (M).
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Example 23.15. Any smooth positive solution of ∂tρ = ∆ρ can be seen as a trajectory of
the gradient flow associated with the energy H(µ) =

∫
ρ log ρ. Any smooth positive solution

of ∂tρ = ∆ρ + ∇ · (ρ∇V ) can be seen as a trajectory of the gradient flow associated with
the energy F (µ) =

∫
ρ log ρ +

∫
ρV . (With respect to the previous example, this amounts

to change the reference measure vol into e−V vol .) In nonnegative curvature, any smooth
positive solution of ∂tρ = ∆ρm, m ≥ 1 − 1/n, can be seen as a trajectory of the gradient
flow associated with the energy E(µ) = (m − 1)−1

∫
ρm.

Proof of Theorem 23.14. Since M is compact and ρ is smooth positive, there is a lower
bound r0 for ρt(x). Because U is C3 on (0,+∞), the function U ′(ρ) is C2, so

ξt(x) := −∇U ′(ρt(x))

is a C1 vector field. Then (23.15) can be rewritten as

∂ρt

∂t
+ ∇ · (ξt ρt) = 0.

The theorem follows by the combination of Theorems 23.8, 23.11 and 23.13, as explained
at the beginning of this section. 78

In Theorem 23.14 I assumed the smoothness of the density; but in many situations
there are regularization theorems for such (a priori nonlinear) diffusion equations, so the
smoothness assumption can be relaxed in the end. Such is the case for the heat equation.
Here is a result about this case, stated without proof:

Corollary 23.16 (Heat equation as a gradient flow). Let M be a smooth Riemannian
manifold asdf hypothèses sur la courbure sectionnelle ? curvature, let V ∈ C2(M),
and let L = ∆−∇V ·∇. Let µ0 ∈ P2(M), and let µt = ρtvol solve

∂ρt

∂t
= Lp(ρt).

Then (µt)t>0 is a trajectory of the gradient flow associated with the energy functional

Hν(µ) =
∫

ρ log ρ dν, µ = ρ ν

in the Wasserstein space P ac
2 (M).

In particular, the gradient flow associated with Hvol is the standard heat equation

∂ρ

∂t
= ∆ρ.

Remark 23.17. The distinction between P2(M) and P ac
2 (M) is not essential here.

Remark 23.18. asdf hypothèses sur la courbure toujours en jeu ? éventuellement
supprimer cette remarque The natural curvature assumption to define the heat equa-
tion is a lower bound on the Ricci curvature. So the question naturally arises whether the
assumption of bounded sectional curvature can be relaxed. Also one might think about
the role that could be played by global regularity results on the logarithm of the solution
of the heat equation; see for instance Remark 24.17 below.



23 Gradient flows I: Definition and convergence 389

As I already said in the beginning of this chapter, the heat equation can be seen as a
gradient flow in various ways. For instance, take for simplicity the basic heat equation in
Rn, in the form ∂tu = ∆u, then it can be interpreted as the gradient flow of the functional
E(u) = (1/2)

∫
|∇u|2 for the usual Hilbert structure imposed by the L2 norm; or as as the

gradient flow of the functional E(u) =
∫

u2 for the Hilbert structure induced by the H−1

norm (say on the subspace
∫

u = 0). But the interesting new feature coming from optimal
transport theory is that now the heat equation can be seen as the gradient flow of a nice
functional which has statistical (or thermodynamical) meaning; and in such a way that it
is naturally set in the space of probability measures.

General theory and time-discretization

There is a general theory of gradient flows in metric spaces, based for instance on Defini-
tion 23.5, or other variants appearing in Proposition 23.1. It was pushed to a high degree
of sophistication by De Giorgi and his school, and other researchers. A key role in this
theory is played by discrete-time approximation schemes, the simplest of which can be
stated as follows:

1. Choose your initial datum X0;
2. Choose a time step τ , which in the end will decrease to 0;

3. Construct X(τ)
1 as a mininimizer of X "−→ Φ(X) +

d(X0,X)2

2τ
; then construct

inductively X(τ)
k+1 as a minimizer of X "−→ Φ(X) +

d(X(τ)
k ,X)2

2τ
.

4. Pass to the limit in X(τ)
k as τ → 0, kτ → t, hopefully recover a function X(t) which

is the value of the gradient flow at time t.
Such schemes sometimes provide an excellent way to construct the gradient flow, and

they may also be useful in numerical simulations. There are strong results about the
convergence of such schemes; see the bibliographical notes for details.

This procedure also suggests a better intuition for the gradient flow in Wasserstein
distance, as I shall explain in a slightly informal way. Consider, as in Theorem 23.14, the
equation

∂ρ

∂t
= Lp(ρ).

Suppose you know the density ρ(t) at some time t, and look for the density ρ(t + dt) at a
later time, where dt is infinitesimally small. To do this, minimize the quantity

Uν(µt+dt) − Uν(µt) +
W2(µt, µt+dt)2

2 dt
.

There is another way to rewrite this, by using the interpretation of the Wasserstein distance
between two infinitesimally close probability measures:

W2(µt, µt+dt)2

dt
> inf

{∫
|v|2 dµt;

∂µ

∂t
+ ∇ · (µv) = 0

}
.

All in all, to go from µ(t) to µ(t+dt), what you have to do is find a velocity field v inducing
an infinitesimal variation dµ = −∇ · (µv) dt, so as to minimize the infinitesimal quantity

dUν + K dt, (23.16)
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where Uν(µ) =
∫

U(ρ) dν, and K is the kinetic energy (1/2)
∫
|v|2 dµ (so K dt is the

infinitesimal action).
For the heat equation ∂ρ

∂t = ∆ρ, ν = vol , Uν(µ) =
∫
ρ log ρ dν, we are back to the

example discussed in the beginning of this chapter.
There is an important moral here: Behind many nonequilibrium equations of statistical

mechanics, there is a variational principle involving entropy and energy, or functionals
alike, just as in equilibrium statistical mechanics.

Appendix: A lemma about doubling variables

The following important lemma was used in the proof of Theorems 22.34 and 23.8.

Lemma 23.19 (Differentiation through doubling of variables). Let F : [0, T ] ×
[0, T ] → R be locally absolutely continuous in s, uniformly in t; and locally absolutely
continuous in t, uniformly in s. Then t → F (t, t) is absolutely continuous, and for almost
all t0,

d

dt

∣∣∣∣
t=t0

F (t, t) = lim sup
t↑t0

(
F (t, t0) − F (t0, t0)

t − t0

)
+ lim sup

t↓t0

(
F (t0, t) − F (t0, t0)

t − t0

)
. (23.17)

Explicitly, to say that F is locally absolutely continuous in s, uniformly in t, means
that there is a fixed function u ∈ L1

loc(dt) such that

sup
0≤t≤T

∣∣F (s, t) − F (s′, t)
∣∣ ≤

∫ s′

s
u(τ) dτ.

Proof of Lemma 23.19. By assumption there are functions u ∈ L1
loc(dt) and v ∈ L1

loc(ds)
such that {

sup0≤t≤T

∣∣F (s, t) − F (s′, t)
∣∣ ≤

∫ s′

s u(τ) dτ

sup0≤t≤T

∣∣F (s, t) − F (s′, t)
∣∣ ≤

∫ s′

s v(τ) dτ.

Without loss of generality we may take u = v.
Let f(t) = F (t, t). Then

|f(s) − f(t)| ≤ |F (s, s) − F (s, t)| + |F (s, t) − F (t, t)| ≤ 2
∫ t

s
u(τ) dτ ;

so f is locally absolutely continuous.
Let ḟ stand for the derivative of f . Since f is absolutely continuous, this is also (almost

everywhere) the distributional derivative of f . The goal is to show that ḟ(t) is bounded
above by the right-hand side of (23.17).

Let ζ be a C∞ nonnegative function supported in (0, 1). For h small enough, ζ(· + h)
is also supported in (0, 1), and

∫
ḟζ = −

∫
f ζ̇ = lim

h→0

∫ 1

0
f(t)

[
ζ(t − h) − ζ(t)

h

]
dt

= lim
h→0

∫ 1

0
ζ(t)

[
f(t + h) − ζ(t)

h

]
dt.

Replacing f by its expression in terms of F , we get
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∫
ḟζ

= lim
h↓0

{∫ 1

0
ζ(t)

[
F (t + h, t + h) − F (t, t + h)

h

]
dt

(23.18)

+
∫ 1

0
ζ(t)

[
F (t, t + h) − F (t, t)

h

]
dt

}

≤ lim sup
h↓0

∫ 1

0
ζ(t − h)

[
F (t, t) − F (t − h, t)

h

]
dt + lim sup

h↓0

∫ 1

0
ζ(t)

[
F (t,

(23.19)

In the first integral on the right-hand side of (23.19), it is possible to replace ζ(t − h) by
ζ(t), since

∣∣∣∣

∫ 1

0

[
ζ(t − h) − ζ(t)

] (F (t, t) − F (t − h, t)
h

)
dt

∣∣∣∣

≤ (2 sup ζ)
∫ 1

0
|F (t, t) − F (t − h, t)| dt ≤ (2 sup ζ)

∫ 1

0

(∫ t

t−h
u(τ) dτ

)
dt

= (2 sup ζ)h
∫ 1

0
u(τ) dτ = O(h).

To summarize:
∫ 1

0
ζ ḟ ≤ lim sup

h↓0

∫ 1

0
ζ(t)

[
F (t, t) − F (t − h, t)

h

]
dt+lim sup

h↓0

∫ 1

0
ζ(t)

[
F (t, th) − F (t, t)

h

]
dt.

(23.20)
By assumption, ∣∣∣∣

F (t, t) − F (t − h, t)
h

∣∣∣∣ ≤
1
h

∫ t

t−h
u(τ) dτ ;

and by Lebesgue’s density theorem, the right-hand side converges in L1
loc(dt) as h → 0.

This makes it possible to apply Fatou’s lemma, in the form

lim sup
h↓0

∫ 1

0
ζ(t)

[
F (t, t) − F (t − h, t)

h

]
dt ≤

∫ 1

0
ζ(t) lim sup

h↓0

[
F (t, t) − F (t − h, t)

h

]
dt.

(23.21)
Similarly,

lim sup
h↓0

∫ 1

0
ζ(t)

[
F (t, t + h) − F (t, t)

h

]
dt ≤

∫ 1

0
ζ(t) lim sup

h↓0

[
F (t, t + h) − F (t, t)

h

]
dt.

(23.22)
Plugging (23.21) and (23.22) back in (23.20), we find that

∫ 1

0
ζ ḟ ≤

∫
ζ(t)

{

lim sup
h↓0

(
F (t, t) − F (t − h, t)

h

)
+ lim sup

h↓0

(
F (t, t + h) − F (t, t)

h

)}

dt.

Since ζ is arbitrary, ḟ is bounded above by the expression in curly brackets, almost every-
where. This concludes the proof. 78
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Bibliographical Notes

Historically, the development of the theory of abstract gradient flows was impulsed by
De Giorgi on the basis of the time-discretized variational scheme, and by Bénilan [45] on the
basis of the variational inequalities involving the square distance, as in Proposition 23.1(iv).
The latter approach has the advantage to incorporate stability and uniqueness as a built-in
feature, while the former is more efficient in establishing existence. Bénilan introduced his
method in the setting of Banach spaces, but it works just as well in abstract metric spaces.
Luckily, both approaches work in the Wasserstein space.

Currently, the reference for abstract gradient flows is the recent monograph by Am-
brosio, Gigli and Savaré [15]; there is a short version in Ambrosio’s Santander lecture
notes [11]. There the reader will find the most precise results known to this day, apart
from some very recent refinements which are due to the same authors. (For instance, Am-
brosio and Savaré recently found out a simplified proof of error estimates and convergence
proofs for time-discretized gradient flows.) More than half of the book is devoted to gradi-
ent flows in the space of probability measures on Rn (or a separable Hilbert space). Issues
about the replacement of P2(Rn) by P ac

2 (Rn) are also carefully discussed there. It would
be great if someone had the courage to adapt all the results in this book to general smooth
Riemannian manifolds rather than just Rn.

The classical theory of gradient flows in Hilbert spaces, mostly for convex functionals,
is developed in Brézis [78] and other sources; it is also implicitly used in several parts of
the popular book by J.-L. Lions [241].

The differentiability of the Wasserstein distance in P ac
2 (Rn), and in fact in P ac

p (Rn) (1 <
p < ∞), is proven in [15, Theorems 10.2.2 and 10.2.6, Corollary 10.2.7]. The assumption of
absolute continuity of the probability measures is not crucial for the super-differentiability
(actually in [15, Theorem 10.2.2] there is no such assumption). For the sub-differentiability,
this assumption is only used to guarantee the uniqueness of the transference plan.

For many applications however, there is a more relevant and general statement that the
Wasserstein distance W2(σ, µt) is almost surely (in t) differentiable along any absolutely
continuous curve (µt)0≤t≤1; this holds true without any assumption of absolute continuity
of the measures [15, Theorem 8.4.7]. (But in this reference, only the Euclidean space is
considered.)

About Theorem 23.11 and Proposition 23.13, the remarks made in the first paragraph
of the bibliographical notes for Chapter 20 also apply here. Theorem 23.11 is, to my
knowledge, the first result of its kind in a truly Riemannian setting. There are several
technical assumptions (lower bound on ρ in case of negative curvature, asdf bornes sur
la courbure sectionnelle ?) which one might wish to relax.

Theorem 23.13 was first established in Rn, independently in [102, Lemma 5.12] and [15,
Lemma 10.4.5] by very slightly different arguments. A particular case (with power laws
nonlinearities) was first considered in [119], in relation with the discussion of equality cases
in optimal Sobolev inequalities.

The interpretation of the linear Fokker–Planck equation ∂tρ = ∆ρ+ ∇ · (ρ∇V ) as the
limit of a discretized scheme goes back to the pioneering work of Jordan, Kinderlehrer and
Otto [219]. In that sense the Fokker–Planck equation can be considered as the abstract
gradient flow corresponding to the free energy Φ(ρ) =

∫
ρ log ρ+

∫
ρV . The proof (slightly

rewritten) appears in my book [365, Section 8.5]. It is based on the three main estimates
which are more or less at the basis of the whole theory of abstract gradient flows: if τ is
the time step, and X(τ)

k the position at step k of the discretized system, then
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d(X(τ)
k ,X0) = O(1),

∞∑

j=1

d
(
X(τ)

j ,X(τ)
j+1

)2

2τ
= O(1),

Φ(X0) − Φ(X(τ)
n+1) = O(1).

Here I have assumed that Φ is bounded below (which is the case when Φ is the free energy
functional). When Φ is not bounded below, there are estimates of the same type, but quite
more complicated [15, Section 3.2].

Otto applied the same method to various classes of nonlinear diffusion equations, in-
cluding porous medium and fast diffusion equations [290], and parabolic p-Laplace type
equations [287], but also more exotic models [288, 289]. For background about the theory
of porous medium and fast diffusion equations, the reader may consult the review texts
by Vázquez [363, 362].

In his work about porous medium equations, Otto introduced the abstract formalism
allowing him to interpret these equations as gradient flows, directly at the continuous
level (without going through the time-discretization). The psychological impact of this
work on specialists of optimal transport was important. Otto’s approach was developed
by various authors, including Carrillo, McCann and myself [103, 102] and Ambrosio, Gigli
and Savaré [15].

The setting adopted in [365, 102, 15] is the following: Let E denote an energy functional
of the form

E(µ) =
∫

Rn
U(ρ(x)) dx +

∫

Rn
V (x) dµ(x) +

1
2

∫

Rn×Rn
W (x − y) dµ(x) dµ(y),

where as usual ρ is the density of µ, and U(0) = 0; then under certain regularity as-
sumptions, the associated gradient flow with respect to the 2-Wasserstein distance W2

is
∂ρ

∂t
= ∆p(ρ) + ∇ · (ρ∇V ) + ∇ ·

(
ρ∇(ρ ∗ W )

)
,

where as usual p(r) = rU ′(r)−U(r). (When p(r) = r, the above equation is a special case
of McKean–Vlasov equation.) The most general results of this kind can be found in [15].
Such equations arise in a number of physical models; see e.g. [102].

Other interesting gradient flows are obtained by choosing for the energy functional
- the Fisher information

I(µ) =
∫ |∇ρ|2

ρ
;

then the resulting equation is the quantum drift-diffusion equation [15, Example 11.1.10].
This was recently studied at a rigorous level by Gianazza, Savaré and Toscani [184].

- the squared H−1 norm
‖µ‖2

H−1 = ‖∇∆−1ρ‖2
L2 ;

then the resulting equation appears in the Ginzburg-Landau dynamics. This idea has been
in the air for a few years at a purely formal level; recently, Ambrosio and Serfaty [?] have
made some preliminary progress on its rigorous justification.

Gradient flows with respect to the Wasserstein distances Wp with p 3= 2 were considered
in [287] and lead to other classes of well-known diffusion equations, such as p-Laplace
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equations ∂tρ = ∇ · (|∇ρ|p−2∇ρ). A large part of the discussion can be transposed to that
case [2, 256], but things become quite more difficult.

Brenier [77] has suggested that certain cost functions with “relativistic” features could
be physically relevant, for instance c(x, y) = c(x − y) with

c(v) = 1 −
√

1 − |v|2
c2

or c(v) =

√
1 +

|v|2
c2

− 1.

By applying the general formalism of gradient flows with such cost functions, he derived
relativistic-like heat equations, such as

∂ρ

∂t
= ∇ ·

(
ρ∇ρ√

ρ2 + ε2|∇ρ|2

)
.

This looked a bit like a formal game, but it was later found out that related equations were
common in the physical literature about flux-limited diffusion processes [273], and that
in fact Brenier’s very equation had already been considered by Rosenau [313]. A rigorous
treatment of these equations leads to challenging analytical difficulties, which triggered
several recent technical works, see e.g. [20, 19] and the references therein.

A few comments are in order about the appearance of variational problems in statistical
mechanics. For the most part, equilibrium statistical mechanics rests on the idea that the
equilibrium measure is obtained by the minimization of a thermodynamical functional such
as the free energy. The principle according to which nonequilibrium statistical mechanics
may also be understood through variational principles is much more original; I first heard
it explicitly in a talk by Kinderlehrer (June 1997 in Paris), about the interpretation of the
Fokker–Planck equation by means of Wasserstein distance. Independently of optimal trans-
port theory, the same idea has been making its way in the community of physicists, where
it may be attributed to Prigogine. There is ongoing research in that direction, in relation
to large deviations and fluctuation of currents, performed by Gabrieli, Landim, Derrida,
Lebowitz, Speer, Jona Lasinio and others. It seems to me that both approaches (optimal
transport on one hand, large deviations on the other) have a lot in common, although
the formalisms look very different. By the way, some links between optimal transport and
large deviations have recently been explored in a book by Feng and Kurtz [163].

So far I have mainly discussed gradient flows associated with cost functions that are
quadratic (p = 2), or at least strictly convex. But there are some quite interesting models
of gradient flows for, say, the cost function which is equal to the distance (p = 1). Such
equations have been used for instance in the modelling of sandpiles [304, 26, 155, 159, 28],
or compression molding [27]. These issues are briefly reviewed by Evans [154].

Also very recently, variational problems taking the form of a discretized gradient flow
have made their way in mathematical economics or decision theory; in these models the
negative of the energy can be thought of as, say, the reward or the benefits obtained from
a certain skill or method or decision, while the cost function can be interpreted as the
effort or difficulty which one has to spend in order to learn this skill or change one’s habits
or take the decision. As an entry point to that literature, the reader may take a look at a
paper by Attouch and Soubeyran [29]. It is interesting to note that the gradient flows in
this kind of literature would rather be of the kind p = 1 than of the kind p = 2.

This chapter was only concerned with gradient flows. The situation concerning Hamil-
tonian flows is anything but clear. In [365, Section 8.3.2] one can find some examples of
equations that one would like to intepret as Hamiltonian equations with respect to the dis-
tance W2, and other equations that one would like to interpret as dissipative Hamiltonian
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equations. Another example is the rescaled two-dimensional incompressible Navier-Stokes
equation in vorticity formulation (for nonnegative vorticity), as studied by Gallay and
Wayne [174]. As far as rigorous justification is concerned, there is a recent paper by Am-
brosio and Gangbo [14] which covers certain classes of Hamiltonian equations, yet not as
wide as one could wish.

A particularly interesting “dissipative Hamiltonian equation” that should have an in-
terpretation in terms of optimal transport is the kinetic Fokker–Planck equation, with or
without self-interaction. Huang and Jordan [217] studied this model, but it seems to me
that their will to interpret it in the framework of gradient flows (rather than “dissipative
Hamiltonian flows”) led them to somewhat artificial rescalings. On this subject there is
also a contribution by Carlen and Gangbo [99], with a completely different point of view.
So far no clear picture has emerged, and the precise sense in which the word “Hamiltonian”
should be interpreted has not yet been identified. According to a comment made to me by
Ghys, it looks more like a Poisson structure rather a true Hamiltonian structure.

Lemma 23.19 in the Appendix is borrowed from [15, Lemma 4.3.4]. As Ambrosio pointed
out to me, the argument is reminiscent of Kruzkhov’s doubling method for the proof of
uniqueness in the theory of scalar conservation laws, see for instance the nice presentation
in [153, Sections 10.2 and 11.4].
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Gradient flows II: Qualitative properties

Consider a smooth Riemannian manifold M , equipped with a reference measure ν =
e−V vol , and a partial differential equation such as

∂ρ

∂t
= Lp(ρ), (24.1)

where p(r) = rU ′(r) − U(r), U is a given nonlinearity, the unknown ρ = ρ(t, x) is a
probability density on M and L = ∆−∇V ·.

As I explained in Chapter 23, equation (24.1) can be interpreted as a gradient flow
in the Wasserstein space P2(M). What do we gain from that information? Among other
things, a set of recipes and estimates associated with gradient flows. This is what I shall
illustrate in this chapter.

Here are the conventions to be used in this chapter:
•M is a Riemannian manifold, d is its geodesic distance and vol its volume;
•ν = e−V vol is a reference measure on M ;
•L = ∆−∇V ·∇ is a linear differential operator admitting ν for invariant measure;
•U is a convex nonlinearity with U(0) = 0; typically U will belong to some DCN class;
•p(r) = rU ′(r) − U(r) is the pressure function associated to U ;
•µt = ρt ν is the solution of a certain partial differential equation ∂tρt = Lp(ρt) (some-

times I shall say that µ is the solution, sometimes that ρ is the solution);
•Uν(µ) =

∫
M U(ρ) dν; IU,ν(µ) =

∫
M ρ |∇U ′(ρ)|2 dν.

Calculation rules

Having put equation (24.1) in gradient flow form provides the possibility to use Otto’s
calculus to shortcut certain formal computations, and quickly get relevant results, without
risks of errors of computations. When it comes to rigorous justification, things however are
not so nice, and regularity issues (the daily nightmare of specialists of partial differential
equations) should be considered. For the most important of these partial differential equa-
tions (heat or Fokker–Planck equation; porous medium equations) these regularity issues
are nowadays under good control.

Examples 24.1. Consider a power law nonlinearity U(r) = rm, m > 0. For m > 1 the
resulting equation (24.1) is called a porous medium equation, and for m < 1 a fast diffusion
equation. These equations are usually studied under the restriction m > 1−(2/n), because
for m ≤ 1−(2/n) the solution might fail to exist (there is in general loss of mass at infinity
in finite time, or even in no time). If M is compact and ρ0 is positive, then there is a unique
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C∞, positive solution. For m > 1, if ρ0 vanishes somewhere, the solution in general fails
to have C∞ regularity at the boundary of the support of ρ. For m < 1, adequate decay
conditions at infinity are needed.

To avoid considerably inflating the size of this paper, I shall not go into this problem
in this chapter, and be content with theorems that will be conditional to the regularity of
the solution.

Theorem 24.2 (computations for gradient flows). Let ρ(t, x) be a solution of (24.1)
defined on R+ × M . Let further A be a convex nonlinearity, C2 on [0,+∞). Assume that

(a) ρ is bounded and positive on [0, T ) × M , for any T < ∞;
(b) ρ is C3 in the x variable and C1 in the t variable;
(c) U is C4 on (0,+∞);
(d) V is C4 on M ;
(e) For any t > 0,

sup
|s−t|<δ

1
|t − s|

(
|ρt(x) − ρs(x)| + |U(ρt(x)) − U(ρs(x))|

+ |LU ′(ρt(x)) p(ρt(x)) − LU ′(ρs(x)) p(ρs(x))|
)

∈ L1(ν(dx));

(f) ρ, p(ρ), Lp(ρ), p2(ρ), ∇p2(ρ), U ′(ρ), ∇U ′(ρ), LU ′(ρ), ∇LU ′(ρ), L|∇U ′(ρ)|2,
L(∇U ′(ρ)∇LU ′(ρ)) and e−V satisfy adequate growth/decay conditions at infinity.

Then the following formulas hold true:

(i) ∀t > 0,
d

dt

∫
A(ρt) dν = −

∫
p′(ρt)A′′(ρt)|∇ρt|2 dν;

(ii) ∀t > 0,
d

dt
Uν(µt) = −IU,ν(µt);

(iii) ∀t > 0,
d

dt
IU,ν(µt) = −2

∫

M

[
‖∇2U ′(ρt)‖2

HS +
(
Ric + ∇2V

)
(∇U ′(ρt))

]
p(ρ)dν +

∫

M

(
LU ′(ρt)

)2
p2(ρt) dν.

Particular Case 24.3. In the particular case U(r) = r log r, Formula (ii) is a famous
identity: the Fisher information is the time-derivative of the entropy along the
heat semigroup. (What I call entropy is not Hν but −Hν ; this coincides with the physi-
cists’ convention.)

In the sequel, what I call smooth solution of (24.1) is a solution satisfying Assumptions
(a) to (f) above.

Remark 24.4. I have not been been precise about the conditions at infinity needed in
Assumption (f), because there are a large number of possible assumptions. The point is to
be able to justify a certain number of integrations by parts, using integrability and moment
conditions. This is true for instance if V = 0, ρ, p(ρ) and p2(ρ) have finite moments of all
orders and U ′(ρ) and all its derivatives have polynomial growth. When V is not zero, there
might be issues about the density of C∞

c (M) in the weighted Sobolev spaces H1(e−V ) and
H2(e−V ) which are associated with the operator L. These problems are worsened by the
issues about the behavior of the manifold M at infinity.
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Formal proof of Theorem 24.2. By Otto’s calculus (Formula 15.2),

d

dt

∫
A(ρt) dν = −

〈
gradµt

Aν , gradµt
Uν

〉

= −
∫

ρt ∇A′(ρt) ·∇U ′(ρt) dν

= −
∫

ρtU
′′(ρt)A′′(ρt) |∇ρt|2 dν

= −
∫

p′(ρt)A′′(ρt) |∇ρt|2 dν.

This leads to formula (i). The particular case when A = U gives

d

dt

∫
U(ρt) dν = −

∥∥∥gradµt
Uν

∥∥∥
2

= −
∫

ρt|∇U ′(ρt)|2 dν = −IU,ν(µt),

which is (ii).
Finally, we can differentiate the previous expression once again along the gradient flow

µ̇ = −gradUν :
d

dt

∥∥∥gradµt
Uν

∥∥∥
2

= −2
〈
Hessµt · gradµt

Uν , gradµt
Uν

〉
,

and then (iii) follows from Formula 15.7. 78

Rigorous proof of Theorem 24.2. A crucial observation is that (24.1) can be rewritten ∂tρ =
∇ ·(ρt∇U ′(ρt)), where ∇· stands for the adjoint of the gradient operator with respect to the
reference measure ν. (With respect to the usual divergence operator, there is an additional
term ∇V ·∇.) Then the proofs of (i) and (ii) are obtained by just repeating the arguments
by which Formula 15.2 was established. This is a succession of differentiations under the
integral, chain-rules and integrations by parts:

d

dt

∫
A(ρt) dν =

∫
∂t[A(ρt)] dν

=
∫

A′(ρt) (∂tρt) dν

=
∫

A′(ρt)∇(ρt ∇U ′(ρt)) dν

= −
∫

∇A′(ρt) ρt ∇U ′(ρt) dν,

and then the rest of the computation is the same as before.
The justification of (iii) is more tricky. First write
∫

ρ|∇U ′(ρ)|2 dν =
∫

U ′(ρ)∇ · (ρ∇U ′(ρ)) dν =
∫

U ′(ρ)Lp(ρ) dν =
∫

LU ′(ρ) p(ρ),

where the self-adjointness of L with respect to the measure ν was used. Then

d

dt

∫
LU ′(ρt) p(ρt) dν =

∫
∂t
(
LU ′(ρt)

)
p(ρt) dν +

∫
LU ′(ρt) p(ρt) ∂t

(
p(ρt)

)
dν

=
∫

L(∂tU
′(ρt)) p(ρt) dν +

∫
LU ′(ρt) p′(ρt)∇ · (ρt ∇U ′(ρt)) dν.

(24.2)
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On the other hand,

∂tU
′(ρt) = U ′′(ρt) ∂tρ = U ′′(ρt)∇ · (ρt ∇U ′(ρt))

= U ′′(ρt)∇ρt ·∇U ′(ρt) + ρtU
′′(ρt)LU ′(ρt)

= |∇U ′(ρt)|2 + ρU ′′(ρt)LU ′(ρt).

Plugging this back in (24.2), we obtain

d

dt

∫
LU ′(ρt) p(ρt) dν =

∫
L|∇U ′(ρt)|2 p(ρ) dν +

∫
L
(
ρtU

′′(ρt)LU ′(ρt)
)

dν

+
∫

LU ′(ρt)p′(ρt)∇ · (ρt ∇U ′(ρt)) dν. (24.3)

The last two terms in this formula are actually equal: Indeed,
∫

L
(
ρU ′′(ρ)LU ′(ρ)

)
dν =

∫
ρU ′′(ρ)LU ′(ρ)Lp(ρ) dν

=
∫

p′(ρ)LU ′(ρ)∇ · (ρ∇U ′(ρ)) dν.

So the expression appearing in (24.3) is exactly twice the expression appearing in (15.18),
up to the replacement of ψ by −U ′(ρt). To arrive at formula (iii), it suffices to repeat the
computations leading from (15.18) to (15.20), and to apply Bochner’s formula. 78

Large-time behavior

Otto’s calculus, described in Chapter 15, was first derived to estimate rates of equilibration
for certain nonlinear diffusion equations. The next theorem illustrates this.

Theorem 24.5 (equilibration under a CD(K,N) condition). Let M be a Rieman-
nian manifold equipped with a reference measure ν = e−V , satisfying the curvature-
dimension bound CD(K,N) for some K > 0, N ∈ (1,∞], and let U ∈ DCN . Then,

(i) [exponential convergence to equilibrium] Any smooth solution (µt)t≥0 of (24.1) sat-
isfies the following estimates:






(a) [Uν(µt) − Uν(ν)] ≤ e−2Kλ t [Uν(µ0) − Uν(ν)];

(b) IU,ν(µt) ≤ e−2Kλ t IU,ν(µ0);

(c)W2(µt, ν) ≤ e−2Kλ t W2(µ0, ν),

(24.4)

where
λ :=

(
lim
r→0

p(r)

r1− 1
N

)
sup
x∈M

ρ0(x)
1
N . (24.5)

In particular, λ is independent of ρ0 if N = ∞.
(ii) [exponential contraction] Any two solutions (µt)t≥0 and (µ̃t)t≥0 of (24.1) satisfy

W2(µt, µ̃t) ≤ e−Kλ tW2(µ0, µ̃0), (24.6)

where
λ :=

(
lim
r→0

p(r)

r1− 1
N

)
sup
x∈M

max(ρ0(x)
1
N , ρ1(x)

1
N ). (24.7)
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Example 24.6. Smooth solutions of the Fokker–Planck equation

∂ρ

∂t
= Lρ (24.8)

converge to equilibrium at speed at least as fast as O(e−Kt), in W2 distance, in entropy
sense (i.e. in the sense of the convergence of

√
Hν(µ) to 0), and in Fisher information

sense.

Remark 24.7. At least formally, these properties are in fact general properties of gradient
flows: If F satisfy HessF ≥ λ > 0, on a geodesically convex subset of a manifold, X∞ is
the minimizer of F and X(t), X̃(t) are two trajectories of the gradient flow associated
with F , then we have the three estimates [F (X(t)) − F (X∞)] ≤ e−λt[F (X(0)) − F (X∞)];
|∇F (X(t))| ≤ e−λt|∇F (X(0))|; d(X(t), X̃(t)) ≤ e−λtd(X(0), X̃(0)). As a good exercise,
the reader can try to prove these estimates directly.

Remark 24.8. The rate of decay O(e−λ t) is optimal for (24.8) if dimension is not taken
into account; but if N is finite, the optimal rate of decay is O(e−λt) with λ = KN/(N −1).
The method presented in this chapter is not clever enough to catch this sharp rate.

Remark 24.9. I believe that the preceding results of convergence are satisfactory as I have
stated them, i.e. in terms of convergence of natural, physically meaningful functionals
However, it is also often possible to get similar rates of decay for more classical distances
such as the L1 norm, thanks to the Csiszár–Kullback–Pinsker inequality

∥∥µ − ν
∥∥

TV
≤
√

2Hν(µ), (24.9)

and generalizations thereof.

Remark 24.10. If N < ∞, Theorem 24.5 proves convergence to equilibrium with a
rate that depends on the initial datum. However, if the solution (ρt)t≥0 satisfies uni-
form smoothness bounds and M is compact, then it is usually possible to reinforce the
statement ρt −→

L1
1 into ρt −−→

L∞
1. Then we can choose ρT as new initial datum, and get

t ≥ T =⇒ Uν(µt) ≤ e−KλT (t−T )Uν(µT ) ≤ e−KλT (t−T )Uν(µ0), (24.10)

where λT = (lim p(r)/r1−1/N ) sup ρT (x)
1
N converges to λ∞ = (lim p(r)/r1−1/N ) as T →

∞. It follows from (24.10) that µt converges to ν as O(e−Keλ t) for any λ̃ > λ.

Proof of Theorem 24.5. Let H(t) = Uν(µt); by Theorem 24.2(ii), we have H ′(t) =
−IU,ν(µt). On the other hand, the (modified) Sobolev inequality of Theorem 21.7 reads

Uν(µt) ≤
(sup ρ)

1
N

2Kλ
IU,ν(µt).

Thus,
d

dt
H(t) ≤ −2Kλ(sup ρt)−1/NH(t). (24.11)

Theorem 24.2(i) with A(r) = rp, p ≥ 2, gives
∫

ρ∇U ′(ρ) ·∇L′(ρ) dν,
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d

dt

∫
ρp dν = −p(p − 1)

∫
ρU ′′(ρ)ρp−2|∇ρ|2 dν ≤ 0.

So ‖ρt‖p
Lp is a nonincreasing function of t, and therefore

∀t ≥ 0 ‖ρt‖Lp(ν) ≤ ‖ρ0‖Lp(ν).

Passing to the limit as p → ∞ yields

∀t ≥ 0 sup ρt ≤ sup ρ0.

Plugging this back in (24.11), we get

d

dt
H(t) ≤ −2Kλ(sup ρ0)−1/NH(t),

and then (24.4)(a) follows.
Next, if U ∈ DCN , and CD(K,N) is enforced, we can write, as in (16.11),

−(1/2)
d

dt
IU,ν(µt) =

∫

M
Γ2(U ′(ρt)) p(ρt) dν +

∫

M
(LU ′(ρt))2 p2(ρt) dν

≥
∫

M
RicN,ν(∇U ′(ρt)) p(ρt) dν +

∫

M
(LU ′(ρt))2

[
p2 +

p

N

]
(ρt) dν

≥ K

∫

M
|∇U ′(ρt)|2 p(ρt) dν +

∫

M
(LU ′(ρt))2

[
p2 +

p

N

]
(ρt) dν

≥ K

∫

M
|∇U ′(ρt)|2 p(ρt) dν

≥ Kλ(max ρt)−
1
N

∫

M
|∇U ′(ρt)|2 ρt dν

= Kλ(max ρt)−
1
N IU,ν(µt).

Then (24.4)(b) follows.
It remains to establish (24.6) (of which (24.4)(c) is obviously a corollary). Let t > 0 be

given, and let J’AI BESOIN D’HYPOTHÈSES SUR LA COURBURE POUR
AVOIR LE VRAI GRADIENT ??..... T = exp(∇ψ) (resp. T̃ = exp(∇ψ̃) be the
unique optimal transport between µt and µ̃t, with ψ (resp. ψ̃) d2/2-convex. Theorem 23.8
reads

d

dt
W2(µt, µ̃t)2 ≤ 2

∫
〈∇ψ∇U ′(ρt)〉 dµt + 2

∫
〈∇ψ̃, ∇U ′(ρ̃t)〉 dµ̃t. (24.12)

Let then (µ(s)
t )0≤s≤1 be the unique displacement interpolation connecting µ(0)

t = µt to
µ(1)

t = µ̃t. By Theorems 23.11 and 23.13,

d

ds

∣∣∣∣
s=0+

Uν(µ
(s)
t ) = −

∫
p(ρt) #Lψ dν =

∫ ∫
〈∇ψ, ∇U ′(ρt)〉 dµt;

and similarly

d

ds

∣∣∣∣
s=1−

Uν(µ
(s)
t ) =

∫
p(ρ̃t) #Lψ̃ dν =

∫ ∫
〈∇ψ̃, ∇U ′(ρ̃t)〉 dµ̃t.

Plugging this in (24.12) results in
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d

dt
W2(µt, µ̃t)2 ≤ −2 [f(t, 1) − f(t, 0)], (24.13)

where
f(t, s) =

d

ds
Uν(µ

(s)
t ).

It follows from Theorem 17.15(ii) that Uν(µ
(s)
t ) is KλW2(µt, µ̃t)2-convex on [0, 1] (as a

function of s!!), where λ is provided by (24.7). In particular,

f(t, 1) − f(t, 0) ≥ KλW2(µt, µ̃t)2.

This combined with (24.13) implies the differential inequality

d

dt
W2(µt, µ̃t)2 ≤ −2KλW2(µt, µ̃t)2,

and the desired result follows. 78

Short-time behavior

A popular and important topic in the study of diffusion processes consists in establishing
regularization estimates in short time. Typically, a certain functional used to quantify
the regularity of the solution (for instance, the supremum of the unknown or some Lebesgue
or Sobolev norm) is shown to be bounded like O(t−κ) for some characteristic exponent κ,
independently of the initial datum (or depending only on certain weak estimates on the
initial datum).

Here I shall present some slightly unconventional estimates of this type. I shall only
consider the case of nonnegative curvature; the general case needs more thinking.

Theorem 24.11 (Appearance of the information functionals). Let M be a Rie-
mannian manifold satisfying the curvature-dimension bound CD(0,∞), let ν ∈ P2(M),
and let U ∈ DC∞ with U(1) = 0. Let further (µt)t≥0 be a smooth solution of (24.1). Then,
with the same notation as in (21.7), for all t ≥ 0 one has

t2 IU,ν(µt) + 2t Uν(µt) + W2(µt, ν)2 ≤ W2(µ0, ν)2.

In particular,

Uν(µt) ≤
W2(µ0, ν)2

2t
, (24.14)

Iν(µt) ≤
W2(µ0, ν)2

t2
. (24.15)

Particular Case 24.12. In the case U(ρ) = ρ log ρ, (24.14) and (24.15) become

Hν(µt) ≤
W2(µ0, ν)2

2t
, Iν(µt) ≤

W2(µ0, ν)2

t2
. (24.16)

Remark 24.13. This theorem should be thought of as an a priori estimate. If things are
not too badly behaved, one can then remove the assumption of smoothness by a density
argument, and transform (24.14), (24.15) into genuine regularization estimates.
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Remark 24.14. Theorem 24.5 gave upper bounds on Uν(µt)−Uν(ν) like O(e−κ t), with a
constant depending on Uν(µ0). But now we can combine Theorem 24.5 with Theorem 24.11
to get an exponential decay with a constant that does not depend on Uν(µ0), but only on
W2(µ0, ν). By an approximation argument, this will lead to results of convergence that do
not need the finiteness of Uν(µ0).

Remark 24.15. I would bet that the estimates in (24.16) are optimal in general (although
they would deserve more thinking) as far as the dependence on µ0 and t is concerned. On
the other hand, these bounds are terrible estimates for the short-time behavior of the
Kullback and Fisher informations as functions of just t. The correct scale for the Kullback
information Hν(µt) is O(log(1/t)), and the correct scale for the Fisher information is
O(1/t), as can be checked easily in the particular case when M = Rn and ν is the Gaussian
measure.

Formal proof of Theorem 24.11. Because Uν is displacement convex and Uν(ν) = U(1) = 0,
we have the convexity inequality

Uν(µ) ≤ Uν(µ) − 〈v(0),∇µUν〉, (24.17)

where v(0) is the “velocity” at time s = 0 of a geodesic path µ(s)
0≤s≤1 joining µ(0) = µ to

µ(1) = ν. More explicitly,
∫

U(ρ) dν ≤ −
∫

ρ∇U ′(ρ) ·∇ψ dν, (24.18)

where ψ is optimal in the Monge-Kantorovich problem transporting µ to ν.
On the other hand, asdf modifier la référence as in the proof of the Formal Theo-

rem 24.5,
d+

dt
W2(µt, ν)2 ≤ 2

〈
gradµt

Uν , v(0)
〉
. (24.19)

From (24.19) and (24.18) it follows that

d+

dt
W2(µt, ν)2 ≤ −2Uν(µt). (24.20)

Now introduce

ψ(t) := a(t) IU,ν(µt) + b(t)Uν(µt) + c(t)W2(µt, ν)2,

where a(t), b(t) and c(t) will be determined later.
Because of the assumption of nonnegative curvature, the quantity IU,ν(µt) is nonincreas-

ing with time. (Set K = 0 in (24.4)(b)). Combining this with (24.20) and Theorem 24.2(ii),
we get

d+ψ

dt
≤ [a′(t) − b(t)]IU,ν(µt) + [b′(t) − 2c(t)]Uν(µt) + c′(t)W2(µt, ν)2.

Now choose
a(t) ≡ t2, b(t) ≡ 2t, c(t) ≡ 1,

then ψ has to be nonincreasing as a function of t, and the conclusion follows. 78

Rigorous proof of Theorem 24.11. The rigorous proof follows the same lines as the formal
proof. ................................................ 78
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Remark 24.16. Inequality (24.18) is a precised version of the HWI inequality from Theo-
rem 20.7; the HWI inequality would follow upon applying the Cauchy–Schwarz inequality.

Remark 24.17. There are stronger known regularization results in short time, for certain
of the gradient flows considered in this chapter. The two main examples are

- the Li–Yau estimates, which give lower bounds on ∆ log ρt, for a solution of the
heat equation on a Riemanian manifold, under certain curvature-dimension conditions.
For instance, if M satisfies CD(0, N), then

∆ log ρt ≥ − N

2t
;

- the Aronson–Bénilan estimates, which give lower bounds on ∆ρm−1
t for solutions

of the nonlinear diffusion equation ∂tρ = ∆ρm in Rn, where 1 − 2/n < m < 1:

m

m − 1
∆(ρm−1

t ) ≥ − n

λt
, λ = 2 − n(1 − m).

There is an obvious similarity between these two estimates, and both can be interpreted
as a lower bound on the rate of divergence of the vector field which drives particles in
the gradient flow interpretation of these partial differential equations. I think it would
be very interesting to have a unified proof of these inequalities, under certain geometric
conditions, which would use the gradient flow interpretation of the heat and nonlinear
diffusion equations, and maybe some restriction-type argument.

Open Problem 24.18. Use a gradient flow method to extend Theorem 24.11 to the case
when K < 0. (There are more comments about this question in the bibliographical notes.)

Bibliographical Notes

Regularity theory for porous medium equations has been the object of many works, see
in particular the synthesis works by Vázquez [?]. When one studies nonlinear diffusions by
means of optimal transport theory, the regularity theory is the first thing to take care of;
see e.g. [?, Appendix]. In a Riemannian context, Demange [?] presents many approximation
arguments based on regularization, truncation, etc. in great detail. Going into these issues
would have led me to considerably expand the size of this chapter; but ignoring them
completely would have led to incorrect statements.

It has been known since the mid-seventies that logarithmic Sobolev inequalities yield
rates of convergence to equilibrium for heat-like equations, and that these estimates are
independent of the dimension. For certain problems of convergence to equilibrium involving
entropy, logarithmic Sobolev inequalities are quite more convenient than spectral tools.
This is especially true in infinite dimension, although logarithmic Sobolev inequalities
are also very useful in finite dimension. For more information about logarithmic Sobolev
inequalities, see the bibliographical notes for Chapter 21.

Around the mid-nineties, Toscani [354, 355] introduced the logarithmic Sobolev in-
equality in kinetic theory, where it was soon recognized to be quite convenient [139].
The links between logarithmic Sobolev inequalities and Fokker–Planck equations were re-
investigated by the kinetic theory community, see in particular [23] and the references
therein. The emphasis was more on proving logarithmic Sobolev inequalities thanks to the
study of the convergence to equilibrium for Fokker–Planck equations, than the reverse.
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Soon after, it was discovered independently by Otto [290], Carrillo and Toscani [104]
and Del Pino and Dolbeault [131] that the same tools could be used for nonlinear equations
such as porous medium equations

∂ρ

∂t
= ∆ρm (24.21)

in Rn. For such equations, there is no convergence to equilibrium: the solution vanishes to
infinity. But there is a well-known scaling, due to Barenblatt, under which (24.21) becomes

∂ρ

∂t
= ∆ρm + ∇x · (ρx). (24.22)

Then, up to rescaling space and time, it is equivalent to understand the convergence to
equilibrium for (24.22), or to understand the asymptotic behavior for (24.21), that is, how
fast it approaches a certain known self-similar profile.

The extra drift term in (24.22) acts like the confinement by a quadratic potential, and
this in effect is equivalent to imposing a curvature condition CD(K,∞). This explains why
there is an approach based on generalized logarithmic Sobolev inequalities, quite similar
to the proof of Theorem 24.5.

These problems can be attacked without any particular knowledge of optimal transport.
In fact, among the authors quoted before, only Otto did use optimal transport, and this was
not at the level of proofs, but only at the level of intuition. Later in [292], Otto and myself
gave a more direct proof of logarithmic Sobolev inequality based on the HWI inequality.
The same strategy was applied again in my joint work with Carrillo and McCann [103],
for more general equations involving also a (simple) nonlinear drift.

In [103] the basic equation is of the form

∂ρ

∂t
= σ∆ρ + ∇ · (ρ∇V ) + ∇ ·

(
ρ∇(ρ ∗ ∇W )

)
, (24.23)

where W = W (x − y) is some interaction potential on Rn. These equations (a particular
instance of McKean–Vlasov equations) appeared in the modelling of granular media [270,
44, 43], with σ = 0 or σ > 0, in particular in dimension 1. See the review paper [367] for
much more informations. Similar equations also appear in the theory of self-interacting
diffusion processes [38, 40, 41]. There are criteria for exponential convergence in terms of
the convexity of V and W . These problems can also be set on a Riemannian manifold
M (replace W (x − y) by W (x, y)), and then Ricci curvature estimates on M come into
play [338].

Demange recently studied the fast diffusion equation ∂tρ = ∆ρ1−1/N on a Rieman-
nian manifold, under a curvature-dimension condition CD(K,N). He used the Sobolev
inequality, in the form

HN/2(µ) ≤ (N − 2)(N − 1)
2K

∫
ρ−1− 2

N |∇ρ|2 dν

≤ (N − 2)(N − 1)
2K

(sup ρ)−
1
N

∫
ρ1− 1

N |∇ρ|2 dν

to obtain a differential inequality such as

dHN/2(µt)
dt

≤ −
(

N − 2
N − 1

)
(sup ρ)−

1
N

HN/2(µt)
2K

,

and deduced an estimate of the form
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HN/2(µt) = O
(
e−(λN +ε) t

)
,

where λN is the presumably optimal rate that one would obtain without the (supρ) term,
and ε > 0 is arbitrarily small. His estimate is slightly stronger than mine, but the asymp-
totic rate is the same (when measured with the same functionals).

All the methods described before apply to the study of the time asymptotics of the
porous medium equation ∂tρ = ∆ρm, but under the restriction m ≥ 1 − 1/N . In that
regime one can use time-rescaling and tools similar to the ones described in this chapter,
to prove that the solutions become close to the so-called Barenblatt self-similar solution.

When m < 1 − 1/N however, we get out of the regime where displacement convexity
and related tricks can be applied. This is why it came as a bit of a sensation when Carrillo
and Vázquez [105] applied the Aronson–Bénilan estimates to the problem of asymptotic
behavior for fast diffusion equations with exponents m in the range (1 − 2

N , 1 − 1
N ). This

range of exponents is about the best one can hope, since the Barenblatt profiles do not
exist for m ≤ 1 − 2/N .

Here we see the limits of Otto’s formalism: such results as the refinement of the rate
of convergence of logarithmic Sobolev inequalities (Remark 24.8), or the Carrillo–Vázquez
estimates, rely on inequalities of the form

∫
p(ρ)Γ2

(
∇U ′(ρ)

)
dν +

∫
p2(ρ) (LU ′(ρ))2 dν ≥ ....

in which ones takes advantage of the fact that the same function ρ appears in the terms
p(ρ) and p2(ρ) one one hand, and in the terms ∇U ′(ρ) and LU ′(ρ) on the other hand.
The technical tool might be changes of variables for the Γ2 (as in [232]), or elementary
integration by parts (as in [105]); but I don’t see any interpretation of these tricks in terms
of the Wasserstein space P2(M).

The story about the rates of equilibration for fast diffusion equations does not end
here. At the same time as Carrillo and Vázquez obtained their main results, Denzler and
McCann [?, 138] computed the spectral gap for the linearized fast diffusion equations in
the same interval of exponents. This study showed that the rate of convergence obtained
by Carrillo and Vázquez is off the value suggested by the linearized analysis by a factor 2
(except in the radially symmetric case where they obtain the optimal rate thanks to a
comparison method). The connection between the nonlinear and the linearized dynamics is
still unclear, although some partial results have been obtained by McCann and Slepcev [?].
A recent work by Cáceres and Toscani [?] also recovers some of the results of Denzler and
McCann by means of completely different methods taking their roots in kinetic theory.

More recently, Kim and McCann [227] have derived optimal rates of convergence for
the “fastest” nonlinear diffusion equations, in the range 1 − 2/N < m ≤ 1 − 2/(N + 2),
by comparison methods involving Newtonian potentials. There is still ongoing research to
push the rates of convergence and the range of admissible nonlinearities, in particular by
Denzler, Koch, McCann and probably others.

In dimension 2, the limit case m = 0 corresponds to a logarithmic diffusion; it is related
to geometric problems, such as the evolution of conformal surfaces or the Ricci flow [362,
Chapter 8].

More general nonlinear diffusion equations of the form ∂tρ = ∆p(ρ) have been studied
by Biler, Dolbeault and Esteban [51], Carrillo, DiFrancesco and Toscani [100, 101] in Rn.
In the latter work the rescaling procedure is recast in a more geometric and physical inter-
pretation, in terms of temperature and projections. General nonlinear diffusion equations
were also studied in a genuinely geometric setting by Demange [137] under a CD(K,N)
curvature-dimension condition with K > 0.
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The Csiszár–Kullback–Pinsker (CKP) inequality (24.9) was found independently by
Pinsker [297], Kullback [231] and Csiszár [120]. A short and natural proof (inspired from
a graduate course by Talagrand) appears in Chapter 3 of my lecture notes on measure
theory and integration, available online at www.umpa.ens-lyon.fr/~cvillani/Cours/.
See [358, 290, 63] for various generalizations of the CKP inequality.

Short-time decay estimates for the entropy and Fisher information, along the heat flow,
were studied by Otto and myself around 1999 as a technical ingredient to get certain a
priori estimates in a problem of hydrodynamical limits. This work was not published, and
I was quite surprised to discover that Bobkov, Gentil and Ledoux [56] had found similar
inequalities and applied them to get a new proof of the HWI inequality. Otto and myself
published our method [293] as a comment to [56]. The method used by Otto and myself
consisted in adaptating to the Wasserstein space some classical estimates about gradient
flows in Hilbert spaces, that can be found in Brézis [78]. The result of Bobkov, Gentil
and Ledoux is actually more general than ours, because these authors seem to have sharp
constants under CD(K,∞) for all values of K ∈ R, while it is not clear that our method
is sharp for K 3= 0. For K = 0 both methods yield exactly the same result, which was a
bit of a puzzle to me. It would be interesting to clarify all this.

In relation with Remark 24.15, there is the following question which was asked to me
by Guionnet (and which I am unable to answer): Given a solution (µt) of the heat equation
∂tρ = Lρt, is it true that t Iν(µt) converges to a finite limit, as t → 0? If yes, then by De
L’Hospital’s rule, this is also the limit of Hν(µt)/ log t as t → 0. In the particular case when
µ0 = f ν +

∑N
k=1 ak δxk , with f smooth, it is not difficult to show that t Iν(µt) converges

to
∑

ak.
Inequality (24.20) is proven rigorously in [293], under adequate regularity assumptions,

for the main case of interest which is U(r) = r log r.
In [102] and [15] it was investigated whether one could directly use Otto’s formalism

to do the proofs presented in this chapter.
The Li–Yau heat kernel estimates go back to [239]; they were refined by Davies [127],

then by Bakry and Qian [35]; the latter paper is closely related to certain issues that will
be addressed in the next chapter. In any case, the Bochner formula and various forms
of maximum principles are the main ingredients behind these estimates. Recently, Bakry
and Ledoux have derived improved forms of the Li–Yau estimates [32], and made the
connection with the theory of logarithmic Sobolev inequalities.

The Aronson–Bénilan estimates were established in [25]. There is some overlap between
the Aronson–Bénilan and Li–Yau bounds; together with Carrillo, I have tried without
success to put both estimates in a common framework.

Apart from short-time estimates, the gradient flow approach also provides natural
Hölder-1/2 estimates about the time-regularity, with values in the Wasserstein space. These
estimates, that in general are essentially optimal, are discussed in [15].
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Gradient flows III: Functional inequalities

In the preceding chapter certain functional inequalities were used to provide quantitative
information about the behavior of solutions to certain partial differential equations. In
the present chapter, conversely, the behavior of solutions to certain partial differential
equations will help establishing certain functional inequalities.

For the kind of inequalities that will be encountered in this chapter, this principle
has been explored in depth in the past two decades, starting with Bakry and Émery’s
heat semigroup proof of Theorem 21.2. Nowadays, one can prove this theorem by more
direct means (as I did in Chapter 21); nevertheless, the heat semigroup argument is still of
interest, and not only for historical reasons. It has been the basis for many generalizations,
some of which are still out of reach of alternative methods.

Optimal transport appears in this game from two different perspectives. On one hand,
several inequalities involving optimal transport have been proven by diffusion semigroup
methods. On the other hand, optimal transport has provided a re-interpretation of the
method, since several diffusion equations can be understood as gradient flows with respect
to a structure induced by optimal transport. This last point of view has led to a more
synthetic and geometric picture of the field; and Otto’s calculus has provided a way to
shortcut some intricate computations, at least from a formal point of view.

That being said, I have to admit that there are limitations to this point of view. It is true
that some of the most important computations in Bakry’s Γ2 calculus can be understood in
terms of optimal transport; but some other parts of the formalism, in particular those based
on changes of functions, have remained inaccessible so far. Usually such manipulations are
useful to treat functional inequalities involving a natural class of function whose dimension
“does not match” the dimension of the curvature-dimension condition. More explicitly: It
is okay to interpret in terms of optimal transport a proof involving functions in DC∞
under a curvature-dimension assumption CD(K,∞). Such is also the case for a proof
involving functions in DCN under a curvature-dimension assumption CD(K,N). But to
get the correct constants for an inequality involving functions in DCN under a curvature-
dimension assumption CD(K,N ′), N ′ < N , will be much more of a problem.

In this chapter, I shall discuss three examples which can be worked out nicely. The first
one is an alternative proof of Theorem 21.2, following the original argument of Bakry and
Émery. The second example is a proof of the optimal Sobolev inequality (21.9) under a
CD(K,N) condition, as recently treated by Demange. The third example is an alternative
proof of Theorem 22.15, following the lines of the original proof by Otto and myself.

The proofs in this chapter will be sloppy in the sense that I shall not go into smoothness
issues, or rather admit auxiliary regularity results which are not so trivial, especially in
an unbounded phase space. These regularity issues are certainly the main drawback of the
gradient flow approach to functional inequalities. (In fact, the first proofs based on this
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strategy just ignored this problem!) More information can be found in the bibliographical
notes.

In this chapter, U will be a nonlinearity belonging to a displacement convex class, and

Uν(µ) =
∫

U(ρ) dν, IU,ν(µ) =
∫

ρ |∇U ′(ρ)|2 dν,

where ρ is the density of µ with respect to ν. As in Chapter 16, I shall use the notation
p(r) = rU ′(r) − U(r) without recalling the explicit link between p and U . Further recall
the following notation:

HN,ν(µ) = −N

∫
(ρ1− 1

N − ρ) dν, IN,ν(µ) =
(

1 − 1
N

)2 ∫
ρ−1− 2

N |∇ρ|2 dν,

H∞,ν(µ) = Hν(µ) =
∫

ρ log ρ dν, I∞,ν(µ) = Iν(µ) =
∫

|∇ρ|2
ρ

dν.

Logarithmic Sobolev inequalities revisited

Theorem 25.1 (Infinite-dimensional Sobolev inequalities from Ricci curvature).
Let M be a Riemannian manifold equipped with a reference measure ν satisfying the

curvature-dimension bound CD(K,∞) for some K > 0, and let U ∈ DC∞. Let further
λ := limr→0 p(r)/r. Then, for all µ ∈ P ac

2 (M),

Uν(µ) ≤ IU,ν(µ)
2Kλ

.

Particular Case 25.2 (Bakry–Émery theorem). Under the assumption CD(K,∞),
holds the logarithmic Sobolev inequality

∀µ ∈ P ac(M) Hν(µ) ≤ Iν(µ)
2K

.

Sloppy proof of Theorem 25.1. By using Theorem 17.7(iv) and an easy approximation ar-
gument, we may assume that U ′(0) > −∞. Similarly, by regularizing the measure µ, we
may assume that Hν(µ) < +∞.

Consider the gradient flow

∂ρ

∂t
= −∇ · (ρ∇U ′(ρ)),

where the initial datum ρ0 is the density of µ. For notational simplicity, let

H(t) := Uν(µt), I(t) := IU,ν(µt).

It can be shown that H(t) is continuous at t = 0.
From Theorem 24.5(i)(b),

dH(t)
dt

= −I(t), I(t) ≤ I(0)e−2Kλ t.

These identities imply

H(0) =
∫ +∞

0
I(t) dt ≤ I(0)

∫ +∞

0
e−2Kλ t dt =

I(0)
2Kλ

.

78
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Sobolev inequalities revisited

In this section I shall reformulate the argument recently used by Demange to recover the
optimal Sobolev inequalities (21.10) via a gradient flow approach.

Theorem 25.3 (generalized Sobolev inequalities under Ricci curvature bounds).
Let M be a Riemannian manifold equipped with a reference measure ν, satisfying a

curvature-dimension bound CD(K,N) for some K > 0, N ∈ [1,∞). Let U ∈ DCN , and
let A : R+ → R be such that A(0) = A(1) = 0 and A′′(r) = r−

1
N U ′′(r). Then, for any

probability density ρ on M ,
∫

M
A(ρ) dν ≤ 1

2Kλ

∫

M
ρ |∇U ′(ρ)|2 dν, (25.1)

where
λ = lim

r↓0

p(r)

r1− 1
N

.

Particular Case 25.4 (Sobolev inequalities). Choose

U(r) = UN (r) = −N(r1− 1
N − r), A(r) = − N(N − 1)

2(N − 2)
(r1− 2

N − r);

then (25.1) reads

HN
2 ,ν(µ) ≤ 1

2K

(
N − 2
N − 1

)
IN,ν(µ),

which can also be rewritten in the form of (21.10) or (21.9).

Sloppy proof of Theorem 25.3. By density, we may assume that the density ρ0 of µ is
smooth; we may also assume that A and U are smooth. Let (ρt)t≥0 be the solution of the
gradient flow equation

∂ρ

∂t
= ∇ · (ρ∇U ′(ρ)), (25.2)

and as usual µt = ρt ν.
By Theorem 24.2(iii),

d

dt
IU,ν(µt) ≤ −2Kλ

∫

M
ρ
1− 1

N
t |∇U ′(ρt)|2 dν. (25.3)

On the other hand, from the assumption A′′(r) = r−
1
N U ′′(r)

∇A′(ρ) = ρ−
1
N ∇U ′(ρ).

So Theorem 24.2(i) implies

d

dt

∫
A(ρt) dν = −

∫

M
ρt∇A′(ρt) ·∇U ′(ρt) dν

= −
∫

M
ρ
1− 1

N
t

∣∣∇U ′(ρt)
∣∣2 dν.

By combining this with (25.3), we obtain

− d

dt
Aν(µt) ≤ −

(
1

2Kλ

)
d

dt
IU,ν(µt). (25.4)
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As t → ∞, µt converges to ν (Theorem 24.5); so both Aν(µt) and IU,ν(µt) converge to 0.
Then one can integrate both sides of (25.4) from t = 0 to t = ∞, and recover

Aν(µ0) ≤
(

1
2Kλ

)
IU,ν(µ0).

This concludes the proof. 78

From log Sobolev to Talagrand, revisited

This section is devoted to an alternative proof of Theorem 22.15, due to Otto and myself.

Formal Theorem 25.5 (From Sobolev-type inequalities to concentration-type
inequalities). Let U ∈ DC∞. Let M be a Riemannian manifold with Ricci curvature
uniformly bounded below, equipped with a reference measure ν ∈ P ac

2 (M). Assume that for
any µ ∈ P ac

2 (M), holds the inequality

Uν(µ) − Uν(ν) ≤ 1
2Kλ

IU,ν(µ).

Then, for any µ ∈ P ac
2 (M), also holds the inequality

W 2
2 (µ, ν) ≤ 2Uν(µ)

Kλ
.

Particular Case 25.6 (From Log Sobolev to Talagrand). If the reference measure
ν on M satisfies a logarithmic Sobolev inequality with constant K, then it also satisfies a
Talagrand inequality with constant K:

∀µ ∈ P ac(M), Hν(µ) ≤ Iν(µ)
2K

implies

∀µ ∈ P ac(M), W2(µ, ν) ≤
√

2Hν(µ)
K

. (25.5)

Sloppy proof of Theorem 25.5. By a density argument, we may assume that µ has a
smooth density µ0, and let (µt)t≥0 evolve according to the gradient flow (25.2). By Theo-
rem 24.2(ii),

d

dt
Uν(µt) = −IU,ν(µt).

asdf RÉÉCRIRE CE MORCEAU DE LA PREUVE
It follows that, for any t > 0,

d+

dt
W2(µ0, µt) ≤

(
1

2W2(µ0, µt)

)
d+

dt
W2(µ0, µt)2 ≤

√
IU,ν(µt). (25.6)

On the other hand, by assumption,

√
IU,ν(µt) ≤

IU,ν(µt)√
2KλUν(µt)

= − d

dt

√
KλUν(µt)

2
. (25.7)

From (25.6) and (25.7),
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d+

dt
W2(µ0, µt) ≤ − d

dt

√
KλUν(µt)

2
.

Stated otherwise: If

ψ(t) := W2(µ0, µt) +

√
KλUν(µt)

2
,

then d+ψ/dt ≤ 0, i.e. ψ is nonincreasing as a function of t, and so

lim
t→∞

ψ(t) ≤ ψ(0). (25.8)

The assumptions imply that Uν(µt) − Uν(ν) converges to 0 (exponentially fast), so µt

converges to ν. Admitting that we can pass to the limit in W2 asdf clarifier !!, we see
that ψ(+∞) = W2(µ0, ν), and ψ(0) =

√
(KλUν(µ0))/2. So (25.8) coincides with (25.5). 78

Appendix: Comparison of proofs

The proofs in the present chapter were based on gradient flows, while proofs in Chapters 21
and 22 were more directly based on displacement interpolation. How do these two strategies
compare?

From a formal point of view, they are not so different that one may think. Take the
case of the heat equation,

∂ρ

∂t
= ∆ρ,

or equivalently
∂ρ

∂t
+ ∇ ·

(
ρ∇(− log ρ)

)
= 0.

The evolution of ρ is determined by the “vector field” ρ → (− log ρ), in the space of
probability densities. Rescale time and the vector field itself as follows:

ϕε(t, x) = −ε log ρ
(
εt

2
, x

)
.

Then ϕε satisfies the equation

∂ϕε

∂t
+

|∇ϕε|2
2

=
ε

2
∆ϕε.

Passing to the limit as ε → 0, one gets, at least formally, the Hamilton–Jacobi equation

∂ϕ

∂t
+

|∇ϕ|2

2
= 0,

which is in some sense the equation driving displacement interpolation.
There is a general principle here: After suitable rescaling, the velocity field associated

with a gradient flow resembles the velocity field of a geodesic flow. Here might be a possible
way to see this. Take an arbitrary smooth function U , and consider the evolution

ẋ(t) = −∇U(x(t)).

Turn to Eulerian formalism, consider the associated vector field v defined by

d

dt
X(t, x0) = −∇U(X(t, x0)) =: −v

(
t,X(t, x0)

)
,
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and rescale by
vε(t, x0) = ε v

(
εt, X(εt, x0)

)
.

then one can check that, as ε → 0,

∇x0vε(t, x0) > ε∇2U(x0).

It follows by an explicit calculation that

∂vε
∂t

+ vε ·∇vε > 0.

So as ε → 0, vε(t, x) should asymptotically satisfy the equation of a geodesic vector field
(pressureless Euler equation).

There is probably more to say on the subject, but whatever the interpretation, the
Hamilton–Jacobi equations can always be squeezed out of the gradient flow equations
after some suitable rescaling. Thus we may expect the gradient flow strategy to be more
precise than the displacement convexity strategy. This is also what suggests the use of
Otto’s calculus: proofs based on the gradient flow approach need a control of HessU in the
direction ∇U , while proofs based on the displacement convexity approach need a control
of Hess U in all directions. This might explain why there is at present no displacement
convexity analogue of Demange’s gradient flow proof of the Sobolev inequality (so far only
weaker inequalities with nonsharp constants have been obtained).

On the other hand, proofs based on displacement convexity are usually quite simpler,
and quite more robust than proofs based on gradient flows: no issues about the regularity of
the semigroup, no subtle interplay between the Hessian of the functional and the “direction
of evolution”...

To summarize: Proofs based on displacement convexity are simpler and conceptually
easier, but proofs based on gradient flows seem to apply in more situations, and may lead
to sharper results.

In the end we can put some of the main functional inequalities discussed in these
notes in a nice array. Below, “LSI” stands for “Logarithmic Sobolev inequality”; “T” for
“Talagrand inequality”; and “Sob2” for the Sobolev inequality with exponent 2. So LSI(K),
T(K), HWI(K) and Sob2(K,N) respectively stand for (21.4), (??) (with p = 2), (20.10)
and (21.9).

Theorem Gradient flow proof Displacement convexity proof
CD(K,∞) ⇒ LSI(K) Bakry–Émery Otto–Villani

LSI(K) ⇒ T(K) Otto–Villani Bobkov–Gentil–Ledoux
CD(K,∞) ⇒ HWI(K) Bobkov–Gentil–Ledoux Otto–Villani

CD(K,N) ⇒ Sob2(K,N) Demange ??

Bibliographical Notes

The observation that the Fisher information Iν is the time-derivative of the entropy
functional −Hν along the heat semigroup seems to first appear in a famous paper by
Stam [333] at the end of the fifties, in the case M = R (equipped with the Lebesgue
measure). Stam gives credit to de Bruijn for that remark. He exploited it to prove an
inequality which can be recast (after simple changes of functions) as the usual logarithmic
Sobolev inequality, found fifteen years later by Gross [198]. Stam’s inequality reads N I ≥
1, where I is the Fisher information, and N is the “power entropy”. (In dimension n, this
inequality should be replaced by N I ≥ n.) The main difference between these inequalities
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is that Stam’s one is expressed in terms of the Lebesgue reference measure, while Gross’s
one is expressed in terms of the Gaussian reference measure. Although Stam is famous
for his information-theoretical inequalities, it is only at the beginning of the nineties that
specialists identified a version of the logarithmic Sobolev inequality in his work.

Stam’s argument is not completely rigorous because of regularity issues, but can be
repaired; see for instance [353, 96].

The proof of Theorem 25.1 in this chapter follows the strategy by Bakry and Émery,
who were only interested in the Particular Case 25.2. Bakry and Émery used a set of
calculus rules which has sometimes been dubbed as the “Γ2 calculus”. They were not very
careful about regularity issues, and for that reason I think that the original proof cannot be
considered as rigorous (in particular for noncompact manifolds, in which regularity issues
are not so innocent, even if the curvature-dimension condition prevents the blow-up of the
heat semigroup). However, recently Demange [137] carried out complete proofs for much
more delicate situations, so there is no reason to doubt that the Bakry–Émery argument
can be made completely rigorous. Also, when the manifold is Rn equipped with a refer-
ence density e−V , the Bakry–Émery proof was carefully rewritten by Arnold, Markowich,
Toscani and Unterreiter [23], in the language of partial differential equations. This paper
was the sequel of a simpler paper by Toscani [355] considering the particular case of the
Gaussian measure.

The Bakry–Émery strategy was applied independently by Otto [290] and by Carrillo and
Toscani [104] to study the asymptotic behavior of porous medium equations. Since then,
many authors have applied it to various classes of nonlinear equations, see e.g. [103, 105].

The interpretation of the Bakry–Émery proof as a gradient flow argument was devel-
oped in my paper with Otto [292]. This interpretation was of much help when we considered
the more complicated nonlinear situation in [103].

Demange [137] did not only treat the inequality (21.10), but also the whole fam-
ily (21.8). A disturbing remark is that for many members of this family, there is no
uniqueness of the gradient flow that one can use in the proof. He also discusses other
criteria than U ∈ DCN , allowing for finer results if, say, U ∈ DCN but the curvature-
dimension bound is CD(K,N ′) for some N ′ < N ; at this point he uses formulas of change
of variables for Γ2 operators. He found a mysterious structure condition on the nonlinearity
U , which in many cases leads to finer results than the DCN condition:

rq′(r) + q(r) ≥ 9N
4(N + 2)

q2(r), q(r) =
rU ′′(r)
U ′(r)

+
1
N

. (25.9)

Demange worked on arbitrary noncompact manifolds by using a careful truncation pro-
cedure. He restricts the equation to bounded open subsets and imposes Dirichlet boundary
conditions. (Neumann’s boundary condition would be more natural, for instance because
it preserves the mass; but the Dirichlet boundary conditions have the major technical
advantage to be associated with a monotonicity principle.) All of Demange’s results still
seem to be out of reach of more direct methods based on displacement interpolation.

The proof of Theorem 25.5 was implemented in my joint work with Otto [292]. The
proof there is (hopefully!) complete, but we only considered the Particular Case 25.6
(certainly the most important). We imposed the Ricci curvature of the manifold to be
bounded below, so as to avoid any blow-up of the heat semigroup. Maybe one can still
make the proof work without that lower bound assumption, by truncating the logarithmic
Sobolev inequality and the Talagrand inequality, and then work in an arbitrarily large
bounded open subset of the manifold, imposing Neumann boundary conditions. In any
case, to treat noncompact manifolds without lower bounds on the curvature, it is certainly
easier to use the proof of Theorem 22.15.
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The observation that the Hamilton–Jacobi equation can be obtained from the heat
equation after proper rescaling is quite old, and it is now a classical exercise in the theory
of viscosity solutions, see e.g. Barles [37]. Bobkov, Gentil and Ledoux [56] observed that this
could constitute a bridge between the two main existing strategies for logarithmic Sobolev
inequalities. Links with the theory of large deviations have been investigated in [163].

As for the final array, the corresponding papers are those of Bakry–Émery [31], Otto–
Villani [292], Bobkov–Gentil–Ledoux [56], Demange [136, 137].
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Synthetic treatment of Ricci curvature
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The last part of these notes is devoted to a recent direction of research which was
mainly explored by Lott, Sturm and myself from 2004 on.

In Chapter 17 it was proven that lower Ricci curvature bounds influence displacement
convexity properties of certain classes of functionals; but also that these properties charac-
terize lower Ricci curvature bounds. So we may “transform the theorem into a definition”
and express the property “Ricci curvature is bounded below by K” in terms of certain
displacement convexity properties. This approach is synthetic, in the sense that it does
not rely on analytic computations (of the Ricci tensor...), but rather on the properties of
certain objects which play an important role in some geometric arguments.

This point of view has the advantage to apply to nonsmooth spaces, just as lower
(or upper) sectional curvature bounds can be defined in nonsmooth metric spaces by
Alexandrov’s method. An important difference however is that the notion of generalized
Ricci curvature will be defined not only in terms of distances, but also in terms of reference
measures. So the basic object will not be a metric space, but a metric-measure space,
that is a metric space equipped with a reference measure.

Chapters 26 and 27 are preparatory. In Chapter 26 I shall try to convey in some detail
the meaning of the word “synthetic”, with a simple illustration about convex functions;
then Chapter 27 will be devoted to some reminders about the convergence of metric-
measure spaces.

The next two chapters constitute the core of this part. In Chapter 28 I will consider
optimal transport in possibly nonsmooth spaces, and establish various properties of stabil-
ity of optimal transport under convergence of metric-measure spaces. Then in Chapter 29
I shall present a synthetic definition of the curvature-dimension condition CD(K,N) in
a nonsmooth context, and prove that it too is stable. Here is a geometric consequence of
these results, that can be stated without any reference to optimal transport: If a Rieman-
nian manifold is the limit of a sequence of CD(K,N) Riemannian manifolds, then it, too,
satisfies CD(K,N).

The last chapter will present a state of the art about the qualitative geometric and
analytic properties enjoyed by metric-measure spaces satisfying curvature-dimension con-
ditions.
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Analytic and synthetic points of view

The present chapter is devoted to a simple pedagogical illustration of the opposition be-
tween the “analytic” and “synthetic” points of view. Consider the following two definitions
for convexity on Rn:

(i) A convex function is a function ϕ which is twice continuously differentiable, and
whose Hessian ∇2

xϕ is nonnegative at each x ∈ Rn;
(ii) A convex function is a function ϕ such that for all x, y ∈ Rn, and λ ∈ [0, 1],

ϕ
(
(1 − λ)x + λy

)
≤ (1 − λ)ϕ(x) + λϕ(y).

How can we compare these two definitions?
1) When applied to C2 functions, both definitions coincide, but the second one is

obviously more general. Not only is it expressed without any reference to second differ-
entiability, but there are examples, such as ϕ(x) = |x|, which satisfy (ii) but not (i). So
Definition (ii) really is an extension of Definition (i).

2) Definition (ii) is more stable than Definition (i). Here is what I mean by that: Take
a sequence (ϕk)k∈N of convex functions, converging to some other function ϕ, how do I
know that ϕ is convex? To pass to the limit in Definition (i), I would need the convergence
to be very strong, say in C2(Rn). (Let’s forget here about the notion of distributional
convergence, which would solve the problem but is much less elementary.) On the other
hand, I can pass to the limit in Definition (ii) assuming only, say, pointwise convergence.
So Definition (ii) is much easier to “pass to the limit in” — even if the limit is known to
be smooth.

3) Definition (ii) is also a better starting point for studying properties of convex func-
tions. In this set of notes, most of the time, when I used some convexity, it was via (ii),
not (i).

4) On the other hand, if I give you a particular function (by its explicit analytic ex-
pression, for instance), and ask you whether it is convex, it will probably be a nightmare
to check Definition (ii) directly, while Definition (i) might be workable: You just need to
compute the second derivative and check its sign. Probably this is the method that will
work most easily for the huge majority of “potentially convex” functions that you will
meet in your life, if you don’t have any extra information on them (like they are the limit
of some family of functions...).

5) Definition (i) is naturally local, while Definition (ii) is global (and probably this is
related to the fact that it is so difficult to check). In particular, Definition (i) involves an
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object (the second derivative) which can be used to quantify the “strength of convexity” at
each point). Of course, I can always define a convex function as a function which satisfies
(ii) locally, i.e. when x and y stay in the neighborhood of any given point; but then locality
does not enter in such a simple way as in (i), and the issue immediately arises whether a
function which satisfies (ii) locally, also satisfies (ii) globally.

In the above discussion, Definition (i) can be thought of as analytic (it is based on
the computation of certain objects), while Definition (ii) is synthetic (it is based on
certain qualitative properties which are the basis for proofs). Observations 1–5 above are
in some sense typical: synthetic definitions ought to be more general and more stable, and
they should be usable directly to prove interesting results; on the other hand, they may
be difficult to check in practice, and they are usually less precise (and less “local”) than
analytic definitions.

In classical Euclidean geometry, the analytic approach consists in introducing Cartesian
coordinates and making computations with equations of lines and circles, sines and cosines,
etc. The synthetic approach, on the other hand, is more or less the one that was used
already by ancient Greeks (and which is still taught, or at least should be taught, to our
kids, for developing the intuition of proof-making): it is not based on computations, but on
axioms à la Euclid, qualitative properties of lines, angles, circles and triangles, construction
of auxiliary points, etc. The analytic approach is conceptually simple, but sometimes leads
to very horrible computations; the synthetic approach is often lighter, but requires a better
intuition and clever elementary arguments. It is also usually (but this is of course a matter
of taste) more elegant.

In “Riemannian” geometry, curvature is usually defined via a purely analytic approach:
From the Riemannian scalar product one can compute several functions which are called
sectional curvature, Ricci curvature, scalar curvature, etc. For instance, for any x ∈ M ,
the sectional curvature at point x is a function which associates to each 2-dimensional
plane P ⊂ TxM a number σx(P ), for which there is an explicit expression in terms of a
basis of P , and a certain combination of derivatives of the metric at x. Intuitively, σx(P )
measures the speed of convergence of geodesics that start at x, with velocities spanning
the plane P . A lot of geometric information can be retrieved from the bounds on the
sectional curvature. Then a space is said to have nonnegative sectional curvature if σx(P )
is nonnegative, for all P and for all x.

However, there is also a famous synthetic point of view on sectional curvature, due to
Alexandrov. In Alexandrov’s approach one does not try to define what is the curvature, but
what it means to have nonnegative curvature: By definition, a length space (X , d) is said
to have Alexandrov curvature bounded below by K if its triangles are no more “skinny”
than reference triangles drawn on the model space R2. More precisely: If xyz is a triangle
in X and x0y0z0 is a triangle drawn on R2 with d(x0, y0) = d(x, y), d(y0, z0) = d(y, z),
d(z0, x0) = d(z, x), and x′ is a midpoint between y and z, x′

0 a midpoint between y0 and
z0, then one should have d(x0, x′

0) ≤ d(x, x′).

There is an excellent analogy with the previous discussion for convex functions. The
Alexandrov definition is equivalent to the analytic one in case it is applied to a smooth
Riemannian manifold; but it is more general, since it applies for instance to a cone (say, the
two-dimensional cone embeddeed in R3, constructed over a circular basis). It is also more
stable; in particular, it passes to the limit under Gromov–Hausdorff convergence,
a notion that will be described in the sequel. It can still be used as the starting point
for many properties involving sectional curvature. On the other hand, it is in general
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Fig. 26.1. The triangle on the left is drawn in X , the triangle on the right is drawn on the model space
R2; the lengths of their edges are the same. The thin geodesic lines go through the apex to the middle of
the basis; the one on the left is longer than the one on the right. In that sense the triangle on the left is
fatter than the triangle on the right. If all triangles in X look like this, then X has nonnegative curvature.
(Think of a triangle as the belly of some individual, the belt being the basis, and the neck being the apex;
then the line going from apex to middle of the basis is of course the tie. The fatter the individual, the
longer his tie should be.)
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difficult to check directly, and there is no associated notion of curvature (when one says
“Alexandrov space of nonnegative curvature”, the words “nonnegative” and “curvature”
do not make sense independently of each other).

Still there is a generalization of what it means to have curvature bounded below by
K ∈ R, where K is an arbitrary real number, not necessarily 0. It is obtained by replacing
the model space R2 by the model space with constant curvature K, that is

- the sphere S2(1/
√

K) with radius R = 1/
√

K, if K > 0;
- the plane R2, if K = 0;
- the hyperbolic space H(1/

√
|K|) with “hyperbolic radius” R = 1/

√
|K|, if K < 0; this

is the half-plane R×(0,+∞), equipped with the metric g(x,y)(dx dy) = (dx2 +dy2)/(|K|y).

Length spaces which satisfy these inequalities are called Alexandrov spaces with cur-
vature bounded below by K; all the remarks which were made above in the case K = 0
apply in this more general case. There is also a symmetric notion of Alexandrov spaces
with curvature bounded above, obtained by just reversing the inequalities.

This generalized notion of sectional curvature bounds has been explored by many au-
thors, and quite strong results have been obtained about the geometric and analytic im-
plications of such bounds. But up to recently this was the only kind of curvature bounds
for which a synthetic approach was available. In particular, it has been an open problem
for quite some time to find a synthetic treatment of lower Ricci curvature bounds. The
thesis developed in the sequel of these notes, is that optimal transport provides a solution
to this problem. Of course, this might not be the only solution, but so far it looks like the
only acceptable one that is available.

Bibliographical Notes
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In close relation to the topics discussed in this chapter, there is an illuminating course
by Gromov [195], which I strongly recommend to the reader who wants to learn about the
meaning of curvature.

There are several good sources for Alexandrov spaces, in particular the book by Burago,
Burago and Ivanov [81]. Such spaces are also called CAT spaces, in reference to Cartan,
Alexandrov and Toponogov. But the terminology of CAT space is often restricted to
Alexandrov spaces with upper sectional bounds. So a CAT(K) space typically means an
Alexandrov space with “sectional curvature bounded above by K”.

The open problem to find a satisfactory synthetic treatment of Ricci curvature bounds
was discussed in the above-mentioned book by Gromov [195, pp. 84–85], and more recently
in Cheeger and Colding [110, Appendix 2].

References about recent developments related to optimal transport will be given in the
sequel.
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Convergence of metric-measure spaces

The central question in this chapter is the following: What does it mean to say that a
metric-measure space (X , dX , νX ) is “close” to another metric-measure space (Y, dY , νY)?
We would like to have an answer that is as “intrinsic” as possible, in the sense that it
should depend only on the metric-measure properties of X and Y.

So as not to inflate the volume of these notes too much, I shall admit many proofs
when they can be found in accessible references, and prefer to insist on the main stream
of ideas.

Hausdorff topology

There is a well-established notion of distance between compact sets of a given metric space,
namely the Hausdorff distance. If X and Y are two compact subsets of a metric space
(Z, d), their Hausdorff distance is

dH(X ,Y) = max
(
sup
x∈X

d(x,Y), sup
y∈Y

d(y,X )
)
,

where as usual d(a,B) = inf{d(a, b); b ∈ B} is the distance from the point a to the set
B. Here the choice of notation is not innocent: Think of X and Y not just as subsets, but
rather as metric subspaces of Z.

The statement “dH(X ,Y) ≤ r” can be recast informally as follows: “If we inflate
(enlarge) Y by a distance r, then the resulting set covers X ; and conversely if we inflate
X by a distance r, the resulting set covers Y.”

Fig. 27.1. In solid lines, the borders of the two sets A and B; in dashed lines, the borders of their
enlargements.
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The Hausdorff distance can be thought of as a set-theoretical analogue of the Prokhorov
distance between probability measures (of course, historically the former came first). This
will become more apparent if I rewrite the Hausdorff distance as

dH(A,B) = inf
{

r > 0; A ⊂ Br] and B ⊂ Ar]
}

,

and rewrite the Prokhorov distance as

dP (µ, ν) = inf
{

r > 0; for all closed C, µ[C] ≤ ν[Cr]] + r and ν[C] ≤ µ[Cr]] + r
}
,

where Cr] is the set of all points whose distance to C is no more than r, i.e. the union of
all closed balls Br](x), x ∈ C.

The analogy between the two notions goes further: While the Prokhorov distance can
be defined in terms of couplings, the Hausdorff distance can be defined in terms of cor-
respondences. By definition, a correspondence (or relation) between two sets X and Y
is a subset R of X × Y; if (x, y) ∈ R, then x and y are said to be in correspondence, and
it is required that each x ∈ X should be in correspondence with at least one y, and each
y ∈ Y should be in correspondence with at least one x.

Then we have the two very similar formulas:





dP (µ, ν) = inf
{

r > 0; ∃ coupling (X,Y ) of (µ, ν); P [d(X,Y ) > r] ≤ r
}
;

dH(µ, ν) = inf
{
r > 0; ∃ correspondence R in X × Y; ∀(x, y) ∈ R, d(x, y) ≤ r

}
.

Moreover, it is easy to guess an “optimal” correspondence: Just define

(x, y) ∈ R ⇐⇒
[
d(x, y) = d(x,Y) or d(y, x) = d(y,X )

]
.

Then each (x, y) ∈ R satisfies d(x, y) ≤ dH(X ,Y), with equality for at least one couple.
(Indeed, the maximum in the definition of the Hausdorff distance is obviously achieved.)

Just like their probabilistic counterparts, correspondences can be glued together: if
R12 is a correspondence between X1 and X2, and R23 is a correspondence between X2 and
X3, then one may define a correpondence R13 = R23 ◦R12 between X1 and X3 by

(x1, x3) ∈ R13 ⇐⇒
[
∃x2 ∈ X2; (x1, x2) ∈ R12 and (x2, x3) ∈ R23

]
.

The Hausdorff distance really is a distance! Indeed,
(i) it is obviously symmetric (dH(X ,Y) = dH(Y,X ));
(ii) because it is defined on compact (hence bounded) sets, the infimum in the definition

is a nonnegative finite number;
(iii) if dH(X ,Y) = 0, this means that any x ∈ X satisfies d(x,Y) ≤ ε, for any ε > 0;

so d(x,Y) = 0, and since Y is assumed to be compact (hence closed), this implies that
X = Y;

(iv) if X1, X2 and X3 are given, introduce optimal correspondences R12 and R23 in the
correspondence representation of the Hausdorffmeasure; then the composed representation
R13 = R23◦R12 is such that any (x1, x3) ∈ R13 satisfies d(x1, x3) ≤ d(x1, x2)+d(x2, x3) ≤
dH(X1,X2) + dH(X2,X3) for some x2.

Then one may define the metric space H(Z) as the space of all compact subsets of Z,
equipped with the Hausdorff distance. There is a nice statement that if Z is compact then
H(Z) is also a compact metric space.

So far everything is quite simple, but soon it will become a bit more complicated, which
was a good reason to go slowly.
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The Gromov–Hausdorff distance

The Hausdorff distance only compares subsets of a given underlying space. But how can
we compare different metric spaces with possibly nothing in common? First one would like
to say that two spaces which are isometric really are the same. Recall the definition of
an isometry: If (X , d) and (X ′, d′) are two metric spaces, a map f : X → X ′ is called an
isometry if

(a) it preserves distances: for any pair of points x, y ∈ X , d′(f(x), f(y)) = d(x, y);
(b) it is surjective: for any x′ ∈ X ′ there is x ∈ X with f(x) = x′.
An isometry is automatically injective, so it has to be a bijection, and its inverse

f−1 is also an isometry. Two metric spaces are said to be isometric if there exists an
isometry between them. If two spaces X and X ′ are isometric, then any statement which
holds true on X and can be expressed in terms of just the distance, will automatically be
“transported” to X ′ by the isometry.

This motivates the desire to work with isometry classes, rather than metric space. By
definition, an isometry class X is the set of all metric spaces which are isometric to some
given space X . Instead of “isometry class”, I shall often write “abstract metric space”.
All the spaces in a given isometry class have the same topological properties, so it makes
sense to say of an abstract metric space that it is compact, or complete, etc.

This looks good, but a bit frightening: There are so many metric spaces around that the
concept of abstract metric space seems to be ill-posed from the set-theoretical point of view
(just like there is no “set of all sets”). However, things becomes much more friendly when
one realizes that any compact metric space, being separable, is isometric to the completion
of N for a suitable metric. (To see this, introduce a dense sequence (xk) in your favorite
space X , and define d(k, 5) = dX (xk, x().) Then we might think of an isometry class as a
subset of the set of all distances on N; this is still huge, but at least it makes sense from a
set-theoretical point of view.

Now the problem is to find a good distance on the set of abstract compact metric
spaces. The natural concept here is the Gromov–Hausdorff distance, which is obtained
by formally taking the quotient of the Hausdorff distance by isometries: If (X , dX ) and
(Y, dY ) are two compact metric spaces, define

dGH(X ,Y) = inf dH(X ′,Y ′), (27.1)

where the infimum is taken over all isometric embeddings X ′, Y ′ of X and Y into a common
metric space Z; this means that X ′ is isometric to X (more rigorously, belongs to the
isometry class defined by X ), Y ′ is isometric to Y, and both X ′ and Y ′ are subspaces of
Z.

Of course, there is no loss of generality in choosing Z = X ′ ∪ Y ′, but let me insist:
the metric on X ′, Y ′ has to be the metric induced by Z! In that situation I shall say that
(X ′,Y ′) constitute a metric coupling of the abstract spaces (X ,Y). Two metric couplings
(X ′,Y ′) and (X ′′,Y ′′) will be said to be isometric if there is an isometry F : (X ′ ∪ Y ′) →
(X ′′ ∪ Y ′′) which restricts to isometries X ′ → X ′′ and Y ′ → Y ′′.

Representation by semi-distances

As we know, all the probabilistic information contained in a coupling (X,Y ) of two prob-
ability spaces (X , νX ) and (Y, νY) is summarized by a joint probability measure on the



428 27 Convergence of metric-measure spaces

product space X × Y. There is an analogous statement for metric couplings: All the geo-
metric information contained in a metric coupling (X ′,Y ′) of two abstract metric spaces
X and Y is summarized by a semi-distance on the disjoint union X 8 Y. Here are the
definitions:

- a semi-distance on a set Z is a map d : Z × Z → [0,+∞) satisfying d(x, x) = 0,
d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z), but not necessarily d(x, y) = 0 =⇒ x = y;

- the disjoint union X 8Y is the union of two disjoint isometric copies of X and Y. The
particular way in which this disjoint union is constructed does not matter; for instance,
take any representative of X (still denoted X for simplicity), any representative of Y, and
set X 8Y = ({0}×X ) ∪ ({1}×Y). Then {0}×X is isometric to X via the map (0, x) → x,
etc.

Not all semi-distances however are allowed. In a probabilistic context, the only admis-
sible couplings of two measures νX and νY are those whose joint law π has marginals νX
and νY . There is a similar principle for metric couplings: If (X , dX ) and (Y, dY) are two
given abstract metric spaces, the only admissible semi-distances on X 8Y are those whose
restriction to X × X (resp. Y × Y) coincides with dX (resp. dY). When that condition is
satisfied, it will be possible to reconstruct a metric coupling from the semi-distance, by
just “taking the quotient” of X 8 Y by the semi-distance d, in other words deciding that
two points a and b with d(a, b) = 0 really are the same.

All this is made precise by the following statement:

Proposition 27.1 (Metric couplings as semi-distances). Let (X , dX ) and (Y, dY ) be
two disjoint metric spaces, and let X 8 Y be their union. Then

(i) Let (X ′,Y ′) be a metric coupling of X and Y; let f : X → X ′ and g : Y → Y ′ be
corresponding isometries, and let (Z, dZ) be the ambient metric space containing X ′ and
Y ′. Whenever a, b belong in X 8 Y, define

d(a, b) =






dX (a, b) if a, b ∈ X
dY(a, b) if a, b ∈ Y
dZ(f(a), g(b)) if a ∈ X , b ∈ Y
dZ(g(a), f(b)) if a ∈ Y, b ∈ X .

Then d is a semi-distance on X 8Y, whose restriction to X ×X (resp. Y×Y) is dX (resp.
dY).

(ii) Conversely, let d be a semi-distance on X 8 Y, whose restriction to X × X (resp.
Y × Y) is dX (resp. dY). On X 8 Y, define the relation R by the property

xRx′ ⇐⇒ d(x, x′) = 0.

This is an equivalence relation, so one may define

Z = X 8 Y/d := X 8 Y/R

as the set of classes of equivalence of X 8 Y. Write x for the equivalence class of x, and
define

dZ(a, b) = d(a, b)

(this does not depend on the choice of representatives, but only on the equivalence classes).
Then x → x is an isometric embedding of X into (Z, dZ), and similarly y → y is an
isometric embedding of Y into (Z, dZ).
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The reader should have no difficulty to write down the proof; just be patient enough
and make sure that you consider all the cases!

Now the following property should not come as a surprise:

Theorem 27.2 (Metric Gluing Lemma). Let (X1, d1), (X2, d2), (X3, d3) be three ab-
stract compact metric spaces. If (X ′

1,X ′
2) is a metric coupling of (X1,X2) and (X ′′

2 ,X ′′
3 ) is

a metric coupling of (X2,X3), then there is a triple of metric spaces (X̃1, X̃2, X̃3), all sub-
spaces of a common metric space (Z, dZ ), such that (X̃1, X̃2) is isometric (as a coupling)
to (X ′

1,X ′
2), and (X̃2, X̃3) is isometric to (X ′′

1 ,X ′′
2 ).

Sketch of proof. By means of Proposition 27.1, the metric coupling (X ′
1,X ′

2) may be thought
of as a semi-distance d12 on X1 8X2; and similarly, (X ′′

2 ,X ′′
3 ) may be thought of as a semi-

distance d23 on X2 8 X3. Then, for x1 ∈ X1 and x3 ∈ X3, define

d13(x1, x3) = inf
x2∈X2

[
d12(x1, x2) + d23(x2, x3)

]
.

Next, on X1 8X2 8 X3 introduce the semi-distance

d(a, b) =






d12(a, b) if a, b ∈ X1 8X2

d23(a, b) if a, b ∈ X2 8X3

d13(a, b) if a ∈ X1 and b ∈ X3

d13(b, a) if a ∈ X3 and b ∈ X1.

This is a semi-distance; so one can define

Z = (X1 8 X2 8X3)/d,

and repeat the same reasoning as in Proposition 27.1. 78

Representation by approximate isometries

If a correspondence R preserves distances, in the sense that d(x, x′) = d(y, y′) for all (x, y),
(x′, y′) in R, then it is almost obvious that R is the graph of an isometry between X and
Y. To measure how far the correspondence is from being an isometry, define its distortion
by the formula

dis (R) = sup
(x,y),(x′,y′)∈R

∣∣∣dY(y, y′) − dX (x, x′)
∣∣∣.

Then it can be shown that

dGH(X ,Y) =
1
2

inf dis (R), (27.2)

where the infimum is over all correspondences R between X and Y.
There is an even more handy way to consider the Gromov–Hausdorff distance, in terms

of approximate isometries. By definition, an ε-isometry between (X , dX ) and (Y, dY )
is a map f : X → Y that is “almost an isometry”, that is:

(a’) it almost preserves distances: for all x, x′ in X ,
∣∣∣d(f(x), f(x′)) − d(x, x′)

∣∣∣ ≤ ε;

(b’) it is almost surjective:

∀y ∈ Y ∃x ∈ X ; d(f(x), y) ≤ ε.

In particular, dH(f(X ),Y) ≤ ε.
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Remark 27.3. Heuristically, an ε-isometry is a map that you can’t distinguish from an
isometry if you are short-sighted, that is, if you measure all distances with a possible error
of about ε.

It is not clear whether one can reformulate the Gromov–Hausdorff distance in terms
of ε-isometries, but at least from the qualitative point of view this works fine: It can be
shown that

2
3

dGH(X ,Y) ≤ inf
{
ε; ∃f ε-isometry X → Y

}
≤ 2 dGH(X ,Y). (27.3)

Indeed, if f is an ε-isometry, define a relation R by

(x, y) ∈ R ⇐⇒ d(f(x), y) ≤ ε;

then dis (R) ≤ 3ε, and the left inequality in (27.3) follows by formula (27.2). Conversely, if
R is a relation with distortion η, then for any ε > η one can define an ε-isometry f whose
graph is included in R: The idea is to define f(x) = y, where y is such that (x, y) ∈ R.
(See the comments at the end of the bibliographic notes.)

The symmetry between X and Y seems to have been lost in (27.3), but this is not
serious, because any approximate isometry admits an approximate inverse: if f is an ε-
isometry X → Y, then there is f ′ : Y → X such that f ′ is a (4ε)-isometry Y → X , and for
all x ∈ X , y ∈ Y, one has

dX
(
f ′ ◦ f(x), x

)
≤ 3ε, dY

(
f ◦ f ′(y), y

)
≤ ε. (27.4)

This map f ′ will be called an ε-inverse of f .
To construct f ′, consider the relation R induced by f , which has distortion at most

3ε; then flip the components of R to get a relation R′ from Y to X , with (obviously)
the same distortion as R, and construct a (4ε)-isometry f ′ : Y → X whose graph is a
subset of R. Then (f(x), x) ∈ R′ and (f(x), f ′(f(x))) ∈ R′, so d(f ′(f(x)), x) ≤ dis (R′) +
d(f(x), f(x)) ≤ 2ε. Similarly, the identity (f ′(y), y) ∈ R implies d(f(f ′(y)), y) ≤ ε.

If there is an ε-isometry between X and Y, then I shall say that X and Y are ε-
isometric. This terminology has the drawback that the order of X and Y matters: if X
and Y are ε-isometric, then Y and X are not necessarily ε-isometric; but at least they are
(2ε)-isometric, so from the qualitative point of view this is not a problem.

Lemma 27.4 (approximate isometries converge to isometries). Let X and Y be
two compact metric spaces, and for each k ∈ N let fk be a εk-isometry, where εk → 0.
Then, up to extraction of a subsequence, fk converges to an isometry.

Sketch of proof of Lemma 27.4. Introduce a dense subset S of X . For each x ∈ X , the
sequence (fk(x)) is valued in the compact set Y, and so, up to extraction of a subsequence,
it converges to some f(x) ∈ Y. By a diagonal extraction, we may assume that fk(x) → f(x)
for all x ∈ X . By passing to the limit in the inequality satisfied by fk, we see that f is
distance-preserving. By uniform continuity, it may be extended into a distance-preserving
map X → Y.

Similarly, there is a distance-preserving map Y → X , denoted by g. Then the compo-
sition g ◦ f is a distance-preserving map X → X , and since X is compact it follows from a
well-known theorem that g ◦f is a bijection. As a consequence, both f and g are bijective,
so they are isometries. 78

Remark 27.5. The above proof establishes the pointwise convergence of (a subsequence
of) fk to f , but in fact one can impose the uniform convergence; see Theorem 27.10.
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The Gromov–Hausdorff space

After all these preparations, we may at least understand why dGH is a honest distance:
(i) It is obviously symmetric.
(ii) Let X and Y be two metric spaces; define Z to be the disjoint union X 8 Y, and

define a distance d on X 8 Y by letting d(x, y) = D > 0 as soon as (x, y) ∈ X × Y. If D is
chosen large enough, this is indeed a distance; so the injections (x, y) → x and (x, y) → y
realize a metric coupling of (X ,Y). It follows that the infimum in (27.1) is not +∞.

(iii) Obviously, dGH(X ,X ) = 0. Conversely, if X and Y are two abstract compact metric
spaces such that dGH(X ,Y) = 0, introduce any two representatives of these isometry
classes (still denoted X and Y for simplicity), then there is a family of (1/k)-isometries
fk : X → Y. Up to extraction of a subsequence, this family converges to a true isometry,
so X and Y are isometric, and define the same isometry class.

(iv) Finally, the triangular inequality follows easily from the metric Gluing Lemma
— just as the triangle inequality for the Wasserstein distance was a consequence of the
probabilistic Gluing Lemma.

So, if (GH, dGH) stands for the set of all classes of isometry of compact metric spaces,
equipped with the Gromov–Hausdorff distance, then this is a complete separable metric
space. An explicit countable dense family is provided by the family of all finite subsets of
N with rational-valued distances. Convergence in the Gromov–Hausdorff distance is called
Gromov–Hausdorff convergence.

It is equivalent to express the Gromov–Hausdorff convergence in terms of embeddings
and Hausdorff distance, or in terms of distortions of correspondences, or in terms of ap-
proximate isometries. This leads us to the following definition.

Definition 27.6 (Gromov–Hausdorff convergence). Let (Xk)k∈N be a sequence of
compact metric spaces, and let X be a compact metric space. Then it is said that Xk con-
verges to X in the Gromov–Hausdorff topology if any one of the three equivalent statements
is satisfied:

(i) dGH(Xk,X ) −→ 0;
(ii) There are correspondences Rk between Xk and X such that disRk −→ 0;
(iii) There are εk-isometries fk : Xk → X , for some sequence εk → 0.

This convergence will be denoted by Xk −−→
GH

X , or just Xk −→ X .

Fig. 27.2. A very thin tyre (2-dimensional manifold) is very close to a circle (1-dimensional manifold)
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Remark 27.7. Keeping Remark 27.3 in mind, two spaces are close in Gromov–Hausdorff
topology if they look the same to a short-sighted person. I learnt from Lott the expression
Mr. Magoo topology to convey this idea.

Remark 27.8. It is important to allow the approximate isometries to be discontinuous.
Figure 27.3 below shows a simple example where two spaces X and Y are very close to
each other in Gromov–Hausdorff topology, although there is no continuous map X → Y.
(Still there is a famous convergence theorem by Gromov showing that such behavior is
ruled out by bounds on the curvature.)

Fig. 27.3. A balloon with a very small handle (not simply connected) is very close to a balloon without
handle (simply connected).

The Gromov–Hausdorff topology enjoys the very nice property that any geometric
statements which can be expressed in terms of the distances between a finite number of
points automatically passes to the limit. For example, consider the statement “Any pair
(x, y) of points in X admit a midpoint”, which in a complete space is characteristic of a
length space. This only involves the distance between configurations of three points (x, y
and the candidate midpoint), so it passes to the limit. Then geodesics can be reconstructed
from successive midpoints. In this way one can prove statements such as

Theorem 27.9 (convergence of length spaces). Let (Xk) be a sequence of compact
length spaces converging to X in Gromov–Hausdorff topology; then X is a length space.
Moreover, if fk is an εk-isometry Xk → X , and γk is a geodesic curve in Xk such that
fk ◦ γk converges to some curve γ in X , then γ is a geodesic.

Gromov–Hausdorff topology and nets

Given ε > 0, a set N in a metric space (X , d) is called an ε-net (in X ) if the enlargement
Sε] covers X ; in other words, for any x ∈ X there is y ∈ N such that d(x, y) ≤ ε.

If N is an ε-net in X , clearly the distance between N and X is at most ε. And if
X is compact, then it admits finite ε-nets for all ε > 0, so it can be approximated in
Gromov–Hausdorff topology by a sequence of finite sets.

In fact, it is another nice feature of the Gromov–Hausdorff topology that it ultimately
always reduces to convergence of finite ε-nets. More precisely, Xn −→ X in the Gromov–
Hausdorff topology if and only if for any ε > 0 there exists a finite ε-net {x1, . . . , xk}
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in X , and for n large enough there is an ε-net {x(n)
1 , . . . , x(n)

k } in Xn, and for all j ≤ k,
x(n)

j −→ xj.
This leads to the main criterion of compactness in Gromov–Hausdorff topology. Recall

that a metric space X is said to be totally bounded if for any ε > 0 it can be covered
by a finite number of balls of radius ε. If N(ε) is the minimal number of such balls,
then ε "−→ N(ε) can be found as a “modulus of total boundedness”. Then the following
statement, due to Gromov, is vaguely reminiscent of Ascoli’s theorem:

Theorem 27.10 (compactness criterion in Gromov–Hausdorff topology). A fam-
ily F of compact metric spaces is precompact in the Gromov–Hausdorff topology if and only
if it is uniformly totally bounded, in the sense that for any ε > 0 there is N = N(ε) such
that for any X ∈ F there is an ε-net of cardinality at most N .

Noncompact spaces

There is no problem in extending the definition of the Gromov–Hausdorff distance to
noncompact spaces, except of course that the resulting “distance” might be infinite. But
even when it is finite, this notion is of limited use. A good analogy is the concept of
uniform convergence of functions, which usually is too strong a notion for noncompact
spaces, and should be replaced by locally uniform convergence, i.e. uniform convergence
on each compact subset.

At first sight, it does not seem to make much sense to define a notion of local Gromov–
Hausdorff convergence. Indeed, if a sequence (Xk)k∈N of metric spaces is given, there is a
priori no canonical choice of family of compact sets in Xk that we can use to compare to
a family of compact sets in X . So we had better impose the existence of these compact
sets on each member of the family. The idea is to exhaust the space X by compact sets
K(() in such a way that each K(() (equipped with the metric induced by X ) is a Gromov–
Hausdorff limit of corresponding compact sets K(()

k ⊂ Xk (each of them with the induced
metric), as k → ∞.

Definition 27.11 (local Gromov–Hausdorff convergence). Let (Xk)k∈N be a family
of Polish spaces, and let X be another Polish space. It is said that Xk converges to X
in the local Gromov–Hausdorff topology if there are increasing sequences of compact sets
(K(()

k )(∈N in Xk, and (K(()) in X , such that
(i)

⋃
( K(() is dense in X ;

(ii) for each fixed 5, K(()
k converges in Gromov–Hausdorff sense to K((), as k → ∞.

If one works in length spaces, as will be the case in the rest of these notes, the above
definition does not seem so good because K(() will in general not be a strictly intrinsic
length space: geodesics joining elements of K(() might very well leave K(() at some inter-
mediate time; so properties involving geodesics might not pass to the limit. This is the
reason for requirement (iii) in the following definition.

Definition 27.12 (geodesic local Gromov–Hausdorff convergence). Let (Xk, dk)k∈N
be a family of Polish strictly intrinsic length spaces, and let (X , d) be a Polish space. It is
said that Xk converges to X in the geodesic local Gromov–Hausdorff topology if there are
increasing sequences of compact sets (K(()

k )(∈N in Xk, and (K(())(∈N in X , such that (i)
and (ii) in Definition 27.11 are satisfied, and in addition
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(iii) For each 5, there is 5′ such that all geodesics joining points of K(()
k have their image

contained in K((′)
k .

Then (X , d) is automatically a strictly intrinsic length space.

If X is a boundedly compact space (that is, all closed balls are compact), then there
is a kind of natural choice for an exhaustive family of compact sets in X : Pick up an
arbitrary point A ∈ X , and consider the closed balls B(A, R(]), where R( is any sequence of
positive real numbers going to infinity, say R( = 5. One can fix the sequence R( once for
all, and then the notion of convergence only depends on the choice of the “reference point”
or “base point” A (the point from which the convergence is seen). This suggests that the
basic objects should not be just metric spaces, but rather pointed metric spaces. By
definition, a pointed metric space consists of a triple (X , d, A), where (X , d) is a metric
space and A is some point in X . Sometimes I shall just write (X , A) or even just X as a
shorthand for the triple (X , d, A).

It is equivalent for a length space to be boundedly compact or to be locally compact; so
in the sequel the basic regularity assumption, when considering pointed Gromov–Hausdorff
convergence, will be local compactness.

All the notions that were introduced in the previous section can be generalized in a
completely obvious way to pointed metric spaces: A pointed isometry between (X , AX )
and (Y, AY ) is an isometry which sends AX to AY ; the pointed Gromov–Hausdorff dis-
tance dpGH between two pointed spaces (X , AX ) and (Y, AY ) is obtained as an infimum
of Hausdorff distances over all pointed isometric embeddings; a pointed correspondence is
a correspondence such that AX is in correspondence with AY ; a pointed ε-isometry is an
ε-isometry which sends AX to AY , etc. Then Definition 27.6 can be trivially transformed
into a pointed notion of convergence, expressing the fact that for each R, the closed ball
B(Ak, R]) in Xk converges to the closed ball B(A, R]) in X . By an easy extraction argument,
this is equivalent to the following alternative definition.

Definition 27.13 (pointed Gromov–Hausdorff convergence). Let (Xk, Ak) be a se-
quence of pointed locally compact Polish length spaces, and let (X , A) be a pointed locally
compact Polish space. Then it is said that Xk converges to X in the pointed Gromov–
Hausdorff topology if any one of the three equivalent statements is satisfied:

(i) There is a sequence Rk → ∞ such that dpGH

(
B(Ak, Rk]), B(A, Rk])

)
−→ 0;

(ii) There is a sequence Rk → ∞, and there are pointed correspondences Rk between
B(Ak, Rk]) and B(A, Rk]) such that dis (Rk) −→ 0;

(iii) There are sequences Rk → ∞ and εk → 0, and pointed εk-isometries fk :
B(Ak, Rk]) → B(A, Rk]) with εk → 0.

Remark 27.14. This notion of convergence implies the geodesic local convergence, as
defined in Definition 27.12. Indeed, (i) and (ii) of Definition 27.11 are obviously satisfied,
and (iii) follows from the fact that if a geodesic curve has its endpoints in BR](A), then its
image lies entirely inside BR′](A) with R′ = 2R.

Example 27.15 (blow-up). Let M be a Riemannian manifold of dimension n, and x
a point in M . For each k, consider the pointed metric space Xk = (M,kd, x), where x is
the basepoint, and kd is just the original geodesic distance on M , dilated by a factor k.
Then Xk converges in the pointed Gromov–Hausdorff topology to the tangent space TxM ,
pointed at x and equipped with the metric gx (it is a Euclidean space). This is true as
soon as M is just differentiable at x, in the sense of the existence of the tangent space.
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Example 27.16. More generally, if X is a given metric space, and x is a point in X , one can
define the rescaled pointed spaces Xk = (X , kd, x); if this sequence converges in the pointed
Gromov–Hausdorff topology to some metric space Y, then Y is said to be the tangent space,
or tangent cone, to X at x. In many cases, this space coincides with the metric cone built
on some length space Σ, which itself can be thought of as the space of tangent directions.
(By definition, if (B, d) is a length space, the metric cone over B is obtained by considering
B × [0,∞), gluing together all the points in the fiber B × {0}, and equipping the resulting
space with the cone metric: dc((x, t), (y, s)) =

√
t2 + s2 − 2ts cos d(x, y) when d(x, y) ≤ π,

dc((x, t), (y, s)) = t + s when d(x, y) > π.)

Example 27.17. For any p ∈ [1,∞), define the 5p norm on Rn by the usual formula
‖x‖(p = (

∑
|xi|p)1/p; and let Xp be the space Rn, equipped with the 5p norm, pointed

at 0. Then, as p → ∞, Xp converges in the pointed Gromov–Hausdorff to X∞, which is
Rn equipped with the 5∞ norm, ‖x‖(∞ = sup |xi|. In Xp, geodesics are segments of the
form (1 − t) a + t b, in particular they are nonbranching (two distinct geodesics cannot
coincide on a nontrivial time interval), and unique (any two points are joined by a unique
geodesic path). In contrast, geodesics in X∞ are branching and definitely nonunique (any
two distinct points can be joined by an uncountable set of geodesic paths). We see on
this example that neither the nonbranching property, nor the property of uniqueness of
geodesics, are preserved under Gromov–Hausdorff convergence. In particular, the huge
majority of geodesics X∞ cannot be realized as limits of geodesics on Xp.

Remark 27.18. Consider pointed length spaces (Xk, Ak) and (X , A), and let fk be a
pointed εk-isometry BRk ](Ak) → BRk](A). Let then R′

k ≤ Rk. It is clear that the dis-
tortion of fk on BR′

k](Ak) is no more than the distortion of fk on BRk](Ak). Also if x
belongs to BR′

k](A), and X is a length space, then there is x′ ∈ BR′
k](A) with d(x, x′) = 2εk

and d(A, x′) ≤ R′
k − 2εk; then there is x′

k ∈ BRk(Ak) such that d(fk(x′
k), xk) ≤ εk, so

d(A, fk(x′
k)) ≤ R′

k − εk, and then by the distortion property d(Ak, x′
k) ≤ R′

k − εk + εk = R′
k;

on the other hand, d(x′
k, x) ≤ 2εk +εk = 3εk. The conclusion is that the restriction of fk to

BR′
k
(Ak) defines a (3εk)-isometry BR′

k
(Ak) → BR′

k
(A). In other words, it is always possible

to reduce Rk and keeping approximate isometries, provided that one changes εk for 3εk.

Remark 27.19 (important). In the theory of Gromov–Hausdorff convergence, it is often
imposed that Rk = (εk)−1 in Definition 27.13. This is consistent with Example 27.15, and
also with most tangent cones that are usually encountered. I shall however not do so in
these notes.

Functional analysis on Gromov–Hausdorff converging sequences

Many theorems that hold true for any metric space, still hold true, after appropriate mod-
ification, for any family of metric spaces, provided that this family converges in Gromov–
Hausdorff sense. Such is the case for some of the basic compactness theorems in functional
analysis: Ascoli’s theorem and Prokhorov’s theorem. I shall not need these results out-
side the setting of compact spaces, so I shall be sketchy about their formulation in the
noncompact case; the reader can easily fill in the gaps.

Proposition 27.20 (Ascoli’s theorem on a Gromov–Hausdorff converging se-
quence). Let (Xk)k∈N be a sequence of compact metric spaces, converging in the Gromov–
Hausdorff topology to some compact metric space X , by means of εk-approximations
fk : Xk → X , admitting approximate inverses f ′

k; and let (Yk)k∈N be another sequence
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of compact metric spaces converging to Y in the Gromov–Hausdorff topology, by means
of εk-approximations gk : Yk → Y. Let (αk)k∈N be a sequence of maps Xk → Yk that are
asymptotically equicontinuous, in the sense that for every ε > 0, there are δ = δ(ε) > 0
and N = N(ε) ∈ N so that for all k ≥ N ,

dXk(xk, x
′
k) ≤ δ =⇒ dYk

(
αk(xk),αk(x′

k)
)
≤ ε. (27.5)

Then after passing to a subsequence, the maps gk ◦ αk ◦ f ′
k : X → Y converge uniformly to

a continuous map α : X → Y.
This statement extends to locally compact spaces converging in the pointed Gromov–

Hausdorff topology, and locally asymptotically uniformly equicontinuous maps, provided
that the conclusion is weakened into locally uniform convergence.

Remark 27.21. In the conclusion of Proposition 27.20, the maps gk ◦ αk ◦ f ′
k may be

discontinuous, yet they will converge uniformly.

Proposition 27.22 (Prokhorov’s theorem on a Gromov–Hausdorff converging
sequence). Let (Xk)k∈N be a sequence of compact metric spaces, converging in the
Gromov–Hausdorff topology to some compact metric space X , by means of εk-approximations
fk : Xk → X . For each k, let µk be a probability measure on Xk. Then, after extraction of
a subsequence, the sequence ((fk)#µk)k∈N converges weakly to a probability measure µ on
X .

This statement extends to Polish spaces converging by means of local Gromov–Hausdorff
approximations, provided that the probability measures µk are uniformly tight with respect
to the sequences (K(()

k ) appearing in the definition of local Gromov–Hausdorff approxima-
tion.

Here is another simple compactness criterion for which I shall provide a proof.

Proposition 27.23 (compactness of locally bounded measures). Let (Xk, dk, Ak)k∈N
be a sequence of pointed locally compact Polish spaces converging in the pointed Gromov–
Hausdorff topology to some pointed locally compact Polish space (X , d, A), by means of
pointed εk-isometries fk with εk → 0. Assume that for each R, there is a finite constant
M = M(R) such that

∀k ∈ N, νk[BR](Ak)] ≤ M.

Then, there is a locally finite measure ν such that, up to extraction of a subsequence,

(fk)#νk −−−→
k→∞

ν

in the weak-∗ convergence of measures (that is, convergence against compactly supported
continuous functions).

Proof. Let R > 0; then (fk)#νk[BR](A)] = νk[(fk)−1(BR](A)] ≤ νk[BR+εk(Ak)] is uniformly
bounded by M(R + 1) for k large enough. Since on the other hand BR](A) is compact, we
may extract a subsequence in k such that (fk)#νk[BR](A)] converges to some finite measure
νR in the weak-∗ topology of BR](A). Then the result follows by taking R = 5 → ∞ and
applying a diagonal extraction. 78

Remark 27.24. There is an easy extension of Proposition 27.23 to geodesic local measured
Gromov–Hausdorff convergence.
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Adding the measure

Now let us switch from metric spaces to metric-measure spaces, that are triples (X , d, ν),
where d is a distance on X and ν a Borel measure on X . (For brevity I shall sometimes
write just X instead of (X , d, ν).) So the question is to measure how far two metric-measure
spaces X and Y are from each other.

There is a nontrivial choice to be made:
(a) Either we insist that metric-measure spaces are metric spaces in the first place, so

that two metric-measure spaces should be declared close only if they are close both in
terms of the metric and in terms of the measure;

(b) Or we think that only the measure is relevant, and we should disregard sets of zero
or small measure when estimating how far two metric-measure spaces are.

In the first case, one should identify two spaces (X , d, ν) and (X ′, d′, ν ′) only if they
are isomorphic as metric-measure spaces, which means that there exists a measurable
bijection f : X → X ′ such that f is an isometry, and f preserves the measure: f#ν = ν ′.
Such a map is naturally called a measure-preserving isometry, and its inverse f−1 is
automatically a measure-preserving isometry. (Note: It is not enough to impose that X
and X ′ are isometric as metric spaces, and isometric as measure spaces: the same map
should do the job for both isomorphisms.)

In the second case, one should identify sets that are isomorphic up to a zero measure
set; so a natural thing to do is to declare that (X , d, ν) and (X ′, d′, ν ′) are the same if there
is a measure-preserving isometry between Spt ν and Sptν ′, seen as subspaces of X and X ′

respectively.
Here below is illustrated a classical example of a convergence which holds true in the

sense of (b), not in the sense of (a):

Fig. 27.4. Here is an example of “reduction of support” that can arise in measured Gromov–Hausdorff
convergence. This is a balloon with a very thin spike; in Gromov–Hausdorff sense it is approximated by a
balloon to which a one-dimensional spike is attached, that carries no measure.

Now it is easy to cook up notions of distance between metric-measure spaces. For a
start, let us restrict to compact probability spaces. Pick up a distance which metrizes the
weak topology on the set of probability measures, such as the Prokhorov distance dP , and
introduce the Gromov–Hausdorff–Prokhorov distance by the formula

dGHP (X ,Y) = inf
{
dH(X ′,Y ′) + dP (νX ′ , νY ′)

}
,

where the infimum is taken over all measure-preserving isometric embeddings f : (X , νX ) →
(X ′, νX ′) and g : (Y, νY) → (Y ′, νY ′) into a common metric space Z. That choice would
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correspond to point of view (a), while in point of view (b) one would rather use the
Gromov–Prokhorov distance, which is defined, with the same notation, as

dGP (X ,Y) = inf dP (νX ′ , νY ′).

Both dGHP and dGP satisfy the triangular inequality, as can be checked by a gluing
argument again. (Now one should use both the metric and the probabilistic gluing!) Then
there is no difficulty in checking that dGHP is a honest distance on classes of metric-
measure isomorphisms, with point of view (a). Similarly, dGP is a distance on classes of
metric-measure isomorphisms, with point of view (b), but now it is quite nontrivial to
check that [dGP (X ,Y) = 0] =⇒ [X = Y]. I shall not insist on this point, for in the sequel
I shall focus on point of view (a).

There are several variants of these constructions:
1. Use other distances on probability metrics. Essentially everybody agrees on the Haus-

dorff distance to measure distances between sets, but as we know, there are many natu-
ral choices of distances between probability measures. In particular, one can replace the
Prokhorov distance by the Wasserstein distance of order p, and thus obtain the Gromov–
Hausdorff–Wasserstein distance of order p:

dGHWp(X ,Y) = inf
{
dH(X ′,Y ′) + Wp(νX ′ , νY ′)

}
,

and of course the Gromov–Wasserstein distance of order p:

dGWp(X ,Y) = inf Wp(νX ′ , νY ′).

2. Measure distances between spaces on which the measure is finite but not necessarily
normalized to 1. This obviously amounts to measure distances between finite nonnegative
measures that are not necessarily normalized. There are two rather natural strategies (and
many variants). The first one consists in using the bounded Lipschitz distance, as defined
in (6.6), which makes sense for arbitrary signed measures; in this way one can define
the “Gromov–Hausdorff–bounded-Lipschitz distance” dGHbL and the “Gromov–bounded-
Lipschitz distance” dGbL, the definitions of which should be obvious to the reader. Another
possibility consists in comparing the normalized metric spaces, and then add a penalty
that takes into account the discrepancy between the total masses. For instance, if µ and
ν are defined on a common space Z, one may let

d(µ, ν) = dP

(
µ

µ[Z]
,

ν

ν[Z]

)
+
∣∣∣µ[Z] − ν[Z]

∣∣∣.

One may also replace dP by Wp, or whatever; and change the penalty (why not something
like | log(µ[Z]/ν[Z])|?); etc. So there is a tremendous number of “natural” possibilities.

3. Consider noncompact spaces. Here also, there are many possible frameworks, and
the reader is free to consider this variety as a wealth or as a big mess. A first possibility is
to just ignore the fact that spaces are noncompact: this is not reasonable if one sticks to
philosophy (a), because the Hausdorff distance between noncompact spaces is too rigid;
but it makes perfect sense with philosophy (b), at least for finite measures. Then, one may
apply distances dGHWp to noncompact situations, or variants designed to handle measures
that are not probability measures. But when the measures are only σ-finite, this simple
approach has to be modified. A possibility consists in localizing as in Definition 27.11.
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Another possibility, which makes sense in a locally compact context, consists in pointing
as in Definition 27.13 (and one may also impose the same condition as in Remark 27.19).

About the regularity of the measures: In the sequel, when (X , d, ν) is a length space
equipped with a measure, I shall always implicitly assume that ν is nonzero, and that it is

- σ-finite if (X , d) is only assumed to be Polish;
- locally finite if (X , d) is assumed in addition to be locally compact.

(Given a length space (X , d) and an arbitrary point A ∈ X , X is the union of the closed
balls Bk](A), so a locally finite measure on X is automatically σ-finite.)

Doubling

The discussion of the previous section showed that one should be cautious about which
notion of convergence is used. However, whenever they are available, doubling estimates,
in the sense of Definition 18.1, basically rule out the discrepancy between approaches (a)
and (b) above. The idea is that doubling prevents the formation of sharp spikes as in
Figure 27.4. This discussion is not so clearly made in the literature that I know, so in this
section I shall provide more careful proofs.

Proposition 27.25 (the metric and metric-measure approach coincide in pres-
ence of doubling). Let (X , µ) and (Y, ν) be two compact Polish probability spaces with
diameter at most R. Assume that both X and Y are doubling with a constant D. Then

dGP (X ,Y) ≤ dGHP (X ,Y) ≤ ΦR,D
(
dGP (X ,Y)

)
, (27.6)

where
ΦR,D(δ) = max

(
8 δ, R (16 δ)

1
log2 D

)
+ δ

is a function that goes to 0 as δ → 0, at a rate that is controlled in terms of just upper
bounds on R and D.

Proof of Proposition 27.25. The inequality on the left of (27.6) is trivial, so we focus on
the right inequality. To start with, let x ∈ X , ε > 0, then

1 = µ[X ] = µ[BR](x)] ≤ DN µ[Bε/4](x)],

where
N =

⌈
log2

4R
ε

⌉
≤ log2

R

ε
+ 3,

and after a few manipulations this leads to

µ[Bε/4](x)] ≥ 1
8

( ε

R

)log2 D
.

Now let (X ′, µ′) and (Y ′, ν ′) be two isomorphic copies of (X , µ) and (Y, ν) in some
metric space Z. Let ε be the Hausdorff distance between X ′ and Y ′, and δ the Prokhorov
distance between µ′ and ν ′; the goal is to control ε+ δ in terms of δ alone. If ε ≤ 8δ, then
we are done, so we might assume that δ < ε/8. Since ε > 0, there is, say, some x ∈ X ′

such that the ball Bε/2](x) does not intersect Y ′.
Now, the doubling property of (X , µ) is of course transferred to (X ′, µ′), so by the

previous estimate

µ′[Bε/4](x)] ≥ 1
8

( ε

R

)log2 D
. (27.7)
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By definition of the Prokhorov distance,

µ′[Bε/4](x)] ≤ ν ′[Bε/4+2δ(x)] + 2δ. (27.8)

From (27.7) and (27.8) it follows that

ν ′[Bε/4+2δ](x)] ≥ 1
8

( ε

R

)log2 D
− 2δ. (27.9)

Since δ < ε/8, the ball Bε/4+2δ] is included in the ball Bε/2](x), which does not intersect
Y ′; so the left-hand side in (27.9) has to be 0. It follows that

ε ≤ R (16δ)
1

log2 D ;

and then the conclusion easily follows. 78

The conclusion is better appreciated in view of the result of the following exercise.

Exercise 27.26. Let (Xk, dk, νk) be a sequence of Polish probability spaces converging in
the sense of dGP to (X , d, ν). Assume that each νk is doubling, with a uniform bound on
the doubling constant. Prove that ν is also doubling.

The combination of Proposition 27.25 and Exercise 27.26 yields the following corollary:

Corollary 27.27 (dGP convergence and doubling imply dGHP convergence). Let
(Xk, dk, νk) be a family of Polish probability spaces satisfying a uniform doubling condi-
tion, uniformly bounded, and converging to (X , d, ν) in Gromov–Prokhorov sense. Then
(Xk, dk, νk) also converges in Gromov–Hausdorff sense to (X , d, ν). In particular, (Xk, dk)
converges to (X , d) in Gromov–Hausdorff sense.

This corollary basically says that from the qualitative point of view, the distinction
between points of view (a) and (b) is nonessential when dealing with the convergence
of probability spaces satisfying a uniform doubling estimate. A more careful discussion
would extend this conclusion to metric-measure spaces that are not necessarily probability
spaces; and then to the pointed convergence of metric-measure spaces, provided that the
doubling constant on a ball of radius R (around the base point of each space) only depends
on R.

When doubling estimates are not available, things are not so simple and it does matter
whether one adheres to philosophy (a) or (b). Point of view (b) is the one that was mainly
developed by Gromov, in relation with the phenomenon of concentration of measure. It
is also the point of view that was adopted by Sturm in his study of the stability of
displacement convexity. Nevertheless, I shall prefer to stick here to point of view (a), partly
because this is the approach which Lott and myself adopted for the study of the stability
of optimal transport, partly because it can be argued that point of view (a) provides a
more precise notion of convergence and description of the limit space. For instance, in the
example of Figure 27.4, the fact that the limit space has a spike carrying zero measure
retains information about the asymptotic shape of the sequence of spaces. This will of
course not prevent me from throwing away pieces with zero measure by restricting to the
support of the measure, when that is possible.

Doubling has another use in the present context: It leads to uniform total boundedness
estimates, and therefore to compactness statements via Theorem 27.10.
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Proposition 27.28. Let (X , d) be a metric space with diameter bounded above by R,
equipped with a finite (nonzero) D-doubling measure ν. Then for any ε > 0 there is a
number N = N(ε), only depending on R and D, such that X can be covered with N balls
of radius ε.

Proof of Proposition 27.28. Without loss of generality, we might assume that ν[X ] = 1.
Let r = ε/2, and let n be such that R ≤ 2nr. Choose an arbitrary point x1 in X ; then a
point x2 in X \ (B2r(x1)), a point x3 in X \ (B2r(x1)∪B2r(x2)), and so forth. Then all the
balls Br(xj) are disjoint, and by the doubling property each of them has measure at least
D−n. So X \ (Br(x0) ∪ . . . ∪ Br(xk)) has measure at most 1 − kD−n, and therefore Dn is
an upper bound on the number of points xj that can be chosen.

Now let x ∈ X . There is at least one index j such that d(x, xj) < 2r; otherwise x would
lie in the complement of the union of all the balls B2r(xj), and could be added to the
family {xj}. So {xj} constitutes a 2r-net in X , with cardinality at most N = Dn. This
concludes the proof. 78

Measured Gromov–Hausdorff topology

After all this discussion I can state a precise definition of the notion of convergence that
will be used in the sequel for metric-measure spaces: this is the measured Gromov–
Hausdorff topology. It is associated with the convergence of spaces as metric spaces
and as measure spaces. This concept can be defined quantitatively in terms of, e.g., the
distance dGHP and its variants, but I shall be content with a purely topological (qualitative)
definition. As in the case of the plain Gromov–Hausdorff topology, there is a convenient
reformulation in terms of approximate isometries.

Definition 27.29 (measured Gromov–Hausdorff topology). Let (Xk, dk, νk)k∈N,
and (X , d, ν) be compact metric spaces, equipped with finite nonzero measures. It is said
that Xk converges to X in the measured Gromov–Hausdorff topology if there are measurable
εk-isometries fk : Xk → X such that εk → 0 and

(fk)#νk −−−→
k→∞

ν,

for the weak topology (convergence against continuous functions) on X .
If (Xk, dk, νk) and (X , d, ν) are Polish spaces, not necessarily compact, equipped with

σ-finite measures, then it is said that Xk converges to X in the local measured Gromov–
Hausdorff topology if there are increasing sequences of compact sets (K(()

k )(∈N for each k,
and (K(())(∈N, such that for each 5, the space K(()

k , seen as a subspace of Xk, converges
in the measured Gromov–Hausdorff topology to K((); and the union of all K(() is dense in
X .

If the spaces (Xk, dk, νk, Ak) and (X , d, ν, A) are locally compact pointed Polish spaces
equipped with locally finite measures, then it is said that Xk converges to X in the pointed
measured Gromov–Hausdorff topology if there are sequences Rk → ∞ and εk → 0, and
measurable pointed εk-isometries B(Ak, Rk]) → B(A, Rk]), such that

(fk)#νk −−−→
k→∞

ν,

where the convergence is now the weak-∗ topology of convergence against compactly sup-
ported continuous functions.
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Remark 27.30. As already remarked for the plain Gromov–Hausdorff topology, one might
also require in the definition of pointed measured Gromov–Hausdorff topology that Rk =
(εk)−1, but I shall not do so here.

From the material in this chapter it is easy to derive the following compactness criterion:

Proposition 27.31 (compactness in measured Gromov–Hausdorff topology). (i)
Let R > 0, D > 0, and 0 < m ≤ M be finite positive constants, and let F be a family of
compact metric-measure spaces, such that for each (X , d, ν) ∈ F the diameter of (X , d) is
bounded above by 2R, and the measure ν has a doubling constant bounded above by D, and a
total mass ν[X ] bounded above by M and bounded below by m. Then F is precompact in the
measured Gromov–Hausdorff topology. In particular, any weak cluster space (X∞, d∞, ν∞)
satisfies Spt ν∞ = X∞.

(ii) Let F be a family of locally compact pointed Polish measure spaces. Assume that
for each R, there is a constant D = D(R) such that for each (X , d, ν, A) ∈ F the measure
ν is D-doubling on BR(A). Further assume the existence of m,M > 0 such that m ≤
ν[B1(X )] ≤ M for all (X , d, ν) ∈ F . Then F is precompact in the pointed measured
Gromov–Hausdorff topology. In particular, any weak cluster space (X∞, d∞, ν∞) satisfies
Spt ν∞ = X∞.

Proof. Part (i) follows from the combination of Proposition 27.28, Theorem 27.10 and
Proposition 27.25. Part (ii) follows in addition from the definition of pointed measured
Gromov–Hausdorff convergence and Proposition 27.23. Note that in (ii), the doubling
assumption is used to prevent the formation of “spikes”, but also to ensure uniform bounds
on the mass of balls of radius R for any R, once it is known for some R. (Here I chose
R = 1, but of course any other choice would have done.) 78
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chapter; see for instance [365, Remark 1.29].

My presentation of the Gromov–Hausdorff topology mainly followed the very pedagog-
ical book of Burago, Burago and Ivanov [81]. In particular, one can find there the proofs of
Theorems 27.9 and 27.10. Other classical sources about the convergence of metric spaces
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the Ascoli theorem). Proposition 27.22 is rather easy to prove, and anyway in the next
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The point of view mainly used there consists in forgetting the Gromov–Hausdorff distance
and “using the measure to kill infinity”; so the distances that are found there would be of
the sort of dMGWp or dMGP . Sturm made a detailed study of dMGW2 in [335] and advocated
it as a natural distance in the context of optimal transport.

The alternative point of view in which one takes care of both the metric and the measure
was introduced by Fukaya [171]. This is the one with which Lott and myself used in our
study of displacement convexity in length spaces [247].

The pointed Gromov–Hausdorff topology is presented for instance in [81]; it has become
very popular as a way to study tangent spaces in the absence of smoothness.

In the context of optimal transport, the pointed Gromov–Hausdorff topology was used
independently in [15, Section 12.4] and in [247, Appendix A]. Also in a context of opti-
mal transport, the pointed measured Gromov–Hausdorff topology was used in [247, Ap-
pendix F].

The fact that a locally compact length space is automatically boundedly compact is
part of the generalized version of the Hopf-Rinow theorem for length spaces [81, Theo-
rem 2.5.28].

I introduced the definition of local Gromov–Hausdorff topology for the purpose of these
notes; it looks to me quite natural if one wants to preserve the idea of pointing in a setting
that might not necessarily be locally compact. This is not such a serious issue and the
reader who does not like this notion can still go on with the rest of these notes. Still, let
me advocate for it as a natural concept to treat the Gromov–Hausdorff convergence on
the Wasserstein space over a noncompact metric space (see Chapter 28).

The statement of completeness of the Gromov–Hausdorff space appears in Gromov’s
book [196, p. 78]. Its proof can be found e.g. in Fukaya [172, Theorem 1.5], or in the book
by Petersen [?, Proposition 1.7].

The theorem briefly alluded to in Remark 27.8 states the following: If M is an n-
dimensional compact manifold, and (Mk)k∈N is a sequence of n-dimensional compact man-
ifolds converging to M , with uniform upper and lower bounds on the sectional curvatures,
and a volume which is uniformly bounded below, then Mk is diffeomorphic to M for k
large enough. This result is due to Gromov (after precursors by Shikata); see e.g. [172,
Chapter 3] for a proof and references.

As a last remark, the construction of approximate isometries from correspondences, as
performed in [81], uses the full axiom of choice (on p. 258: “For each x, choose f(x) ∈ Y ”).
So I should sketch a proof which does not use it. Let R be a correspondence with distortion
η, the problem is to construct an ε-isometry f : X → Y for any ε > η. Let D be a countable
dense subset in X . Choose δ so small that 2δ + η < ε. Cover X by finitely many disjoint
sets Ak, such that each Ak is included in some ball B(xk, δ), with xk ∈ D. Then for
all x ∈ D choose f(x) in relation with x. (This only uses the countable version of the
axiom of choice.) Finally, for each x ∈ Ak define f(x) = f(xk). It is easy to check that
dis (f) ≤ 2δ + η < ε.

(This axiomatic issue is also the reason why I work with approximated inverses that
are (4ε)-isometries rather than (3ε)-isometries....)
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Stability of optimal transport

This chapter is devoted to the following issue: Consider a family of length spaces Xk which
converges to a length space X , does it follow that certain basic objects in the theory of
optimal transport on Xk “pass to the limit”? In this chapter I shall show that the answer
is affirmative: one of the main results is that the Wasserstein space P2(Xk) converges,
in Gromov–Hausdorff sense, to the Wasserstein space P2(X ). Then I shall consider the
stability of dynamical optimal transference plans, and related objects (displacement in-
terpolation, kinetic energy, etc.) Compact spaces will be considered first, and will be the
basis for the subsequent treatment of noncompact spaces.

Optimal transport in a nonsmooth setting

Most of the objects that were introduced and studied in the context of optimal trans-
port on Riemannian manifolds still make sense on a general metric-measure length space
(X , d, ν), satisfying certain regularity assumptions. I shall assume here that (X , d) is a lo-
cally compact, complete separable geodesic length space equipped with a σ-finite
reference Borel measure ν.

From general properties of such spaces, plus the results in Chapters 6 and 7, it follows
that

- the cost function c(x, y) = d(x, y)2 is associated with the coercive Lagrangian action
A(γ) = L(γ)2, and minimizers are constant-speed, minimizing geodesics, the collection of
which is denoted by Γ (X );

- for any given µ0, µ1 in P2(X ), the optimal total cost C(µ0, µ1) is finite and there
exists at least one optimal transference plan π ∈ P (X × X ) with marginals µ0 and µ1;

- the 2-Wasserstein space P2(X ), equipped with the 2-Wasserstein distance, is a com-
plete separable geodesic space;

- a displacement interpolation (µt)0≤t≤1 can be defined either as a geodesic in P2(X ), or
as (et)#Π, where et is the evaluation at time t, and Π is a dynamical optimal transference
plan, i.e. the law of a random geodesic whose endpoints form an optimal coupling of
(µ0, µ1).

One can also introduce the interpolant density ρt = ρt(x) as the density of µt with
respect to the reference measure ν.

Many of the statements that were available in the Riemannian setting can be recast in
terms of these objects. An importance difference however is the absence of any “explicit”
description of optimal couplings in terms of d2/2-convex maps ψ. So expressions involving
∇ψ will not a priori make sense, unless we find an intrinsic reformulation in terms of the
above-mentioned objects. For instance,
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∫
ρ0(x)|∇ψ(x)|2 dν(x) =

∫
d
(
x, expx ∇ψ(x)

)2
dµ0(x) = W2(µ0, µ1)2. (28.1)

There is a more precise procedure which allows one to make sense of |∇ψ|, even if ∇ψ
itself does not. The crucial observation, as in (28.1), is that |∇ψ(x)| can be identified with
the length L(γ) of the geodesic γ joining γ(0) = x to γ(1) = y. In the next paragraph
I shal develop this remark. The hasty reader can skip this bit and go directly to the section
about the convergence of Wasserstein spaces.

Kinetic energy and speed

Definition 28.1 (kinetic energy). Let X be a locally compact Polish length space, and
let Π ∈ P (Γ (X )) be a dynamical transference plan. For each t ∈ (0, 1) define the associated
kinetic energy εt(dx) by the formula

εt = (et)#
(
L2

2
Π

)
.

If εt is absolutely continuous with respect to µt, define the speed field |v|(t, x) by the formula

|v|(t, x) =

√

2
dεt

dµt
.

Remark 28.2. If X is bounded, then εt ≤ Cµt, where C = (diam X )2/2; then |v| is well-
defined (up to modification on a set of zero µt-measure), and bounded almost surely by√

2C = diam (X ).

Remark 28.3. If γ is a geodesic curve, then L(γ) = |γ̇|(t), whatever t ∈ (0, 1). Assume
that X is a Riemannian manifold M , and geodesics in the support of Π do not cross
at intermediate times. (As we know from Chapter 8, this is the case if Π is an optimal
dynamical transference plan.) Then for each t ∈ (0, 1) and x ∈ M there is at most one
geodesic γ = γx,t such that γ(t) = x. So

εt(dx) = |γ̇ x,t(t)|2 [(et)#Π](dx) = |γ̇|2 µt(dx);

then |v|(t, x) really is |γ̇x,t|, that is, the speed at time t and position x. So Definition 28.1
is consistent with the usual notions of kinetic energy and speed field (speed = norm of the
velocity).

Particular Case 28.4. Let M be a Riemannian manifold, and let µ0, µ1 be two proba-
bility measures in P2(M), µ0 being absolutely continuous with respect to Lebesgue mea-
sure. Let ψ be a d2/2-convex function such that exp(∇ψ) is the optimal transport map
from µ0 to µ1, and let ψt be obtained by solving the forward Hamilton–Jacobi equation
∂tψt+|∇ψt|2/2 = 0 starting from the initial data ψ0 = ψ. Then the speed |v|(t, x) coincides,
µt-almost surely, with |∇ψt(x)|.

The kinetic energy is a nonnegative measure, while the field speed is a function. Both
objects will enjoy good stability properties under Gromov–Hausdorff approximation. But
under adequate assumptions, the velocity field will also enjoy compactness properties in
the uniform topology. This comes from the next statement.
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Theorem 28.5 (regularity of the speed field). Let (X , d) be a compact length space,
let Π ∈ P (Γ (X )) be a dynamical optimal transference plan, let (µt)0≤t≤1 be the associated
displacement interpolation, and |v| = |v|(t, x) the associated speed field. Then, for each
t ∈ (0, 1) one can modify |v|(t, ·) on a µt-negligible set in such a way that for all x, y ∈ X ,

∣∣∣ |v|(t, x) − |v|(t, y)
∣∣∣ ≤ C

√
diam X√
t(1 − t)

√
d(x, y), (28.2)

where C is a numeric constant. In particular, |v|(t, ·) is Hölder-1/2.

Proof of Theorem 28.5. Let t be a fixed time in (0, 1). Let γ1 and γ2 be two minimizing
geodesics in the support of Π, and let x = γ1(t), y = γ2(t). Then, by Theorem 8.22,

∣∣L(γ1) − L(γ2)
∣∣ ≤

C
√

diam (X )√
t(1 − t)

√
d(x, y). (28.3)

Let Xt be the union of all γ(t), for γ in the support of Π. For a given x ∈ Xt, there might
be several geodesics γ passing through x, but (as a special case of (28.3)) they will all have
the same length; define |v|(t, x) to be that length. This is a measurable function, since it
can be rewritten

|v|(t, x) =
∫

Γ
L(γ)Π(dγ|γ(t) = x),

where Π(dγ|γ(t) = x) is of course the disintegration of Π with respect to µt, the law of γt.
Then |v|(t, ·) is an admissible density for εt, and as a consequence of (28.3) it satisfies (28.2)
for all x, y ∈ Xt.

Now to extend |v|(t, x) on the whole of X , I shall adapt a well-known extension theorem
for Lipschitz functions defined on a subset of a metric space. Let H := C

√
diam X/(t(1−

t)), so that |v| is Hölder-1/2 with constant H on Xt. Then define, for x ∈ X ,

w(x) := inf
y∈Xt

[
H
√

d(x, y) + |v|(t, y)
]
.

It is clear that w ≥ 0, and the estimate (28.2) easily implies that w(x) = |v|(t, x) for any
x ∈ Xt. Next, whenever x and x′ are two points in X , one has

w(x) − w(x′) = inf
y∈Xt

[
H
√

d(x, y) + |v|(t, y)
]
− inf

y′∈Xt

[
H
√

d(x′, y′) + |v|(t, y′)
]

= sup
y′∈Xt

inf
y∈Xt

[
H
√

d(x, y) − H
√

d(x′, y′) + |v|(t, y) − |v|(t, y′)
]

≤ H sup
y′∈Xt

inf
y∈Xt

[√
d(x, y) −

√
d(x′, y′) +

√
d(y, y′)

]

≤ H sup
y′∈Xt

[√
d(x, y′) −

√
d(x′, y′)

]
. (28.4)

But √
d(x, y′) ≤

√
d(x, x′) + d(x′, y′) ≤

√
d(x, x′) +

√
d(x′, y′);

so (28.4) is bounded by H
√

d(x, x′).
To summarize: w coincides with |v|(t, ·) on Xt, and it satisfies the same Hölder-1/2

estimate. Since µt is concentrated on Xt, w is also an admissible density for εt, so we can
take it as the new definition of |v|(t, ·), and then (28.2) holds true on the whole of X . 78
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Convergence of the Wasserstein space

The main goal of this section is the proof of the convergence of the Wasserstein space
P2(X ), as expressed in the next statement.

Theorem 28.6. Let (Xk)k∈N and X be compact metric spaces such that

Xk −−→
GH

X .

Then
P2(Xk) −−→

GH
P2(X ).

Theorem 28.6 will come as an immediate corollary of the following more precise results:

Proposition 28.7. Let f : (X1, d1) → (X2, d2) be an ε-isometry between two metric spaces.
Then the map f#, defined by f#(µ) = f#µ, is an ε̃-isometry between P2(X1) and P2(X2),
where

ε̃ = 6 ε + 2
√
ε (2 diam (X2) + 2ε) ≤ 10

(
ε +

√
ε diam (X2)

)
. (28.5)

Remark 28.8. The map f# is continuous if and only if f itself is continuous (which in
general is not the case).

Proof of Proposition 28.7. Let us start with the proof of (28.5). Let f be an ε-isometry,
and let f ′ be an ε-inverse for f . Recall that f ′ is a (4ε)-isometry and satisfies (27.4).

Given µ1 and µ′
1 in P2(X1), let π1 be an optimal transference plan between µ1 and µ′

1.
Define

π2 :=
(
f, f

)
#
π1.

Obviously, π2 is a transference plan between f#µ1 and f#µ′
1. Then

W2
(
f#µ1, f#µ′

1

)2 ≤
∫

X2×X2

d2(x2, y2)2 dπ2(x2, y2) =
∫

X1×X1

d2
(
f(x1), f(y1)

)2
dπ1(x1, y1).

(28.6)
As
∣∣∣d2(f(x1), f(y1))2 − d1(x1, y1)2

∣∣∣

=
∣∣∣d2(f(x1), f(y1)) − d1(x1, y1)

∣∣∣
(
d2(f(x1), f(y1)) + d1(x1, y1)

)

we have ∣∣∣d2(f(x1), f(y1))2 − d1(x1, y1)2
∣∣∣ ≤ ε

(
diam (X1) + diam (X2)

)
. (28.7)

Therefore

W2
(
f#µ1, f#µ′

1

)2 ≤ W2(µ1, µ
′
1)

2 + ε
(
diam (X1) + diam (X2)

)
, (28.8)

hence
W2

(
f#µ1, f#µ′

1

)
≤ W2(µ1, µ

′
1) +

√
ε
(
diam (X1) + diam (X2)

)
. (28.9)

It follows from the definition of an ε-isometry that diam (X1) ≤ diam (X2)+ε; so (28.9)
leads to

W2
(
f#µ1, f#µ′

1

)
≤ W2(µ1, µ

′
1) +

√
ε
(
2 diam (X2) + ε

)
, (28.10)

which shows that f# does not increase distances much.
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On the other hand, diam (X2) ≤ diam (X1) + 2ε; so (28.9) also implies

W2
(
f#µ1, f#µ′

1

)
≤ W2(µ1, µ

′
1) +

√
ε
(
2 diam (X1) + 2ε

)
. (28.11)

Exchanging the roles of X1 and X2, and applying (28.8) to the map f ′ and the measures
f#µ1 and f#µ′

1, we obtain

W2

(
(f ′)#(f#µ1), (f ′)#(f#µ′

1)
)
≤ W2

(
f#µ1, f#µ′

1

)
+
√

4ε (2 diam (X2) + 8ε). (28.12)

(The factor 4 is because f ′ is a (4ε)-isometry.) Since f ′◦f is an admissible Monge transport
between µ1 and (f ′◦f)#µ1, or between µ′

1 and (f ′◦f)#µ′
1, which moves points by a distance

at most 3ε, we have

W2

(
(f ′ ◦ f)#µ1, µ1

)
≤ 3ε; W2

(
(f ′ ◦ f)#µ′

1, µ
′
1

)
≤ 3ε. (28.13)

Then by (28.12) and the triangle inequality,

W2(µ1, µ
′
1) ≤ W2(µ1, (f ′ ◦ f)#µ1) + W2

(
(f ′ ◦ f)#µ1, (f ′ ◦ f)#µ′

1

)
+ W2((f ′ ◦ f)#µ′

1, µ
′
1)

≤ 3ε + W2
(
f#µ1, f#µ′

1

)
+
√

4ε(2 diam (X2) + 8ε) + 3ε. (28.14)

Equations (28.10) and (28.14) together show that f# distorts distances by at most ε̃.
It remains to show that f# is approximately surjective. To do this, pick up some

µ2 ∈ P2(X2), and consider the Monge transport f ◦ f ′ from µ2 to (f ◦ f ′)#µ2. Since f ◦ f ′

moves points by a distance at most ε, we have W2(µ2, f#(f ′
#µ2)) ≤ ε. This concludes the

proof that f# is an ε̃-isometry. 78

Compactness of dynamical transference plans and related objects

The issue now is to show that dynamical transference plans enjoy good stability properties
in a Gromov–Hausdorff approximation. The main technical difficulty comes from the fact
that ε-isometries, being in general discontinuous, will not map geodesic paths into con-
tinuous paths. So we shall be led to work on the horribly large space of measurable paths
[0, 1] → X . I shall daringly imbed this space in the even much larger space of probability
measures on [0, 1] × X , via the identification γ "−→ γ, where

γ = (Id , γ)#λ, (28.15)

and λ is the Lebesgue measure on [0, 1]. In loose notation,

γ(dt dx) = δx=γ(t) dt. (28.16)

Of course, the first marginal of such a measure is always the Lebesgue measure. That is,
if τ : [0, 1] × X → [0, 1] is the projection on the first factor then τ#γ = λ. Moreover, the
uniqueness of conditional measures shows that if γ1 = γ2, then γ1 = γ2 λ-almost surely,
and therefore actually γ1 = γ2 (because γ1, γ2 are continuous).

In this way there is an injection i : Γ → P ([0, 1] × X ), defined by i(γ) = γ, which
can be thought of as an “inclusion”. So any Π ∈ P (Γ ) can be identified with its push-
forward i#Π ∈ P (P ([0, 1] ×X )). This point of view is reminiscent of the theory of Young
measures; one of its advantages is that the space P ([0, 1]×X ) is separable, while the space
of measurable paths with values in X is not.

The next theorem expresses the stability of the main objects associated with transport
(optimal or not).
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Theorem 28.9 (stability of transport under Gromov–Hausdorff convergence).
Let (Xk, dk)k∈N and (X , d) be compact length spaces such that Xk converges in the Gromov–
Hausdorff topology to X . Let fk : Xk → X be εk-isometries, with εk → 0. For each
k, let Πk be a Borel probability measure on Γ (Xk); let further πk = (e0, e1)#Πk and
µk,t = (et)#Πk be the transference plan and the measure-valued path associated with Πk.
Then, after extraction of a subsequence, still denoted with the index k for simplicity, there
is a dynamical transference plan Π on X , with associated transference plan π, and measure-
valued path (µt)0≤t≤1, such that

(i) lim
k→∞

(fk◦)#Πk = Π in the weak topology on P (P ([0, 1] × X ));

(ii) lim
k→∞

(fk, fk)#πk = π in the weak topology on P (X × X );

(iii) lim
k→∞

(fk)#µk,t = µt in P2(X ) uniformly in t; i.e. lim
k→∞

sup
t∈[0,1]

W2(µk,t, µt) = 0;

(iv) lim
k→∞

(fk)#εk,t = εt, in the weak topology of measures, for each t ∈ (0, 1);

Assume further that each Πk is an optimal dynamical transference plan, for the square
distance cost function; then

(v) for each t ∈ (0, 1), there is a choice of the speed fields |vk| such that lim
k→∞

|vk| ◦ f ′
k =

|v|, in the uniform topology.
(vi) the limit Π is an optimal dynamical transference plan, so π is an optimal trans-

ference plan and (µt)0≤t≤1 is a displacement interpolation. Furthermore,

Remark 28.10. Here fk◦ is the map P ([0, 1] × Xk) → P ([0, 1] × X ) arising from fk. For
example, fk◦ takes the Dirac mass supported on a single geodesic γk, to the Dirac mass
supported on the path fk ◦γk : [0, 1] → X . Note that the latter path may be discontinuous.

Proof of Theorem 28.9. The proof is quite technical, so the reader might skip it at first
reading and go directly to the last section of this chapter. In a first step, I shall establish
the compactness of the relevant objects, and in a second step pass to the limit.

It will be convenient to regularize rough paths with the help of some continuous mol-
lifiers. For δ ∈ (0, 1/2), define

ϕδ(s) =
δ + s

δ2
1−δ≤s<0 +

δ − s

δ2
10<s≤δ (28.17)

and
ϕδ

+(s) = ϕδ(s − δ), ϕδ
−(s) = ϕδ(s + δ). (28.18)

Then supp ϕδ
+ ⊂ [0, 2δ] and supp ϕδ

− ⊂ [−2δ, 0]. These functions have a graph that looks
like a sharp “tent hat”; they all have unit integral on the real line and as δ → 0 they
converge in the weak topology to the Dirac mass δ0 at the origin.

Step 1: Compactness. First, [0, 1] ×X is a compact metric space, so the same holds
true for P ([0, 1] × X ) and P (P ([0, 1] × X )). Hence, after extraction of a subsequence,
the sequence ((fk◦)#Πk)k∈N converges to some Π ∈ P (P ([0, 1] × X )). Taking a further
subsequence, we can assume that limk→∞(fk, fk)#πk = π for some π ∈ P (X × X ).

Next, since X is bounded and Xk → X , there is a uniform bound C on the diam-
eters diam (Xk). So the lengths of all geodesics γk ∈ Γ (Xk) are all bounded by C, and
d(γk(s), γk(t)) ≤ C|s− t| for all times s, t ∈ [0, 1]. It follows that W2(µk,s, µk,t) ≤ C|s− t|,
as (es, et)#Πk is a particular transference plan between µk,s and µk,t. This shows that
the paths (µk,t)t∈[0,1],k∈N are uniformly continuous in t, with a uniform modulus of con-
tinuity. On the other hand, by Theorem 28.6, (P2(Xk))k∈N converges in the Gromov–
Hausdorff topology to P2(X ). By Proposition 27.20, there is a subsequence (in k) of the
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family ((fk)#µk,t)t∈[0,1],k∈N which converges uniformly to a continuous curve (µt)t∈[0,1] ∈
C([0, 1];P (X )).

Next, for each t ∈ (0, 1) the total mass of the measures εk,t are bounded by diam (Xk)2/2 ≤
C2/2; so the same holds true for the measures (fk)#εk,t, which therefore constitute a pre-
compact family in the space of nonnegative measures. So up to extraction, we may assume
that (fk)#εk,t converges weakly to some measure εt.

To conclude the proof of (i)–(iv), we should establish that
(a) Π is actually concentrated on Γ (X );
(b) π = (e0, e1)#Π;
(c) µt = (et)#Π;
(d) εt = (et)#(L2Π)/2.

Step 2: Embedding in probability measures and passing to the limit
I shall first mollify the geodesic-defining condition “L(γ) = d(γ(0), γ(1))” in such a way

that the resulting condition will pass to the limit under weak convergence of probability
measures. Given δ ∈ (0, 1/2), a continuous path γ : [0, 1] → X , and times t0, s0 with
0 ≤ t0 < s0 ≤ 1, define

Lδ
t0→s0

(γ) =
∫ 1

0

∫ 1

0
d(γ(t), γ(s))ϕδ

+(t − t0)ϕδ
−(s − s0) dt ds. (28.19)

This function extends into a continuous function on P ([0, 1]×X ), still denoted Lδ
t0→s0

for
simplicity, by

Lδ
t0→s0

(σ) =
∫

[0,1]×X

∫

[0,1]×X
d(x, y)ϕδ

+(t − t0)ϕδ
−(s − s0) dσ(t, x) dσ(s, y). (28.20)

Since fk is an εk-approximation, if γk is a geodesic in Xk then

Lδ
t0→s0

(fk ◦ γk) =
∫ 1

0

∫ 1

0

[
d
(
γk(t), γk(s)

)
+ O(εk)

]
ϕδ

+(t − t0)ϕδ
−(s − s0) dt ds (28.21)

=
∫ 1

0

∫ 1

0
d
(
γk(t), γk(s)

)
ϕδ

+(t − t0)ϕδ
−(s − s0) dt ds + O(εk)

= d
(
γk(0), γk(1)

) ∫ 1

0

∫ 1

0
|s − t|ϕδ

+(t − t0)ϕδ
−(s − s0) dt ds + O(εk)

= d
(
γk(0), γk(1)

) (
|s0 − t0| + O(δ)

)
+ O(εk).

In particular, taking t0 = 0 and s0 = 1 gives

Lδ
0→1(fk ◦ γk) = d

(
γk(0), γk(1)

)
(1 + O(δ)) + O(εk). (28.22)

Since all of the lengths d(γk(0), γk(1)) are uniformly bounded, we conclude that there
is a constant C such that for all t0 and s0 as above,






∣∣∣Lδ
t0→s0

(fk ◦ γk) − |s0 − t0| Lδ
0→1(fk ◦ γk)

∣∣∣ ≤ C(δ + εk);

Lδ
0→1(fk ◦ γk) ≤ C.

(28.23)

Now for ε, δ > 0, define
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Γε,δ(X ) =
{
σ ∈ P ([0, 1] × X ); τ#σ = λ;

∣∣∣Lδ
t0→s0

(σ) − |s0 − t0| Lδ
0→1(σ)

∣∣∣ ≤ C(δ + ε); Lδ
0→1(σ) ≤ C

}
. (28.24)

It is easy to see that Γε,δ(X ) is closed in P ([0, 1] × X ). Moreover, for k large enough
one has εk ≤ ε and then fk ◦ γk ∈ Γε,δ(X ) for any geodesic γk ∈ Γ (Xk). It follows that
(fk◦)#Πk ∈ P (Γε,δ(X )) for k large enough; by passing to the limit, also Π ∈ P (Γε,δ(X )).
Since ε, δ are arbitrarily small,

Π ∈ P

( ⋂

ε,δ>0

Γε,δ(X )
)

. (28.25)

So to conclude the proof of (a) it suffices to prove
⋂

ε,δ>0

Γε,δ(X ) = Γ (X ). (28.26)

So let σ ∈
⋂

ε,δ>0 Γε,δ(X ). Taking ε → 0 in (28.24), we get
∣∣∣Lδ

t0→s0
(σ) − |s0 − t0| Lδ

0→1(σ)
∣∣∣ ≤ δ. (28.27)

In particular,
Lδ

t0→s0
(σ) ≤ C(|s0 − t0| + δ). (28.28)

In Lemma 28.11 below it will be shown that, as a consequence of (28.28), σ can be
written as (Id , γ)#λ for some Lipschitz-continuous curve γ : [0, 1] → X . Once that is
known, the end of the proof of (a) is straightforward: Since

Lδ
t0→s0

(σ) = d
(
γ(t0), γ(s0)

)
+ O(δ), (28.29)

the inequality (28.27) becomes, in the limit δ → 0,

d
(
γ(t0), γ(s0)

)
= |s0 − t0| d

(
γ(0), γ(1)

)
. (28.30)

This implies that L(γ) = d(γ(0), γ(1)), so γ is a geodesic curve. This concludes the proof
of (a), and of part (i) of Theorem 28.9 at the same time.

Now I shall use a similar reasoning for the convergence of the marginals of Π. Given
Φ ∈ C(X × X ) and γ ∈ Γ (X ), put

Φδ(γ) =
∫ 1

0

∫ 1

0
Φ
(
γ(t), γ(s)

)
ϕδ

+(t)ϕδ
−(s − 1) dt ds. (28.31)

As before, this extends to a continuous function on P ([0, 1] × X ) by

Φδ(σ) =
∫

[0,1]×X

∫

[0,1]×X
Φ(x, y)ϕδ

+(t)ϕδ
−(s − 1) dσ(t, x) dσ(s, y). (28.32)

By part (i) of the theorem,
∫

Γ (Xk)
Φδ(fk ◦ γk) dΠk(γk) −→

∫

Γ (X )
Φδ(γ) dΠ(γ). (28.33)
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Let us examine the behavior of the two sides of (28.33) as δ → 0. If γ is a geodesic
on X , the continuity of Φ and γ implies that Φδ(γ) −→ Φ(γ(0), γ(1)) as δ → 0. Then by
dominated convergence,

∫

Γ (X )
Φδ(γ) dΠ(γ) −→

∫

Γ (X )
Φ
(
γ(0), γ(1)

)
dΠ(γ)

=
∫

Φ d(e0, e1)#Π =
∫

Φ dπ. (28.34)

As for the left-hand-side of (28.33), things are not so immediate because fk ◦ γk may
be discontinuous. However, for 0 ≤ t ≤ 2δ one has

d
(
fk(γk(0)), fk(γk(t))

)
= dk

(
γk(0), γk(t)

)
+ O(εk) = O(δ + εk), (28.35)

where the implicit constant in the right-hand side is independent of γk. Similarly, for
1 − 2δ ≤ s ≤ 1, one has

d
(
fk(γk(s)), fk(γk(1))

)
= O(δ + εk). (28.36)

Then it follows from the uniform continuity of Φ that

sup
γk∈Γ (Xk), t∈[0,2δ], s∈[1−2δ,1]

∣∣∣∣Φ
(
fk(γk(t)), fk(γk(s))

)
− Φ

(
fk(γk(0)), fk(γk(1))

)∣∣∣∣→ 0

(28.37)
as δ → 0 and k → ∞. So in this limit, the left-hand-side of (28.33) is well approximated
by

∫

Γ (Xk)
Φ
(
fk(γk(0)), fk(γk(1))

)
dΠk(γk) =

∫

X×X
Φ d

[
(fk, fk)#

(
(e0, e1)#Πk

)]

=
∫

X×X
Φ d(fk, fk)#πk. (28.38)

The comparison of (28.33), (28.34) and (28.38) shows that (fk, fk)#πk converges to π,
which concludes the proof of (b).

As for (c) we just have to show that limk→∞(fk)#µk,t0 = µt0 for all t0 ∈ [0, 1]. The
argument is quite similar to the proof of (b). Assume, for example, that t0 < 1. Given
Φ ∈ C(X ), define

Φδ
t0(γ) =

∫ 1

0
Φ(γ(t))ϕδ

+(t − t0) dt. (28.39)

This extends to a continuous function on P ([0, 1] × X ), so
∫

Γ (Xk)
Φδ

t0(fk ◦ γk) dΠk(γk) −→
∫

Γ (X )
Φδ

t0(γ) dΠ(γ). (28.40)

The right-hand side converges to
∫
X Φ(x) dµt0(x) as δ → 0, while the left-hand side is well

approximated by
∫
X Φ(fk(x)) dµk,t0(x). The conclusion follows.

The proof of (d) also follows a similar reasoning.

Let us finally turn to the proof of statements (v) and (vi) in the theorem. In the sequel,
it will be assumed that each Πk is an optimal dynamical optimal transference plan. In
view of Theorem 28.5, for each t ∈ (0, 1), the velocity fields |vk,t| can be chosen in such



454 28 Stability of optimal transport

a way that they satisfy a uniform Hölder-1/2 estimate. Then the precompactness of |vk,t|
follows from Ascoli’s theorem, in the form of Proposition 27.20. So up to extraction, we
may assume that |vk,t ◦ f ′

k converges uniformly to some function |vt|. It remains to show
that |vt|2/2 is an admissible density for ε, at each time t ∈ (0, 1). For simplicity I shall
omit the time variable, so t is implicit and fixed in (0, 1). Since there is a uniform bound
on the diameter of the spaces Xk, the function |vk|2 ◦ f ′

k converges uniformly to |v|2. By
uniform continuity of |vk|2, the difference between |vk|2 and |vk|2 ◦ (f ′

k ◦ fk) is bounded by
η(k), where η(k) → 0 as k → ∞. After going back to the definitions of push-forward and
weak convergence, it follows that

lim
k→∞

(
|vk|2 ◦ f ′

k

)
(fk)#µk = lim

k→∞
(fk)#

(
|vk|2 µk) = 2 lim

k→∞
(fk)#εk = 2 ε. (28.41)

Since |vk|2 ◦ f ′
k converges uniformly to |v|2, and (fk)#µk converges weakly to µ, the left-

hand side in (28.41) converges weakly to |v|2 µ. It follows that |v|2/2 is an admissible
density for the kinetic energy ε. This concludes the proof of (v).

The proof of (vi) is easy now. Since π = lim(fk, fk)#πk and fk is an approximate
isometry,
∫

d(x0, x1)2 dπ(x0, x1) = lim
k→∞

∫
d(fk(x0), fk(x1))2 dπk(x0, x1) = lim

k→∞

∫
dk(x0, x1)2 dπk(x0, x1).

(28.42)
By assumption, πk is optimal for each k, so

∫
dk(x0, x1)2 dπk(x0, x1) = W2(µ0,k, µ1,k)2. (28.43)

By Theorem 28.6, (fk)# is an approximate isometry P2(Xk) → P2(X ), so

lim
k→∞

W2(µ0,k, µ1,k)2 = lim
k→∞

W2
(
(fk)#µ0,k, (fk)#µ1,k

)
= W2(µ0, µ1)2, (28.44)

where the latter limit follows from the continuity of W2 under weak convergence (Theo-
rem 6.7). The combination of (28.42), (28.43) and (28.44) shows that

∫
d(x0, x1)2 dπ(x0, x1) =

W2(µ0, µ1)2, so π is an optimal transference plan. So Π is an optimal dynamical transfer-
ence plan, and the proof of (vi) is complete.

(Note: Since (µt,k)0≤t≤1 is a geodesic path in P2(Xk) (recall Corollary 7.20), and (fk)#
is an approximate isometry P2(Xk) → P2(X ), Theorem 27.9 implies directly that the limit
path µt = (fk)#µk,t is a geodesic in P2(X ); but I don’t know if one can then recover the
optimality of Π.) 78

To complete the proof of Theorem 28.9, it only remains to establish the following
lemma, which was used in the proof of statement (a).

Lemma 28.11. Let (X , d) be a compact length space. Let σ be a probability measure on
[0, 1] × X satisfying (28.28). Then there is a Lipschitz curve γ : [0, 1] → X such that
σ(dt dx) = γ(dt dx) = δx=γ(t) dt.

Proof of Lemma 28.11. First disintegrate σ with respect to its first marginal λ. Then there
is a family (νt)0≤t≤1, measurable as a map from [0, 1] to P (X ) and unique up to modifi-
cation on a set of zero Lebesgue measure in [0, 1], such that

σ(dt dx) = νt(dx) dt. (28.45)
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The goal is to show that, up to modification of νt on a negligible set of times,

νt(dx) = δx=γ(t), (28.46)

where γ is Lipschitz.

In the sequel I shall use, for convenience, the 1-Wasserstein distance W1.

Step 1: almost-everywhere Lipschitz continuity
Let β be an arbitrary nonnegative continuous function on [0, 1] × [0, 1]. Integrat-

ing (28.28) with respect to β yields
∫ 1

0

∫ 1

0
β(t0, s0)Lδ

t0→s0
(σ) dt0 ds0 ≤ C

∫ 1

0

∫ 1

0
β(t0, s0)

(
|s0 − t0| + δ

)
dt0 ds0. (28.47)

The left-hand-side of (28.47) can be written as
∫ 1

0

∫ 1

0

∫

X×[0,1]

∫

X×[0,1]
β(t0, s0) d(x, y)ϕδ

+(t − t0)ϕδ
−(s − s0) dνt(x) dt dνs(y) ds dt0 ds0

(28.48)

=
∫ 1

0

∫ 1

0
F δ(t, s)Λ(t, s) dt ds,

where 




F δ(t, s) =
∫ 1

0

∫ 1

0
β(t0, s0)ϕδ

+(t − t0)ϕδ
−(s − s0) dt0 ds0

Λ(t, s) =
∫

X×X
d(x, y) dνt(x) dνs(y).

(28.49)

Since F δ(t, s) converges to β(t, s) in C([0, 1] × [0, 1]) as δ → 0, the expression in (28.48)
converges to ∫

X×[0,1]

∫

X×[0,1]
β(t, s) d(x, y) dνt(x) dt dνs(y) ds. (28.50)

Now plug this back into (28.47) and let δ → 0 to conclude that
∫

X×[0,1]

∫

X×[0,1]
β(t, s) d(x, y) dνt(x) dt dνs(y) ds ≤ C

∫ 1

0

∫ 1

0
β(t, s) |s − t| dt ds. (28.51)

As β is arbitrary, we actually have
∫

X×X
d(x, y) νt(dx) νs(dy) ≤ C |t − s| (28.52)

for (λ⊗ λ)-almost all (t, s) in [0, 1] × [0, 1]. In particular,

W1(νt, νs) ≤ C |t − s| for almost all (t, s) ∈ [0, 1] × [0, 1]. (28.53)

Step 2: true Lipschitz continuity
Now let us show that νt can be modified on a negligible set of times so that (28.53)

holds for all (t, s) ∈ [0, 1] × [0, 1].
For small ε > 0 and t ∈ [ε, 1 − ε], define
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νε
t =

1
2ε

∫ ε

−ε
νt+τ dτ. (28.54)

Then by Theorem 4.7,

W1(νε
t , ν

ε
s) ≤

1
2ε

∫ ε

−ε
W1(νt+τ , νs+τ ) dτ ≤ C|t − s| + O(ε). (28.55)

Next, let (ψk)k∈N be a countable dense subset of C(X ). For all k,
∫

X
ψk dνε

t =
1
2ε

∫ t+ε

t−ε

(∫

X
ψk(x) dντ (x)

)
dτ. (28.56)

Since the expression inside the parentheses is a bounded measurable function of τ ,
Lebesgue’s density theorem ensures that as ε → 0, the right-hand-side of (28.56) con-
verges to

∫
X ψk dνt for almost all t. So there is a negligible subset of [0, 1], say Nk, such

that if t /∈ Nk then

lim
ε→0

∫

X
ψk dνε

t =
∫

X
ψk dνt. (28.57)

Let N =
⋃∞

k=1 Nk; this is a negligible subset of [0, 1]. For all t /∈ N , equation (28.57) holds
for all k. This proves that limε→0 νε

t = νt in the weak topology, for almost all t.
Now for arbitrary t ∈ (0, 1), there is a sequence of times tj → t, such that νε

tj converges
to νtj as ε → 0. Then for ε and ε′ sufficiently small,

W1(νε
t , ν

ε′
t ) ≤ W1(νε

tj , ν
ε′
tj ) + 2C |t − tj | (28.58)

≤ W1(νε
tj , νtj ) + W1(νε′

tj , νtj ) + 2C |t − tj|.

It follows that limε,ε′→0 W1(νε
t , ν

ε′
t ) = 0. Since (P (X ),W1) is a complete metric space

(Theorem 6.15), in fact limε→0 νε
t exists for all (not just almost all) t ∈ (0, 1). The limit

coincides with νt for almost all t ∈ (0, 1), so it defines the same measure σ(dt dx). Re-define
νt on a negligible set of times if necessary, so that the limit is νt for all t ∈ (0, 1). Now it
is possible to pass to the limit in (28.55) as ε → 0, and recover W1(νt, νs) ≤ C|t − s| for
all t, s ∈ (0, 1). Of course this extends to t, s ∈ [0, 1] by density.

Step 3: Conclusion
From the previous step, W1(νt, νt0) ≤ Cδ if |t − t0| ≤ δ. It follows from the definition

of Lδ
t0→s0

that

Lδ
t0→s0

(σ) =
∫

X×[0,1]

∫

X×[0,1]
d(x, y)ϕδ

+(t − t0)ϕδ
−(s − s0) dνt0(x) dt dνs0(y) ds + O(δ)

(28.59)

=
∫

X×X
d(x, y) dνt0(x) dνs0(y) + O(δ).

Plugging this back into (28.28) and taking δ → 0, we obtain
∫

X×X
d(x, y) dνt0(x) dνs0(y) ≤ C |s0 − t0|. (28.60)

This holds for all t0 and s0, so we can choose s0 = t0 and obtain
∫

X×X
d(x, y) dνt0(x) dνt0(y) = 0. (28.61)

This is only possible if νt0 is a Dirac measure. Hence for any t0 ∈ [0, 1] there is a γ(t0) ∈
X such that νt0 = δγ(t0). Then d(γ(t), γ(s)) = W1(νt, νs) ≤ C|t − s|, so γ is Lipschitz
continuous. This concludes the proof of Lemma 28.11. 78
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Noncompact spaces

Now it will be easy to extend the preceding results to noncompact spaces, by localization,
thanks to the next lemma. Recall that Γ (X ) stands for the set of all (constant speed,
minimizing) geodesic curves [0, 1] → X .

Lemma 28.12. Let (X , d) be a Polish length space, and let K be a compact in X . Let ΓK

be the set of geodesic curves [0, 1] → X whose image lies entirely in K: in other words,

ΓK :=
{
γ ∈ Γ (X ); γ([0, 1]) ⊂ K

}
.

Then ΓK is itself a compact subset of Γ (X).

Proof of Lemma 28.12. Let D be the diameter of K. The set ΓK is the set of curves
γ : [0, 1] → K which are D-Lipschitz from [0, 1] to K and satisfy the equation L(γ) =
d(γ(0), γ(1)). By Ascoli’s theorem, this set is compact for the uniform topology. 78

Now comes the final result in this chapter.

Theorem 28.13. Let (Xk, dk, Ak) be a sequence of locally compact Polish spaces converging
in the pointed Gromov–Hausdorff topology to some locally compact Polish space (X , d, A).
Then P2(Xk) converges to P2(X ) in the geodesic local Gromov–Hausdorff topology.

Remark 28.14. If a basepoint A is given in X , there is a natural choice of basepoint for
P2(X ), namely δ8. However, P2(X ) is in general not locally compact, and it does not make
sense to consider the pointed convergence of P2(Xk) to P2(X ).

Remark 28.15. Theorem 28.13 admits the following extension: If (Xk, dk) converges to
(X , d) in the geodesic local Gromov–Hausdorff topology, then also P2(Xk) converges to
P2(X ) in the geodesic local Gromov–Hausdorff topology. The proof is almost the same
and left to the reader.

Proof of Theorem 28.13. Let R( → ∞ be a given increasing sequence of positive numbers.
Define

K(() = P2
(
BR!](A)

)
⊂ P2(X ),

K(()
k = P2

(
BR!](Ak)

)
⊂ P2(Xk),

where the inclusion is understood in an obvious way (a probability measure on a subset of
X can be seen as the restriction of a probability measure on X ). Since BR!](A) is a compact
set, K(() is compact too, and so is K(()

k , for each k and each 5. Moreover, the union of all
Kk is dense in P2(X ), as a corollary of Theorem 6.15.

For each 5, there is a sequence (fk)k∈N such that each fk is an εk isometry BR!](Ak) →
BR!](A), where εk → 0. From Proposition 28.7, (fk)# is an ε̃k,(-isometry K(()

k → K((), with

ε̃( ≤ 10 (εk +
√

2R(εk),

which goes to 0 as k → ∞. So all the requirements of Definition 27.11 are satisfied, and
P2(Xk) does converge to P2(X ) in the local Gromov–Hausdorff topology.

To check condition (iii) appearing in Definition 27.12, it is sufficient to note that any
geodesic in P2(BR!](Ak)) can be written as the law of a random geodesic joining points in
BR!](Ak), and such a geodesic is contained in B2R!](Ak); so just choose 5′ large enough that
R(′ ≥ 2R(. 78
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Bibliographical Notes

Theorem 28.6 is taken from [247, Section 4], while Theorem 28.13 is an adaptation
of [247, Appendix E]. Theorem 28.9 is new. (A part of this theorem was included in a
preliminary version of [249], and later removed from that reference.)

The discussion about push-forwarding dynamical transference plans is somewhat subtle.
The point of view adopted in this chapter is the following: when an approximate isometry
f is given between two spaces, use it to push-forward a dynamical transference plan Π, via
(f◦)#Π. The advantage is that this is the same map that will push-forward the measure
and the dynamical plan. The drawback is that the resulting object (f◦)#Π is not a
dynamical transference plan, in fact it may not even be supported on continuous paths.
This leads to the kind of technical sport that we’ve encountered in this chapter, embedding
into probability measures on probability measures and so on.

Another option would be as follows: Given two spaces X and Y, with an approximate
isometry f : X → Y, and a dynamical transference plan Π on Γ (X ), define a true
dynamical transference plan on Γ (Y), which is a good approximation of (f◦)#Π. The
point is to construct a recipe which to any geodesic γ in X associates a geodesic S(γ)
in Y that is “close enough” to f ◦ γ. This strategy was successfully implemented in the
final version of [249, Appendix]; it is much simpler, and still it is quite sufficient for some
purposes. The example treated in [249] is the stability of the “democratic condition”
considered by Lott and myself; but certainly this simplified version will work for many
other stability issues. On the other hand, I don’t know if it is enough to treat such topics
as the stability of general weak Ricci bounds, which will be considered in the next chapter.

The study of the kinetic energy measure and the speed field occurred to me during
a parental meeting of the Crèche Le Rêve en Couleurs. My motivations for regularity
estimates on the speed are explained in the bibliographic notes of Chapter 29, and come
from a direction of research which I have more or less left apart for the moment. So
Theorem 28.5 is still “in search of an application”; but I would be surprised if it would
not prove useful some day.
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Weak Ricci curvature bounds I: Definition and Stability

In Chapter 14 I recalled several formulations of the CD(K,N) curvature-dimension bound
for a smooth manifold (M,g) equipped with a reference measure whose density (with
respect to the volume element) is smooth. For instance, here is a possible formulation
of CD(K,N) for N < ∞: For any C2 function ψ : M → R, let J (t, ·) be the Jacobian
determinant of Tt : x "−→ expx(t∇ψ(x)), and let D(t, x) = J (t, x)

1
N ; then, with the

notation of Theorem 14.8,

D(t, x) ≥ τ (1−t)
K,N D(0, x) + τ (t)

K,ND(1, x). (29.1)

How to generalize this definition in such a way that it would make sense in a possibly
nonsmooth metric-measure space? This is definitely not obvious since (i) there might be
no good notion of gradient, and (ii) there might be no good notion of exponential map
either.

There are many definitions that one may try, but so far the only approach that yields
acceptable results is the one based on displacement convexity. Recall from Chapters 16
and 17 two displacement convexity inequalities that characterize CD(K,N): Let µ0 and
µ1 be two compactly supported (for simplification) absolutely continuous probability mea-
sures, let π be the optimal coupling of (µ0, µ1), let (ρt ν)0≤t≤1 be the displacement inter-
polation between µ0 = ρ0 ν and µ1 ν, let (vt)0≤t≤1 be the associated velocity field, then
for all U ∈ DCN , t ∈ [0, 1],
∫

U(ρt) dν ≤ (1 − t)Uν(µ0) + t Uν(µ1) − KN,U

∫ 1

0
ρs(x)1−

1
N |vs(x)|2 G(s, t) ds, (29.2)

∫
U(ρt) dν ≤ (1 − t)

∫

M×M
U

(
ρ0(x0)

β(K,N)
1−t (x0, x1)

)

β(K,N)
1−t (x0, x1)π(dx1|x0) ν(dx0)+

t

∫

M×M
U

(
ρ1(x1)

β(K,N)
t (x0, x1)

)

β(K,N)
t (x0, x1)π(dx0|x1) ν(dx1). (29.3)

Here G(s, t) is the one-dimensional Green function of (16.6), KN,U is defined by (17.9),
and the distortion coefficients β(K,N)

t = βt are defined in (14.60).
Which of these formulas should we choose for the extension to nonsmooth spaces?

When K = 0, both formulas reduce to just
∫

U(ρt) dν ≤ (1 − t)
∫

U(ρ0) dν + t

∫
U(ρ1) dν. (29.4)
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In the case N < ∞, formula (29.3) is much more convenient to establish functional in-
equalities; while in the case N = ∞ it is formula (29.2) which is easier to use. However,
it will turn out that in the case N = ∞, (29.2) is an immediate consequence of (29.3).
All this concurs to suggest that (29.3) is the correct choice on which we should base the
general definition.

Now we would like to adapt these formulas to a nonsmooth context. This looks simpler
than working with (29.1), but there are still a few issues to take into account.

(i) First issue: Non-uniqueness of the displacement interpolation.
There is a priori no reason to expect uniqueness of the displacement interpolation in

a nonsmooth context. We may require the distorted displacement convexity (29.3) along
every displacement interpolation, i.e. every geodesic in Wasserstein space; but this is not
a good idea for stability issues. (Recall Example 27.17: in general the geodesics in the
limit space cannot be realized as limits of geodesics.) Instead, we shall require a convexity
inequality along some displacement interpolation. In this sense, we will only impose a weak
displacement convexity property: For any µ0 and µ1 there should be some geodesic
(µt)0≤t≤1 along which inequality (29.3) should hold true.

To appreciate the difference between “convexity” and “weak convexity”, note the fol-
lowing: If F is a function defined on a length space X , then the two statements “F is convex
along each geodesic (γt)0≤t≤1” and “ “For any x0 and x1, there is a geodesic (γt)0≤t≤1 join-
ing x0 to x1, such that F (γt) ≤ (1− t)F (γ0)+ tF (γ1)” are not equivalent in general. (They
become equivalent under some regularity assumption on X , for instance if any two close
enough points in X are joined by a unique geodesic.)

(ii) Second issue: Treatment of the singular part.
Even if µ0 and µ1 are absolutely continuous with respect to ν, there is no guarantee

that the Wasserstein interpolant µt will also be absolutely continuous. For stability issues
it will also be useful to work with possibly singular measures, since the set P ac

2 (X , ν) is
not closed under weak convergence.

So the problem arises to devise a “correct” definition for the integral functionals of the
density which appear in the displacement convexity inequalities, namely

Uν(µ) =
∫

X
U

(
dµ

dν

)
dν, Uβ

π,ν(µ) =
∫

X×X
U

(
1

β(x, y)
dµ

dν
(x)

)
β(x, y)π(dy|x) ν(dx).

It would be a mistake to keep the same definition and replace dµ/dν by the density of
the absolutely continuous part of µ with respect to ν. In fact there is only one natural
extension of the functionals U and Uβ

π,ν ; before giving it explicitly, I shall try to motivate it.
Take a reference measure ν, a probability measure µ ∈ P2(X , ν), and a convex continuous
function U : R+ → R+. Think of the singular part of µ as something which “always has
infinite density”. Assume that the respective contributions of finite and infinite values of
the density decouple, so one would define separately the contributions of the absolutely
continuous part µac and the singular part µs. Only the asymptotic behavior of U(r) as r →
∞ should count when one defines the contribution of µs. Finally, if U(r) were increasing
like cr, then it is natural to assume that Uν(µs) should be

∫
X c dµs = c µs[X ]. So it is the

asymptotic slope of U that should matter. Since U is convex, there is a natural notion of
asymptotic slope of U :

U ′(∞) := lim
r→∞

U(r)
r

= lim
r→∞

U ′(r) ∈ R ∪ {+∞}. (29.5)

After these preparations, the following definition should seem quite natural to the reader.
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Definition 29.1 (Integral functionals for singular measures). Let (X , d, ν) be a
locally compact metric-measure space, where ν is locally finite; let U : R+ → R be a con-
tinuous convex function with U(0) = 0, and let µ be a measure on X , compactly supported.
Let

µ = ρ ν + µs

stand for the Lebesgue decomposition of µ into an absolutely continuous and a singular
part. Then,

(i) define the integral functional Uν , with nonlinearity U and reference measure ν, by

Uν(µ) :=
∫

X
U(ρ(x)) ν(dx) + U ′(∞)µs[X ];

(ii) if π is a probability measure on X × X and β is a positive measurable function
on X × X , define the integral functional Uβ

π,ν with nonlinearity U , reference measure ν,
coupling π and distortion coefficient β, by

Uβ
π,ν(µ) :=

∫

X×X
U

(
ρ(x)

β(x, y)

)
β(x, y)π(dy|x) ν(dx) + U ′(∞)µs[X ],

where π(dy|x) is the conditional law of y (under π(dx dy)) given x.

Remark 29.2. It is clear that Uβ
π,ν reduces to Uν when β ≡ 1, i.e. when there is no

distortion.

Remark 29.3. These definitions take care of the subtleties linked to singularities of the
measure µ; actually there are also subtleties linked to the behavior at infinity, but I shall
consider them only in the next chapter. For the moment, we can be content with the
restriction of compact support, because we know that a displacement interpolation between
two compactly supported measures is itself compactly supported at all times.

For later use I record here two elementary lemmas about the functionals Uβ
π,ν. The

reader may skip them at first reading and go directly to the next section.
First, there is a handy way to rewrite Uβ

π,ν(µ) when µs = 0:

Lemma 29.4 (Rewriting of the distorted Uν functional). With the notation of
Definition 29.1, if µs = 0 then

Uβ
π,ν(µ) =

∫

X×X
U

(
ρ(x)

β(x, y)

)
β(x, y)
ρ(x)

π(dx dy)

=
∫

X×X
v

(
ρ(x)

β(x, y)

)
π(dx dy),

where v(r) = U(r)/r, with the convention U(0)/0 = U ′(0) ∈ [−∞,+∞).

Proof of Lemma 29.4. The identity is formally obvious if one notes that ρ(x)π(dy|x) ν(dx) =
π(dy dx) = π(dy|x)µ(dx); so all the subtlety lies in the fact that in the left-hand side, the
convention is U(0)/0 = 0, while in the right-hand side it is U(0)/0 = U ′(0). Switching
between both conventions is allowed because the set {ρ = 0} is anyhow of zero π-measure.
78
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Secondly, the functionals Uβ
π,ν (and the functionals Uν) satisfy a principle of “rescaled

subadditivity”, which might at first sight seem contradictory with the convexity property,
but is not at all. In the next statement, I use the notation

Ua(r) = a−1 U(ar).

Lemma 29.5 (Rescaled subadditivity of the distorted Uν functionals). Let
(X , d, ν) be a locally compact metric-measure space, where ν is locally finite, and let β
be a positive measurable function on X × X . Let U be a Lipschitz convex function with
U(0) = 0. Let µ1, . . . , µk be probability measures on X , let π1, . . . ,πk be probability mea-
sures on X × X , and let Z1, . . . , Zk be positive numbers with

∑
Zj = 1. Then

UβP
j Zj πj ,ν(

∑
Zj µj) ≥

∑

j

Zj (UZj )
β
πj ,ν(µj),

with equality if the measures µk are singular with respect to each other.

Proof of Lemma 29.5. By induction, it is sufficient to prove the lemma when k = 2. We
start by the following remark: If x, y are nonnegative numbers, then

U(x + y) ≥ U(x) + U(y). (29.6)

Inequality (29.6) follows at once from the fact that U(t)/t is a nondecreasing function of
t, and thus

U(x)
x

≤ U(x + y)
x + y

,
U(y)

y
≤ U(x + y)

x + y
=⇒ xU(x + y) + yU(x + y) ≥ (x + y)(U(x) + U(y)).

Now we turn to the proof of the lemma. For pedagogic reasons, I shall first treat the
special case when β = 1, so that Uβ

π,ν = Uν . With obvious notation,

Uν(Z1µ1 + Z2µ2) =
∫

U(Z1ρ1 + Z2ρ2) dν + U ′(∞)
(
Z1 µ1,s[X ] + Z2 µ2,s[X ]

)
;

(UZ1)ν(µ1) =
1
Z1

∫
U(Z1ρ1) dν + U ′(∞)µ1,s[X ];

(UZ2)ν(µ2) =
1
Z2

∫
U(Z2ρ2) dν + U ′(∞)µ2,s[X ];

then the conclusion follows immediately from (29.6). Moreover, the claim about equality
merely amounts to say that U(x + y) = U(x) + U(y) as soon as either x or y is zero.

Now for the general case, we observe that

Uβ
Z1π1+Z2π2,ν(Z1µ1 + Z2µ2)

=
∫

X×X
U

(
Z1ρ1(x) + Z2ρ2(x)

β(x, y)

)
β(x, y)(Z1π1 + Z2π2)(dy|x) ν(dx)

+ U ′(∞)
(
Z1 µ1,s[X ] + Z2 µ2,s[X ]

)
;

(UZ1)
β
π1,ν(µ1) =

∫
U

(
Z1ρ1(x)
β(x, y)

)
β(x, y)π1(dy|x) dν + U ′(∞)µ1,s[M ];

(UZ2)
β
π2,ν(µ2) =

∫
U

(
Z2ρ2(x)
β(x, y)

)
β(x, y)π2(dy|x) dν + U ′(∞)µ2,s[M ].

Thus the result follows again by (29.6). 78



29 Weak Ricci curvature bounds I: Definition and Stability 463

Synthetic definition of the curvature-dimension bound

In the next definition I shall use the following conventions: An optimal transference π is
said to be associated with a displacement interpolation (µt)0≤t≤1 if there is a dynamical
optimal transference plan Π such that µt = (et)#Π, π = (e0, e1)#π. (Equivalently, there
is a random geodesic γ such that π = law (γ0, γ1) and µt = law (γt).) Also, if π is a given
probability measure on X ×X , I shall denote by π̌ the probability measure obtained from
π by “exchanging x and y”; more rigorously, π̌ := S#π, where S(x, y) = (y, x).

Definition 29.6 (Weak curvature-dimension condition). Let K ∈ R and N ∈
[1,∞]. A locally compact, complete σ-finite metric-measure length space (X , d, ν) is said
to satisfy a weak CD(K,N) condition, or to be a weak CD(K,N) space, if the following
condition is satisfied: Whenever ρ0 and ρ1 are two compactly supported probability densi-
ties, and µ0 = ρ0 ν, µ1 = ρ1 ν are the associated probability measures, then there exists a
displacement interpolation (µt)0≤t≤1 and an associated optimal coupling π of (µ0, µ1) such
that, for all U ∈ DCN and for all t ∈ [0, 1],

Uν(µt) ≤ (1 − t)U
β(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1). (29.7)

In short, the weak CD(K,N) condition means that the functionals Uν should be weakly
displacement convex with distortion coefficients (β(K,N)

t ), for all U ∈ DCN . This is a
property of the triple (X , d, ν), but for simplicity I shall often abbreviate the statement
“(X , d, ν) satisfies a weak CD(K,N) condition” into “X satisfies a weak CD(K,N) con-
dition, with the understanding that the distance and reference measure should be clear
from the context.

Before going any further, I shall make explicit the fact that this definition is an extension
of the usual one, and connect the synthetic notion of weak CD(K,N) space with the
corresponding analytic notion (considered in Chapter 14, and defined for instance in terms
of the modified Ricci curvature tensor (14.36)).

Theorem 29.7 (Smooth weak CD(K,N) spaces are CD(K,N) manifolds). Let
(M,g) be a smooth Riemannian manifold, equipped with its geodesic distance d, its volume
measure vol , and a reference measure ν = e−V vol , where V ∈ C2(M). Then, (M,d, ν) is a
weak CD(K,N) space if and only if (M,g, ν) satisfies the CD(K,N) curvature-dimension
bound; or equivalently, if the modified Ricci tensor RicN,ν satisfies RicN,ν ≥ Kg.

Proof of Theorem 29.7. This is a direct consequence of Theorems 10.35 and 17.28. 78

The end of this section is devoted to a series of comments about Definition 29.6.

• In the case K > 0 and N < ∞, the coefficient β(K,N)
t (x, y) takes the value +∞ if

0 < t < 1 and d(x, y) > DK,N := π
√

(N − 1)/K . In that case the natural convention in the
integral is ∞U(r/∞) = U ′(0) r, in accordance with Lemma (29.4). With this convention,
Definition 29.6 implies that the diameter of the support of ν is automatically bounded
above by DK,N . Otherwise, take x0, x1 ∈ Spt ν with d(x0, x1) > DK,N , and choose r > 0
small enough that for all x′

0 ∈ Br(x0), x′
1 ∈ Br(x1), one has still d(x′

0, x
′
1) > DK,N . Take

ρ0 = 1Br(x0)/ν[Br(x0)] and ρ1 = 1Br(x1)/ν[Br(x1)] in the definition of weak CD(K,N)
bound. Then the coefficients βt appearing in the right-hand side of (29.7) are always +∞,
and the measures have no singular part; so inequality (29.7) becomes just

Uν(µt) ≤ U ′(0)
(
(1 − t)

∫
ρ0 dν + t

∫
ρ1 dν

)
= U ′(0). (29.8)
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Now choose U(r) = −r1−1/N : Then U ′(0) = −∞, so inequality (29.8) implies Uν(µ) = −∞.
On the other hand, by Jensen’s inequality, Uν(µ) ≥ −ν[S] (

∫
ρ dν/ν[S])1−1/N = −ν[S]1/N ,

where S stands for the support of µ; so Uν(µ) cannot be −∞. This contradiction proves
the claim. Let me record the conclusion in the form of a separate statement:

Proposition 29.8 (Bonnet–Myers diameter bound for weak CD(K,N) spaces).
If (X , d, ν) is a weak CD(K,N) space with K > 0 and N < ∞, then

diam (Spt ν) ≤ DK,N := π

√
N − 1

K
.

As a corollary, when we use inequality (29.7) in a weak CD(K,N) space, the distortion
coefficients appearing in the right-hand side are in fact always finite.

• An important property of the classical CD(K,N) condition is that it is more and
more stringent as K increases and as N decreases. The next proposition shows that the
same is true in a nonsmooth setting.

Proposition 29.9 (consistency of the CD(K,N) conditions). The weak condition
CD(K,N) is more and more stringent as K increases, and as N decreases.

Proof. First, the class DCN becomes smaller as N increases, which means less condi-
tions to satisfy. Next, recall that β(K,N)

t and β(K,N)
1−t are increasing in K and decreas-

ing in N (as noticed right after (14.60)); since U(r)/r is nonincreasing, the quantities
β(K,N)

1−t (x0, x1)U(ρ0(x0)/β
(K,N)
1−t ) and β(K,N)

t (x0, x1)U(ρ1(x1)/β
(K,N)
t ) are nondecreasing in

N and nonincreasing in K. The conclusion follows immediately. 78

• To check Definition 29.6, it is not really necessary to establish inequality (29.7) for
the whole class DCN : It is sufficient to restrict to members of DCN that are Lipschitz and
nonnegative. This is the content of the next statement.

Proposition 29.10 (Sufficient condition for Definition (29.6)). In Definition 29.6,
it is equivalent to require that inequality (29.7) hold for all U ∈ DCN , or just for all
U ∈ DCN ∩ Lip(R+, R+).

Proof. We shall assume that (X , d, ν) satisfies Definition 29.6, except that (29.6) holds
true only for U ∈ DCN ∩ Lip(R+, R+), and check that in fact inequality (29.6) holds true
for all U ∈ DCN . This will be done in three steps.

Step 1: Let U ∈ DCN ∩ Lip(R+, R). Then U can be decomposed as

U(r) = Ũ(r) − Ar,

where Ũ ∈ DCN ∩ Lip(R+, R+) and A ≥ 0 (choose A = max(−U ′(0), 0)). By assumption,
with the same notation as in Definition 29.6, one has the inequality

Ũν(µt) ≤ (1 − t) Ũ
β

(K,N)
1−t

π,ν (µ0) + t Ũ
β(K,N)

t
π̌,ν (µ1). (29.9)

Write µt = ρt ν + (µt)s for the Lebesgue decomposition of µt with respect to ν. The
replacement of Ũ by U amounts to adding to the left-hand side

A

(∫
ρt dν + (µt)s[X ]

)
= Aµt[X ] = A,
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and to the right-hand side

A (1 − t)
∫

X×X

ρ0(x0)

β(K,N)
1−t (x0, x1)

β(K,N)
1−t (x0, x1)π(dx1|x0) ν(dx0)

+ At

∫

X×X

ρ1(x1)

β(K,N)
t (x0, x1)

β(K,N)
t (x0, x1)π(dx0|x1) ν(dx1) = A

also. So the inequality (29.9) also holds true with Ũ replaced by U .

Step 2: Let U ∈ DCN with U ′(∞) < ∞. Then by Proposition 17.7(iv), there is a
nonincreasing sequence (U()(∈N, converging pointwise to U , with U ′

((0) > −∞ and U ′
((0) →

U ′(0). Necessarily, U ′
((∞) < U ′(∞) < ∞, so each U( is Lipschitz, and one has, by Step 1,

(U()ν(µt) ≤ (1 − t) (U()
β(K,N)
1−t

π,ν (µ0) + t (U()
β

(K,N)
t

π̌,ν (µ1).

The problem is to pass to the limit as 5 → ∞. In the left-hand side this is obvious, since
U ≤ U(. In the right-hand side, this will follow from the monotone convergence theorem
as soon as we have checked that the integrands are bounded above, uniformly in 5, by
integrable functions. But such is the case since, for instance,

(U()

(
ρ0(x0)

β(K,N)
1−t (x0, x1)

)
β(K,N)

1−t (x0, x1) ≤ (U()′(∞)
ρ0(x0)

β(K,N)
1−t (x0, x1)

β(K,N)
1−t (x0, x1)

≤ U ′(∞)ρ0(x0) ∈ L1(π(dx0|x1) ν(dx1)).

Step 3: Finally we consider the case of a general U ∈ DCN . The reasoning is pretty
much the same as for Step 2. By Proposition 17.7(iii), there is a nondecreasing sequence
(U()(∈N, converging pointwise to U , with U ′

((∞) < ∞ and U ′
((∞) → U ′(∞). By Step 2,

one has
(U()ν(µt) ≤ (1 − t)(U()

β(K,N)
1−t

π,ν (µ0) + t(U()
β(K,N)
1−t

π̌,ν (µ1),

and it remains to pass to the limit as 5 → ∞. In the right-hand side, this is obvious since
U( ≤ U . As for the left-hand side, it may be rewritten as

∫
U((ρt) dν + U ′

((∞) (µt)s[X ]. (29.10)

Then we know that U ′
((∞) → U ′(∞), so we may pass to the limit in the second term

of (29.10). To pass to the limit in the first term by monotone convergence, it suffices to
check that U((ρt) is bounded below, uniformly in 5, by a ν-integrable function. But this
is true since, for instance, U0 which is bounded below by an affine function of the form
r → −C(r + 1), C ≥ 0; so U((ρt) ≥ −Cρt − C 1ρt>0, and the latter function is integrable
since ρt has compact support. 78

• In Definition 29.6 I imposed µ0 and µ1 to be (a) compactly supported, (b) absolutely
continuous with respect to ν. Both assumptions can actually be relaxed, but the definition
which one gets by so doing is not stronger; see Theorem 30.8 in the next chapter for more
details.

• Finally, here are some examples of weak CD(K,N) spaces.
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Example 29.11. Let V be a continuous function Rn → R with
∫

e−V (x) dx < ∞, and
let ν(dx) = e−V (x) dx. Let d2 be the usual Euclidean distance. Then the space (Rn, d2, ν)
satisfies the usual CD(K,∞) condition if V is C2 and ∇2V ≥ K In in the classical sense. It
satisfies the weak CD(K,∞) condition without any regularity assumption on V , as soon as
∇2V ≥ K In in the sense of distributions, which means that V is K-convex. For instance,
if V is merely convex, then (Rn, d2, ν) satisfies the weak CD(0,∞) condition. To see this,
note that if µ(dx) = ρ(x) dx, then

Hν(µ) =
∫

ρ(x) log ρ(x) dx +
∫

ρ(x)V (x) dx = H(µ) +
∫

V dµ;

then the first term is always displacement convex, and the second is displacement convex
if V is convex (simple exercise).

On the contrary, if V is not convex, then one can find x0, x1 ∈ Rn and t ∈ [0, 1] such
that

V
(
(1 − t)x0 + tx1

)
> (1 − t)V (x0) + t V (x1).

Now let ρ be a compactly supported probability density, and ρε = ε−nρ(·/ε): then ρε(x) dx
converges weakly to δ0, so for ε small enough,
∫

V (x) ρε
(
x− (1− t)x0− tx1

)
dx > (1− t)

∫
V (x) ρε(x−x0) dx+ t

∫
V (x) ρε(x−x1) dx.

On the other hand,
∫
ρε(x − v) log ρε(x − v) dx is independent of v ∈ Rn; so

He−V dx

(
ρε(·− (1 − t)x0 − tx1)

)
dx > (1− t)He−V dx

(
ρε(·− x0)

)
+ t He−V dx

(
ρε(·− x1)

)
.

Since the path (ρε(x−(1−s)x0−sx1) dx)0≤s≤1 is a geodesic interpolation (this is the trans-
lation at uniform speed, corresponding to ∇ψ = constant), we see that (Rn, d2, e−V (x) dx)
cannot be a weak CD(0,∞) space. The conclusion is that (Rn, d2, e−V (x) dx) satisfies a
weak CD(0,∞) condition if and only if V is convex.

Example 29.12. Let M be a smooth n-dimensional compact Riemannian manifold with
nonnegative Ricci curvature, and let G be a compact Lie group acting isometrically on M .
(See the bibliographical notes for references on these notions.) Let X = M/G and let q :
M → X be the quotient map. Equip X with the distance d(x, y) = inf{dM (x′, y′); q(x′) =
x, q(y′) = y}, and with the measure ν = q#vol M . Then the resulting space (X , d, ν) is
a weak CD(0, n) space, that in general will not be a manifold. (There will typically be
singularities at fixed points of the group action.)

Example 29.13. It will be shown later on that (Rn, ‖ · ‖,λn) is a weak CD(K,N) space,
where ‖·‖ is any norm on Rn, and λn is the n-dimensional Lebesgue measure. This example
proves that a weak CD(K,N) space may be “strongly” branching (recall the discussion in
Example 27.17).

The remaining part of this chapter is devoted to a proof of stability for the weak
CD(K,N) property.

Some properties of the integral functionals Uν and Uβ
π,ν

In this section, I shall explain some of the remarkable properties of the integral functionals
appearing in Definition 29.1. For the moment it will be sufficient to restrict to the case
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of a compact space X , and it will be convenient to consider that Uν and Uβ
π,ν are defined

on the set of all (nonnegative) finite Borel measures, not necessarily probability measures.
(Actually, in Definition 29.1 it was not assumed that µ is a probability measure.) One may
even think of these functionals as defined on the whole vector space M(X ) of finite Borel
measures on X , with the convention that their value is +∞ if µ is not nonnegative; then
Uν and Uβ

π,ν are true convex functional on M(X ).
It is convenient to study the functionals Uν by means of their Legendre represen-

tation. Generally speaking, the Legendre representation of a convex functional Φ defined
on a vector space E is an identity of the form

Φ(x) = sup
{
〈Λ, x〉 − Ψ(Λ)

}
,

where Λ varies over a certain subset of E∗, and Ψ is a convex functional of Λ. Usually, Λ
varies over the whole set E∗, and Ψ(Λ) = supx∈E[〈Λ, x〉 −Φ(x)] is the Legendre transform
of Φ; but here we don’t really want to do so, because nobody knows what the huge space
M(X )∗ looks like. So it is better to restrict to subspaces of M(X )∗. There are several
natural possible choices, resulting in various Legendre representations; which one is most
convenient depends on the context. Here below are the ones that will be useful in the
sequel.

Definition 29.14 (Legendre transform of a real-valued convex function). Let
U : R+ → R be a continuous convex function with U(0) = 0; its Legendre transform is
defined on R by

U∗(p) = inf
r∈R+

[
pr − U(r)

]
.

This is a convex function, taking the value −U(0) = 0 on (−∞, U ′(0)) and +∞ on
(U ′(∞),+∞).

Proposition 29.15 (Legendre representation of Uν). Let U : R+ → R be a continu-
ous convex function with U(0) = 0, let X be a compact metric space, equipped with a finite
reference measure ν. Then, whenever µ is a finite measure on X ,

(i) Uν(µ) = sup
{∫

X
ϕ dµ −

∫

X
U∗(ϕ) dν; ϕ ∈ L∞(X ); ϕ ≤ U ′(∞)

}

(ii) Uν(µ) = sup
{∫

X
ϕ dµ −

∫

X
U∗(ϕ) dν; ϕ ∈ C(X ), 0 < ϕ < U ′(∞)

}

The deceiving simplicity of these formulas hides some subtleties: For instance, it is in
general impossible to drop the restriction ϕ ≤ U ′(∞) in (i), so the supremum is not taken
over the whole vector space L∞(X ) but only on a subspace thereof. Proposition 29.15
can be proven by elementary tools of measure theory; see the bibliographical notes for
references and comments.

In the next statement, M+(X ) will stand for the set of finite (nonnegative) Borel
measures on X , and L1

+(ν) for the set of nonnegative ν-integrable measurable functions
on X .

Theorem 29.16 (lower semi-continuity and contraction property of Uν). Let
(X , d) be a compact metric space, equipped with a finite measure ν. Let U : R+ → R+ be
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a convex continuous function, with U(0) = 0. Let further β(x, y) be a continuous positive
function on X × X . Then, with the notation of Definition 29.1,

(i) Uν(µ) is a weakly lower semi-continuous function of both µ and ν in M+(X ). More
explicitly, if µk → µ and νk → ν in the weak topology of convergence against bounded
continuous functions, then

Uν(µ) ≤ lim inf
k→∞

Uνk(µk).

(ii) Uν satisfies a contraction principle in both µ and ν; that is, if Y is another compact
space, and f : X → Y is any measurable function, then

Uf#ν(f#µ) ≤ Uν(µ).

(iii) If U is Lipschitz continuous on R+, then Uβ
π,ν(µ) is jointly continuous as a func-

tion of (π, µ) in P (X × X ) × L1
+(ν). More explicitly, if πk converges to π in P (X × X )

equipped with the weak topology of convergence against bounded continuous functions, and
fk converges to f in the L1(ν) norm, then

Uβ
πk,ν(fk ν) −→ [k → ∞]Uβ

π,ν(f ν).

Proof of Theorem 29.16. To prove (i), note that U∗ is continuous on (U ′(0), U ′(∞)); so if
ϕ is continuous with values in (U ′(0), U ′(∞)), then U∗(ϕ) is also continuous. So Proposi-
tion 29.15(ii) can be rewritten as

Uν(µ) = sup
(ϕ,ψ)∈U

{∫
ϕ dµ +

∫
ψ dν

}
,

where U varies in a certain subset of C(X )×C(X ). In particular, Uν(µ) is a supremum of
weakly continuous functions of (µ, ν); it follows that Uν is lower semi-continuous.

To prove (ii), pick up any ϕ ∈ L∞(X ) with ϕ ≤ U ′(∞). Then
∫

X
(ϕ ◦ f) dµ −

∫

X
U∗(ϕ ◦ f) dν =

∫

Y
ϕ d(f#µ) −

∫

Y
U∗(ϕ) d(f#ν).

If ϕ ≤ U ′(∞), then also ϕ ◦ f ≤ U ′(∞); similarly, if ϕ is bounded, then also ϕ ◦ f is
bounded. So

sup
ψ∈L∞; ϕ≤U ′(∞)

{∫

X
ψ dµ −

∫

X
U∗(ψ) dν

}
≤ sup

ϕ∈L∞; ϕ≤U ′(∞)

{∫

Y
ϕ d(f#µ) −

∫

Y
U∗(ϕ) d(f#ν)

}
.

By Proposition 29.15(i), the left-hand side coincides with Uν(µ), and the right-hand side
with Uf#µ(f#ν). This concludes the proof of the contraction property (ii).

It remains to prove (iii). If β ≡ 1 (no distortion), this is immediate: Uβ
π,ν does not

depend on π, and if ρ, ρ̃ are any two functions in L1
+(ν), one can write

|Uν(ρ) − Uν(ρ̃)| =
∣∣∣∣
∫

[U(ρ) − U(ρ̃)] dν
∣∣∣∣ ≤

∫
|U(ρ) − U(ρ̃)| dν ≤ ‖U‖Lip

∫
|ρ− ρ̃| dν.

This shows that the Lipschitz norm of Uν on L1
+(X , ν) is bounded by the Lipschitz norm

of U .
In the general case where β is variable, we can still write
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∣∣Uβ
π,ν(ρ ν) − Uβ

π,ν(ρ̃ ν)
∣∣ =

∣∣∣∣

∫

X×X
β(x, y)

[
U

(
ρ(x)
β(x, y)

)
− U

(
ρ̃(x)

β(x, y)

)]
π(dy|x) ν(dx)

∣∣∣∣

≤ ‖U‖Lip

∫
|ρ(x) − ρ̃(x)|π(dy|x) ν(dx)

= ‖U‖Lip ‖ρ− ρ̃‖L1(ν);

this shows that Uβ
π,ν is still ‖U‖Lip-Lipschitz in L1(ν) for fixed π.

Next, if ρ is continuous, then according to Lemma 29.4,

Uβ
π,ν(ρ ν) =

∫
v

(
ρ(x)

β(x, y)

)
π(dx dy) =

∫
h(x, y)π(dx dy),

where h is continuous as the composition of continuous functions. So, by definition of the
weak topology, Uβ

π,ν(ρ ν) is a continuous function of π.
We can now prove statement (iii). Let ρk be a sequence of nonnegative L1 functions

converging to ρ in L1, and let πk be a sequence of probability measures on X×X converging
weakly to π. Let δ > 0 be arbitrarily small, and let ρ be a continuous density such that
‖ρ− ρ‖L1(ν) ≤ δ. Then

|Uβ
πk,ν(ρk ν) − Uβ

π,ν(ρ ν)| ≤ |Uβ
πk,ν(ρk ν) − Uβ

πk,ν(ρ ν)| + |Uβ
πk,ν(ρ ν) − Uβ

πk,ν(ρ ν)|
+ |Uβ

πk,ν(ρ ν) − Uβ
π,ν(ρ ν)| + |Uβ

π,ν(ρ ν) − Uβ
π,ν(ρ ν)|.

The first term on the right is bounded by ‖U‖Lip‖ρ−ρk‖L1 , the second one by ‖U‖Lip‖ρ−
ρ‖L1 , the third one goes to 0 as k → ∞, and the fourth one is bounded by ‖U‖Lip‖ρ−ρ‖L1

again, so

lim sup
k→∞

∣∣∣Uβ
πk,ν(ρk ν) − Uβ

π,ν(ρ ν)
∣∣∣ ≤ 2‖U‖Lip‖ρ− ρ‖L1(ν) ≤ 2‖U‖Lip δ.

Since δ is arbitrarily small, the proof of (iii) is complete. 78

Stability of Ricci bounds

Now we have all the tools to prove the main result in this chapter: The weak curvature-
dimension bound CD(K,N) passes to the limit. Once again, the compact case will imply
the general statement.

Theorem 29.17 (Stability of CD(K,N) under MGH). Let (Xk, dk, νk)k∈N be a se-
quence of compact metric-measure length spaces converging in the measured Gromov–
Hausdorff topology to a compact metric-measure space (X , d, ν). Let K ∈ R and N ∈ [1,∞].
If each (Xk, dk, νk) satisfies the weak curvature-dimension condition CD(K,N), then also
(X , d, ν) satisfies CD(K,N).

Theorem 29.18. [Stability of CD(K,N) under pMGH] Let (Xk, dk, νk, Ak) be a sequence
of locally compact, complete, separable σ-finite pointed metric-measure length spaces con-
verging in the pointed measured Gromov–Hausdorff topology to a locally compact, complete
separable σ-finite metric-measure space (X , d, ν, A). Let K ∈ R and N ∈ [1,∞]. If each
(Xk, dk, νk) satisfies CD(K,N), then also (X , d, ν) satisfies CD(K,N).

Remark 29.19. There is an easy generalization of Theorem 29.18: If (Xk, dk, νk) converges
to (X , d, ν) in the geodesic local Gromov–Hausdorff topology, and each (Xk, dk, νk) satisfies
CD(K,N), then also (X , d, ν) satisfies CD(K,N).
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Proof of Theorem 29.17. Let (Xk, dk, νk)k∈N be a sequence of metric-measure spaces satis-
fying the assumptions of Theorem 29.17.

From the characterization of measured Gromov–Hausdorff convergence, we know that
there are measurable functions fk : Xk → X such that

(i) fk is a εk-isometry (Xk, dk) → (X , d), with εk → 0;
(ii) (fk)#νk converges weakly to ν.
Let ρ0, ρ1 be two probability densities on (X , ν); let µ0 = ρ0 ν, µ1 = ρ1 ν.
For t0 ∈ {0, 1}, the probability measure ρt0 can be approximated in L1(ν) by continuous

probability densities. (A proof of this classical fact is recalled in the bibliographical notes.)
So there is a family of continuous probability densities (ρε,t0)ε∈(0,1) approaching ρt0 as
ε → 0.

Then, still for t0 ∈ {0, 1}, define

µk
ε,t0 :=

(ρε,t0 ◦ fk) νk

Zk
, Zk =

∫
(ρε,t0 ◦ fk) dνk.

Since ρε,t0 is continuous and (fk)#νk converges weakly to ν, we have

Zk =
∫

ρε,t0 d((fk)#νk) −−−→
k→∞

∫
ρε,t0 dν = 1;

in particular Zk > 0 for k large enough, and then µk
ε,t0 is a probability measure on Xk.

Let ψ ∈ C(X ), then
∫

ψ d((fk)#µk
ε,t0) =

∫
(ψ ◦ fk) dµk

ε,t0 =
1
Zk

∫
(ψ ◦ fk) (ρε,t0 ◦ fk) dνk

=
1
Zk

∫
ψρε,t0 d((fk)#νk). (29.11)

On one hand, Zk converges to 1; on the other hand
∫

ψρε,t0 d((fk)#νk) −−−→
k→∞

∫
ψρε,t0 dν =

∫
ψ dµε,t0 .

Plugging this information back in (29.11), we obtain

(fk)#µk
ε,t0 −−−→

k→∞
µε,t0 weakly. (29.12)

Since each (Xk, dk, νk) satisfies CD(K,∞), there is a Wasserstein geodesic (µk
ε,t)0≤t≤1,

joining µk
ε,0 to µk

ε,1, such that, for all U ∈ DCN and t ∈ (0, 1),

Uνk(µk
ε,t) ≤ (1 − t)U

β(K,N)
1−t

πk
ε ,νk

(µk
0) + tU

β
(K,N)
t

π̌k
ε ,ν

(µk
1), (29.13)

where β(K,N)
t is given by (14.60) (with the distance dk), and πk

ε is an optimal coupling
between µk

ε,0 and µk
ε,1.

By Theorem 7.20, for each ε ∈ (0, 1) and k ∈ N there is a dynamical optimal transfer-
ence plan Πk

ε such that

µk
ε,t = (et)#Πk

ε , πk
ε = (e0, e1)#Πk

ε ,

where et is the evaluation at time t.
By Theorem 28.9, up to extraction of a subsequence in k, there is a dynamical optimal

transference plan Πε on Γ (X ) such that, as k → ∞,
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(fk◦)#Πk
ε −→ Πε weakly in P (P ([0, 1] × X ));

(fk, fk)#πk
ε −→ πε weakly in P (X × X );

sup
0≤t≤1

W2
(
(fk)#µk

ε,t, µε,t
)
−→ 0;

where
µε,t = (et)#Πε, πε = (e0, e1)#Πε.

Each curve (µε,t)0≤t≤1 is D-Lipschitz, where D is the diameter of X ; so by Ascoli’s
theorem, from ε ∈ (0, 1) we may extract a subsequence (still denoted ε for simplicity) such
that

sup
0≤t≤1

W2
(
µε,t, µt

)
−−−→
ε→0

0, (29.14)

where (µt)0≤t≤1 is a Wasserstein geodesic joining µ0 to µ1. It remains to “pass to the limit”
in inequality (29.13), letting first k → ∞, then ε → 0, in order to show that

Uν(µt) ≤ (1 − t)U
β(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1). (29.15)

By Proposition 29.10, it is sufficient to do so for U ∈ DCN ∩ Lip(R+, R+). So in the
sequel, t will be an arbitrary time in (0, 1) and U will be an arbitray nonlinearity in
DCN ∩ Lip(R+, R+).

By the joint lower semi-continuity of (µ, ν) "−→ Uν(µ) (Theorem 29.16(i)) and the
contraction property (Theorem 29.16(ii)), we have

Uν(µε,t) ≤ lim inf
k→∞

U(fk)#νk

(
(fk)#µk

ε,t

)
(29.16)

≤ lim inf
k→∞

Uνk(µk
ε,t).

Then by lower semi-continuity again,

Uν(µt) ≤ lim inf
ε→0

Uν(µε,t). (29.17)

Inequalities (29.16) and (29.17) take care of the left-hand side of (29.13). It remains to
pass to the limit in the right-hand side.

Let us consider for instance the first term in the right-hand side of (29.13), namely

∫
β(x0, y0)U

(
ρk
ε,0(x0)

β(x0, x1)

)

πk
ε (dx1|x0) ν(dx0),

where β(x, y) := β(K,N)
1−t (x, y). The problem is to show that

lim sup
ε→0

lim sup
k→∞

∫

Xk×Xk

β(x0, y0)U

(
ρk
ε,0(x0)

β(x0, x1)

)
πk
ε (dx1|x0) ν(dx0)

≤
∫

X×X
β(x0, y0)U

(
ρ0(x0)

β(x0, x1)

)
π(dx1|x0) ν(dx0). (29.18)

For a start, assume that N > 1 and K ≤ 0, so that β(x, y) := β(K,N)
1−t (x, y) is a smooth

function, bounded from above and below by positive constants.
According to Lemma 29.4, the left-hand side of (29.18) can be rewritten as
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∫

Xk

v

(
ρk
ε,0(x0)

β(x0, x1)

)
πk
ε (dx0 dx1),

where v(r) = U(r)/r, extended by continuity at r = 0.
Since β(x, y) is a continuous function of the distance dk(x, y), since

lim
k→∞

sup
x,y∈Xk

∣∣dk(x, y) − d(fk(x), fk(y))
∣∣ = 0,

and since ρk
ε,0 and v are continuous, we know that the functions v(ρk

ε,0(x0)/β(x0, x1)) and
v(ρk

ε,0(x0)/β(fk(x0), fk(x1))) are uniformly close to each other as k → ∞. So

lim
k→0

∣∣∣∣∣

∫

Xk

v

(
ρk
ε,0(x0)

β(x0, x1)

)
πk
ε (dx0 dx1)

−
∫

X
v

(
ρk
ε,0(x0)

β(fk(x0), fk(x1))

)
πk
ε (dx0 dx1)

∣∣∣∣∣ = 0. (29.19)

(Of course, in the second integral the coefficient β is computed with the distance d, while
in the first integral it is computed with the distance dk.)

Then
∫

v

(
ρk
ε,0(x0)

β(fk(x0), fk(x1))

)
πk
ε (dx0 dx1)

=
∫

v

(
ρε,0(fk(x0))

β
(
fk(x0), fk(x1)

)
)

πk
ε (dx0 dx1)

=
∫

v

(
ρε,0(y0)
β(y0, y1)

)
d
[
(fk, fk)#πk

ε

]
(y0, y1).

Since (fk, fk)#πk
ε converges weakly to πε as k → ∞, and since v(ρε,0/β) is continuous,

∫

X×X
v

(
ρε,0(y0)
β(y0, y1)

)
d
[
(fk, fk)#πk

ε

]
(y0, y1) −−−→

k→∞

∫

X×X
v

(
ρε,0(y0)
β(y0, y1)

)
πε(dy0 dy1).

At this stage, the conclusion is that

∫

Xk×Xk

β(x0, y0)U

(
ρk
ε,0(x0)

β(x0, x1)

)
πk
ε (dx1|x0) ν(dx0)

−−−→
k→∞

∫

X×X
β(x0, y0)U

(
ρε,0(x0)
β(x0, x1)

)
πε(dx1|x0) ν(dx0).

To finish the proof of (29.18), it is sufficient to show that

∫

X×X
β(x0, y0)U

(
ρε,0(x0)
β(x0, x1)

)
πε(dx1|x0) ν(dx0)

−−−→
ε→0

∫

X×X
β(x0, y0)U

(
ρ0(x0)

β(x0, x1)

)
π(dx1|x0) ν(dx0).

But this follows directly from Theorem 29.16(iii).
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This concludes the proof of the theorem in the case K ≤ 0. Now in the case K > 0, a
new difficulty has to be overcome: The function β(K,N)

t (x, y) diverges when the distance
between x and y approaches the limit Bonnet–Myers diameter allowed by the CD(K,N)
condition, namely DK,N := π

√
(N − 1)/K . Of course the problem does not arise if the

supremum of the diameters of all spaces (Xk, dk) is strictly less than DK,N . Since CD(K,N)
implies CD(K ′, N) for any K ′ < K, and then DK,N < DK ′,N , at least we can conclude
that (X , d, ν) satisfies CD(K ′, N) for any K ′ < K. Then it remains to pass to the limit
in the inequality for CD(K ′, N) as K ′ ↑ K; this can be done by monotone convergence,
since e.g. β(K,N)

1−t (x0, x1)U
(
ρ0(x0)/β

(K,N)
1−t (x0, x1)

)
is a monotone function of K, as noticed

in the proof of Proposition 29.9. We conclude as before that (X , d, ν) satisfies CD(K,N).
Also the case N = 1 can be treated by a similar limiting argument: if all spaces

(Xk, dk, νk) satisfy CD(K, 1), then the limit space (X , d, ν) will satisfy CD(K,N ′) for all
N ′ > 1 and the conclusion will follow by letting N ′ decrease to 1. 78

Remark 29.20. What the proof above really shows is that under certain assumptions the
property of distorted displacement convexity is stable under measured Gromov–Hausdorff
convergence. The usual displacement convexity is a particular case of this fact (take the
distortion coefficients identically equal to 1).

Proof of Theorem 29.18. The same arguments as in the proof of Theorem 29.17 will work
here, provided that we can localize the problem. So pick up probability densities ρ0 and
ρ1 with compact support, and define µk

ε,t in exactly the same way as in the proof of
Theorem 29.17. Let R be such that the supports of ρ0 and ρ1 are included in BR](A);
then for k large enough and ε small enough, the supports of µk

ε,0 and µk
ε,1 are contained in

BR+1](Ak). So a geodesic which starts from the support of µk
ε,0 and ends in the support of

µk
ε,1 will necessarily be all contained in B2(R+1)](Ak). It follows that each measure µk

ε,t has
its support included in B2(R+1)](Ak).

From that point on, the very same reasoning as in the proof of Theorem 29.17 can
be applied, since, say, the ball B2(R+2)](Ak) in Xk converges in the measured Gromov–
Hausdorff topology to the ball B2(R+2)](A) in X , etc. 78

An application in Riemannian geometry

In this section, by convention I shall say that a metric-measure space (M,d, ν) is a smooth
Riemannian manifold if the distance d is the geodesic distance induced by a Riemannian
metric g on M , and ν is a reference measure that can be written e−V vol , where vol is
the volume measure on M and V ∈ C2(M). This definition extends in an obvious way
to pointed metric-measure spaces. Then Theorem 29.7 guarantees that the synthetic and
analytic definitions of CD(K,N) bounds coincide for Riemannian manifolds.

The next theorem, which is a simple consequence of our previous results, may be seen as
one noticeable outcome of the theory of weak CD(K,N) spaces. Note that it is an external
result, in the sense that its statement does not involve the definition of weak CD(K,N)
spaces, nor any reference to optimal transport.

Theorem 29.21 (Smooth limits of CD(K,N) manifolds are CD(K,N)). Let K ∈ R
and N ∈ [1,∞]. If a sequence of smooth CD(K,N) manifolds converges to some smooth
manifold in the (pointed) measured Gromov–Hausdorff topology, then the limit also satisfies
the (classical) CD(K,N) curvature-dimension bound.

Proof of Theorem 29.21. The statement follows at once from Theorems 29.7 and 29.18. 78
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The space of CD(K, N) spaces

Theorem 29.17 can be summarized as follows: The space of all compact metric-measure
spaces satisfying a weak CD(K,N) bound is closed under measured Gromov–Hausdorff
convergence.

In connection with this result, recall Gromov’s precompactness theorem (Theorem 27.10):
Given K ∈ R, N < ∞ and D < ∞, the set M(K,N,D) of all smooth compact mani-
folds with dimension bounded above by N , Ricci curvature bounded below by K and
diameter bounded above by D is precompact in the Gromov–Hausdorff topology. Then it
follows from Theorem 29.17 that any element of the closure of M(K,N,D) is a compact
metric-measure length space satisfying CD(K,N), in the weak sense of Definition 29.6.
This conclusion is nontrivial even if the limit space is smooth.

Even if it is smooth, the limit space might have reference measure ν = e−Ψvol , for
some nonconstant Ψ . Such phenomena do indeed occur in examples where there is a
collapse in the dimension; that is, when the dimension of the limit manifold is strictly less
than the dimension of the manifolds in the converging sequence. The next example shows
that basically any reference measure can be obtained as a limite of volume measures of
higher-dimensional manifolds; it is a strong motivation to replace the class of Riemannian
manifolds by the class of metric-measure spaces.

Example 29.22. Let (M,g) be a compact n-dimensional Riemannian manifold, equipped
with its geodesic distance d and its volume vol ; let V be any C2 function on M , and let
ν(dx) = e−V (x) dvol (x). Let S2 stand for the usual 2-dimensional sphere, equipped with
its usual metric σ. For ε ∈ (0, 1), define Mε to be the warped product of (M,g) by εS2:
This is the (n + 2)-dimensional manifold M × S2, equipped with the metric gε(dx, ds) =
g(dx) + ε−2 e−V (x) σ(ds). As ε → 0, Mε collapses to M ; more precisely the manifold
(Mε, gε), seen as a metric-measure space, converges in measured Gromov–Hausdorff sense
to (M,d, ν). Moreover, if Ricn+2,ν ≥ K, then Mε has Ricci curvature bounded below by
Kε, where Kε → K.

We shall see later (Theorem 30.15) that if (X , d, ν) is a weak CD(K,N) space, then
ν is locally doubling on its support. More precisely, if A is an arbitrary base point, there
is a constant D = D(K,N,R) such that the measure ν is D-doubling on BR(A) ∩ Spt ν.
Combining this with Theorem 27.31, we arrive at the following compactness theorem:

Theorem 29.23. (i) Let K ∈ R, N < ∞ and D < ∞, and 0 < m ≤ M < ∞. Let
CDD(K,N,D,m,M) be the space of all compact metric-measure spaces (X , d, ν) which
satisfy the weak curvature-dimension bound CD(K,N) of Definition 29.6, together with
diam (X , d) ≤ D, 0 < m ≤ ν[X ] ≤ M , and Spt ν = X . Then CDD(K,N,D,m,M) is
compact in the measured Gromov–Hausdorff topology.

(ii) Let K ∈ R, N < ∞ and 0 < m ≤ M < ∞. Let pCDD(K,N,m,M) be the space of
all pointed locally compact Polish metric-measure length spaces (X , d, ν, A) which satisfy the
weak curvature-dimension bound CD(K,N) of Definition 29.6, 0 < m ≤ ν[B1(X )] ≤ M ,
and Spt ν = X . Then pCDD(K,N,m,M) is compact in the measured Gromov–Hausdorff
topology.

Remark 29.24. It is a natural question whether smooth Riemannian manifolds, equipped
with their geodesic distance and their volume measure (multiplied by a positive constant),
form a dense set in, say CDD(K,N,D,m,M). The answer is negative, as will be discussed
in the conclusion of these notes.
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Bibliographical Notes

Here are some (probably too lengthy) comments about the genesis of Definition 29.6. It
comes after a series of particular cases and/or variants studied by Lott and myself [247, 249]
on one hand, Sturm [336, 340] on the other hand.

In the case K = 0, for compact spaces, Definition 29.6 is exactly the definition that
was used in [247], except for the fact that µ0 and µ1 were not required to be absolutely
continuous with respect to ν, but only to be supported in Sptν. This difference is irrelevant,
because one can always approximate singular measures by absolutely continuous ones, and
then pass to the limit in the displacement convexity inequalities; see Theorem 30.8 in the
next Chapter. So both definitions are in fact equivalent. My motivation for imposing the
absolute continuity in these notes is twofold: (i) in the case of a smooth manifold, absolute
continuity of the endpoints measure implies uniqueness of the Wasserstein geodesic; (ii) it
simplifies the proof of stability under measured Gromov–Hausdorff convergence.

In the case N = ∞, the definition in [247] was about the same as Definition 29.6, but it
was based on inequality (29.2) (which is very simple in the case K = ∞) instead of (29.3).
Sturm [336] also used a similar definition, but preferred to impose the weak displacement
convexity inequality only for the Boltzmann H functional, not for the whole class DC∞.
It is interesting to note that precisely for the H functional and N = ∞, inequalities (29.2)
and (29.3) are precisely the same, while in general the former is weaker. So the definition
which I have adopted here is a priori stronger than both definitions in [247] and [336].

So far only the cases where N = ∞ or K = 0 had been considered. For the remaining
cases, it took some time before a consistent picture emerged. Then Sturm [340] had the
brilliant idea to use distorted displacement convexity as the basis for the definition of
CD(K,N) in the finite-dimensional case. His definition is quite close to Definition 29.6,
with two differences. First, he does not impose the basic inequality to hold true for all
members of the class DCN , but only for functions of the form −r1−1/N ′ with N ′ ≥ N .
Secondly, he does not require the displacement interpolation (µt)0≤t≤1 and the coupling π
to be related via some dynamical optimal transference plan.

After becoming aware of Sturm’s work, Lott and myself [249] modified his definition,
requiring the displacement convexity inequality to hold true for all U ∈ DCN , imposing a
relation between (µt) and π, and allowing in addition µ0 and µ1 to be singular (provided
that their support is included in the support of ν). In the present set of notes, I chose
to drop the extension to singular measures, for the same reason alluded to above; then I
decided to extend the new definition to the case N = ∞.

Sturm [340] proved the stability of his definition under a variant of measured Gromov–
Hausdorff convergence, provided that one stays away from the limit Bonnet–Myers diam-
eter. Then Lott and I [249] briefly sketched a proof of stability for our modified definition.
Details appear here for the first time.

The treatment of noncompact spaces here is not exactly the same as in [247] or [340]. In
the present set of notes I adopted a rather weak point of view in which every “noncompact”
statement reduces to the compact case; in particular in Definition 29.6 I only consider
compactly supported probability densities. This leads to simpler proofs, but the treatment
in [247, Appendix E] is more precise in that it passes to the limit directly in the inequalities
for probability measures that are not compactly supported.

Other tentative definitions have been rejected for various reasons. Let me mention three
of them:

(i) Imposing the displacement convexity inequality to hold true along all displacement
interpolations in Definition 29.6, rather than along some displacement interpolation. This
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concept is not stable under measured Gromov–Hausdorff convergence. (See the last remark
in the Conclusion of these notes.)

(ii) Replace the integrated displacement convexity inequalities by pointwise inequalities,
in the style of those appearing in Chapter 14. For instance, with the same notation as in
Definition 29.6, one may define

Jt(γ0) :=
ρ0(x)

E
[
ρt(γt)|γ0

] ,

where γ is a random geodesic with law (γt) = µt, and ρt is the absolutely continuous
part of µt with respect to ν. Then J is a continuous function of t, and it makes sense to
require that inequality (29.1) be satisfied ν(dx)-almost everywhere (as a function of t, in
the sense of distributions). This notion of weak CD(K,N) space makes perfect sense, and
is actually stronger than the notion discussed in this chapter. But there is no evidence that
it should be stable under measured Gromov–Hausdorff convergence. Integrated convexity
inequalities enjoy better stability properties. (One might hope that integrated inequalities
lead to pointwise inequalities by a localization argument, as in Chapter 19; but this is
not obvious at all, due to the a priori nonuniqueness of displacement interpolation in a
nonsmooth context.)

(iii) Choose inequality (29.2) as the basis for the definition, instead of (29.3). In the
case K < 0, this inequality is stable, due to the convexity of −r1−1/N , and the a priori
regularity of the speed field provided by Theorem 28.5. (This was actually my original
motivation for Theorem 28.5.) In the case K > 0 there is no reason to expect that the
inequality is stable, but then one can weaken even more the formulation of CD(K,N) and
replace it by

Uν(µt) ≤ (1− t)Uν(µ0) + t Uν(µ1) −
KN,U

2
max

(
sup ρ0, sup ρ1

)−1/N
W2(µ0, µ1)2, (29.20)

which in turn is stable, and still equivalent to the usual CD(K,N) when applied to smooth
manifolds. For the purpose of the present chapter, this approach would have worked fine;
Theorem 29.21 was actually first proved for general K,N by this approach (unpublished
work). But basing the definition of the general CD(K,N) criterion on (29.20) has a strong
drawback: it seems very difficult, if not impossible, to derive from it any sharp geometric
theorem such as Bishop–Gromov or Bonnet–Myers. We shall see in the next chapter that
such sharp inequalities do follow from Definition 29.6.

Now, here are some further comments about the ingredients in the proof of Theo-
rem 29.17.

The extension of Uν to singular measures (Definition 29.1, Proposition 29.15, Theo-
rem 29.16(i)-(ii)) were worked out in detail in [247]. At least some of these properties
belong to folklore, but it is not so easy to find precise references. For the particular case
U(r) = r log r, there is a detailed proof of Theorem 29.16(i)-(ii) in [15, Lemmas 9.4.3
to 9.4.5, Corollary 9.4.6] when X is a separable Hilbert space, possibly infinite-dimensional;
the proof of the contraction property in that reference does not rely on the Legendre repre-
sentation. There is also a proof of the lower semi-continuity and the contraction property,
for general functions U , in [240, Chapter 1]; the arguments there do not rely on the Leg-
endre representation either. I personally advocate the use of the Legendre representation,
as an efficient and versatile tool.

In [247], we also discussed the extension of these properties to spaces that are not neces-
sarily compact, but only locally compact, and reference measures that are not necessarily
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finite, but only locally finite. Integrability conditions at infinity should be imposed on µ,
as in Theorem 17.8. The discussion on the Legendre representation in this generalized
setting is a bit subtle, for instance it is in general impossible to impose at the same time
ϕ ∈ Cc(X ) and U∗(ϕ) ∈ Cc(X ). In these notes, I preferred to limit the use of the Legendre
representation to the compact case; but another approximation argument will be used in
the next chapter to extend the displacement convexity inequalities to probability measures
that are not compactly supported.

The density of C(X ) in L1(X , ν), where X is a compact Hausdorff space and ν is a finite
Borel measure, is a classical result that can be found e.g. in [315, Theorem 3.14]. It is also
true that nonnegative continuous functions are dense in L1

+(X , ν), or that continuous prob-
ability densities are dense in the space of probability densities, equipped with the L1 norm.
All these results can be derived from Lusin’s approximation theorem [315, Theorem 2.24].
In [247], Lott and I used a more constructive but more sophisticated approximation pro-
cedure, based on regularization kernels. While the scheme of proofs in this chapter is
basically the same as in [247], here I avoided the use of regularization kernels by imposing
the absolute continuity of µ0 and µ1 in Definition 29.6, and using Proposition 29.10 to
reduce to Lipschitz continuous nonlinearities: then, according to Theorem 29.16(iii), the
associated functionals are continuous on L1(ν). Still, regularizing kernels will be useful
in the next chapter, when it comes to establish displacement convexity inequalities for
possibly singular measures µ0, µ1.

Further note that the Lipschitz continuity of U makes it possible to approximate
f(x, y) = β(x, y)U(ρ(x)/β(x, y)) in L1((X , ν);C(X )) by just β(x, y)U(ρε(x)/β(x, y)),
where ρε is a continuous approximation of ρ. For more general nonlinearities (growing
“at most polynomially” at infinity), it is still possible to pass to the limit in the displace-
ment convexity inequality, with the help of some vector-valued approximation theorems,
such as the density of C(X × X ) in L1((X , ν);C(X )); but this is quite more painful.1

Apart from Theorem 29.21, other “external” consequences of the theory of weak
CD(K,N) spaces are discussed in [247], in the cases K = 0 and N = ∞.

Lemma 29.5 is taken from a recent work of mine with Figalli [?]. I shall use it to prove
Theorem 30.30 later in these notes.

Finally, let me give some remarks about the examples considered in this section.
The following generalization of Example 29.11 is proven in [15, Theorems 9.4.10

and 9.4.11]: If ν is a finite measure such that Hν is displacement convex, then ν takes
the form e−V Hk, where V is lower semi-continuous and Hk is the k-dimensional Hausdorff
measure, k = dim(Spt ν). The same reference extends to infinite-dimensional separable
Hilbert spaces the result according to which Hν is displacement convex if and only if ν is
log-concave.

Example 29.12 was treated by Lott and myself [247]. More precisely, we show that the
quotient of a CD(K,N) Riemannian manifold by a compact Lie group action is still a
weak CD(K,N) space, if K = 0 or N = ∞. The same theorem is certainly true for all
values of K and N , but this was not written down. Elementary background on Lie group
actions, and possibly singular spaces obtained by this procedure, can be found in Burago,
Burago and Ivanov [81].

Example 29.13 will be considered in more detail in the Conclusion of these notes.
Example 29.22 was explained to me by Lott; it is studied in detail in [?].

1 As a matter of fact, I was working on precisely this problem when my left lung collapsed, earning me a
one-week holiday in hospital with unlimited amounts of pain-killers.





30

Weak Ricci curvature bounds II: Geometric and analytic
properties

In the previous chapter I introduced the concept of weak curvature-dimension bound,
which extends the classical notion of curvature-dimension bound from the world of smooth
Riemannian manifolds to the world of metric-measure length spaces; then I proved that
such bounds are stable under measured Gromov–Hausdorff convergence.

Still, this notion would be of limited value if it could not be used to derive nontrivial
conclusions. But it turns out that weak curvature-dimension bounds can indeed be used
to derive interesting geometric and analytic consequences. This might not be a surprise to
the reader who has already browsed Part II of these notes, since there many geometric and
analytic statements of Riemannian geometry were derived from optimal transport theory.

It will turn out that weak CD(K,N) spaces satisfy many interesting properties. For
instance, in nonbranching weak CD(K,N) spaces the reference measure satisfies a dou-
bling property and a local Poincaré inequality. So these spaces at least have some kind of
regularity; it is a striking manifestation of the “rigidity” associated with lower curvature
bounds. (Also the better known Alexandrov spaces with curvature bounded below enjoy
remarkable regularity properties.)

So in this last chapter, I shall attempt to present a state of the art about properties of
weak CD(K,N) spaces. This direction of research seems to be growing relatively fast, so
the present list might soon become outdated.

Conventions: In all the sequel, a “weak CD(K,N) space” is a locally compact, complete
separable length space (X , d) equipped with a locally finite measure ν, satisfying a weak
CD(K,N) condition as in Definition 29.6.

Elementary properties

The next proposition gathers some almost immediate consequences of the definition. I shall
say that a subset X ′ of a length space (X , d) is totally convex if any geodesic whose
endpoints belong to X ′ is entirely contained in X ′.

Proposition 30.1 (Elementary properties of weak CD(K,N) spaces). Let (X , d, ν)
be a weak CD(K,N) space. Then

(i) If X ′ is a totally convex closed subset of X , then X ′ inherits from (X , d, ν) a natural
structure of metric-measure length space, and it is also a weak CD(K,N) space;

(ii) For any α > 0, the space (X , d,αν) is still a weak CD(K,N) space;
(iii) For any λ > 0, the space (X ,λ d, ν) is still a weak CD(λ−2K,N) space.
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Proof of Proposition 30.1. Property (i) is almost obvious: Equip X ′ with the restriction of
the distance d and the measure ν. Let µ0, µ1 be two probability measures in P2(X ′). The
notion of optimal coupling is the same whether one considers them as measures on X ′ or
on X . Also, since X ′ is totally convex, a path [0, 1] → X with endpoints in X ′ is a geodesic
in X ′ if and only if it is a geodesic in X . So X ′ is a length space, and the representation
theorem for Wasserstein geodesics (Theorem 7.20) ensures that a path (µt)0≤t≤1 valued in
P2(X ′) is a geodesic in P2(X ′) if and only if it is a geodesic in P2(X ). Property (i) follows
immediately.

To prove (ii), note that the replacement of ν by αν induces a multiplication of the
density ρ by α−1; so

Uαν(µ) = (Uα)ν(µ), Uβ
π,αν(µ) = (Uα)βπ,ν(µ),

where Uα(r) = αU(α−1r). But the transform U → Uα leaves the class DCN invariant. So
the inequalities defining the CD(K,N) condition will hold just the same in (X , d,αν) or
in (X , d, ν).

As for (iii), recall the definition of β(K,N):

β(K,N)
t (x, y) =

(
sin tα(N,K, d(x, y))
t sinα(N,K, d(x, y))

)N−1

, α(N,K, d) =
√

K

N − 1
d(x, y).

Then α(N,K, d) = α(N,λ−2K,λd), from which Property (iii) follows immediately. 78

The next theorem shows that the property of being a CD(K,N) space does not involve
the whole space X , but only the support of ν:

Theorem 30.2 (restriction to the support). A metric-measure space (X , d, ν) is a
weak CD(K,N) space if and only if (Spt ν, d, ν) is itself a weak CD(K,N) space.

Remark 30.3. Theorem 30.2 allows one to systematically reduce to the case when Spt ν =
X in the study of properties of weak CD(K,N) spaces. Then why not impose this in the
definition of these spaces? The answer is that on some occasions it is useful to allow X to
be larger than Sptν, in particular for convergence issues. Indeed, it may very well happen
that a sequence of weak CD(K,N) spaces (Xk, dk, νk)k∈N with Spt νk = Xk converges
in measured Gromov–Hausdorff sense to a weak CD(K,N) space (X , d, ν) with Spt ν 3=
X . This phenomenon of “reduction of support” is impossible if N < ∞, as shown by
Theorem 29.23, but can occur in the case N = ∞. As a simple example, consider the case
when Xk = (Rn, | · |) is the Euclidean space Rn equipped with the sharply peaked Gaussian
probability measure e−k|x|2dx/Zk, where Zk is a normalizing constant. Then Xk converges
in measured Gromov–Hausdorff sense to X = (Rn, | · |, δ0). Each of the spaces Xk is a
weak CD(0,∞) space and satisfies Spt νk = Xk, however the limit measure is supported in
just a point. To summarize things: For weak CD(K,N) spaces (X , d, ν) with N < ∞, one
probably does not lose anything by assuming Spt ν = X ; but in the class of weak CD(K,∞)
spaces, the stability theorem would not be true if one would not allow the support of ν to
be strictly smaller than the whole space.

Proof of Theorem 30.2. First assume that (Spt ν, d, ν) is a weak CD(K,N) space. Replacing
Spt ν by X does not enlarge the class of absolutely continuous probability measures that
can be chosen for µ0 and µ1 in Definition 29.6, and does not change the functionals Uν or

U
β

(K,N)
t

π,ν either. Because Spt ν is (by assumption) a length space, geodesics in Spt ν are also
geodesics in X . So geodesics in P2(Spt ν) are also geodesics in P2(X ) (it is the converse
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that might be false), and then the property of X ′ being a weak CD(K,N) space implies
that X is also a weak CD(K,N) space.

The converse implication is more subtle. Assume that (X , d, ν) is a weak CD(K,N)
space. Let ρ0, ρ1 be two compactly supported probability densities on X (with respect
to the reference measure ν). For each k ∈ N, it is easy to construct bounded probability
densities ρk,0 and ρk,1 such that ‖ρk,0 − ρ0‖L1(ν) ≤ k−1, ‖ρk,1 − ρ1‖L1(ν) ≤ k−1. For
t0 ∈ {0, 1}, let µk,t0 = ρk,t0 ν. By the weak CD(K,N) criterion, for each k there is a
Wasserstein geodesic (µk,t)0≤t≤1 and an associated coupling πk ∈ Π(µ, ν) such that for all
t ∈ [0, 1] and U ∈ DCN ,

Uν(µk,t) ≤ (1 − t)U
β(K,N)
1−t

πk,ν (µk,0) + t U
β(K,N)

t
π̌k,ν (µk,1). (30.1)

Choosing H(r) = r log r, and using the monotonicity of the CD(K,N) condition with
respect to N , we deduce

Hν(µk,t) ≤ (1 − t)H
β

(K,∞)
1−t

πk,ν (µk,0) + t H
β(K,∞)

t
π̌k,ν (µk,1). (30.2)

By an explicit calculation (as in the proof of (30.9) later in this chapter) the right-hand
side is equal to

(1 − t)Hν(µk,0) + t Hν(µk,1) − K
t(1 − t)

2

∫
d(x0, x1)2 π(dx0 dx1),

and this quantity is finite since µk,0, µk,1 and compactly supported. By (30.2), Hν(µk,t) <
∞ for all t ∈ [0, 1] and for all k ∈ N. Since H ′(∞) = ∞, this implies that µk,t is absolutely
continuous with respect to ν, and in particular it is supported in Spt ν.

Next, by Ascoli’s theorem, there is a subsequence of the family (µk,t) which converges
uniformly in C([0, 1], P2(X )) to some Wasserstein geodesic (µt)0≤t≤1. Since Spt ν is closed,
µt is also supported in Sptν, for each t ∈ [0, 1].

Let (γt) be a random geodesic such that µt = law (γt). The preceding argument shows
that P [γt /∈ Spt ν] = 0 for any t ∈ [0, 1]. Let (tj)j∈N be a dense sequence of times in [0, 1],
then P [∃j; γtj /∈ Spt ν] = 0. Since γ is continuous and Sptν closed, actually P [∃t; γt /∈
Spt ν] = 0. So γ lies entirely in Spt ν, with probability 1. The path (µt)0≤t≤1 is valued
in P2(Spt ν), and it is a geodesic in the larger space P2(X ); so it is also a geodesic in
P2(Spt ν).

Then, for any U ∈ DCN ∩ Lip(R+, R+), we can pass to the limit in (30.1), invoking
Theorems 29.16(i) and (iii):

Uν(µt) ≤ lim inf
k→∞

Uν(µk,t) ≤ lim sup
k→∞

[
(1 − t)U

β(K,N)
1−t

πk,ν (µk,0) + t U
β

(K,N)
t

π̌k,ν (µk,1)
]

= (1 − t)U
β

(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1),

where µ0 = ρ0 ν, µ1 = ρ1 ν, and π is an optimal coupling between µ0 and µ1.
To show that Spt ν is a weak CD(K,N) space, it only remains to check that it is a

length space; then the conclusion will follow from Proposition 29.10. So let x0, x1 be any
two points in Sptν; then for any r > 0, we have ν[Br(x0)] > 0, ν[Br(x1)] > 0; so it
makes sense to define µ0 = 1Br(x0)/ν[Br(x0)], and µ1 = 1Br(x1)/ν[Br(x1)]. The preceding
reasoning shows that there is a random geodesic γ(r) which lies entirely in Sptν, and whose
endpoints belong to Br(x0) and Br(x1). By Ascoli’s theorem, there is a subsequence rj → 0
such that γ(rj) converges uniformly to some random geodesic γ, which necessarily satisfies
γ0 = x0, γ1 = x1, and lies entirely in Sptν. The conclusion is that Spt ν, equipped with
the distance d, is indeed a length space. 78
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Displacement convexity

The definition of weak CD(K,N) spaces is based upon displacement convexity inequalities,
but this inequalities are only required to hold under some restrictions on the initial and
final probability measures µ0 and µ1, which are required to be absolutely continuous and
compactly supported. To exploit the full strength of displacement convexity inequalities,
it is important to get rid of these restrictions.

The next theorem shows that the functionals appearing in Definition 29.1 can be ex-
tended to measures µ that are not compactly supported, provided that the nonlinearity U
belongs to some DCN class, and the measure µ admits a moment of order p, where N and
p are related through the behavior of ν at infinity.

Theorem 30.4 (Domain of definition of Uν and Uβ
π,ν for singular measures). Let

(X , d) be a boundedly compact metric space, equipped with a locally finite Borel measure ν,
and let A be any point in X . Let U be a convex continuous function with U(0) = 0, let β
be a continuous positive function on X ×X , and let π be a probability measure on X ×X .
For any Borel measure µ, introduce its Lebesgue decomposition with respect to ν:

µ = ρ ν + µs.

Assume that
U ∈ DCN ,

∫

X
d(A, x)p µ(dx) < +∞,

where N ∈ [1,∞] and p ≥ 2 are such that





∫

X

dν(x)
[1 + d(A, x)]p(N−1)

< +∞ (N < ∞),

∃c > 0
∫

M
e−c d(8,x)p

dν(x) < +∞ (N = ∞).

(30.3)

If X is not compact, further assume that β satisfies the following bounds:





β is bounded (N < ∞)

∫
(log β(x, y))+ π(dx dy) < +∞ (N = ∞).

(30.4)

Then the following expressions make sense in R ∪ {+∞} and can be taken as generalized
definitions of the functionals appearing in Definition 29.1:






Uν(µ) :=
∫

X
U(ρ(x)) ν(dx) + U ′(∞)µs[X ],

Uβ
π,ν(µ) :=

∫

X×X
U

(
ρ(x)

β(x, y)

)
β(x, y)π(dy|x) ν(dx) + U ′(∞)µs[X ].

(30.5)

Even if there is no such p, Uβ
π,ν(µ) still makes sense if µ ∈ P ac

c (X ).

Proof of Theorem 30.4. The proof is the same as for Theorem 17.23; there are only two
minor differences: (a) ρ is not necessarily a probability density, but still its integral is
bounded above by 1; (b) there is an additional term U ′(∞)µs[X ] ∈ R ∪ {+∞}. 78
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Remark 30.5. Remark 17.24 will also apply here: When one works on weak CD(K,N)
bounds, the restrictions imposed on β = β(K,N) are automatically satisfied in all cases of
interest. (Recall in particular Proposition 29.8.)

The next result is a partial extension of Theorem 29.16. Although it is not the most
general result of its kind (see the bibliographical notes for more comments), it will be
enough to derive displacement convexity inequalities with a lot of generality. As usual,
I shall denote by M+(X ) the set of finite (nonnegative) Borel measures on X , and by
L1

+(X ) be the set of nonnegative ν-integrable measurable functions on X .

Theorem 30.6 (lower semi-continuity of Uν for singular measures). Let (X , d)
be a boundedly compact metric space, equipped with a locally finite measure ν such that
Spt ν = X . Let U : R+ → R+ be a Lipschitz continuous convex function, with U(0) = 0.
Let further β(x, y) be a continuous positive function on X × X . Then,

(i) For any µ ∈ M+(X ) and any sequence (µk)k∈N converging weakly to µ in M+(X ),

Uν(µ) ≤ lim inf
k→∞

Uνk(µk).

(ii) For any probability measure µ, there is a sequence of probability measures (µk)k∈N
converging weakly to µ in P (X ), such that (a) each µk is absolutely continuous with respect
to ν and compactly supported; and (b) for any sequence (πk)k∈N converging weakly to π in
P (X × X ),

lim sup
k→∞

Uβ
πk,ν(µk) ≤ Uβ

π,ν(µ).

Remark 30.7. The assumption of Lipschitz continuity on U implies that U(ρ) and
β U(ρ/β) are integrable functions, so there is no need to appeal to Theorem 30.4 to make
sense of the integrals in (30.5).

Proof of Theorem 30.6.
Let A be an arbitrary base point, and let (χR)R>0 be a A-cutoff as in the Appendix

(that is, a family of cutoff continuous functions that are identically equal to 1 on a ball
BR(A)). For any R > 0, write

Uν(χR µ) =
∫

U(χR ρ) dν + U ′(∞)
∫

χR dµs.

Since U is convex nonnegative with U(0) = 0, it is nondecreasing; by the monotone
convergence theorem,

Uν(χR µ) −−−−→
R→∞

Uν(µ).

In particular,
Uν(µ) = sup

R>0
Uν(χR µ). (30.6)

On the other hand, for each fixed R, we have

Uν(χR µ) = UχR+1ν(χR µ),

and then we can apply Proposition 29.15(i) with the compact space (BR+1](A), ν), to get

Uν(χR µ) = sup
{∫

X
ϕχR dµ −

∫

X
U∗(ϕ)χR+1dν; ϕ ∈ Cb

(
BR+1](A)

)
, 0 < ϕ < U ′(∞)

}
.
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The function ϕχR, extended by 0 outside of BR+1], defines a bounded continuous function
on the whole of X , so µ "−→

∫
ϕχR dµ is continuous with respect to the weak topology of

convergence against bounded continuous functions. So Uν(χRµ) is a lower semi-continuous
function of µ. This combined with (30.6) shows that Uν is a lower semi-continuous function
of µ, which establishes (i).

Next we turn to property (ii). First note that the proof of Theorem 29.16(iii) extends to
the noncompact case; the argument is exactly the same, as soon as one knows that Cb(X )
is dense in L1(X , ν). (In fact it is true that Cc(X ) is dense in L1(X , ν); if necessary, consult
the Appendix for a refresh about these issues.) So the problem lies in the treatment of
possibly singular measures.

Let again A be an arbitrary base point, and let (χR)R>0 be a A-cutoff. For any R > 0, we
can introduce a (BR+1], ν)-regularizing kernel (Kε(x, y))0<ε<1 as in the Appendix. Then,
for any finite measure µ on X we define

Kε(χR µ) =
∫

X
Kε(x, y) (χR µ)(dy).

If µ = ρ ν + µs is the Lebesgue decomposition of µ, then

Kε(χR µ) = ρR,εν + Kε(χR µs), ρR,ε(x) =
∫

X
Kε(x, y)χR(y) ρ(y) ν(dy).

As recalled in the Appendix, χRρ converges to ρ in L1(ν) as R → ∞. Also, for any
fixed R, ρR,ε converges to χRρ in L1(ν) as ε → 0. Then we can choose Rk → ∞, and
εk → 0 such that ∥∥ρRk ,εk − ρ

∥∥
L1(ν)

−−−→
k→∞

0.

Define
µk =

Kεk(χRkµ)
Zk

,

where Zk is a normalizing constant which converges to 1 as k → ∞. We shall now check
that this sequence (µk) does the job.

It follows from the definition of the functional Uβ
π,ν, the convexity of U and the inequality

U(r)/r ≤ U ′(∞) that (a) Uβ
π,ν is a convex functional of µ; (b) Uβ

π,ν(µ) ≤ U ′(∞)µ[X ]. So,
for any θ ∈ (0, 1), we can write

Uβ
πk,ν(µk) ≤ θUβ

πk,ν

(
ρRk ,εkν

Zkθ

)
+ (1 − θ)Uβ

π,ν

(
Kε(χRk µs)
Zk(1 − θ)

)

≤ θUβ
πk,ν

(
ρRk ,εkν

Zkθ

)
+

U ′(∞)
Zk

(
Kε(χRk µs)

)
[X ].

In the first term of the right-hand side, we may go to 0 as θ → 1, using e.g. the continuity
of Uβ

πk,ν on L1
+(ν) (or just the monotone convergence theorem, since U is nondecreasing).

In the second term, we can use the identity Kε(χR µs)[X ] = (χR µs)[X ] =
∫
χR dµs. It

follows that
Uβ

πk,ν(µk) ≤ Uβ
πk,ν

(ρRk ,εk

Zk
ν
)

+
U ′(∞)

Zk

∫

X
χRk dµs. (30.7)

Now we can pass to the limit as k → ∞. On one hand, ρRk ,εk converges to ρ in L1(ν),
and Zk → 1, so by Theorem 29.16(iii) (extended to the noncompact case),

Uβ
πk,ν(ρRk,εkν) −−−→

k→∞
Uβ

π,ν(ρ ν).
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On the other hand, by dominated convergence,
∫

X
χRk dµs −−−→

k→∞

∫

X
dµs = µs[X ].

This combined with (30.7) implies

lim sup
k→∞

Uβ
πk,ν(µk) ≤ Uβ

π,ν(ρ ν) + U ′(∞)µs[X ] = Uβ
π,ν(µ).

So (ii) is proved. 78

The next theorem is the final goal of this section (compare with Definition 29.6):

Theorem 30.8 (generalized displacement convexity inequalities in weak CD(K,N)
spaces). Let N ∈ [1,∞], let (X , d, ν) be a weak CD(K,N) space, and let p satisfy con-
dition (30.3). Let µ0 and µ1 be two probability measures in Pp(X ), whose supports are
included in Spt ν. Then there exists a Wasserstein geodesic (µt)0≤t≤1, and an associated
optimal coupling π of (µ0, µ1) such that, for all U ∈ DCN and for all t ∈ [0, 1],

Uν(µt) ≤ (1 − t)U
β

(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1). (30.8)

Furthermore, if N = ∞, one also has

Uν(µt) ≤ (1 − t)Uν(µ0) + t Uν(µ1) −
λ(K,U) t (1 − t)

2
W2(µ0, µ1)2, (30.9)

where

λ(K,U) = inf
r>0

Kp(r)
r

=






K p′(0) if K > 0,
0 if K = 0,
K p′(∞) if K < 0.

(30.10)

These inequalities are the starting point for all subsequent inequalities considered in
the present chapter.

Remark 30.9. In Definition 29.6, we were careful to impose displacement convexity in-
equalities along some Wasserstein geodesic, because such geodesics might not be unique,
due to the lack of smoothness of the space. Now that we are considering possibly sin-
gular measures, the nonuniqueness issue is even more acute, and already occurs at the
level of smooth manifolds. We shall prove however, as a special case of Theorem 30.26
below, that displacement convexity inequalities on Riemannian manifolds hold true along
all displacement interpolations, even if the initial and final measures are singular.

Proof of Theorem 30.8. Let µ0 and µ1 be as in the statement of the theorem. Use Theo-
rem 30.6(ii) with µ = µ0 and then µ = µ1, to construct suitable approximating sequences
µk,0 and µk,1. Since µk,0 and µk,1 are compactly supported and absolutely continuous,
by definition of the CD(K,N) criterion there are Wasserstein geodesics (µk,t)0≤t≤1 and
associated couplings πk of (µk,0, µk,1) such that for any U ∈ DCN , and for any t ∈ [0, 1],

Uν(µk,t) ≤ (1 − t)U
β

(K,N)
1−t

πk,ν (µk,0) + t U
β(K,N)

t
π̌k,ν (µk,1). (30.11)

For each k, let Πk be a dynamical optimal coupling such that µk,t = (et)#Πk and
πk = (e0, e1)#Πk. The sets {µk,0; k ∈ N}∪ {µ0} and {µk,1; k ∈ N}∪ {µ1} are compact for



486 30 Weak Ricci curvature bounds II: Geometric and analytic properties

the weak topology and included in P2(X ); it follows from Corollary 7.20 that the family
(Πk)k∈N converges, up to extraction, to a dynamical optimal transference plan Π with
(e0)#Π = µ0 and (e1)#Π = µ1. Then, for each t ∈ [0, 1], µk,t converges weakly to µt, and
also πk converges weakly to π.

Let us assume that U ∈ Lip(R+, R+). Then by Theorem 30.6(ii), we can pass to the
lim sup in the right-hand side of (30.11), and by Theorem 30.6(i), we can pass to the lim inf
in the left-hand side of the same equation. So, for any U ∈ DCN ∩ Lip(R+, R+), and for
any t ∈ [0, 1],

Uν(µt) ≤ (1 − t)U
β(K,N)
1−t

π,ν (µ0) + t U
β

(K,N)
t

π̌,ν (µ1).
To establish (30.8), it only remains to remove the assumption U ∈ Lip(R+, R+). This

is done exactly as in the proof Proposition 29.10, with only two changes in Step 3 of that
proof. First, one should pass to the limit in the singular term, but this is no problem
since U ′

((∞)µs[X ] → U ′(∞)µs[X ]. Secondly, to prove that U(ρ) is integrable, the lower
bound U(ρ(x)) ≥ −A (ρ(x) + 1ρ(x)>0) is not enough; instead, one should use the lower
bounds for U(ρ(x)) and β(x, y)U(ρ(x)/β(x, y)) provided by the proof of Theorem 30.4,
after noting that the assumptions on the distortion coefficients are always satisfied in view
of Remark 17.24.

Now we shall see that (30.9) is a consequence of (30.8). First of all, formula (30.10)
follows from the fact that p(r)/r = r1/N (p(r)/r1−1/N ) is nonincreasing, as a product of
nonincreasing nonnegative functions. Obviously, it suffices to show that if π is an optimal
coupling of (µ0, µ1), then for any U ∈ DC∞,

(1 − t)U
β(K,∞)
1−t

π,ν (µ0) + t U
β

(K,∞)
t

π̌,ν (µ1) ≤ (1 − t)Uν(µ0) + t Uν(µ1)

− λ(K,U)
t (1 − t)

2
W2(µ0, µ1)2. (30.12)

If t = 0, then both sides of (30.12) reduce to Uν(µ0); similarly, if t = 1 both sides
reduce to Uν(µ1). So we may assume that t ∈ (0, 1).

By Proposition 17.7, any U ∈ DC∞ is either linear or satisfies U ′(∞) > 0. In the first
case, inequality (30.12) is obviously true; in the second case, both sides are +∞ if either
µ0 or µ1 is singular with respect to ν. So in the sequel we may assume that both µ0 and
µ1 are absolutely continuous; let ρ0 and ρ1 be their respective densities. The case K = 0
is trivial, so we may assume K 3= 0.

Consider first the case K > 0. Since U ∈ DC∞, δ → eδ U(ρe−δ) is convex. So, for any
ρ ≥ 0 and δ > 0,

eδ U
( ρ

eδ

)
≤ U

( ρ

e0

)
e0 − δeδp

( ρ

eδ

)

≤ U(ρ) − λ(K,U)
δ

K
ρ.

Apply this inequality with δ = log β(K,∞)
1−t (x0, x1) > 0 and ρ = ρ0(x0); then integrate with

respect to π(dx1|x0) ν(dx0): the result is

U
β(K,∞)
1−t

π,ν (µ0) ≤ Uν(µ0) − λ(K,U)
∫

X×X

[
log β(K,∞)

1−t (x0, x1)
K

]
π(dx1|x0) ρ0(x0) ν(dx0)

= Uν(µ0) − λ(K,U)
∫

X×X

[
[1 − (1 − t)2] d(x0, x1)2

6

]
π(dx0 dx1)

= Uν(µ0) − λ(K,U)
(

1 − (1 − t)2

6

)
W2(µ0, µ1)2. (30.13)
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Similarly,

U
β(K,∞)
1−t

π,ν (µ0) ≤ Uν(µ1) − λ(K,U)
(

1 − t2

6

)
W2(µ0, µ1)2. (30.14)

Then inequality (30.12) follows from taking the linear combination of (30.13) and (30.14)
with respective coefficients 1 − t and t, and noting that

(1 − t) [1 − (1 − t)2] + t (1 − t)2

6
=

t (1 − t)
2

.

The case K < 0 is simlar; the change of sign of K is compensated by the change of
sign of δ = log β(K,∞), so the inequalities are similar. 78

Brunn–Minkowski inequality

The next theorem can be taken as the first step in the theory of volume control in weak
CD(K,N) spaces:

Theorem 30.10 (Brunn–Minkowski inequality in weak CD(K,N) spaces). Let
K ∈ R and N ∈ [1,∞]. Let (X , d, ν) be a weak CD(K,N) space, let A0, A1 be two compact
subsets of Spt ν, and let t ∈ (0, 1). Assume that each of the sets A0, A1 either has positive
measure or is reduced to a point. Then

- If N < ∞,

ν
[
[A0, A1]t

] 1
N ≥ (1 − t)

[
inf

(x0,x1)∈A0×A1

β(K,N)
1−t (x0, x1)

1
N

]
ν[A0]

1
N

+ t

[
inf

(x0,x1)∈A0×A1

β(K,N)
t (x0, x1)

1
N

]
ν[A1]

1
N . (30.15)

- In particular, if N < ∞ and K ≥ 0, then

ν
[
[A0, A1]t

] 1
N ≥ (1 − t) ν[A0]

1
N + t ν[A1]

1
N . (30.16)

- If N = ∞, then

log
1

ν
[
[A0, A1]t

] ≤ (1 − t) log
1

ν[A0]
+ t log

1
ν[A1]

− K t(1 − t)
2

sup
x0∈A0, x1∈A1

d(x0, x1)2.

(30.17)

Proof of Theorem 30.10. The proof is the same, mutatis mutandis, as the proof of The-
orem 18.4: define µ0 = 1A0/ν[A0], µ1 = 1A1/ν[A1], to be understood as δx0 (resp. δx1)
if A0 = {x0} (resp. A1 = {x1}); then apply the displacement convexity inequality from
Theorem 30.8 with the nonlinearity U(r) = −r1−1/N . 78

Here below are two interesting corollaries:

Corollary 30.11 (non-atomicity of the support). Let K ∈ R and N ∈ [1,∞]. If
(X , d, ν) is a weak CD(K,N) space, then either ν is a Dirac mass, or ν has no atom.
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Corollary 30.12 (Exhaustion by intermediate points). Let K ∈ R and N ∈ [1,∞).
Let (X , d, ν) be a weak CD(K,N) space, let A be a compact subset of Spt ν with ν[A] > 0,
and let x ∈ A. Then

ν
[
[x,A]t

]
−−→
t→1

ν[A].

Proof of Corollary 30.11. This corollary will be derived as a consequence of (30.17). By
Theorem 30.2, we may assume without loss of generality that Spt ν = X . Suppose that ν
has an atom, i.e. some x0 ∈ X with ν[{x0}] > 0; and yet ν is not the Diract mass at x0,
so that ν[X \ {x0}] > 0. Define A0 = {x0} and let A1 be some compact subset of X \ {x0}
such that ν[A1] > 0. Then for t > 0, [A0, A1]t does not contain x0, but it is included
in a ball that shrinks around x0; it follows that ν[[A0, A1]t] converges to 0 as t → 0. So
log(1/ν[[A0, A1]t]) → +∞ as t → 0; but this contradicts (30.17). 78

Proof of Corollary 30.12. The upper bound is easy. Let R = max{d(x, a); a ∈ A}. Then
[x,A]t ⊂ AtR] = {y; d(y,A) ≤ tR}; so ν[[x,A]t] ≤ ν[AtR]]. By regularity of ν, we can pass
to the limit as t → 1 and recover

lim sup
t→1

ν
[
[x,A]t

]
≤ ν[A]. (30.18)

To prove the lower bound, apply (30.15) with A0 = {x}, A1 = A. This results in

ν
[
[x,A1]t

] 1
N ≥ t inf

a∈A
βK,N

t (x, a)
1
N ν[A]

1
N .

As t → 1, inf β(K,N)
t (x, a) converges to 1, so we may pass to the lim inf and recover

lim inf
t→1

ν
[
[x,A]t

]
≥ ν[A].

This combines with (30.18) proves the claim. 78

Bishop–Gromov inequalities

Once we know that ν has no atom, we can get much more precise information and con-
trol on the growth of the volume of balls, and in particular prove sharp Bishop–Gromov
inequalities for weak CD(K,N) spaces with N < ∞:

Theorem 30.13 (Bishop–Gromov inequality in metric-measure spaces). Let
(X , d, ν) be a weak CD(K,N) space. Let x0 ∈ X and let r > 0 be such that the closed
ball B(x0, r]) lies in the support of ν; then ν[B(x0, r])] = ν[B(x0, r)]. Moreover,

- If N < ∞, then for any x0 ∈ Spt ν,

ν[Br(x0)]∫ r

0
s(K,N)(t) dt

is a nonincreasing function of r, (30.19)

where s(K,N) is defined as in Theorem 18.7.
- If N = ∞, then for any x0 ∈ Spt ν and any δ > 0, there is a constant C =

C
(
K−, δ, ν[Bδ(x0)], ν[B2δ(x0)], such that for all r ≥ δ,

ν[Br(x0)] ≤ eCr e(K−) r2

2 ; (30.20)
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ν[Br+δ(x0) \ Br(x0)] ≤ eCr e−K r2

2 if K > 0. (30.21)

In particular, if K > 0 then

∀K ′ < K,

∫
e

K′
2 d(x0,x)2 ν(dx) < +∞. (30.22)

Before providing the proof of this theorem, I shall state two important corollaries. The
first one is an exercise for anybody who is familiar with the definitions of the Hausdorff
measure and Hausdorff dimension:

Corollary 30.14 (dimension of weak CD(K,N) spaces). If X is a weak CD(K,N)
space with K ∈ R and N ∈ [1,∞). then the Hausdorff dimension of Spt ν is at most N .

The second corollary is the doubling property:

Corollary 30.15 (weak CD(K,N) spaces are doubling). If X is a weak CD(K,N)
space with K ∈ R, N < ∞, Spt ν = X and diam (X ) ≤ D, then (X , d, ν) is C-doubling
with a constant C that depends only on K, N and D.

Combined with the general theory of Gromov–Hausdorff convergence, as exposed in
Chapter 27, this result implies the compactness Theorem 29.23.

Now let us turn to the proof of Theorem 30.13.

Proof of Theorem 30.13. The case where ν is a Dirac mass is trivial and should be treated
separately. So by Theorem 30.2, we may assume that ν has no atom.

Next, let x0 ∈ X and r > 0. The open ball Br(x0) contains [x,Br](x0)]t, for all t ∈ (0, 1).
By Corollary 30.12,

ν[Br(x0)] ≥ lim
t→1

ν[x,Br](x0)]t = ν[Br](x0)].

This shows that ν[Br(x0)] = ν[Br](x0)].
The proof of (30.19) follows the same pattern as the proof of Theorem 18.7. The

key ingredient is to apply inequality (30.8) in the case when µ0 = δx0 and µ1 is the
indicator function of a ball BR](x0); and to note that ν[{x0}] = 0. Details are exactly as
in Theorem 18.7.

Now let us turn to the case N = ∞ and prove (30.20). For brevity I shall write Br for
Br](x0). Apply (30.17) with A0 = Bδ, A1 = Br, and t = δ/(2r) ≤ 1/2. For any minimizing
geodesic γ going from A0 to A1, one has d(γ0, γ1) ≤ r + δ, so

d(x0, γt) ≤ d(x0, γ0) + d(γ0, γt) ≤ δ + t(r + δ) ≤ δ + 2tr ≤ 2δ.

So [A0, A1]t ⊂ B2δ, and it follows from (30.17) that

log
1

ν[B2δ]
≤
(
1 − δ

2r

)
log

1
ν[Bδ]

+
δ

2r
log

1
ν[Br]

+
K−
2

δ

2r

(
1 − δ

2r

)
(r + ε)2.

This leads to an estimate of the form

ν[Br] ≤ exp
(
a + br +

c

r
+

K− r2

2

)
,

where a, b, c only depend on δ, ν[Bδ] and ν[B2δ]. The result follows.
The proof of inequality (30.21) is quite the same, with now A0 = Bδ, A1 = Br+δ \ Br,

t = δ/(3r).
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Finally, to prove (30.22), it suffices to take δ = 1 and write
∫

e
K′
2 d(x0,x)2 ν(dx) ≤ e

K′
2 ν[B1] +

∑

k≥1

e
K′
2 (k+1)2

[∫

Bk+1\Bk

]

≤ e
K′
2 + CeC(k+1)

∑

k≥1

e
K′
2 (k+1)2e−Kk2

< +∞.

78

Uniqueness of geodesics

An important result in Riemannian geometry states that almost all pairs of points in
a complete Riemannian manifold are linked by a unique geodesic. This statement does
not extend to weak CD(K,N) spaces in general, as will be discussed in the concluding
remarks; however, it becomes true if the weak CD(K,N) criterion is supplemented with
a nonbranching condition, i.e. any two distinct geodesics cannot coincide on a non-trivial
interval:

Theorem 30.16 (Uniqueness of geodesics in nonbranching CD(K,N) spaces).
Let (X , d, ν) be a nonbranching weak CD(K,N) space with N < ∞. Then for ν⊗ν-almost
all (x, y) ∈ X 2, there is a unique (constant-speed, minimizing) geodesic joining x to y.
More precisely, for any x ∈ X , the set of points y ∈ X which can be joined to x by several
geodesics has zero measure.

Proof. Let x ∈ X , r > 0, A = Br(x) and At = [x,Br(x)]t ⊂ Btr(x). For any z ∈ At,
there is a geodesic γ joining x to some y ∈ Z, with γ(t) = z. Assume that there would
be another distinct geodesic γ̃ joining x to z; up to a rescaling of time, one may assume
that also γ̃ is defined on [0, t], so that γ(0) = x, γ̃(t) = z. (γ̃ might not be defined after
time t.) Then the curve obtained by concatenation of γ̃ on [0, t] and γ on [t, 1] is also a
geodesic, and it is distinct from γ̃, which is impossible since geodesics are nonbranching.
The conclusion is that there is one and only one geodesic joining x to z; it is obtained by
reparametrizing the restriction of γ to the interval [0, t].

Let Z := ∪0<t<1At ⊂ A. The preceding reasoning shows that if z belongs to Z then
there is only one geodesic path joining x to z. The sets A′

t are nonincreasing in t, so

ν
[ ⋃

0<t<1

At

]
= lim

t→1
ν
[
[x,A]t

]
= ν[A],

where the first equality follows from the monotone convergence theorem and the second
from Corollary 30.12. This The same can be said of all points z lying in the nondecreasing
union of the sets At for 0 < t < 1.

So for any k ∈ N, the set Zk of points in Bk(x) which can be joined to x by several
geodesics is of zero measure. So the set of points in X which can be joined to x by several
geodesics is contained in the union of all Zk, and is therefore of zero measure too. 78

Regularity of the interpolant

If M is a smooth Riemannian manifold, then the displacement interpolant µt between µ0

and µ1 is absolutely continuous with respect to the volume measure, as soon as either µ0
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or µ1 is absolutely continuous (Theorem 8.5(ii)). It is not known whether this property is
still true in weak CD(K,N) spaces; but at least some regularity properties are known to
be inherited by the displacement interpolant if they are satisfied by both µ0 and µ1. This
is the content of the next theorem.

Theorem 30.17 (absolute continuity of displacement interpolants in weak CD(K,N)
spaces). Let (X , d, ν) be a weak CD(K,N) space with K ∈ R and N ∈ [1,∞). Let further
µ0, µ1 be two probability measures in P2(X ). Then

(i) Assume that both µ0 and µ1 are absolutely continuous with respect to ν; if K < 0,
further assume that they are compactly supported. Let (µt)0≤t≤1 be a Wasserstein geodesic
satisfying the displacement convexity inequalities of Theorem 30.8. Then also µt is abso-
lutely continuous, for all t ∈ [0, 1];

(ii) If either µ0 or µ1 is absolutely continuous, and t0 ∈ (0, 1) is given, then one can
find a Wasserstein geodesic joining µ0 to µ1, such that µt0 is also absolutely continuous.

(iii) If either µ0 or µ1 is not purely singular, then one can find a Wasserstein geodesic
joining µ0 to µ1, such that for all t ∈ [0, 1], µt is not purely singular.

(iv) Assume that K ≥ 0 and that the respective densities ρ0 and ρ1 of µ0 and µ1 are
bounded. Let (µt)0≤t≤1 be a Wasserstein geodesic satisfying the displacement convexity
inequalities of Theorem 30.8. Then the density ρt of µt is bounded by max (sup ρ0, sup ρ1).

Proof of Theorem 30.17. First assume that K ≥ 0, or, what amounts to the same, K = 0.
Since µ0 and µ1 are absolutely continuous, by the Dunford–Pettis theorem there exists
Ψ : R+ → R+ such that

lim
r→∞

Ψ(r)
r

= ∞;
∫

Ψ(ρ0) dν < +∞,

∫
Ψ(ρ1) dν < +∞.

Thanks to Proposition 17.7, one may assume that Ψ belongs to DCN . Then the convexity
inequality

Ψν(µt) ≤ (1 − t)Ψν(µ0) + tΨν(µ1) < +∞

shows that µt is absolutely continuous. This proves (i).
Now consider the case when K < 0. It is not hard to prove that in the Dunford–

Pettis theorem, one may impose Ψ to have polynomial growth, in the sense that 0 ≤
U(ar) ≤ C(a)[U(r) + 1] for any a > 1. Since µ0 and µ1 are compactly supported, the
distortion coefficients β(x0, x1) appearing in the right-hand side of the inequalities in
Theorem 30.8 are bounded from above and below; then the integrability of Ψ(ρ) also implies
the finiteness of

∫
β(x0, x1)Ψ(ρ(x0)/β(x0, x1))π(dx1|x0) ν(dx0), and the same reasoning

as before applies.
To prove (ii), let U(r) = −Nr1−1/N ; then U ∈ DCN and U ′(∞) = 0. Moreover, Uν(µ) <

0 as soon as µ is absolutely continuous. Among all dynamical optimal transport plans Π
with (e0)#Π = µ0, (e1)#Π = µ1 which satisfy the CD(K,N) displacement convexity
inequality, choose one with minimal Uν(µt0); there exists one such dynamical optimal
transport plan by lower semi-continuity of Uν and compactness of the set of admissible
transference plans.

Assume that µt0 is not absolutely continuous, i.e. there exists N with ν[N ] = 0 and
µt0 [N ] > 0. Consider the restricted transport plan Π ′ obtained by conditioning Π by
the event “γ(t0) ∈ N”. Then (et)#Π ′ = µ′

t satisfies the following properties: (a) µ′
t ≤

µt/µt0 [N ], and in particular µ′
0 is absolutely continuous; (b) µ′

t0 is concentrated on N . So

Uν(µ′
t0) = 0, but U

β(K,N)
1−t0

π,ν (µ′
0) < 0. It follows that the inequality
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Uν(µ′
t0) ≤ (1 − t0)U

β
(K,N)
1−t0

π,ν (µ′
0) + t0 U

β(K,N)
t0

π̌,ν (µ′
1) (30.23)

cannot hold.
On the other hand, there has to be some dynamical optimal transport plan Π ′′ such

that (e0)#Π ′′ = µ′
0, (e1)#Π ′′ = µ′

1 and inequality (30.23) holds true with µ′
t0 replaced by

µ′′
t0 = (et0)#Π ′′. In particular, Uν(µ′′

t0) < Uν(µ′
t0) = 0, which implies that µ′′

t0 is not purely
singular.

Now consider the plan Π̂ defined by

Π̂ = P [γt0 ∈ N ]Π ′′ + 1[γt0 /∈N ] Π. (30.24)

This is still a dynamical optimal transport plan, because
∫

d(γ0, γ1)2 Π̂(dγ) = P [γt0 ∈ N ]
∫

d(γ0, γ1)2 Π ′′(dγ) +
∫

1γt0 /∈Nd(γ0, γ1)2 Π(dγ)

=
∫

d(γ0, γ1)2 Π ′(dγ) +
∫

1γt0 /∈Nd(γ0, γ1)2 Π(dγ)

=
∫

d(γ0, γ1)2 Π(dγ),

which is the optimal cost.
It follows from (30.24) and the ν-negligibility of N that

ρ̂t0 = a ρ′′t0 + 1γt0 /∈Nρt0 = a ρ′′t0 + ρt0 ,

where ρ̂t0 , ρ′′t0 and ρt0 respectively stand for the density of the absolutely continuous parts
of µ̂t0 , µ′′

t0 and µt0 , and a = P [γt0 ∈ N ] > 0. Then from the minimality property of µt0 ,

−N

∫
ρt0(x)1−1/N dν(x) = Uν(µt0) ≤ Uν(µ̂t0) = −N

∫ (
ρt0(x) + aρ′′t0(x)

)1−1/N
dν(x).

Since a is positive and r → r1−1/N is strictly increasing, this inequality is possible only if
ρ′′t0 = 0 almost everywhere, but this would be in contradiction with the fact that µ′′

t0 is not
purely singular. The only possibility is that µt0 is absolutely continuous. This proves (ii).

Statement (iii) is based on the same principle as (ii), but now this is much simpler:
Choose U(r) = −Nr1−1/N again, and choose a displacement interpolation (µt) satisfying
the convexity inequality

Uν(µt) ≤ (1 − t)U
β(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1).

If, say, µ0 is not purely singular, then the first term on the right-hand side is negative,
while the second one is nonpositive. It follows that Uν(µt) < 0, and therefore µt is not
purely singular.

To prove (iv), write ρt for the density of µt, choose U(r) = rp, which lies in DCN for
any p ≥ 1, and deduce that

‖ρt‖p
Lp(ν) ≤ Uν(µt) ≤ (1−t) ‖ρ0‖p

Lp(ν) + t ‖ρ1‖p
Lp(ν) ≤ max

(
‖ρ0‖Lp(ν), ‖ρ1‖Lp(ν)

)p
. (30.25)

Since ρ0 and ρ1 belong to L1(ν) and L∞(ν), by elementary interpolation they belong to
all Lp spaces, so the right-hand side in (30.25) is also finite, and ρt belongs to Lp. Then
take powers 1/p in both sides of (30.25) and pass to the limit as p → ∞, to recover (ii). 78

Remark 30.18. The above argument exploited the fact that in the definition of weak
CD(K,N) spaces the displacement convexity inequality is required to hold for all members
of DCN and along a common Wasserstein geodesic.
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HWI and logarithmic Sobolev inequalities

There is a generalized notion of Fisher information in a metric-measure space (X , d, ν):

Iν(µ) =
∫ |∇−ρ|2

ρ
dν, µ = ρ ν,

where |∇−ρ| is defined by (20.2) (one may also use |∇ρ| in place of |∇−ρ|). With this
notion, one has the following estimates:

Theorem 30.19 (HWI and logarithmic Sobolev inequalities in weak CD(K,∞)
spaces). Let (X , d, ν) be a weak CD(K,∞) space. Let further µ0 and µ1 be two probability
measures in P2(X ), such that µ0 = ρ0 ν with ρ0 Lipschitz. Then

Hν(µ0) ≤ Hν(µ1) + W2(µ0, µ1)
√

Iν(µ0) −
K W2(µ0, µ1)2

2
. (30.26)

In particular, if ν ∈ P2(X ), then, for any µ ∈ P2(X ) with Lipschitz-continuous density,

Hν(µ) ≤ W2(µ, ν)
√

Iν(µ) − K W2(µ, ν)2

2
. (30.27)

Consequently, if K > 0, then ν satisfies a logarithmic Sobolev inequality with constant
K:

Hν ≤ Iν
2K

.

Proof of Theorem 30.19. The proof is the same as for Theorems 20.7 and 25.1, mutatis
mutandis. (The absolute continuity of the displacement interpolant appearing in the proof
follows from Theorem 30.17, but also more directly from the finiteness of Hν(µ0) and
Hν(µ1).) 78

Sobolev inequalities

More general versions of the HWI inequality, such as Theorem 20.6, are also available, and
then one can derive finite-dimensional Sobolev inequalities. An example is the following
statement, whose proof is patterned after the proof of Theorem 21.14:

Theorem 30.20 (Sobolev inequalities in weak CD(K,N) spaces). Let (X , d, ν) be
a weak CD(K,N) space, where K < 0 and N ∈ [1,∞). Then, for any R > 0 there are
constants A = A(K,N,R) and B = B(K,N,R) such that for any Lipschitz function u
supported in a ball B(z,R),

‖u‖
L

N
N−1

≤ A ‖∇−u‖L1 + B ‖u‖L1 . (30.28)

On the other hand, it is not known whether weak CD(K,N) spaces with K > 0 and
N < ∞ satisfy sharp Sobolev inequalities such as (21.9).



494 30 Weak Ricci curvature bounds II: Geometric and analytic properties

Diameter control

Recall from Proposition 29.8 that a weak CD(K,N) space with K > 0 and N < ∞ satisfies
the Bonnet–Myers diameter bound

diam (Spt ν) ≤ π

√
N − 1

K
.

Slightly weaker conclusions can also be obtained under a priori weaker assumptions:
For instance, if X is at the same time a weak CD(0, N) space and a weak CD(K,∞) space,
then there is a universal constant C such that

diam (Spt ν) ≤ C

√
N − 1

K
. (30.29)

See the bibliographical notes for more details.

Poincaré inequalities

As was already evoked in Part II of these notes, there are many kinds of Poincaré in-
equalities, which roughly speaking can be divided into global and local inequalities. In a
nonsmooth context, global Poincaré inequalities can be seen as a replacement for spectral
gap inequalities for the Laplace operator.

If one does not care about dimension, then there is a general principle (independent of
optimal transport) according to which a logarithmic Sobolev inequality with constant K
implies a global Poincaré inequality with the same constant; and then from Theorem 30.19
we know that a weak CD(K,∞) condition does imply such a logarithmic Sobolev inequal-
ity. Now, if one does care about the dimension, then it is possible to adapt the proof of
Theorem 21.17 and get from CD(K,N) the precise Poincaré constant KN/(N − 1).

Theorem 30.21 (Global Poincaré inequalities in weak CD(K,N) spaces). Let
(X , d, ν) be a weak CD(K,N) space with K > 0. Then, for any Lipschitz function f : X →
R, ∫

f dν = 0 =⇒
∫

f2 dν ≤
(

N − 1
NK

) ∫
|∇−f |2 dν,

with the convention that (N − 1)/N = 1 if N = ∞.

Local Poincaré inequalities play a key role in the modern geometry of metric spaces, and
it is natural to ask whether weak CD(K,N) spaces satisfy them. For the moment however,
the only known result in this direction is for nonbranching weak CD(K,N) spaces (only
when N is finite, which is a natural restriction):

Theorem 30.22 (Local Poincaré inequalities in nonbranching weak CD(K,N)
spaces). Let K ∈ R, N ∈ [1,∞), and let (X , d, ν) be a nonbranching weak CD(K,N)
space. Let u : X → R be a Lipschitz function, and let x0 ∈ X . Then for any R ≥ 2r, there
is a constant P = P (K,N,R) such that

−
∫

Br(x0)

∣∣∣u(x) − 〈u〉Br(x0)

∣∣∣ dν(x) ≤ P (K,N,R) r −
∫

B2r(x0)

|∇u|(x) dν(x), (30.30)
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where −
∫

B = (ν[B])−1
∫
B is the averaged integral over B; 〈u〉B = −

∫
B u dν is the average

of the function u on B; P (K,N,R) = 22N+1 C(K,N,R)D(K,N,R), and the constants
C(K,N,R) and D(K,N,R) are defined by (19.11) and (18.9).

In particular, if K ≥ 0 then P (K,N,R) = 22N+1 is admissible; so ν satisfies a uni-
form local Poincaré inequality. Moreover, (30.30) still holds true if the local “norm of the
gradient” |∇u| is replaced by any upper gradient of u, that is a function g such that for
any Lipschitz path γ : [0, 1] → X ,

|g(γ(0)) − g(γ(t))| ≤
∫ t

0
g(γ(t)) |γ̇(t)| dt.

Remark 30.23. It would be desirable to eliminate the nonbranching condition, since it
is not always satisfied by weak CD(K,N) spaces, and rather unnatural in the theory of
local Poincaré inequalities.

Proof of Theorem 30.22. Modulo changes of notation, the proof is the same as the proof
of Theorem 19.9, once Theorem 30.16 guarantees the almost sure uniqueness of geodesics.
78

Talagrand inequalities

With logarithmic Sobolev inequalities come a rich functional apparatus for treating con-
centration of measure. One may also get concentration from curvature bounds CD(K,∞)
via Talagrand inequalities. As for the links between logarithmic Sobolev and Talagrand
inequalities, they also remain true, at least under more stringent regularity assumptions
on X :

Theorem 30.24 (Talagrand and log Sobolev inequalities in measure-metric
spaces). (i) Let (X , d, ν) be a weak CD(K,∞) space with K > 0. Then ν lies in P2(X )
and satisfies the Talagrand inequality T2(K).

(ii) Let (X , d, ν) be a locally compact, Polish length space equipped with a locally finite
measure, locally doubling measure ν, satisfying a local Poincaré inequality on balls. If ν
satisfies a logarithmic Sobolev inequality with constant K, then also ν lies in P2(X ) and
satisfies the Talagrand inequality T2(K).

Remark 30.25. In view of Corollary 30.15 and Theorem 30.22, the regularity assumptions
required in (ii) are satisfied if (X , d, ν) is a nonbranching weak CD(K ′, N ′) space for some
K ′ ∈ R, N ′ < ∞; note that the values of K ′ and N ′ do not play any role in the conclusion.

Proof of Theorem 30.24. Part (i) is an immediate consequence of (30.22) and (30.26) with
µ0 = ν.

The proof of part (ii) is similar to the proof of Theorem 22.15, once one has an analogue
of Proposition 22.13. It turns out that properties (i)-(vi) of Proposition 22.13 are still
satisfied when the Riemannian manifold M is replaced by any metric space X , but property
(vii) might fail in general. Still it is true that this property holds true for ν-almost all x,
under the assumption that ν is locally doubling and satisfies a local Poincaré inequality
on balls. (See the bibliographical notes for references.) This is enough for the proof of
Theorem 22.15 to go through. 78

There are also dimensional versions of Talagrand inequalities available, for instance the
analogue of Theorem 22.34 holds true in weak CD(K,N) spaces with K > 0 and N < ∞.
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Equivalence of definitions in nonbranching spaces

In the definition of weak CD(K,N) spaces we chose to impose the displacement convexity
inequality for all U ∈ DCN , but only along some displacement interpolation. We could have
chosen otherwise, for instance impose the inequality for just some particular functions U ,
or along all displacement interpolations. In the end our choice was dictated partly by the
will to get a stable definition, partly by convenience. It turns out that in nonbranching
metric-measure spaces, the choice really does not matter: It is equivalent

- to require the displacement convexity inequality to hold true for any U ∈ DCN ; or
just for U = UN , where UN (r) = −Nr1−1−/N if 1 < N < ∞, and U∞(r) = r log r;

- to require the inequality to hold true for compactly supported, absolutely continuous
probability measures µ0, µ1; or for any two probability measures with suitable moment
conditions;

- to require the inequality to hold true along some displacement interpolation, or along
any displacement interpolation.

The next statement makes this claim precise. Note that I leave apart the case N = 1
which is special (for instance U1 is not defined). I shall write (UN )ν = HN,ν, and (UN )βπ,ν =
Hβ

N,π,ν.

Theorem 30.26 (Equivalence of definitions in nonbranching spaces).
Let (X , d, ν) be a nonbranching locally compact Polish length space equipped with a

locally finite measure ν. Let K ∈ R, N ∈ (1,∞], and let p ∈ [2,+∞) ∪ {c} satisfy the
assumptions of Theorem 30.4. Then the following three properties are equivalent:

(i) (X , d, ν) is a weak CD(K,N) space, in the sense of Definition 29.6;
(ii) For any two compactly supported probability densities ρ0 and ρ1, there is a displace-

ment interpolation (µt)0≤t≤1 joining µ0 = ρ0 ν to µ1 = ρ1 ν, and an associated optimal
plan π, such that for all t ∈ [0, 1],

HN,ν(µt) ≤ (1 − t)H
β(K,N)
1−t

N,π,ν (µ0) + t H
β(K,N)

t
N,π,ν (µ1). (30.31)

(iii) For any displacement interpolation (µt)0≤t≤1 with µ0, µ1 ∈ Pp(X ), for any associ-
ated transport plan π, for any U ∈ DCN and for any t ∈ [0, 1],

Uν(µt) ≤ (1 − t)U
β(K,N)
1−t

π,ν (µ0) + t U
β

(K,N)
t

π̌,ν (µ1). (30.32)

Theorem 30.26 is interesting even for smooth Riemannian manifolds, since it covers
singular measures, for which there is a priori no uniqueness of displacement interpolant.
Its proof is based on the idea, already used in Theorem 19.2, that we may condition the
optimal transport to lie in a very small ball at time t, and, by passing to the limit, retrieve
a pointwise control of the density ρt. This will work because the nonbranching property
implies the uniqueness of the displacement interpolation between intermediate times, and
forbids the crossing of geodesics used in the optimal transport, as in Theorem 7.27. Apart
from this simple idea, the proof is quite technical and the reader might skip it at first
reading.

Proof of Theorem 30.26. Let us consider for instance the case N < ∞; the case N = ∞
can be treated in a similar way.

Clearly, (iii) ⇒ (i) ⇒ (ii). So it is sufficient to show that (ii) ⇒ (iii). In the sequel,
I shall assume that Property (ii) is satisfied. By the same arguments as in the proof of
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Theorem 30.8, it is sufficient to establish (30.32) when U is nonnegative and Lipschitz
continuous, and u(r) := U(r)/r is a continuous function of r (with u(0) = U ′(0)). I shall
fix t ∈ (0, 1) and establish Property (iii) for that t. For simplicity I shall abbreviate β(K,N)

t

into just βt.
First of all, let us establish that Property (ii) also applies if µ0 and µ1 are not absolutely

continuous. The scheme of reasoning is the same as we already used several times. Let µ0

and µ1 be any two compactly supported measures. Construct (for instance by means of
regularizing kernels as in the Appendix) absolutely continuous probability measures µk,0

and µk,1 such that µk,0 converges to µ0 in P (X ) and µk,1 converges to µ1 in P (X ), all
these measures being supported in a uniform compact set. For each k ∈ N, there exists a
dynamical optimal transference plan Πk such that

HN,ν(µk,t) ≤ (1 − t)Hβ1−t

N,πk,ν(µk,0) + t Hβt
N,π̌k,ν(µk,1), (30.33)

where µk,t := (et)#Πk and πk := (e0, e1)#Πk. Since all the measures µk,0 and µk,1 are
supported in a uniform compact set, Corollary 7.20 guarantees that the sequence (Πk)k∈N
converges, up to extraction, to some dynamical optimal transference plan Π with (e0)#Π =
µ0 and (e1)#Π = µ1. Then for all t ∈ [0, 1], µk,t converges weakly to µt = (et)#Π, and
πk := (e0, e1)#Πk converges weakly to π = (e0, e1)#Π.

Since the µk,t lie in a uniform compact, we can use the lower semi-continuity of Uν for
U = UN (Theorem 29.16(i)) to get

HN,ν(µt) ≤ lim inf
k→∞

HN,ν(µk,t). (30.34)

It remains to pass to the lim sup in the right-hand side of (30.33). We cannot any longer
use Theorem 29.16(iii), since U = UN is not Lipschitz continuous. On the other hand (by
Proposition 17.7 or by more elementary means) we can find a nonincreasing sequence of
Lipschitz functions U (m) (m ∈ N) such that U (m) converges pointwise to U = UN as
m → ∞. Then, for each given m, by Theorem 29.16(iii),

Uβ1−t
πk,ν (µk,0) ≤ (U (m))β1−t

πk,ν (µk,0) −−−→
k→∞

(U (m))β1−t
π,ν (µ0). (30.35)

On the other hand, by dominated convergence,

(U (m))β1−t
π,ν (µ0) −−−−→

m→∞
Uβ1−t

π,ν (µ0). (30.36)

It follows from (30.35) and (30.36) that

lim sup
k→∞

Uβ1−t
πk,νk

(µk,0) ≤ Uβ1−t
π,ν (µ0).

Of course a similar inequality holds with time t = 0 replaced by t = 1, and combining this
with (30.34) we recover

HN,ν(µt) ≤ (1 − t)Hβ1−t

N,π,ν(µ0) + t Hβt
N,π̌,ν(µ1).

So the statement in Property (ii) remains true even if µ0 and µ1 are not absolutely con-
tinuous.

Next, the proofs of Theorem 30.13 and Corollary 30.15 goes through, since it only uses
the convex function U = UN ; in particular the measure ν is locally doubling on its support.
This information will be crucial in the sequel.
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Also the proof of Theorem 30.17(ii) and (iii) can be easily adapted in the present
setting, as soon as µ0 and µ1 are compactly supported.

Now we can start the core of the argument. It will be decomposed in four steps.
Step 1: Assume that µ0 and µ1 are compactly supported, µt is absolutely continuous

and there exists a dynamical optimal transference plan Π joining µ0 to µ1, such that for
any subplan Π ′ = Π̃/Π̃ [Γ ], 0 ≤ Π̃ ≤ Π, it happens that Π ′ is the unique dynamical
optimal transference plan between µ′

0 = (e0)#Π ′ and µ′
1 = (e1)#Π ′.

In particular, Π is the unique dynamical optimal transference plan between µ0 and
µ1, and, by Corollary 7.20, µt = (et)#Π defines the unique displacement interpolation
between µ0 and µ1. In the sequel, I shall denote by ρt the density of µt, and by ρ0, ρ1 the
densities of the absolutely continuous parts of µ0, µ1 respectively. I shall also fix Borel sets
S0, S1 such that ν[S0] = ν[S1] = 0, µ0,s is concentrated on S0 and µ1,s is concentrated on
S1. By convention ρ0 is defined to be +∞ on S0, and similarly ρ1 is defined to be +∞ on
S1.

Let then y ∈ Sptµt, and let δ > 0. Define

Z =
{
γ ∈ Γ ; γt ∈ Bδ(y)

}
,

and let Π ′ = (1ZΠ)/Π[Z]. (If γ is a random variable distributed according to Π, then
Π ′ is the law of γ conditioned by the event “γt ∈ Bδ(y)”.) Let µ′

t = (et)#Π ′, let ρ′t be
the density of the absolutely continuous part of µ′

t, and let π′ := (e0, e1)#Π ′. Since Π ′

is the unique dynamical optimal transference plan between µ′
0 and µ′

1, we can write the
displacement convexity inequality

HN,ν(µ′
t) ≤ (1 − t)Hβ1−t

N,π,ν(µ
′
0) + t Hβt

N,π̌,ν(µ
′
1).

In other words,
∫

X
(ρ′t)

1− 1
N dν ≥ (1 − t)

∫

X×X
(ρ′0(x0))−

1
N β1−t(x0, x1)

1
N π′(dx0 dx1)

+ t

∫

X×X
(ρ′1(x1))−

1
N βt(x0, x1)

1
N π′(dx0 dx1), (30.37)

with the convention that ρ′0(x0) = +∞ when x0 ∈ S0, and ρ′1(x1) = +∞ when x1 ∈ S1.
By reasoning as in the proof of Theorem 19.2, we obtain

ν[Bδ(y)]
1
N

µt[Bδ(y)]
1
N

≥ E Π

[
(1 − t)

(
β1−t(γ0, γ1)

ρ0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ1(γ1)

) 1
N ∣∣ γt ∈ Bδ(y)

]
.

If we define

f(γ) := (1 − t)
(
β1−t(γ0, γ1)

ρ0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ1(γ1)

) 1
N

,

then the conclusion can be rewritten

ν[Bδ(y)]
1
N

µt[Bδ(y)]
1
N

≥ E Π [f(γ)|γt ∈ Bδ(y)] =
E f(γ)1[γt∈Bδ(y)]

µt[Bδ(y)]
. (30.38)

In view of the nonbranching property, Π only sees geodesics which do not cross each
other; recall Theorem 7.27(iv). Let Ft be the map appearing in that theorem, defined by
Ft(γt) = γ. Then (30.38) becomes
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ν[Bδ(y)]
1
N

µt[Bδ(y)]
1
N

≥
E
[
f(Ft(γt)) 1[γt∈Bδ(y)]

]

µt[Bδ(y)]

=

∫

Bδ(y)
f(Ft(x)) dµt(x)

µt[Bδ(y)]
. (30.39)

Since the measure ν is locally doubling, we can apply Lebesgue’s density theorem:
There is a set N of zero ν-measure such that if y /∈ N , then

ν[Bδ(y)]
1
N

µt[Bδ(y)]
1
N

−−−→
δ→0

1

ρt(y)
1
N

.

Similarly, outside of a set of zero measure,
∫

Bδ(y)
f(Ft(x)) dµt(x)

µt[Bδ(y)]
=

∫

Bδ(y)
f(Ft(x)) ρt(x) dν(x)

ν[Bδ(y)]
ν[Bδ(y)]
µt[Bδ(y)]

−−−→
δ→0

f(Ft(y)) ρt(y)
ρt(y)

,

and this coincides with f(Ft(y)) if ρt(y) 3= 0. All in all, µt(dy)-almost surely,

1

ρt(y)
1
N

≥ f(Ft(y)).

Equivalently, Π(dγ)-almost surely,

1

ρt(γt)
1
N

≥ f(Ft(γt)) = f(γ).

Let us recapitulate: We have shown that Π(dγ)-almost surely,

1

ρt(γt)
1
N

≥ (1 − t)
(
β1−t(γ0, γ1)

ρ0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ1(γ1)

) 1
N

. (30.40)

In the case N = ∞, this inequality should be modified into

log
1

ρt(γt)
≥ (1 − t) log

1
ρ0(γ0)

+ t log
1

ρ1(γ1)
+

K t(1 − t)
2

d(γ0, γ1)2. (30.41)

Step 2: Now we shall prove inequality (30.32) in the case when µ0 and µ1 are compactly
supported, and µt is absolutely continuous. So let (µs)0≤s≤1 be a displacement interpolation
joining µ0 to µ1, and let Π be a dynamical optimal transport plan with µs = (es)#Π.
Let ε ∈ (0, 1) be given. By the nonbranching property and Theorem 7.27, the restricted
plan Π0,1−ε obtained by taking the push-forward of Π under the restriction map from
C([0, 1];X ) to C([0, 1 − ε];X ) is the only dynamical optimal transport plan between µ0

and µ1−ε; and more generally, if 0 ≤ Π̃ ≤ Π0,1−ε with Π̃[Γ ] > 0, then Π ′ := Π̃/Π̃ [Γ ] is the
only dynamical optimal transport plan between its endpoints measures. In other words,
µ̃0 = µ0 and µ̃1 = µ1−ε satisfy the assumptions used in Step 1. The only displacement
interpolation between µ̃0 and µ̃1 is µ̃t = µ(1−ε)t, so we can apply formula (30.40) to that
path, after time-reparametrization. Writing

t =
(

1 − t − ε

1 − ε

)
× 0 +

(
t

1 − ε

)
× (1 − ε),
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we see that, Π(dγ)-almost surely,

1

ρt(γt)
1
N

≥
(

1 − t − ε

1 − ε

) (
β 1−t−ε

1−ε
(γ0, γ1−ε)

ρ0(γ0)

) 1
N

+
(

t

1 − ε

)(β t
1−ε

(γ0, γ1−ε)

ρ1−ε(γ1−ε)

) 1
N

. (30.42)

Next, we apply the same reasoning on the time-interval [t, 1] rather than [0, 1 − ε]. We
write 1 − ε as an intermediate point between t and 1:

1 − ε =
(

ε

1 − t

)
× t +

(
1 − t − ε

1 − t

)
× 1.

Since µt is absolutely continuous and µ1−ε belongs to the unique displacement interpolation
between µt and µ1, it follows from Theorem 30.17(ii) that µ1−ε is absolutely continuous
too. Then formula (30.40) becomes, after time-reparametrization,

1

ρ1−ε(γ1−ε)
1
N

≥
(

ε

1 − t

) (
β ε

1−t
(γt, γ1)

ρt(γt)

) 1
N

+
(

1 − t − ε

1 − t

)(β 1−t−ε
1−t

(γt, γ1)

ρ1(γ1)

) 1
N

. (30.43)

The combination of (30.42) and (30.43) yields

(
1 −

(
t

1 − ε

)(
ε

1 − t

)
β t

1−ε
(γ0, γ1−ε)

1
N β ε

1−t
(γt, γ1)

1
N

)
1

ρt(γt)
1
N

≥

(
1 − t − ε

1 − ε

)(β 1−t−ε
1−ε

(γ0, γ1−ε)

ρ0(γ0)

) 1
N

+
(

1 − t − ε

1 − t

)(
t

1 − ε

)(β 1−t−ε
1−t

(γt, γ1−ε)β t
1−ε

(γ0, γ1−ε)

ρ1(γ1)

) 1
N

.

Then we can pass to the limit as ε → 0 thanks to the continuity of γ and β; since
β1(x, y) = 1 for all x, y, we obtain that inequality (30.40) holds true almost surely.

Now let w(δ) = u(δ−N ) = δNU(δ−N ), with the convention w(0) = U ′(∞). By assump-
tion w is a convex nonincreasing function of δ. So

E u(ρt(γt)) = E w

(
1

ρt(γt)
1
N

)
≤ (1 − t) E w

((β1−t(γ0, γ1)
ρ0(γ0)

) 1
N

)

+ t E w

((βt(γ0, γ1)
ρ1(γ1)

) 1
N

)
. (30.44)

The left-hand side of (30.44) is just
∫

U(ρt(x))/ρt(x) dµt(x) =
∫

U(ρt(x)) dν(x) = Uν(µt).
The first term in the right-hand side of (30.44) is (1 − t)Uβ1−t

π,ν (µ0), since we chose to
define ρ0(x0) = +∞ when x0 belongs to the singular set S0. Similarly, the second term is
t Uβt

π̌,ν(µ1). So (30.44) reads

Uν(µt) ≤ (1 − t)Uβ1−t
π,ν (µ0) + t Uβt

π̌,ν(µ1),

as desired.
Step 3: Now we wish to establish inequality (30.32) in the case when µt is absolutely

continuous, that is, we just want to drop the assumption of compact support.
It follows from Step 2 that (X , d, ν) is a weak CD(K,N) space, so we now have access

to Theorem 30.17 even if µ0 and µ1 are not compactly supported; and also we can appeal
to Theorem 30.8 to guarantee that Property (ii) is verified for probability measures that
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are not necessarily compactly supported. Then we can repeat Steps 1 and 2 without the
assumption of compact support, and in the end establish inequality (30.32) for measures
that are not compactly supported.

Step 4: Now we shall consider the case when µt is not absolutely continuous. (This is
the part of the proof which has interest even in a smooth setting.) Let (µt)s stand for the
singular part of µt, and m := (µt)s[X ] > 0.

Let E(a) and E(s) be two disjoint Borel sets in X such that the absolutely continuous
part of µt is concentrated on E(a), and the singular part of µt is concentrated on E(s).
Obviously, Π[γt ∈ E(s)] = (µt)s[X ] = m, and Π[γt ∈ E(a)] = 1−m. We decompose Π into

Π = (1 − m)Π(a) + mΠ(s),

where

Π(a)(dγ) =
1[γt∈E(a)]Π(dγ)
Π[γt ∈ E(a)]

, Π(s)(dγ) =
1[γt∈E(s)]Π(dγ)
Π[γt ∈ E(s)]

.

For any s ∈ [0, 1], let further

µ(a)
s = (es)#Π(a), µ(s)

s = (es)#Π(s),

and similarly
π(a) = (e0, e1)#Π(a), π(s) = (e0, e1)#Π(s).

Since it has been obtained by conditioning of a dynamical optimal transference plan,
Π(a) is itself a dynamical optimal transference plan, and by construction µ(a)

t is the abso-
lutely continuous part of µt, while µ(s)

t is its singular part. So the result of Step 2 applies
to the path (µ(a)

s )0≤s≤1:

Uν(µ
(a)
t ) ≤ (1 − t)Uβ1−t

π(a),ν
(µ(a)

0 ) + t Uβt

π̌(a),ν
(µ(a)

1 ).

Actually, we shall not apply this inequality with the nonlinearity U , but rather with
Um(r) = U((1 − m)r), which obviously lies in DCN if U does. So

(Um)ν(µ
(a)
t ) ≤ (1 − t) (Um)β1−t

π(a),ν
(µ(a)

0 ) + t (Um)βt

π̌(a),ν
(µ(a)

1 ). (30.45)

Since µ(s)
t is purely singular and µt = (1−m)µ(a)

t + m µ(s)
t , the definition of Uν implies

Uν(µt) = (Um)ν(µ
(a)
t ) + m U ′(∞). (30.46)

By Theorem 30.17(iii), also µ(s)
0 is purely singular. So µ0 = (1 − m)µ(a)

0 + m µ(a)
0 implies

Uβ1−t
π,ν (µ0) = (Um)β1−t

π(a),ν
(µ(a)

0 ) + m U ′(∞). (30.47)

Similarly,
Uβt

π̌,ν(µ1) = (Um)βt

π̌(a),ν
(µ(a)

1 ) + m U ′(∞). (30.48)

The combination of (30.45), (30.46), (30.47) and (30.48) implies

Uν(µt) ≤ (1 − t)Uβ1−t
π,ν (µ0) + Uβt

π̌,ν(µ1).

This concludes the proof. 78
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Locality

Locality is one of the most fundamental properties that one may expect from any notion
of curvature. In the setting of weak CD(K,N) spaces, the locality problem may be loosely
formulated as follows: If (X , d, ν) is weakly CD(K,N) in the neighborhood of any of its
points, then (X , d, ν) should be a weakly CD(K,N) space.

So far it is not known whether this “local-to-global” property holds true in general.
However it is true at least in a nonbranching space, if either K = 0 or N = ∞. The general
case seems to depend on the following

Conjecture 30.27 (Local-to-global property in dimension 1). Let θ ∈ (0, 1) and
α ∈ [0,π]. Let f : [0, 1] → R+ be a measurable function such that for all λ ∈ [0, 1],
t, t′ ∈ [0, 1], the inequality

f
(
(1− λ) t + λ t′

)
≥ (1 − λ)

(
sin
(
(1 − λ)α|t − t′|

)

(1 − λ) sin(α|t − t′|)

)θ

f(t) + λ

(
sin
(
λα|t − t′|

)

λ sin(α|t − t′|)

)θ

f(t′)

(30.49)
holds true as soon as |t− t′| is small enough. Then (30.49) automatically holds true for all
t, t′ ∈ [0, 1].

The same if the function sin is replaced by sinh and α is allowed to vary in R+.

I really don’t have much to support this conjecture, except that it would imply a really
nice (in my taste) result. It might be trivially false or trivially true, but I was unable to
prove or disprove it. (If it would hold true only under additional regularity assumptions
such as local integrability or continuity of f , this might be fine.)

To understand the relation of (30.49) to optimal transport, take θ = 1 − 1/N , α =√
|K|/(N − 1) d(γ0, γ1), f(t) = ρt(γt)−1/N . Write It(γ0, γt, γ1) for the inequality appearing

in (30.40). Then Conjecture 30.27, if true, means that this inequality is local, in the sense
that if It(γt0 , γ(1−t) t0+t t1 , γt1) holds true for |t0 − t1| small enough, then it holds true for
all t0, t1, and in particular t0 = 0, t1 = 1.

There are at least two limit cases in which the statement of Conjecture 30.27 becomes
true. The first one is for α = 0 and θ fixed (this corresponds to CD(0, N), N = 1/(1− θ));
the second one is the limit when θ → 1, α → 0 in such a way that α2/(1 − θ) converges
to a finite limit (this corresponds to CD(K,∞), and the limit of α2/(1 − θ) would be
K d(γ0, γ1)2). In the first case, Conjecture 30.49 reduces to the locality of the property of
concavity:

f
(
(1 − λ) t + λ t′

)
≥ (1 − λ) f(t) + λ f(t′);

while in the second case, it reduces to the locality of the more general property of κ-
concavity (κ ∈ R):

f
(
(1 − λ) t + λ t′

)
≥ (1 − λ) f(t) + λ f(t′) +

κλ(1 − λ)
2

|t − t′|2. (30.50)

These properties do satisfy a local-to-global principle, for instance because they are equiv-
alent to the differential inequality f ′′ ≤ 0, or f ′′ ≤ −κ, to be understood in distributional
sense.

To summarize: If K = 0 (resp. N = ∞), inequality (30.40) (resp. (30.41)) satisfies a
local-to-global principle; in the other cases we don’t know.

Next, I shall give a precise definition of what it means to satisfy CD(K,N) locally:
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Definition 30.28 (local CD(K,N) space). Let K ∈ R and N ∈ [1,∞]. A locally
compact, Polish length space (X , d) equipped with a locally finite measure ν is said to be a
locally weak CD(K,N) space if for any x0 ∈ X there is r > 0 such that whenever µ0, µ1 are
two absolutely continuous probability measures supported in Br(x0), there is a displacement
interpolation (µt)0≤t≤1 joining µ0 to µ1, and an associated optimal coupling π, in such a
way that for all t ∈ [0, 1] and for all U ∈ DCN ,

Uν(µt) ≤ (1 − t)U
β

(K,N)
1−t

π,ν (µ0) + t U
β(K,N)

t
π̌,ν (µ1). (30.51)

Remark 30.29. In the previous definition, one could also have imposed that the whole
path (µt)0≤t≤1 is supported in Br(x0). Both formulations are equivalent: Indeed, if µ0 and
µ1 are supported in Br/3(x0) then all measures µt are supported in Br(x0).

Now comes the main result in this section:

Theorem 30.30 (from local to global CD(K,N)). Let K ∈ R and N ∈ [1,∞]. If
K = 0 or N = ∞, any nonbranching locally weak CD(K,N) space is also a weak CD(K,N)
space. The same is true for all values of K and N if Conjecture 30.27 has an affirmative
answer.

As in the proof of Theorem 30.26, one of the main ideas in the proof of Theorem 30.30
consists in using the nonbranching condition to translate integral conditions into point-
wise density bounds along geodesic paths. Another idea consists in “cutting” dynamical
optimal transference plans into small pieces, each of which is “small enough” that the
local displacement convexity can be applied. The fact that we work along geodesic paths
parametrized by [0, 1] explains that the whole locality problem is reduced to the one-
dimensional “local-to-global” problem exposed in Conjecture 30.27.

Proof of Theorem 30.30. If we can treat the case N > 1, then the case N = 1 will follow
by just letting N go to 1. (If X is CD(K,N) for all N > 1 then it is also CD(K, 1).) So
I shall assume N > 1; then by the nonbranching assumption, Theorem 30.26 applies. In
the sequel, I shall use the shorthand βt = β(K,N)

t .
I shall also assume N < ∞; the case N = ∞ can be treated similarly, the main

modification being the replacement of (30.40) by (30.41).
Let (X , d, ν) be a nonbranching locally weak CD(K,N) space. By repeating the proof

of Theorem 30.26, we can show that for any x0 ∈ X there is r = r(x0) > 0 such that
any displacement interpolation (µt)0≤t≤1 which is supported in B(x0, r) satisfies (30.51).
Moreover, if Π is a dynamical optimal transference plan such that (et)#Π = µt, and each
measure µt is absolutely continuous with density ρt, then Π(dγ)-almost all geodesics will
satisfy inequality (30.40), which I recast below:

1

ρt(γt)
1
N

≥ (1 − t)
(
β1−t(γ0, γ1)

ρ0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ1(γ1)

) 1
N

. (30.52)

Let µ0, µ1 be two absolutely continuous, compactly supported probability measures on
X , and let B = B(z,R) be a large ball such that any geodesic going from Sptµ0 to Sptµ1

lies within B. Let Π be a dynamical optimal transference plan between µ0 and µ1. The
goal is to prove that for all U ∈ DCN ∩ Lip(R+, R+),

Uν(µt) ≤ (1 − t)Uβ1−t
π,ν (µ0) + t Uβt

π̌,ν(µ1). (30.53)
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Then the conclusion will follow from Proposition 29.10.
The plan is to cut Π into very small pieces, each of which will be included in a sufficiently

small ball that the local weak CD(K,N) criterion can be used. I shall first proceed to
construct these small pieces.

Cover B(z,R) by a finite number of balls B(xj, rj/3) with rj = r(xj), and let
r := inf(rj/3). For any y ∈ B(z,R), the ball B(y, r) lies inside some B(xj, rj); so if
(µt)0≤t≤1 is any displacement interpolation supported in some ball B(y, r), Π is an associ-
ated dynamical optimal transference plan, and µ0, µ1 are absolutely continuous, then the
density ρt of µt will satisfy the inequality

1

ρt(γt)
1
N

≥ (1 − t)
(
β1−t(γ0, γ1)

ρ0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ1(γ1)

) 1
N

, (30.54)

Π(dγ)-almost surely. The problem now is to cut Π into many small subplans Π and to
apply (30.54) to all these subplans.

Let δ ∈ 1/N be small enough that 4R δ ≤ r/3, and let B(y(, δ)1≤(≤L be a finite covering
of B(z,R) by balls of radius δ. We define A1 = B(y1, δ), A2 = B(y2, δ) \ A1, A3 =
B(y3, δ) \ (A1 ∪ A2), etc. This provides a covering of B(z,R) by disjoint sets (A()1≤(≤L,
each of which is included in a ball of radius δ. (Without loss of generality, we can assume
that they are all nonempty.)

Let m = 1/δ ∈ N. We divide the set Γ of all geodesics going from Sptµ0 to Sptµ1 into
pieces, as follows. For any finite sequence 5 = (50, 51, . . . , 5m), let

Γ( =
{
γ ∈ Γ ; γ0 ∈ A(0 , γδ ∈ A(1 , γ2δ ∈ A(2, . . . , γmδ = γ1 ∈ A(m

}
.

The sets Γ( are disjoint. We discard the sequences 5 such that Π[Γ(] = 0. Let then Z( =
Π[Γ(], and let

Π( =
1Γ! Π(

Z(

be the law of γ conditioned by the event {γ ∈ Γ(}. Let further µ(,t = (et)#Π(, and
π( = (e0, e1)#Π(.

For each 5 and k ∈ {0, . . . ,m−2}, we define Πk
( to be the image of Π( by the restriction

map [0, 1] → [kδ, (k + 2)δ]. Up to affine reparametrization of time, Πk
( is a dynamical

optimal transference plan between the measures µ(,kδ and µ(,(k+2)δ (Theorem 7.27(i)-(ii)).
Let γ be a random geodesic distributed according to the law Πk

( . Almost surely, γ(kδ)
belongs to A(k

, which has diameter at most r/3. Moreover, the speed of γ is bounded
above by diam (B(z,R)) ≤ 2R, so on the time-interval [kδ, (k +2)δ], γ moves at most by a
distance (2δ)(2R) ≤ r/3. So γ is entirely contained in a set of diameter 2r/3. In particular,
µk
(,t is entirely supported in a set of diameter r, and satisfies the displacement convexity

inequalities which are typical of the curvature-dimension bound CD(K,N).
By Theorem 7.27(iii), µk

(,t is (up to time-reparametrization) the unique optimal dynam-
ical transference plan between µ(,kδ and µ(,(k+2)δ. So by Theorem 30.17(ii), the absolute
continuity of µ(,kδ implies the absolute continuity of µ(,t for all t ∈ [kδ, (k + 2)δ). Since
µ(,0 is absolutely continuous, an immediate induction shows that µ(,t is absolutely con-
tinuous for all times. So we can apply (30.54) to each path (µ(,t)kδ≤t≤(k+2)δ ; after time
reparametrization, this becomes:

∀k ∈ {0, . . . ,m − 2}, Π((dγ)-almost surely, ∀t ∈ [0, 1], ∀(t0, t1) ∈ [kδ, (k + 2)δ],
1

ρ(,(1−t)t0+tt1(γ(1−t)t0+tt1)
1
N

≥ (1 − t)
(β1−t(γt0 , γt1)

ρ(,t0(γt0)

) 1
N + t

(βt(γt0 , γt1)
ρ(,t1(γt1)

) 1
N

.
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It follows that

Π((dγ)-almost surely, ∀t ∈ [0, 1], ∀t0, t1 ∈ [0, 1],

|t0−t1| ≤ δ =⇒ 1

ρ(,(1−t)t0+tt1(γ(1−t)t0+tt1)
1
N

≥ (1−t)
(β1−t(γt0 , γt1)

ρ(,t0(γt0)

) 1
N +t

(βt(γt0 , γt1)
ρ(,t1(γt1)

) 1
N

.

(30.55)

Inequality (30.55) is satisfied when t0 and t1 are close enough. Then our assumptions,
and the discussion following Conjecture 30.27, imply that the same inequality is satisfied
for all values of t0 and t1 in [0, 1]. In particular, Π(-almost surely,

1

ρ(,t(γt)
1
N

≥ (1 − t)
(
β1−t(γ0, γ1)
ρ(,0(γ0)

) 1
N

+ t

(
βt(γ0, γ1)
ρ(,1(γ1)

) 1
N

. (30.56)

By reasoning as in the proof of Theorem 30.26, we get the inequality

Uν(µ(,t) ≤ (1 − t)Uβ1−t
π!,ν (µ(,0) + t Uβt

π̌!,ν
(µ(,1). (30.57)

Recall that µt =
∑

Z( µ(,t; so the issue is now to add up the various contributions
coming from different values of 5.

For each 5, we apply (30.57) with U replaced by U( = U(Z(·)/Z(. Then, with the
shorthand U(,ν = (U()ν and Uβ

(,π!,ν
= (U()π!,ν , we obtain

U(,ν(µ(,t) ≤ (1 − t)Uβ1−t

(,π!,ν
(µ(,0) + t Uβt

(,π̌!,ν
(µ(,1). (30.58)

For any t ∈ (0, 1), the map γt → γ is injective, as a consequence of Theorem 7.27(iv),
and in particular the measures µ(,t are mutually singular as 5 varies. Then it follows from
Lemma 29.5 that

Uν(µt) =
∑

(

Z( U(,ν(µ(,t). (30.59)

Since π =
∑

( Z( π(, Lemma 29.5 also implies
∑

(

Uβ1−t

(,π!,ν
(µ(,0) = Uβ1−t

π,ν (µ0);

∑

(

Uβt
(,π̌!,ν

(µ(,1) = Uβt
π̌,ν(µ1). (30.60)

The combination of (30.58), (30.59) and (30.60) implies the desired conclusion (30.53). 78

Appendix: Regularization in metric-measure spaces

Truncation and regularization by convolution are basic tools in real analysis. They are still
available, to some extent, in metric-measure spaces, as I shall explain in this appendix.
Recall that a boundedly compact metric space is a metric space in which closed balls are
compact; and a locally finite measure is a measure which gives finite mass to balls.

Definition 30.31 (Truncation operators). Let (X , d) be a boundedly compact metric
space, and let A be an arbitrary base point. For any R > 0, let BR be the closed ball
BR](A). A A-cutoff is a family of nonnegative continuous functions (χR)R>0 such that
1BR ≤ χR ≤ 1BR+1 for all R.
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More explicitly: χR is valued in [0, 1], and χR is identically equal to 1 on BR, identically
equal to 0 on BR+1.

It is a consequence of Urysohn’s lemma that a A-cutoff always exists.
If µ is any finite measure on X , then χR µ converges to µ in total variation norm; more-

over, for any R > 0, the truncation operator TR : µ → χR µ is a (nonstrict) contraction.
As a particular case, if ν is any measure on X , and f ∈ L1(X , ν), then χR f converges to
f in L1(ν).

A consequence of these results is the density of Cc(X ) in L1(X , ν), as soon as ν is
locally finite. Indeed, if f is given in L1(X , ν), first choose R such that ‖f‖L1(X\BR) ≤ δ;
then pick up g ∈ C(BR+1) such that ‖f − g‖L1(BR+1,ν) ≤ δ. (Since BR+1 is compact, this
can be done with basically Lusin’s theorem, as recalled in the bibliographical notes of
the previous chapter.) Finally define g̃ := g χR, extended by 0 outside of BR: then g̃ is a
continuous function with compact support, and it is easy to check that ‖f − g̃‖L1(X ) ≤ 2δ.

Now comes a more subtle technical tool:

Definition 30.32 (Regularizing kernels). Let (X , d) be a boundedly compact metric
space equipped with a locally finite measure ν, and let Y be a compact subset of X . A (Y, ν)-
regularizing kernel is a family of nonnegative continuous symmetric functions (Kε)ε>0 on
X × X , such that

(i) ∀x ∈ Y,

∫

X
Kε(x, y) ν(dy) = 1;

(ii) d(x, y) > ε =⇒ Kε(x, y) = 0.

It can be proven that a (Y, ν)-regularizing kernel always exists if Y ⊂ Spt ν. The
recipe is roughly as follows: Cover Y by a finite number of balls B(xi, ε/2), introduce a
subordinate partition of unity (φi), and let

Kε(x, y) :=
∑

i

φi(x)φi(y)∫
φi dν

. (30.61)

See the bibliographical notes for more details.
Then, as soon as µ is a finite measure on X , one may define a continuous function Kεµ

on X by

(Kεµ)(x) :=
∫

X
Kε(x, y)µ(dy).

Further, if f ∈ L1(X , ν), define Kεf := Kε(fν).
The linear operator Kε : µ → Kεµ is mass-preserving, in the sense that for any non-

negative finite measure µ on Y, one has ((Kεµ)ν)[Y] = µ[Y]. More generally, Kε defines a
(nonstrict) contraction operator on M(Y). Moreover, as ε → 0,

- If f ∈ C(X ), then Kεf converges uniformly to f on Y;
- If µ is a finite measure supported in Y, then (Kεµ)ν converges weakly (against Cb(X ))

to µ (this basically follows from the previous property by a duality argument);
- If f ∈ L1(Y), then Kεf converges to f in L1(Y) (this follows from the density of

C(Y) in L1(Y, ν), the fact that Kεf converges uniformly to f if f is continuous, and
the contraction property of Kε). There is in fact a more precise statement: For any f ∈
L1(Y, ν), ∫

Y×Y
|f(x) − f(y)| ν(dx) ν(dy) −−−→

ε→0
0.
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Remark 30.33. If the measure ν is (locally) doubling, then one can ask more of the kernel
(Kε), than just properties (i) and (ii) in Definition 30.32. By Vitali’s covering lemma, one
can make sure that the covering (B(xi, ε/2)) is such that the balls B(xi, ε/10) are disjoint.
If (φi) is a partition of unity associated to the covering (B(xi, ε/2)), necessarily φi is
identically 1 on B(xi, ε/10), so

∫
φi dν ≥ ν[B(xi, ε/10)] ≥ Cν[B(xi, ε)], where C is a

constant depending on the doubling constant of ν. The following uniform bound follows
easily:

(iii) Kε(x, y) ≤ C

ν[Bε(x)]
.

(Here C is another numerical constant, depending on the doubling constant of ν.) Assump-
tions (i), (ii) and (iii), together with the doubling property of ν, and classical Lebesgue
density theory, guarantee that for any f ∈ L1(Y) the convergence of Kεf to f holds not
only in L1(Y) but also almost everywhere.

Bibliographical Notes

Most of the material in this chapter comes from works by Lott and myself [247, 249, 248]
and by Sturm [336, 340]. Some of the results are new.

Theorem 30.2 is taken from work by Lott and myself [247], as well as Theorems 30.19,
30.20, Corollary 30.11, and the first part of Theorem 30.24. Theorems 30.13, 30.10, 30.12
and 30.16 are due to Sturm [340, 336]. Part (i) of Theorem 30.17 was proven by Lott and
myself in the case K = 0. Part (ii) follows a scheme of proof communicated to me by
Sturm. Part (iv) is a well-known observation in Rn, used in several recent works about
optimal transport.

The second part of Theorem 30.24 is due to Lott and myself, it uses the extension of
Proposittion 22.13 to metric-measure spaces [?]. It is shown there that the conclusions
of Proposition 22.13 remain all true if (X , d) is a finite-dimensional Alexandrov space
with curvature bounded below (this is a pointwise result, without any measure). On the
other hand, if a measure ν on X satisfies (locally in X ) doubling and local Poincaré
inequalities, then one can apply the technology developed by Cheeger [109] and others,
to establish (22.51) ν-almost everywhere. (Also |∇−u| = |∇u| ν-almost everywhere if u is
Lipschitz, so the distinction between |∇u| and |∇−u| becomes irrelevant.)

The Poincaré inequalities appearing in Theorems 30.21 and 30.22 (in the case K =
0) are due to Lott and myself [249]. There the local Poincaré inequalities are proven
in the formalism of upper gradients; this concept was put forward, among others, by
Heinonen and Koskela [209], and played a key role in Cheeger’s construction [109] of
a differentiable structure on metric spaces satisfying a doubling condition and a local
Poincaré inequality. Independently of [249], there were several simultaneous treatments of
local Poincaré inequalities under CD(K,N) conditions, by Sturm [340] on one hand, and
von Renesse [368] on the other. The proofs in all these works have many common points.

Inequality (30.29) was proven by Lott and myself in [247], at a time when we did not
have the general definition of weak CD(K,N) spaces. The argument is inspired by previous
works of Otto and myself [292, Theorem 4], and Ledoux [235]. It might still have some
interest, since there is no reason why CD(0, N) and CD(K,∞) together would should
imply CD(K,N).

The second part of the conclusion of Theorem 30.8 is taken as the definition of the weak
CD(K,∞) criterion in [247], and the first part is taken as the definition of the general weak
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CD(K,N) criterion in [249]. So Theorem 30.8 proves that the definition of weak CD(K,N)
space used in these notes is equivalent to the definition used in [249].

The scheme of proof of Theorem 30.8 uses the approximation of general nonlinearities
U ∈ DCN by nonnegative Lipschitz continuous nonlinearities, which gives a quite simple
proof of Theorem 30.6. This strategy however does not answer the natural question whether
the conclusions of Theorem 30.6 still hold true for more general nonlinearities.

For Part (i) of Theorem 30.6, the Lipschitz continuity assumption can indeed be dis-
pended with, although one should still impose some restrictions on the behavior of U close
to 0, and some moment condition on µ, as in Theorem 30.4; this is worked out in [247,
Appendix E].

For Part (ii) of Theorem 30.6, the answer is also affirmative for a constant distortion
coefficient, as shown by the argument in [247, Appendix C]. The key idea is to replace the
L1 continuity argument by Jensen’s inequality, in the form

U

(∫

X
Kε(x, y) ρ(y) ν(dy)

)
≤
∫

X
Kε(x, y)U(ρ(y)) ν(dy);

after integration against ν this leads to

Uν(Kε(ρν)) ≤ Uν(ρν).

(This argument uses the full strength of the regularizing kernels.)
When β is not constant things are much more subtle and after substantial effort I

could solve the problem only under the restriction that U grows “at most polynomially”
at infinity. When U is differentiable, this condition reads just

rU ′(r) ≤ C[U+(r) + r];

it is satisfied by any convex polynomial, but not by the exponential function. This as-
sumption basically implies that β U(ρ/β) has a locally Lipschitz dependence on β, with
L1 coefficients, which makes it possible to regularize the distortion coefficients into coeffi-
cients βε obtained by the action of the kernels Kε. Then one can use Jensen’s inequality,
applied to the jointly convex function (b, r) → bU(r/b), to get, with obvious notation,

(Kεβ)U

(
Kερ

Kεβ

)
≤ Kε

(
β U

(
ρ

β

))
.

Then a few additional technical steps are in order to take care of the dependence of Uβ
π,ν

on π. This approach yields more complete results at the level of Theorem 29.16(iii) and
Theorem 30.6(ii), but it is much more complicated, which is why I abandoned it in the
present set of notes.

Theorem 30.26 grew out of a joint work of mine with Figalli [?]; there we proved
Theorem 30.26 (at least the parts which were not proven in [247]) in smooth Rieman-
nian manifolds. The proof is slightly different from the one which I gave here; it uses
Lemma 29.5.

In the case of Alexandrov spaces, the locality of the notion “curvature is bounded below
by κ” was proven in full generality by Perelman [?]; see [?, .....].

The locality of CD(K,∞) in nonbranching spaces was proven by Sturm [336], with a
different argument than the one which I presented here. The rest of Theorem 30.30 is new.

When one restricts to λ = 1/2, Conjecture 30.27 takes a simpler form, and at least
seems to be true for all θ outside (0, 1). But of course we are a priori only interested in
the range θ ∈ (0, 1).
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I shall conclude with some technical notes.
The Dunford–Pettis theorem provides a sufficient condition for uniform equi-integrability:

If a family F ⊂ L1(ν) is weakly sequentially compact in L1(ν), then there exists a
function Ψ : R+ → R+ such that Ψ(r)/r → ∞ and supf∈F

∫
Ψ(f) dν < +∞. A

proof can be found e.g. in [?], or in my own course on integration, available online at
www.umpa.ens-lyon.fr/~cvillani.

Urysohn’s lemma [147, Theorem 2.6.3] states the following: If (X , d) is a locally compact
metric space (or even just a locally compact Hausdorff space), K is a compact subset of
X and O is an open subset of X with K ⊂ O, then there is f ∈ Cc(X ) with 1K ≤ f ≤ 1O.
Although I did not need it in these notes, I also quote the Tietze-Urysohn extension
theorem, which is often useful in the analysis of metric spaces: If (X , d) is a metric space,
F is a closed subset of X , and f : F → R is uniformly continuous on F , then it is possible to
extend f into a continuous function on the whole of X , with preservation of the supremum
norm of f ; see [147, Theorem 2.6.4].

I learnt from Lott the nice recipe (30.61) to construct regularizing kernels. In [247,
Appendix C], we worked out in detail the properties stated after Definition 30.32. We used
this tool extensively in our work, and also discuss regularization in noncompact spaces.
Even in the framework of absolutely continuous measures, the approach based on the
regularizing kernel has many advantages over Lusin’s approximation theorem (linearity,
preservation of convexity inequalities, etc.).





Conclusions and open problems
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In these notes I have tried to present a consistent picture of the theory of optimal
transport, with a dynamical, probabilistic and geometric point of view, insisting on the
concepts of displacement interpolation, probabilistic representation, and curvature effects.

The qualitative description of optimal transport, developed in Part I, now seems to be
relatively well understood, but only at the price of (a) working in a reasonably smooth
ambiant space; (b) forgetting about the regularity of optimal transport. Of course one
cannot eliminate both restrictions at the same time, but it would be desirable to understand
how to relax either one of them. Possible directions of research include:

(a) Establishing representation theorems for the optimal transport in Alexandrov
spaces, or approximate representation theorems for the optimal transport in more sin-
gular spaces. A related problem is how far one can push the machinery of changes of
variables and curvature bounds which was used in Chapter 17 to establish displacement
convexity theorems. A preliminary step in that direction might be nonsmooth analogues
of Mather’s shortening lemma, as stated for instance in Open Problem 8.21.

(b) Establishing smoothness theorems for the optimal transport on smooth manifolds,
under adequate structure conditions. On this last topic, a lot of progress has been made
recently by Neil Trudinger and his collaborators on one hand, and Grégoire Loeper on the
other hand. In this business, Assumption (C) in Chapter 9, and the complicated fourth-
order differential conditions found by Trudinger and collaborators, seem to play a crucial
role. At the time of writing, Loeper seems to be in possession of an argument showing
that the Euclidean sphere does satisfy this mysterious condition, giving hope for further
developments. In the present book, regularity theory was not needed, but its understanding
seems compulsory for various applications, such as the analysis of continuous numerical
schemes, as studied recently for instance by Francesca Rapetti and Grégoire Loeper.

In this discussion I am implicitly assuming that the cost function satisfies some kind
of “strict convexity” property; for instance that it is associated with a Lagrangian that is
strictly convex in the velocity variable, as in Chapters 8 to 10. But there are important
cost functions which do not satisfy this assumption at all, such as the plain distance
function. The structure of the optimal transport for such cost functions has received a lot
of attention, with some important recent progress in connection with the Aubry-Mather
theory; see the bibliographical notes of Chapter 10 for more information. Actually, a whole
monograph could be written on that problem by now.

As for the applications of optimal transport to Riemannian geometry, a consistent
picture is also emerging, as I have tried to show in Part II. The main regularity problems
seem to be under control here, but there remain several challenging “structural” problems:

- How can one best understand the relation between plain displacement convexity
and distorted displacement convexity, as exposed in Chapter 17? Is there an Eulerian
counterpart of the latter concept? See Open Problems 17.29 and 17.30 for more precise
formulations.

- Optimal transport seems to work well to establish sharp geometric inequalities when
the “natural dimension of the inequality” coincides with the dimension bound; on the other
hand, so far it has failed to establish for instance sharp logarithmic Sobolev or Talagrand
inequalities (infinite-dimensional) under a CD(K,N) curvature–dimension bound for N <
∞ (Open Problems 21.6 and 22.41). The sharp L2-Sobolev inequality (21.10) has also
escaped investigations based on optimal transport (Open Problem 21.10). Can one find
a more precise strategy to attack such problems by a displacement convexity approach?
A seemingly closely related question is whether one can mimick (maybe by changes of
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unknowns in the transport problem??) the changes of variables in the Γ2 formalism, which
are often at the basis of the derivation of such sharp inequalities (as in e.g. the recent
works of Jérôme Demange). To add to the confusion, there is the mysterious structure
condition (25.9) found by Demange, and it is natural to ask whether this condition has
any interpretation in terms of optimal transport.

- Are there interesting examples of displacement convex functionals apart from
the ones that have already been explored during the past ten years, that are all basically of
the form

∫
M U(ρ) dν +

∫
Mk V dµ⊗k? It is frustrating that so few examples of displacement

convex functionals are known, in contrast with the enormous amount of plainly convex
functionals that one can construct. Open Problem 15.11 might be related to this question.

- Is there a transport-based proof of the Lévy-Gromov isoperimetric inequalities
(Open Problem 21.15), that would not involve such a “hard analysis” as in the currently
known arguments? Besides its intrinsic interest, such a proof could hopefully be adapted
to nonsmooth spaces such as the weak CD(K,N) spaces studied in Part III.

- Caffarelli’s log concave perturbation theorem (alluded to in Chapter 2) can
be seen as another riddle in the picture. The Gaussian space can be seen as the infinite-
dimensional version of the sphere, which is the Riemannian “reference space” with positive
constant (sectional) curvature; and the space Rn equipped with a log concave measure is
a space of nonnegative Ricci curvature. So Caffarelli’s theorem can be formally restated as
follows: If the Euclidean space (Rn, d2) is equipped with a probability measure ν that makes
it a CD(K,∞) space, then ν can be realized as a 1-Lipschitz push-forward of the reference
Gaussian measure with curvature K. This implies almost obviously that isoperimetric
inequalities in (Rn, d2, ν) are not worse than isoperimetric inequalities in the Gaussian
space; so there is a strong analogy between Caffarelli’s theorem on one hand, and the
Lévy-Gromov isoperimetric inequality on the other hand. It is natural to ask whether there
is a common framework for both results; this does not seem obvious at all, and I have not
been able to formulate even a decent guess of what could be a geometric generalization of
Caffarelli’s theorem.

- Another important remark is that the geometric theory has been almost exclusively
developed in the case of the optimal transport with quadratic cost function; the exponent
p = 2 here is natural in the context of Riemannian geometry, but working with other expo-
nents might lead to new geometric territories. A related question is Open Problem 15.12.

In Part III of these notes, I discussed the emerging theory of weak Ricci curvature
lower bounds in metric-measure spaces, based on displacement convexity inequalities. The
theory has grown very fast and it is starting to be rather well-developed, however some
challenging issues remain to be solved before one can consider it as mature. Here are three
missing pieces of the puzzle:

- A globalization theorem that would play the role of the Toponogov-Perelman
theorem for Alexandrov spaces with a lower bound on the curvature. This theorem should
state essentially that if (X , d, ν) is locally a weak CD(K,N) space, then it is globally a
weak CD(K,N) space.

- The compatibility with the theory of Alexandrov spaces. Alexandrov spaces
have proven their flexibility and have gained a lot of popularity among geometers. Since
Alexandrov bounds are weak sectional curvature bounds, they should in principle be able
to control weak Ricci curvature bounds. The natural question here can be stated as fol-
lows: Let (X , d) be a finite-dimensional Alexandrov space with dimension n and curvature
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bounded below by κ, and let Hn be the n-dimensional Hausdorff measure; does it follow
that (X , d,Hn) is a weak CD((n − 1)κ, n) space?

- A thorough discussion of the branching problem: Find examples of weak CD(K,N)
spaces that are branching; that are singular but nonbranching; identify simple regularity
conditions that prevent branching; etc.

It was realized in a recent Oberwolfach meeting, as a consequence of discussions between
Dario Cordero-Erausquin, Karl-Theodor Sturm and myself, that the Euclidean space Rn,
equipped with any norm ‖ · ‖, is a weak CD(0, n) space:

Theorem. Let ‖ · ‖ be a norm on Rn (considered as a distance on Rn × Rn), and let λn

be the n-dimensional Lebesgue measure. Then the metric-measure space (Rn, ‖ · ‖,λn) is a
weak CD(0, n) space in the sense of Definition 29.6.

I preferred not to include this theorem in the body of these notes, because it appeals to
some results that have not yet been adapted to a genuinely geometric context, and which
I therefore preferred not to discuss. I shall sketch the proof at the end of this text, but
before I would like to explain why this result is at the same time motivating, and a bit
shocking:

(a) As pointed out to me by John Lott, if ‖ · ‖ is not Euclidean, then the metric-
measure space (Rn, ‖ ·‖,λn) cannot be realized as a limit of smooth Riemannian manifolds
with a uniform CD(0, N) bound, because it fails to satisfy the splitting principle. (If a
nonnegatively curved space admits a line, i.e. a geodesic parametrized by R, then the
space can be “factorized” by this geodesic; results by Cheeger, Colding and Gromoll say
that this is true for CD(0, N) manifolds and their measured Gromov-Hausdorff limits.)

(b) If ‖·‖ is not the Euclidean norm, the resulting metric space is very singular in certain
respects: It is in general not an Alexandrov space, and it can be extremely branching. For
instance, if ‖ ·‖ is the 5∞ norm, then any two distinct points are joined by a non-countable
infinity of geodesics. Since (Rn, ‖·‖(∞ ,λn) is the (pointed) limit of the nonbranching spaces
(Rn, ‖ · ‖(p ,λn) as p → ∞, we also realize that weak CD(K,N) bounds do not prevent the
appearance of branching in measured Gromov-Hausdorff limits.

On the other hand, the study of optimal Sobolev inequalities in Rn which I performed
together with Bruno Nazaret and Dario Cordero-Erausquin shows that optimal Sobolev
inequalities basically do not depend on the choice of the norm on Rn. In a Riemannian
context, Sobolev inequalities strongly depend on Ricci curvature bounds; so, our result
seems to indicate that it is not absurd after all to decide that Rn is a weak CD(0, n) space
independently of the norm.

One can also ask whether there are additional regularity conditions that might be
added to the definition of weak CD(K,N) space, in order to enforce nonbranching, or the
splitting principle, or both, and in particular rule out non-Euclidean norms.

As a side consequence of point (a) above, we realize that smooth CD(K,N) manifolds
are not dense in the spaces CDD(K,N,D,m,M) introduced in Theorem 29.23.

The interpretation of dissipative equations as gradient flows with respect to optimal
transport, and the theory reviewed in Chapters 23 to 25, also leads to fascinating issues that
are relevant in smooth or nonsmooth geometry as well as in partial differential equations.
For instance,

(a) Can one define a reasonably well-behaved heat flow on weak CD(K,N) spaces by
taking the gradient flow for Boltzmann’s H functional? The theory of gradient flows in
abstract metric spaces has been pushed very far, in particular with the above-mentioned
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work of Ambrosio, Gigli and Savaré; so it might not be so difficult to define an object that
would play the role of a heat semigroup; but this will be of limited value unless one can
prove relevant theorems about it.

This problem might be related to the possibility of defining a Laplace operator on a
singular space, an issue which has been addressed in particular by Jeff Cheeger and Toby
Colding, for limits of Riemannian manifolds. However, their construction is strongly based
on regularity properties enjoyed by such limits, and breaks down e.g. for Rn equipped
with a non-Euclidean norm. So it might be hopeless to define a decent Laplace operator
on general CD(K,N) spaces without any additional regularity structure.

(b) Can one extend the theory of dissipative equations to other equations, which are of
Hamiltonian, or, even more interestingly, of dissipative Hamiltonian nature? As explained
in the bibliographical notes of Chapter 23, there has been some recent work in that direc-
tion by Luigi Ambrosio, Wilfrid Gangbo and others, however the situation is still far from
clear.

A loosely related issue is the study of the semi-geostrophic system, which in the simplest
situations can formally be written as a Hamiltonian flow, where the Hamiltonian function
is the square Wasserstein distance with respect to some uniform reference state. I think
that the rigorous qualitative understanding of the semi-geostrophic system is one of the
most exciting problems that I am aware of in theoretical fluid mechanics; and discussions
with Mike Cullen convinced me that it is extremely relevant in applications to meteorol-
ogy. Although the theory of the semi-geostrophic system is still full of fundamental open
problems, enough has already been written on it to make the substance of a complete
monograph.

On a much more theoretical level, the geometric understanding of the Wasserstein space
P2(X ), where X is a Riemannian manifold or just a length space, has been the object of
several studies recently, and still retains many mysteries. For instance, there is a neat
statement according to which P2(X ) is nonnegatively curved, in the Alexandrov sense, if
and only if X is itself nonnegatively curved. But there is no similar statement for nonzero
lower bounds on the curvature! In fact, if x is a point of negative curvature, then the
curvature of P2(X ) seems to be unbounded in both directions (+∞ and −∞) in the neigh-
borhood of δx. Also it is not clear what exactly is “the right” structure on, say, P2(Rn) and
recent works on the subject have provided differing answers. In their recent book about
gradient flows, Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré make an intriguing ob-
servation: It is possible to define “generalized geodesics” in P2(Rn) by considering the law
of (1 − t)X0 + tX1, where (X0, Z) and (X1, Z) are optimal couplings. These generalized
geodesics have intriguing properties: For instance, they still satisfy the characteristic dis-
placement interpolation inequalities; and they provide curves of “nonpositive curvature”,
that can be exploited for various purposes, such as error estimates for approximate gradi-
ent flow schemes. I have no idea whether similar objects can be introduced in a genuinely
geometric setting.

This list only provides a small sample of the many problems that remain open in
the theory of optimal transport. I mainly focused on the problems that seemed most
fundamental to me, knowingly forgetting many issues of interest, for instance those related
to the theory of concentration of measure, or other applications to probability theory. At
the time of writing, there is a lot of activity in that direction; as an example, I worked
recently, together with François Bolley and Arnaud Guillin, on quantitative Sanov-type
bounds for particle systems, with an approach based on optimal transport.
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Another fundamental issue which I did not address at all is the subject of numerical
analysis of optimal transport. This topic also has a long and complex history, with some
famous schemes such as the old simplex algorithm, or the more recent auction algorithm.
Recent works by Uriel Frisch and collaborators in cosmology provide an example where
one would like to efficiently solve the optimal transport problem with really huge sets of
data. To add to the variety of methods, continuous schemes based on partial differential
equations have been making their way lately. All in all, this subject certainly deserves a
reference book on its own, with experiments and systematic comparisons of algorithms,
benchmark problems and so forth. By the way, the optimum matching problem is one of
the subjects that Donald Knuth has planned to address in his long awaited Volume 4 of
The Art of Computer Programming.

It is likely that many other unexpected developments will arise in the area of optimal
transport. Actually, at the time when I was completing my first book on the subject,
I certainly did not expect that it would continue to grow even much faster than before,
and in so many directions.

Sketch of proof of the Theorem. First consider the case when N = ‖ · ‖ is a uniformly
convex, smooth norm, in the sense that

λ In ≤ ∇2N2 ≤ Λ In

for some positive constants λ and Λ. Then the cost function c(x, y) = N(x − y)2 is both
strictly convex and C1,1, i.e. uniformly semi-concave. This makes it possible to apply The-
orem 10.26 (recall Example 10.30) and deduce the following theorem about the structure
of optimal maps: Namely, if µ0 and µ1 are compactly supported and absolutely continuous,
then there is a unique optimal map, and it takes the form

T (x) = x −∇(N2)∗(−∇ψ(x)), ψ a c-convex function.

Since the norm is uniformly convex, it is not branching, and geodesic lines are just straight
lines; so the displacement interpolation takes the form (Tt)#(ρ0 λn), where

Tt(x) = x − t∇(N2)∗(−∇ψ(x)) 0 ≤ t ≤ 1.

Let θ(x) = ∇(N2)∗(−∇ψ(x)). By [365, Remark 2.56], the Jacobian matrix ∇θ, although
not symmetric, is pointwise diagonalizable, with eigenvalues bounded above by 1 (this
remark goes back at least to a 1996 preprint by Otto [287]). Then it is easy to show that
t → det(In − t∇θ)1/n is a concave function of t [365, Lemma 5.21], and one can reproduce
McCann’s proof of displacement convexity for Uλn , as soon as U ∈ DCn [365, Theorem 5.15
(i)].

This shows that (Rn, N,λn) satisfies the CD(0, n) displacement convexity inequalities
when N is a smooth uniformly convex norm. Now if N is arbitrary, it can be approximated
by a sequence (Nk)k∈N of such norms, in such a way that (Rn, N,λn, 0) is the pointed mea-
sured Gromov-Hausdorff limit of (Rn, Nk,λn, 0) as k → ∞. Then the general conclusion
follows by stability of the weak CD(0, n) criterion. 78

Remark. In the above argument the spaces (Rn, Nk,λn) satisfy the property that the
displacement interpolation between any two absolutely continuous, compactly supported
probability measures is unique; while the limit space (Rn, N,λn) does not necessarily
satisfy this property. For instance, if N = ‖ · ‖(∞ , then there is an enormous amount of
displacement interpolations between two given probability measures; and most of them do
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not satisfy the displacement convexity inequalities that are used to define CD(0, n) bounds.
This shows that if in Definition 29.6 one requires the inequality (29.7) to hold true for
any Wasserstein geodesic, rather than for some Wasserstein geodesic, then the resulting
CD(K,N) property is not stable under measured Gromov-Hausdorff convergence.
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38. Benäım, M., Ledoux, M., and Raimond, O. Self-interacting diffusions. Probab. Theory Related
Fields 122, 1 (2002), 1–41.
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85. Cabré, X. Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure
Appl. Math. 50, 7 (1997), 623–665.
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207. Hargé, G. A convex/log-concave correlation inequality for Gaussian measure and an application to
abstract Wiener spaces. Probab. Theory Related Fields 130, 3 (2004), 415–440.

208. Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
209. Heinonen, J., and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry.

Acta Math. 181, 1 (1998), 1–61.
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Bakry–Émery theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
generalized Sobolev inequalities under Ricci curvature bounds . . . . . . . . . . . . . . . . 409
Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
From Sobolev-type inequalities to concentration-type inequalities . . . . . . . . . . . . . 410
From Log Sobolev to Talagrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Metric couplings as semi-distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Metric Gluing Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
approximate isometries converge to isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Gromov–Hausdorff convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
convergence of length spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
compactness criterion in Gromov–Hausdorff topology . . . . . . . . . . . . . . . . . . . . . . . 431
local Gromov–Hausdorff convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431



List of Short Statements 537

geodesic local Gromov–Hausdorff convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
pointed Gromov–Hausdorff convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Ascoli’s theorem on a Gromov–Hausdorff converging sequence . . . . . . . . . . . . . . . . 433
Prokhorov’s theorem on a Gromov–Hausdorff converging sequence . . . . . . . . . . . . 434
compactness of locally bounded measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
the metric and metric-measure approach coincide in presence of doubling . . . . . . 437
dGP convergence and doubling imply dGHP convergence . . . . . . . . . . . . . . . . . . . . . 438
measured Gromov–Hausdorff topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
compactness in measured Gromov–Hausdorff topology . . . . . . . . . . . . . . . . . . . . . . 440
kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
regularity of the speed field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
stability of transport under Gromov–Hausdorff convergence . . . . . . . . . . . . . . . . . . 448
Integral functionals for singular measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Rewriting of the distorted Uν functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Rescaled subadditivity of the distorted Uν functionals . . . . . . . . . . . . . . . . . . . . . . . 460
Weak curvature-dimension condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Smooth weak CD(K,N) spaces are CD(K,N) manifolds . . . . . . . . . . . . . . . . . . . . 461
Bonnet–Myers diameter bound for weak CD(K,N) spaces . . . . . . . . . . . . . . . . . . . 462
consistency of the CD(K,N) conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Sufficient condition for Definition (??) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Legendre transform of a real-valued convex function . . . . . . . . . . . . . . . . . . . . . . . . 465
Legendre representation of Uν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
lower semi-continuity and contraction property of Uν . . . . . . . . . . . . . . . . . . . . . . . 465
Stability of CD(K,N) under MGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Smooth limits of CD(K,N) manifolds are CD(K,N) . . . . . . . . . . . . . . . . . . . . . . . . 471
Elementary properties of weak CD(K,N) spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
restriction to the support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Domain of definition of Uν and Uβ

π,ν for singular measures . . . . . . . . . . . . . . . . . . . 480
lower semi-continuity of Uν for singular measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
generalized displacement convexity inequalities in weak CD(K,N) spaces . . . . . . 483
Brunn–Minkowski inequality in weak CD(K,N) spaces . . . . . . . . . . . . . . . . . . . . . . 485
non-atomicity of the support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Exhaustion by intermediate points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Bishop–Gromov inequality in metric-measure spaces . . . . . . . . . . . . . . . . . . . . . . . . 486
dimension of weak CD(K,N) spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
weak CD(K,N) spaces are doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Uniqueness of geodesics in nonbranching CD(K,N) spaces . . . . . . . . . . . . . . . . . . . 488
absolute continuity of displacement interpolants in weak CD(K,N) spaces . . . . . 489
HWI and logarithmic Sobolev inequalities in weak CD(K,∞) spaces . . . . . . . . . . 491
Sobolev inequalities in weak CD(K,N) spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
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