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Abstract. — We describe the asymptotic behavior of entropy solutions of inviscid Burgers equation on the

circle with time-periodic forcing. These solutions converge to periodic states, but the period of these limit
states may be greater than the period of the forcing. A Corollary is that the only solutions without shocks

are periodic. This result can be interpreted in terms of the invariant curves of the associated dynamics.

Résumé. — On décrit les comportement asymptotique des solutions entropiques d’équations de Burgers
sans viscosité avec un potentiel dépendant périodiquement du temps. Ces solutions convergent vers des états

périodiques, dont la période est un multiple de celle du potentiel. Un corollaire est que les seules solutions
sans choc, c’est à dire les seules solutions continues, sont périodiques. Ce résultat a une interprétation en
terme des courbes invariantes de la dynamique associée.

We study the quasi-linear first order partial differential equation

(B) ∂ty + ∂x
(
H(t, x, y)

)
= 0,

where t is a real time, x is a periodic real variable, and the unknown y is a real valued function of
t and x. The hypotheses on H will be specified later. Equations of this kind have been extensively
studied as a very simple example of turbulence. Here is a physical model, which helps the intuition.
The Hamiltonian H gives rise to a classical dynamics for particles on the configuration space,
which is here the circle of x variable. On each point x of this circle, put a particle with momentum
y(0, x). Assume that each of these particles moves, independently of each other, driven by the
classical dynamics associated to H. The solution y(t, x) is then the momentum of the particle
which is at point x at time t. The function y(t, x) may be seen as the Eulerian description of this
very simple fluid. Of course it might happen that after a certain time several different particles
with different momenta have the same position. This is the reason why the equation do not
have classical solutions in general. However, generalized solution can be defined by the following
additional requirement: when a collision occurs between particles, these particles glue together
and form what will be called a shock. Shocks then absorb the particles which hit them. Note that
these shocks are not the same kind of objects as particles, their evolution is not driven by the
Hamiltonian. The solutions describing this evolution are called the entropy solutions of (B).

The main goal of the paper is to describe the asymptotic behavior of entropy solutions of (B).
We prove that, if the Hamiltonian is time-periodic, each solution converges to a periodic solution.
The period of the limit is a multiple of the period of the Hamiltonian. We also prove that all
solutions undergo shocks, except perhaps time-periodic solutions. This does not mean, however,
that periodic solutions are always free of shocks. For many Hamiltonians, there do not exist any
solution without shocks.

In order to obtain this asymptotic behavior, we introduce another equation, satisfied by the
primitive of entropy solutions, the Hamilton-Jacobi equation, whose viscosity solutions are by
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now well understood. On the way, we have to understand how knowledge on entropy solutions of
Burgers equation can be gained from knowledge on viscosity solutions of the associated Hamilton-
Jacobi equation. Our second aim is to describe with some details these relations, and to show how
most of what is known on the Burgers equation can be recovered from this point of view. As a
consequence, a large part of the paper is devoted to the presentation of known results both on the
Burgers equation and on the Hamilton-Jacobi equation. It is worth noticing that the trajectories
of the particles, that is the Lagrangian description of our elementary fluid, play a major role in
this approach.

Recently, it has been understood that the study of entropy solutions of equation (B) provides
interesting insights in the dynamics of the Hamiltonian H. This aspect is one of our motivations,
and our work also imply a new observation concerning the dynamics of the time-one flow of H.
We prove that if a curve in phase space is a graph, and is such that infinitely many of its successive
images by the time-one flow are also graphs, then the curve has to be periodic, that is mapped
into itself by some power of the flow. Similar results had previously been obtained by Albert Fathi
in the case of autonomous Hamiltonian systems.

Most of this work was written while I was staying for one year in EPFL, Swizerland, with a
grant of the Swiss National Fund for research. This period was very pleasant and fruitful. I would
like to thank Boris Buffoni for proposing me this opportunity, and for his interest to the present
work.

1. Introduction

1.1. The standard circle R/Z is denoted by T. The cotangent bundle T ∗T is identified with T×R.
Given a function f(t, x) of two variables, we will denote by ft the function x 7−→ f(t, x). The
partial derivative with respect to the variable t will be denoted by ∂tf . Throughout this paper, we
will consider a time-periodic Hamiltonian H(t, x, p) : R× T ∗T = R×T×R −→ R, the associated
time-periodic vector-field of T× R is noted X. We have

X(t, x, p) =
(
∂pH(t, x, p),−∂xH(t, x, p)

)
.

1.2. The following standard hypotheses will be assumed :

i. The Hamiltonian H is C2 and 1-periodic in t.
ii. The Hamiltonian H is convex in p, and ∂2

ppH > 0.
iii. The Hamiltonian has superlinear growth in p, i.e. lim|p|−→∞H(t, x, p)/|p| = ∞ for each

(t, x).
iv. The Hamiltonian flow is complete. More precisely for all (t0, x0, p0), there exists a C1 curve

γ(t) = (x(t), p(t)) : R −→ T× R such that (x(t0), p(t0)) = (x0, p0) and γ̇(t) = X(t, γ(t)) for
all t ∈ R.

The mapping γ(t0) 7−→ γ(t) is a diffeomorphism of T × R, denoted φt0,t. We will pay special
attention to the diffeomorphism φ = φ0,1. Note that the completeness hypothesis is satisfied if
there exists a constant C such that |∂tH| 6 C(1 +H).

1.3. A typical example of Hamiltonian satisfying our hypotheses is

H(t, x, p) =
1
2
p2 + V (t, x)

with a C2 potential V periodic in t.

1.4. We consider the equation

(B) ∂ty + ∂x
(
H(t, x, y)

)
= 0

of the unknown function y(t, x) : R× T −→ R. This equation will be called the Burgers equation
in the sequel. Note that in case H = p2/2 + V (t, x), we have the standard forced inviscid Burgers
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equation
∂ty + y∂xy = −∂xV (t, x).

1.5. The Burgers equation is quasi-linear, and its characteristics (see [A], chapter 2) are the
trajectories of X. This means that if y(t, x) : [a, b] × T −→ R is a C1 solution of the Burgers
equation, and if γ(t) = (x(t), p(t)) : [a, b] −→ T× R is a trajectory of the Hamiltonian vectorfield
X, such that p(a) = y(a, x(a)), then the equality p(t) = y(t, x(t)) holds for all t ∈ [a, b]. In other
words, for each a 6 t0 6 t1 6 b, the graph of the function x 7−→ y(t1, x) is the image by the
diffeomorphism φt0,t1 of the graph of the function x 7−→ y(t0, x).

1.6. Still assuming that y is a C1 solution of the Burgers equation, we obtain that

c(t) =
∫
T

y(t, x)dx

is a constant, that we denote c. The function y can be written y(t, x) = c + ∂xu(t, x), where
u(t, x) : I × T −→ R satisfies the Hamilton-Jacobi equation

(HJc) ∂tu+H(t, x, c+ ∂xu) = 0.

1.7. It is known that there exists in general no classical solution of the Burgers equation defined on
R

+×T satisfying a given initial condition y(0, x) = y0(x), see [A] or [Se]. Note that a consequence
of our results is that the only classical solutions defined for all positive times are periodic in time.
However, the Cauchy problem is well-posed in the sense of entropy solutions (we will define entropy
solutions in the sequel). More precisely, to all t0 ∈ R and all function y0 ∈ L1(T), we associate
a unique entropy solution y(t, x) ∈ C(]t0,∞), L1(T)) such that yt −→ y0 as t −→ t0 in a weak
sense, see 3.2. This result is classical, see [Se] for example.

1.8. We want to describe the asymptotic behavior of entropy solutions. Let us first recall that
for each c there exists a 1-periodic solution of average c. More precisely, there exists a continuous
and increasing function c 7−→ yc from R to C(R, L1(T)) which, to each c, associates a 1-periodic
Entropy solution of average c, see [KO] or [JKM]. Note however that there may exist more than
one 1-periodic solution of a given average c. It is natural to ask whether all solutions are attracted
by these 1-periodic solutions. The answer is negative, there are examples where there exist periodic
Entropy solutions of minimal period greater than 1, see [FM]. These subharmonic solutions in
turn attract all other solutions, as we now state.

1.9. Theorem Let y(t, x) :]t0,∞) × T −→ R be an entropy solution of the Burgers equation.
There exists an integer T and an entropy solution ω(t, x) : R × T −→ R which is T -periodic in t
and such that

‖yt − ωt‖ −→ 0
in L1(T) as t goes to infinity.

If H is a function of p only, then ω(t, x) is the constant
∫
y(t, x)dx. The result in this special case

has been obtained by Lax [L]. If H does not depend on t, then the asymptotic solution ω does not
depend on t either, the result in this case follows from works of Roquejoffre [Ro] and Fathi [Fa3].
The theorem will be proved in section 3 as a consequence of a similar result for viscosity solutions
of (HJc) obtained in [Be], see also [BR]. We will also prove the following Corollary, which was
obtained by Fathi [Fa3] in the Autonomous case.

Corollary If y(t, x) :]t0,∞)× T −→ R is a continuous solution of Burgers equation, then the
function y is the restriction of a Lipschitz solution ω : R× T −→ R which satisfies ω(t + T, x) =
ω(t, x) for some T ∈ N.

1.10. One can compare the situation with the viscous case. If one considers the parabolic equation

(Bµ) ∂ty + ∂x
(
H(t, x, y)

)
= µ∂xxy
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with µ > 0, the behavior is much simpler. One can prove along the lines of [JKM], see also [B],
that for each c, there exists a unique solution yc of average c which is 1-periodic in time. This
solution attracts all the solutions of average c. More precisely, if y : [t0,∞)×T −→ R is a solution
of (Bµ), and if

∫
ytdx = c, then yt − yct −→ 0 uniformly as t −→∞.

1.11. The result in the inviscid case can be used to study the dynamics of the diffeomorphism
φ = φ0,1. Note that this diffeomorphism is a finite composition of area preserving right twist maps,
and that any finite composition of right twist maps can be obtained this way. This correspondence
between the twist property and the convexity of the Hamiltonian has been described by Moser,
see [Mo].

1.12. In order to give a more geometrical meaning to Theorem 1.9, we consider the set E of
functions f : T −→ R which can be locally written as the sum of a continuous and a decreasing
function. A function f ∈ E has a right limit f−(x) and a left limit f+(x) at each point x.
These limits satisfy f−(x) 6 f+(x), with a strict inequality on an at most countable set. Let
G−(f) and G+(f) be the graphs, in T × R of the functions f− and f+. We define the graph
G(f) = G−(f) ∩G+(f) of f . Note that G(f) = G−(f) ∪G+(f). It is also useful to consider the
set

H(f) =
⋃
x

{x} × [f−(x), f+(x)] ⊂ T× R,

which is a Jordan curve containing G(f). The Hausdorff distance dH(f, g) between the compact
sets H(f) and H(g) defines a distance dH on E (one should take the quotient of E by the relation
of almost everywhere equality). The convergence in L1 implies convergence for the distance dH ,
see 3.3.

1.13. The link between entropy solutions and the dynamics of φ can now be detailed, see 3.6. It
is convenient to denote by E : L1 −→ L1 the operator which associates to each initial condition
y0 the solution y1 at time 1. The operator E is continuous. In fact, as is well known, it is a
contraction. We will prove this fact in section 4. For each y ∈ L1, we have E(y) ∈ E . If in
addition y ∈ E , then

G(E(y)) ⊂ φ(G(y)).
This property has striking consequences. For example, if yc is a fixed point of E, then yc ∈ E and
G(yc) is negatively invariant. As a consequence, the α-limit of φ|G(yc) is a non-empty compact set
which is fully invariant by φ. It is an Aubry-Mather set. The rotation number ρ(c) ∈ R of the
orbits of this set depends only on c, and the function c 7−→ ρ(c) is non-decreasing and continuous,
see 2.7.

1.14. Having defined the rotation number ρ(c) allows us to complement Theorem 1.9. The asymp-
totic behavior of solutions depend strongly on their space average c and on the associated rotation
number ρ(c). If ρ(c) is irrational, then there exists a single fixed point of E of average c, as was
proved in [E] and [So]. We will prove that it attracts all the trajectories of average c, that is one
can take T = 1 in Theorem 1.9. If ρ(c) is rational, ρ(c) = p/q in lowest terms, then one can take
T = q in Theorem 1.9. It is thus natural to define the integer T (c) by T (c) = 1 if ρ(c) is irrational
and T (c) = q if ρ(c) = p/q in lowest terms, and we have the following refinement of Theorem 1.9 :

Theorem For each entropy solution y :]t0,∞) × T −→ R of (B), there exists an entropy so-
lution ω(t, x) : R × T −→ R which is T (c)-periodic in time, with c =

∫
T
yt(x)dx, and such that

yt − ωt −→ 0 in L1(T) as t goes to infinity. As a consequence, we also have dH(yt, ωt) −→ 0.

1.15. Corollary 1.9 can be restated as a new result on the dynamics of φ, which may be seen
as a converse to the celebrated result of Birkhoff (see [Ma2], [HF], [Si]) stating that a rotational
(not homotopic to a constant) Jordan curve in T × R which is invariant under φ is the graph
of a Lipschitz function y : T −→ R. This Corollary was obtained by Fathi [Fa3], [Fa2] in the
autonomous case.
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Corollary Let G ⊂ T×R be the graph of a continuous function y : T −→ R. Assume that there
exists an increasing sequence nk of positive integers such that φnk(G) is the graph of a continuous
function. Then there exists a positive integer T such that φT (G) = G, and the function y is
Lipschitz. In addition, if φ(G) 6= G, then the rotation number of φT|G is an integer, hence G

contains a T -periodic point of φ.

Let us mention that it is certainly possible to give a more direct proof of this Corollary. One could
use a topological approach, as suggested to me by by P. Le Calvez or a variational approach, as
suggested by J. Xia. The proof presented here in 3.9 is however extremely short.

1.16. In the rest of the paper, we will detail the outline given above. We will obtain all the
important properties of entropy solutions of (B) as consequences of properties of the viscosity
solutions of (HJc). Hence we first describe these viscosity solutions in section 2, and draw our
conclusions in section 3. We explain in section 4 how to understand in our framework the important
fact that entropy solutions form a contraction in L1.

2. Calculus of variations and the Hamilton-Jacobi equation

In the present section, we describe the main properties of viscosity solutions of the equation (HJc).
These properties follow from the study of extremals via the Hopf-Lax-Oleinik formula, a global
reference is the work of Fathi, [Fa1] and [Fa2]. We also state a result analogous to Theorem 1.9
for these solutions. The results in this section are standard or easy extensions of standard ones,
however some of the proofs are original.

2.1. It is useful to introduce the Lagrangian L : R× T× R −→ R associated to H. It is defined
by

L(t, x, v) = sup
p
pv −H(t, x, p),

and has the following properties, which follow easily from the analogous properties 1.2 of H:
i. The Lagrangian L is C2 and 1-periodic in t.
ii. The Lagrangian L is convex in v, and ∂2

vvL > 0.
iii. The Lagrangian has superlinear growth in v, i.e. lim|v|−→∞ L(t, x, v)/|v| =∞ for each (t, x).

The Lagrangian associated to the modified Hamiltonian H(t, x, p+ c) is L(t, x, v)− cv, it satisfies
the three properties above.

2.2. For each c and each t0 6 t, we have the Hopf-Lax-Oleinik operator V ct0,t : C(T,R) −→ C(T,R)
defined by

V ct0,t(u)(x) = min
(
u(x(t0)) +

∫ t

t0

L(s, x(s), ẋ(s))− cẋ(s) ds
)

where the minimum is taken on the set of absolutely continuous curves x : [t0, t] −→ T such that
x(t) = x. Any curve realizing the above minimum is C2 and is the projection of a trajectory of X.
More precisely, the curve (x(s), ∂vL(s, x(s), ẋ(s))) is a trajectory of X. These operators clearly
satisfy the Markov property

V ct1,t2 ◦ V
c
t0,t1 = V ct0,t2 .

Note that these operators has been used in the study of viscosity solutions for quite a long time,
see for instance [Fl]. We need the following:

Definition A function ũ : Rn −→ R is called K-semi-concave if the function ũ − K‖x‖2/2 is
concave. The notion is extended to functions defined on convex subsets. A function u : [t0,∞)×
T −→ R (resp. T −→ R) is called K-semi-concave if it is of the form u(t, x) = ũ(t, x mod 1) (resp.
u(x) = ũ(x mod 1)), with a K-semi-concave function ũ : [t0,∞) × R −→ R (resp. ũ : R −→ R ).
A function is called semi-concave if it can be written locally as the sum of a concave and a C2

function.
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Properties For each c ∈ R and each t0 < t1 we have :
i. The operators V are equivariant under addition of a constant, more precisely, V ct0,t1(U+u) =
U + V ct0,t1(u) for all real constant U .

ii. The operators V are non-decreasing, the inequality V ct0,t1(u) 6 V ct0,t1(v) holds whenever the
continuous functions u and v satisfy u 6 v.

iii. The operators V are contractions, we have

‖V ct0,t1(u)− V ct0,t1(v)‖∞ 6 ‖u− v‖∞
for all continuous functions u, v : T −→ R.

iv. For each positive ε, there exists a constant K such that, for |c| 6 1/ε and any continuous
initial condition u0, the function

u(t, x) = V ct0,tu0(x)

is K-Lipschitz and K-semi-concave on [t0 + ε,∞)× T.

2.3. Proposition The following properties are equivalent for a function u ∈ C([t0, t1]× T,R) :
i. The function u is a viscosity solution of (HJc) (see [Ba] or [Fa2] for the definition, which

will not be used in the present paper).
ii. The function u is locally Lipschitz on ]t0, t1]×T and it satisfies (HJc) almost everywhere. In

addition, there exists a non-increasing function K :]t0, t1] −→]0,∞[ such that the functions
ut is K(t)-semi-concave for t0 < t 6 t1.

iii. For each t and t′ such that t0 6 t 6 t′ 6 t1, we have ut′ = V ct,t′(ut).

Corollary For each continuous initial condition ut0 , there exists one and only one viscosity
solution u : [t0,∞)× T −→ R of (HJc), given by

u(t, x) = V ct0,tut0(x).

There exists a non-increasing function K(t) :]t0,∞[−→]0,∞[ and such that u is K(t)-Lipschitz
and K(t)-semi-concave on [t,∞) × T for each t > t0. In addition, given a constant C > 0, the
function K(t) can be chosen uniformly for all equations (HJc) with |c| 6 C.

Proof. It is standard that i. ⇐⇒ iii., see a good exposition in [FMa]. Let us recall a possible
sketch of the proof. One can first prove using variations around the maximum principle that
there is at most one function satisfying i. with a given initial condition ut0 (see [Ba], 2.4.). On
the other hand, it is obvious that there exists one and only one function satisfying iii., namely
(t, x) 7−→ V ct0,tut0(x). One can prove, see [FMa], that this function also satisfies i. It is then the
only one to do so, by uniqueness. That iii. =⇒ ii. results from properties 2.2. We shall prove
more carefully that ii. =⇒ i., which seems less classical. Let us fix (S,Q) ∈]t0,∞) × T, it is
enough to prove (see [Ba], 5.3) that all C1 functions φ such that u − φ has a local minimum at
(S,Q), satisfy the equation at (S,Q). If such a function φ exists, then ∂xu(S,Q) exists and is
equal to ∂xφ(t, x). It follows from the Lemma below that u is differentiable at (S,Q), and satisfies
the equation at this point, which implies that φ also satisfies the equation at (S,Q).

Lemma Let u(t, x) be a function satisfying condition ii. of the proposition. If (S,Q) ∈]t0,∞)×T
is a point where ∂xu exits, then the function u is differentiable and satisfies (HJc) at (S,Q).

Proof. Let us fix a time t2 ∈]t0, S[. In view of the fact that all the functions ut, t > t2
are K(t2)-semi-concave, it is not hard to prove that ∂xu(sn, qn) −→ ∂xu(S,Q) when (sn, qn)
is a sequence of points of differentiability of u converging to (S,Q). If we assume in addition
that (HJc) holds at (sn, qn), we obtain that ∂tu(sn, qn) has a limit H(t, x, c + ∂xu(t, x)). Let
us denote L the linear form (s, q) 7−→ q∂xu(S,Q) + sH(S,Q, ∂xu(S,Q)). We have proved
that there exists a modulus of continuity δ and a set K ⊂ R × T of full measure in a neigh-
borhood of (S,Q) such that, for each (S + s,Q + q) ∈ K, the function u is differentiable at
(S + s,Q + q) and ‖du(S + s,Q + q) − L‖ 6 δ

(
‖(s, q)‖

)
. It follows that we have the estimate
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|u(S + s,Q + q) − u(S,Q) − L(s, q)| 6 ‖(s, q)‖δ(‖(s, q)‖) for all (s, q) small enough, hence u is
differentiable at (S,Q), and du(S,Q) = L.

2.4. Let u(t, x) : [t0,∞) × T −→ R be a viscosity solution of (HJc), and let t0 6 t < t′. An
absolutely continuous curve x(s) : [t, t′] −→ T is said to be calibrated by u if

u(t′, x(t′)) = u(t, x(t)) +
∫ t′

t

L(s, x(s), ẋ(s))− cẋ(s) ds.

If x(s) is a calibrated curve, then it is C2 and the curve
(
x(s), ∂vL(s, x(s), ẋ(s)

)
is a trajectory of the

Hamiltonian vector field X. By extension, we say that a curve γ(s) = (x(s), p(s)) : [t, t′] −→ T×R
is calibrated by u if x(s) is calibrated by u and if p(s) = ∂vL(s, x(s), ẋ(s)). It is then a trajectory
of X. A curve is said to be calibrated by u on an interval I if it is calibrated by u on [t, t′] for all
[t, t′] ⊂ I. The following theorem is due to Albert Fathi.

Theorem (Calibrated curves)

i. Let x(s) :]t0,∞) ⊃ [t, t′] −→ T be a calibrated curve. For each s ∈]t, t′[, the function u is
differentiable at (s, x(s)), and ∂xu(s, x(s)) + c = p(s) = ∂vL(s, x(s), ẋ(s))

ii. For every (t, x) ∈]t0,∞) × T there exists a calibrated curve x(s) : [t0, t] −→ T such that
x(t) = x. If u is differentiable at (t, x), then there exists only one such calibrated curve, and
it satisfies ∂xu(t, x(t)) + c = p(t) = ∂vL(t, x(t), ẋ(t)).

iii. If in addition the function ut0 is semi-concave, and if x(s) : [t0, t] −→ T is a calibrated curve,
then the function ut0 is differentiable at x(t0), and ∂xu(t0, x(t0)) + c = p(t0).

Proof. We only sketch the proof. Details can be found in [Fa2] or [Fa1]. The calibrated curve
of ii. is obtained as a minimizer of the functional

u(t0, x(t0)) +
∫ t

t0

L(s, x(s), ẋ(s))− cẋ(s) ds

among the absolutely continuous curves x(s) : [t0, t] −→ T satisfying x(t) = x. The second point
is Fathi’s key regularity result. Let us mention the following Lemma from [Fa2].

Lemma If γ(s) = (x(s), p(s)) : [t, t′] −→ T × R is calibrated by u, then p(t′) − c is a proximal
super-differential of ut′ at x(t′), i.e.

ut′(x(t′) + x) 6 ut′(x(t′)) + (p(t′)− c)x+O(x2)

near x = 0, and p(t)− c is a proximal sub-differential of ut at x(t), i.e.

ut(x(t) + x) > ut(x(t)) + (p(t)− c)x+O(x2).

Using this Lemma, we complete the proof of the Theorem. If γ(s) = (x(s), p(s)) : [t, t′] −→ T×R
is calibrated by u, and if s ∈]t, t′[, then the restrictions of γ to [t, s] and [s, t′] are calibrated,
hence p(s) − c is both a sub and a super-differential of us at x(s), hence it is the differential.
This proves i. In addition, if ut′ is differentiable at x(t′), then its only possible subdiffer-
ential at this point is ∂xu(t′, x(t′)), hence the calibrated curve has to satisfy the equation
∂xu(t′, x(t′)) + c = p(t′) = ∂vL(t′, x(t′), ẋ(t′)). By Cauchy-Lipschitz uniqueness, only one charac-
teristic can satisfy this equation. This proves the second point in ii. The proof of iii. is similar:
the existence of a calibrated curve emanating from a point provides a sub-differential, while
semi-concavity provides a super-differential.

2.5. We are interested mainly in the asymptotic behavior of solutions. A first description is given
by the following result. The function α(c) introduced below has been given several names, it is
the α function of Mather, the averaged Hamiltonian, or the eigenvalue in terms of idempotent
algebra.
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Proposition For each c, there exists a real number α(c) with the following property. For every
solution u(t, x) : [t0,∞)×T −→ R of (HJc), the function u(t, x)+ tα(c) is bounded on [t0,∞)×T.

From now on, we shall mainly consider the corrected equation

(Hc) ∂tu+H(t, x, c+ ∂xu) = α(c).

Proof. We work with a fixed parameter c. Let us define the sequences

Mn := max
x∈T

V c0,n(0)(x) and mn := min
x∈T

V c0,n(0)(x).

Since V c0,n(0), n > 1, are K-Lipschitz, we have

0 6Mn −mn 6 K

for n > 1. We claim that Mn+m 6Mn +Mm. This follows from the inequalities

V c0,m+n(0)(x) = V c0,m(V c0,n(0))(x) 6 V c0,m(Mn)(x) 6Mn + V c0,m(0)(x).

Hence by a classical result on subadditive sequences, we have limMn/n = inf Mn/n. We denote
by −α this limit. In the same way, the sequence −mn is subadditive, hence mn/n −→ supmn/n.
This limit is also −α because 0 6Mn −mn 6 K. As a consequence, we have, for all n > 1,

−K − nα 6 mn 6 −nα 6Mn 6 K − nα.

Now let u(t, x) : [t0,∞)× T −→ R be any solution, and let t1 be an integer greater than t0, then
for all integer n ∈ N we obtain, for all x,

min
T

ut1 −K 6 min
T

ut1 +mn + nα 6 u(n+ t1, x) + nα 6 max
T

ut1 +Mn + nα 6 max
T

ut1 +K.

Recalling that u is Lipschitz on [t1,∞) × T, we obtain the conclusion of the Proposition with
α(c) = α.

2.6. The following Lemma is due to Jensen, the proof is from [BR]. The Corollary is fundamental,
and by now classical.

Lemma If u(t, x) : [t0,∞) × T −→ R is a viscosity solution of (HJc), the function v(θ, x) :
T× T −→ R defined by

v(θ, x) = lim inf
t mod 1=θ

(
u(t, x)− tα(c)

)
is a viscosity solution of the Hamilton-Jacobi equation

∂θv +H(θ, x, c+ ∂xv) = α(c),

where θ denotes t mod 1.

Corollary The Hamilton-Jacobi equation

∂θu+H(θ, x, c+ ∂xu) = a

has a 1-periodic viscosity solution if and only if a = α(c).

Proof of the Lemma. We have to prove that V cs,t(vs) = vt for all s 6 t. Let us first prove that
V cs,t(vs) 6 vt. In order to do so, we fix (t, x) and consider an increasing sequence nk of integers
such that u(t + nk, x) −→ v(t, x). There exists a sequence of curves xk : [s, t] −→ T which are
calibrated by the u(t+ nk, x) and satisfy xk(t) = x. We have

u(t+ nk, x) = u(s+ nk, xk(0)) +
∫ t

s

L(σ, xk(σ + t), ẋk(σ + t)) dσ.
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Let us assume, taking a subsequence is necessary, that the sequence xk is converging to x : [s, t] −→
T uniformly on compact sets. Taking the lim inf in the equality above gives

v(t, x) > v(s, x(0)) +
∫ t

s

L(σ, x(σ + t), ẋ(σ + t)) dσ > V cs,t(vs)

We have used that the functions us+nk have a common Lipschitz constant to conclude that
lim inf u(s+ nk, xk(0)) = lim inf u(s+ nk, x(0)) > v(s, x(0)).

In order to prove the reversed inequality, note that for all curves x : [s, t] −→ T, we have

u(t+ n, x(t)) 6 u(s+ n, x(s)) +
∫ t

s

L(σ, x(σ), ẋ(σ)) dσ.

Taking the lim inf, we obtain

v(t, x(t)) 6 v(s, x(s)) +
∫ t

s

L(σ, x(σ), ẋ(σ)) dσ

for each curve x, hence V cs,t(vs) > vt which is the desired inequality.

2.7. Proposition The function α(c) : R −→ R is convex, C1, and superlinear. For each
viscosity solution u(t, x) : [t0,∞) × T −→ R of (HJc), there exist curves γ : [t0,∞) −→ T which
are calibrated by u. These curves all have the same rotation number

lim
1
t

∫ t

t0

ẋ = ρ(c) := α′(c).

Proof. We begin with superlinearity. Let v(θ, x) be a periodic solution of

∂θv +H(θ, x, c+ ∂xv) = α(c).

Let (θ(c), x(c)) be a minimum of v. The function v is semi-concave, hence differentiable at
(θ(c), x(c)), where ∂tv = 0 = ∂xv. It follows that

α(c) = H(θ(c), x(c), c)

and the superlinearity of α follows from the superlinearity of H.
Let us continue with convexity. For fixed t and x, the function c 7−→ V c0,t(0)(x) is clearly

concave, since it is defined as a minimum of linear functions. It follows that the function c 7−→
−α(c) = limV c0,t(0)(x)/t is concave as a limit of concave functions, hence α(c) is a convex function.

Lemma Let uc : [t0,∞)× T −→ R be a viscosity solution of (HJc) and let x(t) : [t0,∞) −→ T,
be calibrated by uc, then

α′(c−) 6 lim inf
1
t

∫ t

t0

ẋ(s)ds 6 lim sup
1
t

∫ t

t0

ẋ(s)ds 6 α′(c+).

Proof. See [G] for related material. Let uc : [t0,∞)× T −→ R be a viscosity solution of (HJc)

and let x(t) : [t0,∞) −→ T, be calibrated by uc. We have

uc(t, x(t))− uc(t0, x(t0)) =
∫ t

t0

L(s, x(s), ẋ(s))ds− c
∫ t

t0

ẋ(s)ds.

In view of the definition of α(c) in 2.5, the function uc(t, x) + tα(c) is bounded; hence

lim
t−→∞

(c
t

∫ t

t0

ẋ(s)ds− 1
t

∫ t

t0

L(s, x(s), ẋ(s))ds
)

= α(c).
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Let us now consider a viscosity solution ue : [t0,∞) × T −→ R of (HJe). With the same curve
x(s), we have

ue(t, x(t))− ue(t0, x(t0)) 6
∫ t

t0

L(s, x(s), ẋ(s))ds− e
∫ t

t0

ẋ(s)ds

hence

α(e) > lim sup
(e
t

∫ t

t0

ẋ(s)ds− 1
t

∫ t

t0

L(s, x(s), ẋ(s))ds
)
,

which implies

α(e)− α(c) > lim sup
(e− c

t

∫ t

t0

ẋ(s)ds
)
.

The desired inequalities follow at the limit.
We still have to prove that the function α is differentiable. We need some preliminaries.

2.8. Let C be the set of continuous curves x(t) : R −→ T such that the mapping t 7−→ x̃(t) =
(t mod 1, x(t)) with values in T2 is either one to one or periodic. Let us endow C with the topology
of uniform convergence on compact sets. The following result of Poincaré is very standard, and
will not be proved here.

Proposition Each curve x ∈ C has a well defined real rotation number

ρ(x) := lim
1
t

∫ t

0

ẋ(s)ds.

In addition, the mapping x 7−→ ρ(x) is continuous on C. If x(t) and y(t) are two curves of C such
that x̃(R) and q̃(R) are disjoint subsets of T2, then they have the same rotation number.

2.9. Lemma Let u(θ, x) and v(θ, x) be two viscosity solutions of (Hc) of time period 1. Then
there exists a curve x(t) : R −→ T which is calibrated both by u and v.

It is usual in Aubry-Mather theory to define the Aubry set as the unions of all curves that are
calibrated by all 1-periodic viscosity solutions of (Hc). It is known that the Aubry set is not
empty. This result of course implies the lemma, but we provide a simple self-contained proof.

Proof. Let us define the number M(t) := max(vt − ut). The function M(t) is non-increasing,
because the inequality vt 6 M + ut implies vs 6 M + us for all s > t, by Properties 2.2 i and ii.
On the other hand the functions u and v are periodic, hence M(t) is periodic, hence constant. We
denote by M this constant. Let us fix a time t and a point xt such that v(t, xt) = M(t) + u(t, xt).
Let x(s) : (−∞, 0] −→ T be a curve calibrated by u and such x(t) = xt. Since

u(t, x(t)) = u(s, x(s)) +
∫ t

s

L(s, x(s), ẋ(s))− cẋ(s) ds

and

v(t, x(t)) 6 v(s, x(s)) +
∫ t

s

L(s, x(s), ẋ(s))− cẋ(s) ds

for all s < t 6 0, we obtain

M > v(s, x(s))− u(s, x(s)) > v(t, x(t))− u(t, x(t)) >M,

hence the inequalities are all equalities, which imply that the curve x(s) is also calibrated by v.
We have found a curve x(s) : (−∞, 0] −→ T which is calibrated by u and v. We now consider a
curve x̄(s) : R −→ T obtained as an accumulation point of the sequence x(s − n), n ∈ N. This
curve is calibrated by u and by v.

Corollary There exists a real number ρ(c) ∈ [α′(c−), α′(c+)] such that each curve x : R −→ T

calibrated by a 1-periodic viscosity solution u(θ, x) of (HJc) has rotation number ρ(c).
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Proof. It is easy to see that, if x is calibrated by a periodic solution, then x ∈ C; hence x has
a rotation number. Let us consider two curves x(t) and q(t), such that x is calibrated by the
1-periodic solution u(θ, x) of (Hc) and q is calibrated by the 1-periodic solution v(θ, x) of (Hc).
In view of the lemma, there exists a third curve f(t) which is calibrated both by u and v. Since x
and f are both calibrated by u, the sets x̃(R) and f̃(R) are either disjoint or equal. In each case,
we have ρ(x) = ρ(f). In the same way, f and q are both calibrated by v hence ρ(q) = ρ(f). As
a consequence, we have ρ(q) = ρ(x). Hence all the curves that are calibrated by some 1-periodic
solution of (Hc) have the same rotation number, and we can denote by ρ(c) this rotation number.
It follows from Lemma 2.7 that ρ(c) ∈ [α′(c−), α′(c+)].

2.10. We are going to prove that the function ρ(c) is continuous. This implies the differentiability
of α, and completes the proof of Proposition 2.7. Let us fix a value of c, and consider a sequence cn
converging to c. Let vn(θ, x) be a time-periodic viscosity solution of (Hcn) and let xn(t) : R −→ R

be a curve calibrated by vn. We extract a subsequence k of n in such a way that the sequence vk
converges, uniformly on compact subsets of R×T, to a viscosity solution v of the equation (Hc). In
addition, we can suppose that the curves xk are converging uniformly on compact sets to a curve
x(t) which is calibrated by v. By the definition of ρ(c), we have ρ(xk) = ρ(ck) and ρ(x) = ρ(c).
By continuity of the rotation number on C, we have ρ(xk) −→ ρ(x), hence ρ(ck) −→ ρ(c). This is
the expected continuity of ρ. We have proved Proposition 2.7.

2.11. The asymptotic behavior of viscosity solutions is described by the following theorem, ob-
tained in [Be] (see also [BR] for another proof, and see [Fa3] and [Ro] for related results). Let
T (c) ∈ N be defined by:
T(c)=1 if ρ(c) is irrational,
T(c)=q if ρ(c) is the rational p/q in lowest terms.
Theorem Let u(t, x) : [t0,∞)×T −→ R be a viscosity solution of (HJc). There exists a viscosity
solution v(t, x) : R×T −→ R of (HJc) which satisfies vt+T (c) = vt−T (c)α(c) for each t ∈ R, and

lim
t−→∞

‖ut − vt‖∞ = 0.

3. Entropy solutions and characteristics

The relation between classical solutions of Burgers equation and the Hamiltonian dynamics is
quite well understood from 1.5. We shall now describe the main properties of entropy solutions,
with emphasis on their relation with dynamics. We will also prove Theorem 1.14 and Corollary
1.15.

3.1. A function y :]t0, t1[−→ R is called an entropy solution of Burgers equation (B) if :
i. The functions y and H(t, x, y(t, x)) are locally integrable and the equation holds in the sense

of distributions :∫
[t0,∞)×T

y(t, x)∂tφ(t, x) +H(t, x, y(t, x))∂xφ(t, x)dtdx = 0

for all smooth function φ :]t0, t1[×T −→ R with compact support (see [Se] for details). Note
that the space average

∫
T
y(t, x)dx is then a constant c.

ii. The Oleinik inequalities
yt(x+ δ)− yt(x) 6 K(t)δ

hold for all t ∈]t0, t1[, x ∈ T and δ > 0, with a positive and decreasing function K(t).

3.2. Let yn be a sequence of functions of L1(T). Considering these functions as periodic functions
on R, we can define the primitives Yn(x) :=

∫ x
0
yn. We say that the sequence yn converges very
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weakly to y if the primitives Yn converge to Y , uniformly on compact sets.

Proposition For each t0 ∈ R and each y0 ∈ L1(T), there exists a unique entropy solution
y :]t0,∞) × T −→ R of Burgers equation such that yt converges very weakly (1) to y0 when t
converges to t0. This solution satisfies

y ∈ L∞([t1,∞)× T) ∩ C
(
]t0,∞), L1(T)

)
,

for all t1 > t0, and it is given by y(t, x) = c + ∂xu(t, x), where c =
∫
T
y0dx and u(t, x) is the

viscosity solution of (HJc) of initial condition ut0(x) =
∫ x

0
(y0 − c).

Proof. Let us first deal with uniqueness. The standard method to prove uniqueness is to use
the Oleinik inequalities 3.1 ii., via a duality method, see [H], Theorem 2.2.1, or [Se], 2.8. We shall
use the Hamilton-Jacobi equation. Indeed, let y(t, x) :]t0,∞) × T −→ R be an entropy solution.
Note that this function is locally bounded in view of the Oleinik inequalities. Define

ũ(t, x) =
∫ x

0

(y(t, q)− c)dq −
∫ 1

0

∫ x

0

(y(t, q)− c)dqdx,

where c =
∫
T
ytdx. We have, in the sense of distributions, ∂txũ = ∂ty = −∂x(H(t, x, y)). Hence the

distribution ∂tũ(t, x) +H(t, x, y(t, x)) does not depend on x, and is the locally integrable function
f(t) =

∫
T
H(t, x, y(t, x))dx. The function u(t, x) = ũ(t, x)−

∫ t
t0
f(s)ds, satisfies ∂tu+H(t, x, y) = 0

and ∂xu = y−c in the sense of distributions, hence both ∂xu and ∂tu are locally bounded functions
on ]t0,∞)×T hence (see for example [EG], 4.2.3) the function u is locally Lipschitz on ]t0,∞)×T.
In addition, the Hamilton-Jacobi equation ∂tu+H(t, x, c+∂xu) = 0 holds almost everywhere. The
function u satisfies condition ii. of Proposition 2.3 as a consequence of the Oleinik inequalities ii.
above. Since the functions yt converge very weakly to y0 as t −→ t0, we have ũt −→ ut0 uniformly
as t −→ t0, which implies that ut −→ ut0 uniformly. As a consequence, the function u is continuous
on [t0,∞) × T. In view of 2.3, the function u has to be the viscosity solution of (HJc) of initial
condition ut0 . So the only candidate to be an entropy solution of (B) is y(t, x) = c+ ∂xu(t, x).

It is classical to obtain the existence of entropy solutions as limits of regular solutions of the
viscous equation (Bµ). However we shall use once more the Hamilton Jacobi equation, i.e. we
shall prove that the function y(t, x) = c+ ∂xu(t, x) introduced in the discussion on uniqueness is
indeed an entropy solution. Recall that u is Lipschitz on [t1,∞)×T for all t1 > t0, hence ∂tu and
y = c + ∂xu are well defined in L∞([t1,∞) × T), as well as H(t, x, y(t, x)). It is straightforward
that i. is satisfied, and ii. follows from the property ii. of Proposition 2.3.

3.3. In order to prove the continuity of the mapping t 7−→ yt from ]t0,∞) to L1(T), let us
introduce, for each positive number K, the set EK of functions which satisfy both

|y(x)| 6 K for all x

and
y(x+ δ) 6 Kδ + y(x) for all x ∈ T and δ > 0.

Lemma The set EK is relatively compact in L1(T) (for the strong topology). In addition, there
exists a modulus of continuity CK(ε) such that

dH(y, z) 6 CK
(
‖y − z‖L1

)
for y, z ∈ EK , where dH is the distance defined in 1.12.

Proof. Let us denote by τδy the function x 7−→ y(x+ δ). We claim that, for each δ ∈ R, we have
‖τδy − y‖L1 6 2K|δ|. In view of Riesz-Fréchet-Kolmogorov compactness criterion (see [Br], IV.5)
this implies the first part of the Lemma. In order to prove the claim, let us first suppose that δ > 0.
Using Oleinik inequality, we get τδy − y 6 Kδ. Let us set z+(x) = max{0, τδy(x) − y(x)} and

(1)The nature of the convergence of entropy solutions to their initial condition can be described more precisely
depending on the regularity of the initial condition. This question, however, is not very relevant to our discussion.
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z− = max{0, y(x)− τδy(x)}, so that τδy − y = z+ − z−. We have z+ 6 Kδ, hence
∫
T
z+dx 6 Kδ.

Noticing that
∫
T
(τδy − y)dx = 0, we obtain that

∫
T
z−dx =

∫
T
z+dx hence

‖τδy − y‖L1 =
∫
T

z+dx+
∫
T

z−dx 6 2Kδ.

The inequality for δ < 0 follows in the same way from the fact that τδy − y > Kδ in this case.
We now prove the second part of the Lemma. See [KO] for related material. Let us consider two

functions y and z of EK and assume that dH(y, z) > 2ε > 0. There exists a point (x0, y0) ∈ H(y)
(see 1.12 for the notation) such that the ball B of radius 2ε centered at (x0, y0) in T × R does
not contain any point of H(z). Hence either z(x) > y0 + ε for almost all x ∈ [x0 − ε, x0 + ε] or
z(x) 6 y(x0) − ε for almost all x ∈ [x0 − ε, x0 + ε]. We will treat the first case, the second being
similar. Using Oleinik inequality, we obtain, for each δ ∈ [0, ε],

z(x0 + δ) > y0 + ε > y(x0 + δ)−Kδ + ε.

Hence

‖y − z‖L1 >
∫ x0+min{ε,ε/K}

x0

z(x)− y(x)dx >
∫ min{ε,ε/K}

0

ε−Kxdx > ε2 max
(

1
2
,

1
2K

)
.

Corollary Let VK ⊂ C(T,R) be the set of K-semi-concave (hence K-Lipschitz) functions.
Then every function u ∈ VK has a derivative ∂xu in EK , and the operator ∂x : VK → EK is
uniformly continuous, when VK is endowed with the topology of uniform convergence and EK with
the strong L1 topology.

Proof. In order to prove that the operator ∂x : VK → EK is uniformly continuous, let us
consider two sequeces un and vn of of VK , such that ‖un − vn‖∞ −→ 0. We have to prove that
‖∂xun − ∂xvn‖L1 −→ 0. If not, there would exist subsequences uk and vk such that ∂xuk and
∂xvk have different limits y and z in L1. This implies that the sequences uk and vk have limits u
and v in C(M,R), and that these limits are different. But this is obviously in contradiction with
the assumption that ‖un − vn‖∞ −→ 0.
In view of this corollary, the continuity of t 7−→ yt follows from the continuity of t 7−→ ut.

3.4. It is clear from what has just been written that Theorem 2.11 implies our main new results,
Theorems 1.9 and 1.14. Indeed, if y(t, x) is an entropy solution of (B), we write it y = c + ∂xu,
where u is a viscosity solution of (HJc). Theorem 2.11 gives the existence of a viscosity solution v
of (HJc) such that v(t+T (c), x) = v(t, x)−T (c)α(c) and ‖vt−ut‖∞ −→ 0 as t −→∞. It follows
from the considerations above that the function ω(t, x) = c+∂xv(t, x) is an entropy solution of (B),
and it clearly satisfies ω(t+ T (c), x) = ω(t, x). In addition, for t1 > t0, all the functions ut, t > t1
and vt, t ∈ R belong to the same set VK . We obtain that ‖yt − ωt‖L1 = ‖∂xut − ∂xvt‖L1 −→ 0
as t −→ ∞ in view of the uniform continuity of the operator ∂x : VK → EK . The second part of
Lemma 3.3, then implies that dH(yt, ωt) −→ 0.

3.5. Consider an entropy solution y(t, x) : [t0,∞) × T −→ R of Burgers equation, let c =
∫
T
ydx

and let u(t, x) : [t0,∞) × T −→ R be a viscosity solution of (HJc) such that y = c + ∂xu.
A trajectory γ(s) : [t0,∞) ⊃ [t, t′] −→ T × R of the Hamiltonian vector-field X is called a y-
characteristic if γ(s) ∈ G(ys) for each s ∈ [t, t′]. A curve x(s) : [t0,∞) ⊃ [t, t′] −→ T is also called
a y-characteristic if it is the projection of a y-characteristic γ(s). The following theorem extends
the method of characteristics to entropy solutions :

Theorem (Characteristics)

i. A curve γ(s) :]t0,∞) ⊃ [t, t′] −→ T×R is a y-characteristic if and only if it is calibrated by
u.
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ii. Let γ(s) :]t0,∞) ⊃ [t, t′] −→ T×R be a y-characteristic, then for each s ∈]t, t′[, the function
ys is continuous at x(s) and y(s, x(s)) = p(s)

iii. For every t > t0 and every (x, p) ∈ G(yt), there exists a unique y-characteristic γ(s) :
]t0, t] −→ T× R such that γ(t) = (x, p).

iv. If in addition yt0 ∈ E, then for every t > t0 and every characteristic x :]t0, t[7−→ T, we
have p(t0) = y(t0, x(t0)). Where (x(t0), p(t0)) is naturally defined by prolongation of the
Hamiltonian trajectory (x(t), p(t)).

v. There exists a characteristic x(t) : [t0,∞) −→ T.
Proof. The proposition will be deduced from the properties of calibrated curves mentioned in
2.4. If γ(s) = (x(s), p(s)) : [t, t′] −→ T × R is a calibrated curve, then we have seen that y is
continuous at (s, x(s)) for each s of ]t, t′[, and that y(s, x(s)) = p(s). As a consequence, calibrated
curves are characteristics, and ii. holds for these curves.

Let us now prove iii. Let us fix a point (x, p) ∈ G(yt), and let (xn, pn) be a sequence of points
of G(yt) converging to (x, p). For each n, there exists a calibrated curves (xn(s), pn(s)) : [t0, t] −→
T× R such that xn(t) = xn. Since (t, xn) is a point of differentiability of u, this calibrated curve
satisfies pn(t) = ∂xu(t, xn) + c = pn. These calibrated curves converge to a calibrated curve which
terminates at (t, x, p). Uniqueness in iii. is a consequence of Cauchy-Lipschitz Theorem for the
Hamiltonian vectorfield.

We now prove that all characteristics are calibrated curves. Let γ(s) = (x(s), p(s)) : [t, t′] −→
T× R be a characteristic. Let γ̃(s) : [t0, t′] −→ T× R be the unique characteristic terminating at
(t′, x(t′), p(t′)) which was obtained above (and which is a calibrated curve). Clearly, γ has to be
the restriction of γ̃, hence it is a calibrated curve.

3.6. In terms of the dynamics, using the notation of 1.12, this theorem implies that

G(yt′) ⊂ φt,t′
(
G(yt)

)
when t0 < t < t′, and that

G(E(y)) ⊂ φ
(
G(y)

)
when y ∈ E .

3.7. A function y :]t0, t1[×T −→ R is called a backward entropy solution of (B) if the function
y̆(s, x) := −y(t1 − s) is an entropy solution of the reversed equation

(B̆) ∂ty̆ + ∂x
(
H̆(t, x, y)

)
= 0,

where H̆(t, x, p) = H(t1− t, x,−p). If y is a C1 solution of Burgers equation, then it is an entropy
solution and a backward entropy solution. However, entropy solutions and backward entropy
solutions are different in general. More precisely, the function y is a backward entropy solution if
and only if it is a solution in the sense of distributions, and satisfies the reversed Oleinik inequalities

yt(x+ δ) > yt(x)−K(t)δ

when δ > 0, with an increasing function K :]t0, t1[−→]0,∞). As a consequence, if y is both an
entropy solution and a backward entropy solution, then yt is Lipschitz for each t ∈]t0, t1[. More
precisely, we have:

Proposition Let y :]t0,∞) × T −→ R be an entropy solution of (B). The function y is a
backward entropy solution of (B) on ]t0, t1[×T if and only if the function yt1 is continuous. The
function y is then locally Lipschitz on ]t0, t1[×T.
Proof. Let us first assume that y is both an entropy solution and a backward entropy solution.
Then for each compact interval of time I ⊂]t0, t1[, the functions yt, t ∈ I, are equilipschitz. In
view of the Lemma in 2.3, we conclude that y is Lipschitz on I.

Assume now that yt1 is continuous. Then each point (x, yt1(x)) is the endpoint of a single
characteristic Γx(t) = (Q(t, x), P (t, x)) :]t0, t1] −→ T. Clearly, we have y(t,Q(t, x)) = P (t, x) for
all (t, x) ∈]t0, t1] × T. Let z(t, x) : (−∞, t1] × T −→ R be the unique backward entropy solution
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with final condition yt1 given by Proposition 3.2. Let us fix a point (t, x) ∈ [t0, t1] × T, and a
z-characteristic γ(s) = (x(s), p(s)) : [t, t1] −→ T × R satisfying x(t) = x. Since −yt1 ∈ E , this
characteristic furthermore satisfies p(t1) = z(t1, x(t1)) (this results from iv. of the theorem on
characteristics). As a consequence, the characteristic γ(s) coincides with Γx(t1)(s). This implies
that zt is continuous at x and satisfies

z(t, x) = p(t) = P (t, x(t1)) = y(t,Q(t, x(t1))) = y(t, x).

We have proved that yt = zt for t ∈]t0, t1[.

3.8. Proposition Let y, z :]t0,∞)×T −→ R be two continuous entropy solutions of (B). Then
the function t 7−→ ‖yt − zt‖L1 is constant.

This result will be extended in section 4, where we give a proof of the well known fact that the
function t 7−→ ‖yt − zt‖L1 is non-increasing if y and z are entropy solutions. Since continuous
solutions are both entropy solutions and backward entropy solutions, this implies the proposition.
However, we give an independent proof here.

Proof. Let us consider the graphs Γyt and Γzt of y and z in T×R. let Ut be the domain enclosed
by these two curves, that is the union of all bounded connected components of T×R− (Γyt ∪Γzt).
Clearly, ‖yt − zt‖L1 is the area of Ut. It follows from the theorem on characteristics that U ′t =
φt,t′(Ut) for t′ > t > t0, where φ is the Hamiltonian flow. The area of Ut does not depend on t
because the flow is area-preserving.

3.9. We are now in a position to prove Corollary 1.9. Let us first state it in slightly greater
generality.

Corollary Let y(t, x) :]t0,∞) × T −→ R be a solution of Burgers equation. If there exists an
unbounded sequence tn > t0 of times such that the function ytn is continuous for all n, then the
function y is the restriction of a Lipschitz solution ω : R× T −→ R which satisfies ω(t + T, x) =
ω(t, x) for some T ∈ N.
Proof. It follows from Proposition 3.7 that the function y is both a forward and a backward
entropy solution on ]t0, tn[×T for each n. It follows from the Oleinik inequality and the reversed
Oleinik inequality that the function y is Lipschitz on [t′0,∞)×T for all t′0 > t0. On the other hand,
there exists a periodic solution ω(t, x) such that ‖yt − ωt‖L1 −→ 0 as t −→ ∞. The functions ωt
are equilipshitz because the functions yt, t > t′0 are equilipshitz. As a consequence, both entropy
solutions ω and y are continuous on [t′0,∞) × T, hence ‖yt − ωt‖L1 is constant, hence it is zero.
We have proved that y = ω on [t1,∞)× T.

3.10. The fact that backward characteristics always exist, but that forward characteristics don’t,
is one of the key features of entropy solutions. Particle may be absorbed by shocks, but they can’t
be created by shocks. In order to understand the full future of a given particle, it is useful to
introduce the notion of weak characteristic. Consider an entropy solution y(t, x) : [t0,∞)×T −→ R

of Burgers equation, let c =
∫
T
ydx and let u(t, x) : [t0,∞) × T −→ R be a viscosity solution of

(HJc) such that y = c+∂xu. We say that an absolutely continuous curve x(s) : [t0,∞) ⊃ [t, t′] −→
T is a weak y-characteristic if it satisfies the equation

ẋ(s) ∈ [∂pH(s, x(s), y−s (x(s))), ∂pH(s, x(s), y+
s (x(s)))]

almost everywhere. It is clear that y-characteristics are weak y-characteristics, and that the notions
of weak y characteristics and of y-characteristics coincide if y is a continuous solution.

Proposition For each t > t0 and x0 ∈ T, there exists one and only one weak characteristic
x(s) : [t,∞) −→ T satisfying x(t) = x0.

Proof. In view of the convexity of H in the p variable, there exists a constant K such that the
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function Y (s, x) = ∂pH(s, x, y(s, x)) satisfies |Y (s, x)| 6 K and the Oleinik inequality

Y (s, x+ δ) 6 Y (s, x) +Kδ

for δ > 0, s > t. Since ∂pH(s, x, y±(s, x)) = Y ±(s, x), the equation for weak characteristics can
be written as

ẋ(s) ∈ [Y −(x(s)), Y +(x(s))].

Now the Proposition follows from a result of Filippov, see [H], Theorem 1.4.2.

3.11. Proposition All weak y-characteristics x(s) : [t,∞) −→ T have the same rotation number

lim
1
t

∫ t

t0

ẋ = ρ(c) = α′(c).

Proof. Let x(t) :]t0,∞) −→ T and q(t) :]t0,∞) −→ T be respectively a genuine y-characteristic
and a weak y-characteristic. Let x̄(t) :]t0,∞) −→ R and q̄(t) :]t0,∞) −→ R be continuous functions
such that x̄(t) mod 1 = x(t) and q̄(t) mod 1 = q(t), and such that x̄(t0) 6 q̄(t0) 6 x̄(t0) + 1. Note
that q̄(t) = q̄(t0) +

∫ t
t0
q̇, with a similar property for x̄. The uniqueness of weak y-characteristics

implies that x̄(t) 6 q̄(t) 6 x̄(t) + 1 for all t. Since x is a genuine y-characteristic, it is calibrated
by u, so that Proposition 2.7 implies

x̄(t)
t
−→ ρ(c) and hence

q̄(t)
t
−→ ρ(c).

4. Pairs of solutions and dissipation

It is well known that if y and z are entropy solutions of (B), then the norm ‖yt − zt‖L1 is a
non-increasing function of t. We shall give a proof of this fact. In short, it is a consequence of the
fact that values of local maxima of differences of viscosity solutions are decreasing. We now give
the details.

4.1. Let f : T −→ R be a continuous function. We say that x0 ∈ T is a point of local maximum
of f if there exists an interval ]a, b[⊂ T containing x0 and such that f(x0) = max]a,b[ f and
f(x0) > max(f(a), f(b)). The value f(x0) is then called a value of local maximum. The following
proposition states that the values of local maxima of a difference ut − vt of viscosity solutions are
non-increasing functions of t.

Proposition Let u, v : [t0,∞) × T −→ R be a pair of viscosity solutions of (HJc), let t1 > t0,
and let d = u − v. Let x1 be a point of local maximum for dt1 , and let ]a, b[ be an open interval
containing x1, and such that max(dt1(a), dt1(b)) < d(t1, x1) = max]a,b[ dt1 . Let a(t) and b(t) be
curves calibrated by u and satisfying a(t1) = a, b(t1) = b. Then for each t in ]t0, t1], we have
M(t) = max[a(t),b(t)] dt > max(d(t, a(t)), d(t, b(t))), hence M(t) is a value of local maximum. In
addition, the value M(t) is a continuous and non-increasing function of t on ]t0, t1].

Proof. The functions d(t, a(t)) and d(t, b(t)) are non-decreasing on [t0, t1]; hence d(t, a(t)) 6
d(t1, a(t1)) < M(t1) and d(t, b(t)) 6 d(t1, b(t1)) < M(t1). On the other hand, consider a curve
q(t) which is calibrated by v and satisfies the final condition q(t1) = x1. Since the function d(t, q(t))
is non-increasing, we have d(t, q(t)) > d(t1, q(t1)) = M(t1). It follows that d(t, q(t)) > d(t, a(t))
and d(t, q(t)) > d(t, b(t)) for each t, hence the curve q(t) can’t cross the curves a(t) and b(t), and
q(t) ∈]a(t), b(t)[ for each t. As a consequence, we have M(t) > d(t, q(t)) > max(d(t, a(t)), d(t, b(t)))
hence M(t) is a value of local maximum. In addition, we have M(t) > d(t, q(t)) > M(t1). The
same construction can be performed with a smaller final time t′1 satisfying t < t′1 6 t1, hence
we have the inequality M(t) > M(t′1) for t < t′1 6 t1. As a consequence, the function M(t) is
non-increasing on ]t0, t1].



BURGERS EQUATION 17

4.2. In order to apply the proposition to pairs of entropy solution of (B) with possibly different
averages, we need some refinements. From now on, we sometimes consider functions on T as
periodic functions on R without changing their names.

Corollary Let c and c′ be two real numbers, let u :]t0,∞) × T −→ R be a viscosity solutions
of (HJc), let v :]t0,∞)× T −→ R be a viscosity solutions of (HJc′), and let t1 > t0. We denote
by dt the difference dt(x) = ut(x) − vt(x) + (c − c′)x : R −→ R. Let x1 ∈ R be a point of local
maximum for dt1 , and let ]a, b[⊂ R be an open interval of length less than 1 containing x1, and
such that max(dt1(a), dt1(b)) < d(t1, x1) = max]a,b[ dt1 . Let a(t) and b(t) be curves calibrated by u
(for (HJc)) and satisfying a(t1) = a, b(t1) = b. Then there exists t′0 < t1 such that, for t ∈ [t′0, t1],
we have M(t) = max]a(t),b(t)[ dt > max(d(t, a(t)), d(t, b(t))). The value M(t) is a continuous and
non-increasing function of t on [t′0, t1]. The functions t 7−→ d(t, a(t)) and t 7−→ d(t, b(t)) are
non-decreasing on [t′0, t1].

Addendum If ]a′, b′[⊂]a, b[ is a smaller interval and if M ′ = d(t1, x′1) = max]a′,b′[ dt1 >
max(dt1(a′), dt1(b′)), then the Corollary can be applied to the value M ′ in the interval ]a′, b′[ with
the same time t′0.

Proof. Let us fix intervals I and J of length less than 1 such that [a, b] ⊂ I ⊂ Ī ⊂ J . We also call
I and J the images of I and J in T, which are proper subsets of T. Let K ′ be a common Lipschitz
constant of the functions vt, t > (t0 + t1)/2, and let K = 2K ′/(1− |J |). Let us fix a time t′0 < t1
and a 1-periodic K-Lipschitz function wt′0 : R −→ R such that wt′0(x) = v(t′0, x) + (c′ − c)x for
x ∈ Z+ J . We can see wt′0 as a function on T, and define in a natural way w(t, x) = V ct′0,t

(wt′0)(x),
for t > t′0. We claim that w(t, x) = v(t, x) + (c′− c)x for all x ∈ I and t ∈ [t′0, t1], if t′0 < t1 is large
enough. Assuming the claim, and assuming in addition that t′0 is sufficiently large that the curves
a(t) and b(t) remain in I on [t′0, t1], the corollary follows from the proposition above applied to u
and w, which both solve (HJc). In order to prove the claim, recall that

w(t, x) = min

(
wt′0(x(t′0)) +

∫ t

t′0

L(s, x(s), ẋ(s))− cẋ(s) ds

)
,

and

v(t, x) = min

(
vt′0(x(t′0)) +

∫ t

t′0

L(s, x(s), ẋ(s))− c′ẋ(s) ds

)
,

where the minima are taken on the set of C1 curves x(s) : [t′0, t] −→ R terminating at x. By
superlinearity of L, it is possible to choose t′0 so close to t1 that, if t′0 6 t 6 t′ 6 t1 and x(s) :
[t, t′] −→ R is a curve starting outside of J and ending inside I, then∫ t′

t

L(s, x(s), ẋ(s)) ds > 2K +
∫ t′

t

L(s, x(t′), 0) ds+ (|c|+ |c′|)
∫ t′

t

|ẋ(s)| ds.

If t′0 is chosen sufficiently close to t1, then for each x ∈ I, the curves reaching the minima in the
expressions of w an v above satisfy x(s) ∈ J for all s. We have proved that, if t′0 is large enough,
then for each x ∈ I it is possible to restrict the minima in the expression for w and v above to
curves x(s) contained in J . For such a curve, we have

wt′0(x(t′0)) +
∫ t

t′0

L(s, x(s), ẋ(s))− cẋ(s) ds

= vt′0(x(t′0)) + (c′ − c)x(t′0) + c(x(t′0)− x) +
∫ t

t′0

L(s, x(s), ẋ(s)) ds

= vt′0(x(t′0)) + (c′ − c)x+
∫ t

t′0

L(s, x(s), ẋ(s))− c′ẋ(s) ds.

As a consequence, the equality w(t, x) = (c′ − c)x+ v(t, x) holds for all t ∈ [t′0, t1] and all x ∈ J .
This ends the proof of the claim, and the proof of the corollary.
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4.3. Theorem Let y(t, x) and z(t, x) :]t0,∞)× T −→ R be two entropy solutions of (B). Then
the function

t 7−→ ‖yt − zt‖1
is non-increasing. In addition, let x0(t) and x1(t) be two curves which are characteristics both for y
and z, and let J(t) and I(t) be the two continuously varying intervals of T such that I(t)∪J(t) = T

and I(t) ∩ J(t) = {x0(t), x1(t)}. Then each of the functions

t 7−→ ‖(yt − zt)|I(t)‖1 and t 7−→ ‖(yt − zt)|J(t)‖1
is non-increasing.

Proof. We shall prove the first part, leaving the easy modifications needed to prove the second
part to the reader. Let y = c + ∂xu and z = c′ + ∂xv be two entropy solutions of (B), and let
d(t, x) = ut(x) − vt(x) + (c − c′)x. The idea of the proof is very simple. The L1 norm of yt − zt
is the total variation of the function dt. Since the local maxima of this function do not increase,
and since its local minima do not decrease, the total variation of dt can’t increase. The details
are, however, a bit tedious.

We consider u and v as periodic functions ]t0,∞)×R −→ R, and define d(t, x) = ut(x)−vt(x)+
(c− c′)x. We denote by Var(dt) the total variation of dt on any interval of length 1. This quantity
does not depend on the interval, and

Var(dt) = ‖yt − zt‖L1(T).

We shall prove that, for each t1 > t0, there exists a time t′0 ∈]t0, t1[ such that, for each t ∈]t′0, t1[,
we have Var(dt) > Var(dt1). Because it is also continuous, the function t 7−→ Var(dt) is then
non-increasing, which is the desired result.

Let us fix a time t1 > t0. Assume first that the function dt1 does not have any local minimum.
In this case, Var(dt1) = |c′ − c|. On the other hand, the inequality Var(dt) > |c′ − c| clearly holds
for all t, hence we have proved that

Var(dt) > Var(dt1)

for all t < t1.
Otherwise, there exists a point a ∈ R of local minimum of dt1 . We consider a y-characteristic

a(t) :]t0, t1] −→ R terminating at a. There exist non decreasing sequences M−k and M+
k of finite

subsets of ]a, a+ 1[ such that, for each k :
– Each point of M−k is a point of local minimum of dt1 ;
– Each maximal interval in the complement ]a, a+ 1[−M−k ofM−k contains exactly one point

of M+
k ;

– Each point of M+
k is a point of local maximum of dt1 ;

– The sets M−k and M+
k are disjoint.

– We have, when k −→∞,

2
∑
x∈M+

k

dt1(x)− 2
∑

x∈M−k

dt1(x)− dt1(a(t1))− dt1(a(t1) + 1) −→ Var(dt1).

It is possible thatM−k is empty for all k. In this case,Mk
+ is also independent of k and contains

a single point x, and we have

Var(dt1) = 2dt1(x)− dt1(a(t1))− dt1(a(t1) + 1).

In view of the corollary, there exists t′0 such that the function M(t) = max]a(t),a(t+1)[ dt is non-
increasing on [t′0, t1], and the functions d(t, a(t)) and d(t, b(t)) are non-decreasing on this interval.
As a consequence, for t ∈]t0, t1[, we have

Var(dt) > 2M(t)− dt(a(t))− dt(a(t) + 1) > 2M(t1)− dt1(a(t1))− dt1(a(t1) + 1) = Var(dt1).

Otherwise, the function dt1 has oscillations and the setsM−k are not empty. Let us choose, for
each point x ∈ M−k , a y-characteristic x(t) : [t0, t1] −→ R satisfying x(t1) = x. Let M−k (t) be
the union of all the points x(t) obtained that way. The corollary above and its addendum allow
to find a time t′0 ∈]t0, t1[ independent of k such that, if ]x, x′[⊂]a, a + 1[ is a maximal interval of
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the complement of M−k , then the y-characteristics x(t) and x′(t) associated to x and x′ satisfy
a(t) 6 x(t) < x′(t) 6 a(t) + 1 for each t ∈]t′0, t1[, and the interval ]x(t), x′(t)[ contains a point
of local maximum q(t) of dt, such that the associated value of local maximum d(t, q(t)) is non-
increasing. Let M+

k (t) be the union of all such points q(t). Recall also, from the corollary, that
the function t 7−→ d(t, x(t)) is non-decreasing on ]t′0, t1[ for each of the chosen characteristics
x(t) ∈M−k (t). We have, for t ∈ [t′0, t1]

Var(dt) > 2
∑

q∈M+
k (t)

dt(q)− 2
∑

x∈M−k (t)

dt(x)− dt(a(t))− dt(a(t) + 1)

> 2
∑

q∈M+
k (t1)

dt1(q)− 2
∑

x∈M−k (t1)

dt1(x)− dt1(a(t1))− dt1(a(t1) + 1) −→ Var(dt1),

hence Var(dt) > Var(dt1).
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